A Practical Guide to ‘Free-Energy’...

Click here to load reader

  • date post

    13-Feb-2021
  • Category

    Documents

  • view

    0
  • download

    0

Embed Size (px)

Transcript of A Practical Guide to ‘Free-Energy’...

A Practical Guide to ‘Free-Energy’ Devices

Anhang

TABELLE DER DRAHT-GRÖßEN:

Die Draht-Größen angegeben für den Einsatz in einigen Entwürfen sind American Wire Gauge, also eine Vergleichstabelle anzeigen Großbritannien “Standard Wire Gauge” (mit Längen auf einer 500-Gramm-Spule von Kupferlackdraht) und “American Wire Gauge'” ist hier gegeben:

AWG

Dia mm

Area

sq. mm

SWG

Dia mm

Area

sq. mm

Max

Amps

Ohms /

metre

Metres

Per 500g

Max

Hz

1

7.35

42.40

2

7.01

38.60

119

325

2

6.54

33.60

3

6.40

32.18

94

410

3

5.88

27.15

4

5.89

27.27

75

500

4

5.19

21.20

6

4.88

18.68

60

650

5

4.62

16.80

7

4.47

15.70

47

810

6

4.11

13.30

8

4.06

12.97

37

1,100

7

3.67

10.60

9

3.66

10.51

30

1,300

8

3.26

8.35

10

3.25

8.30

24

1,650

9

2.91

6.62

11

2.95

6.82

19

2,050

10

2.59

5.27

12

2.64

5.48

15

0.0042

2,600

11

2.30

4.15

13

2.34

4.29

12

0.0047

3,200

12

2.05

3.31

14

2.03

3.49

9.3

0.0053

17.5 m

4,150

13

1.83

2.63

15

1.83

2.63

7.4

0.0068

5,300

14

1.63

2.08

16

1.63

2.08

5.9

0.0083

27 m

6,700

15

1.45

1.65

17

1.42

1.59

4.7

0.0135

8,250

16

1.29

1.31

18

1.219

1.17

3.7

0.0148

48 m

11 kHz

17

1.15

1.04

2.9

0.0214

13 kHz

18

1.024

0.823

19

1.016

0.811

2.3

0.027

17 kHz

19

0.912

0.653

20

0.914

0.657

1.8

0.026

85 m

21 kHz

20

0.812

0.519

21

0.813

0.519

1.5

0.036

27 kHz

21

0.723

0.412

22

0.711

0.397

1.2

0.043

140 m

33 kHz

22

0.644

0.325

23

0.610

0.292

0.92

0.056

42 kHz

23

0.573

0.259

24

0.559

0.245

0.729

0.070

225 m

53 kHz

24

0.511

0.205

25

0.508

0.203

0.577

0.087

68 kHz

25

0.455

0.163

26

0.457

0.164

0.457

0.105

340 m

85 kHz

26

0.405

0.128

27

0.417

0.136

0.361

0.130

107 kHz

27

0.361

0.102

28

0.376

0.111

0.288

0.155

500 m

130 kHz

28

0.321

0.0804

30

0.315

0.0779

0.226

0.221

700 m

170 kHz

29

0.286

0.0646

32

0.274

0.0591

0.182

0.292

950 m

210 kHz

30

0.255

0.0503

33

0.254

0.0506

0.142

0.347

1125 m

270 kHz

31

0.226

0.0401

34

0.234

0.0428

0.113

0.402

1300 m

340 kHz

32

0.203

0.0324

36

0.193

0.0293

0.091

0.589

1900 m

430 kHz

33

0.180

0.0255

37

0.173

0.0234

0.072

0.767

2450 m

540 kHz

34

0.160

0.0201

38

0.152

0.0182

0.056

0.945

3000 m

690 kHz

35

0.142

0.0159

39

0.132

0.0137

0.044

1.212

3700 m

870 kHz

FRANK FECERA: DAUERMAGNET MOTOR

Patent US 6.867.514 15 März 2005 Erfinder: Frank J. Fecera

DAUERMAGNET MOTOR

Diese Patentanmeldung zeigt die Einzelheiten eines Permanentmagnetmotors. Es sollte bemerkt werden, daß, während in diesem Text, Frank, dass Permanentmagnete Speichern einer endlichen Menge von Magnetismus in der Tat, die Magnetpole bilden einen Dipol, einen kontinuierlichen Fluss von Energie aus dem Quanten-Schaum des Universums gezogen bewirkt, und daß sein Fluss fortgesetzt, bis zu dem Zeitpunkt, der Dipol zerstört. Die Energie, die Befugnisse jeder Permanentmagnet-Motor kommt direkt aus dem Energiefeld Nullpunkt und nicht die tatsächlich von der Magnet selbst. Ein Eisenstück kann durch eine einzige Nanomagnetimpulsmagnetic in einem Magneten umgewandelt werden. Es macht keinen Sinn, dass ein Impuls von dieser Dauer könnte Monate Dauerleistung von etwas in der Magnet selbst gespeichert sind, aber es macht durchaus Sinn, wenn diese kurzen Impuls erzeugt einen magnetischen Dipol, der als Gateway für den Zufluss von Nullpunkt-Energie wirkt aus der Umwelt.

ABSTRAKT

Ein Motor bietet unidirektionale Drehantriebskraftmotive power ist. Der Motor hat einen allgemein kreisförmigen Stator mit einer Ständerachse, einer Außenfläche und einer Umfangsgrenzlinieline of demarcation bei ungefähr einem Mittelpunkt der Außenfläche. Der Motor umfasst auch eