Keramische Technologien und Systeme für die effiziente … · 2015. 11. 19. · Material and...

Post on 29-Sep-2020

2 views 0 download

Transcript of Keramische Technologien und Systeme für die effiziente … · 2015. 11. 19. · Material and...

© Fraunhofer IKTS © Fraunhofer IKTS © Fraunhofer IKTS

Institut für Keramische Technologien und Systems: IKTS Alexander Michaelis

Main sites : Dresden and Hermsdorf

staff: 450

Total Budget: Mio €

Keramische Technologien und Systeme für die effiziente Energiewandlung und -speicherung

© Fraunhofer IKTS 2

structural ceramics functional ceramics

Micro- and Energy Systems Smart Materials and Systems

Ceramic Materials

Processes / Components

Sintering / Characterization

Environmental Technologies

Core Competencies of IKTS

© Fraunhofer IKTS 3

Ceramics for combustion engines

Energy Harvesting (Piezoceramics, TEG)

Fuel Cells

Photovoltaics Storage Technology

Li-Battery SuperCap Na-NiCl SOEC - (Electrolysis)

Smart Ceramic Materials for Energy and Environmental Technologies and Systems

Membranes for Filtration / Bioenergy

Bioenergie-Anwendungszentrum / Pöhl

© Fraunhofer IKTS 4

support

membrane

module

system / plant

coolingwater30 °C

coldwater10 °C

coldwater4 °C

145 °C

99.5 wt.% ETOH

Steam for start up and control

110 °C, 85 wt.%

M

M

Rectificatio

nco

lum

n

MM

Lutter water

M

Atmosphere

From mash column

(110,000 l/d)66 wt.% ETOH

Product (80,000 l/d)99.5 wt.% ETOH

Fusel oils and techn. alcohols

14 2°C

MM

MM MM

process

Ceramic Membrane Systems for liquid and gas filtration

© Fraunhofer IKTS 5

0,4 nm

Formation of structural pores < 1 nm

0,35

nm

Crystallographic cages/channels

Lattice plane distances Crystallographic defects (vacancies)

© Fraunhofer IKTS 6

O2 permeable membranes for combustion processes

new long term stable materials high flux by the use of asymmetrical membranes

CH4 CH4

syngas syngas

porose protection tube with cathode

membrane

air

© Fraunhofer IKTS 7

Ceramics for combustion engines

Energy Harvesting (Piezoceramics, TEG)

Fuel Cells

Photovoltaics Storage Technology

Li-Battery SuperCap Na-NiCl SOEC - (Electrolysis)

Smart Ceramic Materials for Energy and Environmental Technologies and Systems

Membranes for Filtration / Bioenergy

Bioenergie-Anwendungszentrum / Pöhl

© Fraunhofer IKTS 8

Brennstoffzellen

hocheffiziente Energiewandlung: elektrisch > 45 – 55%, KWK > 90 % geringste Emmisionen Grundlastfähig Dezentral Wartungsarm, hohe Verfügbarkeit

© Fraunhofer IKTS 9

Material

MEA

System

Solid Oxide Fuel Cell (SOFC) value chain

Stack

Take over of Siemens AG planar SOFC Technology including IP and some assets in 1998

www. enrg-inc.com

© Fraunhofer IKTS 10

Fuel Cell Systems developed at IKTS

Hydrogen PEFC

Tubular SOFC

LPG SOFC

Natural gas SOFC

Biogas SOFC

1 W 10 W 100 W 1 kW 10 kW 1MW

Hand held portable stationary

Biogas + NG MCFC

© Fraunhofer IKTS © Fraunhofer IKTS © Fraunhofer IKTS

eneramic® DESIGN OPTIONS AND ADVANCED SYSTEM CONCEPTS

eneramic®

stack after- burner

fuel processor

process air pre-heater

start-up burner

Portable SOFC system based on ceramic components and multilayer technologies

© Fraunhofer IKTS 12

PAverage ≈ 2 kW 3

≈ 48 kWh / day 557 V / 64 Ah / 35,7 kWh 2 PPeak = 7,5 kW 1

Capacity Factor: 25 %1 ≈ 45 kWh / day

Advanced System Concepts „Range Extender“ for stationary (and mobile) systems

Application Examples: Remote Surveillance Systems, Telecom Sites, Weather Stations, Irrigation Systems

400 J/s

LPG 750 g / day

300 °C

250 Wth

Time

Req

uir

ed

Po

wer

PV Module / Wind Turbine Application High-Temperature Battery Storage

Na/NiCl-Battery maintained at 270 °C Time

PV

Gen

era

tio

n

1) indicative values for small PV systems in Europe; 2) example data of a ZEBRA Z12 Telecom Battery 3) indicative values for typical cell site power consumption

DC-Power 100 Wel

2,4 kWh / day

Exhaust Heat

© Fraunhofer IKTS 13

Fuel Cell Systems developed at IKTS

Hydrogen PEFC

Tubular SOFC

LPG SOFC

Natural gas SOFC

Biogas SOFC

1 W 10 W 100 W 1 kW 10 kW 1MW

Hand held portable stationary

Biogas + NG MCFC

© Fraunhofer IKTS 14

IKTS has put systems in the field

Vaillant mCHP system Complete system design of the world‘s first wall-hanging fuel cell based micro co-generator (Europe‘s largest heating applicance manufacturer)

Bio-Gas fuel cell Complete design and assembly of a kW-class fuel cell running on biogas. The IKTS fuel cell was put in a container and tested on-site at a biogas plant for one complete summer. SOEC Tests ongoin g

© Fraunhofer IKTS 15

Fuel Cell Systems developed at IKTS

Hydrogen PEFC

Tubular SOFC

LPG SOFC

Natural gas SOFC

Biogas SOFC

1 W 10 W 100 W 1 kW 10 kW 1MW

Hand held portable stationary

Biogas + NG MCFC

© Fraunhofer IKTS 16

© Fraunhofer IKTS 17

© Fraunhofer IKTS 18

MCFC: Market proven!

300MW Fuel Cell power in operatoion

More than 80 Direct FuelCell® plants are running in the field

© Fraunhofer IKTS 19

© Fraunhofer IKTS 20

© Fraunhofer IKTS 21

SOEC ?! (Holy grail)

© Fraunhofer IKTS 22

Material and electrode characterization

Sophisticated spectro-electrochemical characterization (impedance, Raman,…)

Electrical and thermal characterization of commercial cells

Stationary and dynamic modeling of battery cell performance

Powder synthesis and processing

Methods for analysis and optimization of thermal process

Methods for characterization of powders (FESEM, XRD; Raman; thermal properties; particle size )

Development of an adapted slip compositions for the coating process

Sophisticated methods of slurry characterization and optimization

Efficient methods for slurry mixing

Development of technologies for coating of electrode films

Powder processing Slurry mixing Electrode manufacturing Cell testing Cell assembly +

packaging

Storage technology at IKTS: NaS, NaNiCl Li-Ion Battery value chain / technology line

© Fraunhofer IKTS 23

Material development

Powder processing Slurry mixing Electrode manufacturing Cell testing Cell assembly +

packaging

Active materials for lithium ion battery electrodes Cathode materials

LiCoO2 (LCO), LiNi0.8Co0.15Al0.05O2 (NCA), LiNi1/3Co1/3Mn1/3O2 (NCM), LiMn2O4 (LMO), LiFePO4 (LFP) Anode materials

graphite modifications (commercial supplier) Pretreatment of the raw material powders to enhance battery performance

e.g. electrode conductivity, energy density and cycle life

LiCoO2 cathode

© Fraunhofer IKTS 24

Tap density Capacity Processing

Discharge current Cycle stabilty

Power density Life time

Safety

© Fraunhofer IKTS 25

Efficient manufacturing methods for high-performance lithium ion batteries: From Lab. to Fab.

Battery assembly Slurry mixing Electrode manufacturing Cell testing Cell assembly +

packaging

Development of optimized manufacturing methods along the entire value chain of lithium ion cell production

Manufacturing methods for high-performance lithium ion battery cells with a target price of 300 €/kWh

Pilot scale production of Li-Ion-Batteries

© Fraunhofer IKTS 26

Brennstoffzellen erforderlich zur regenerativen Gaserzeugung sowie umweltgerechter Energiewandlung aus Gas (Elektrolyse, SOEC)

© Fraunhofer IKTS 27

© Fraunhofer IKTS © Fraunhofer IKTS © Fraunhofer IKTS

RESET Dresden

Projektkonzept Zwanzig20 des IKTS: Batterie 2.0

© Fraunhofer IKTS 29

Zusammenfassung: Kombination von effizienter (regenerativer) Energiewandlung + Speicherung

Supercap Li-Ion NaNiCl Redox-Flow SOEC

Power to Gas (Fuel)

Solar MCFC

SOFC Solar Wind

Privat Gewerbe Netzebene 6 .. 7

Netzebene 5 Industrie

Anwendungen

Skalierung

SOFC

E-Mobil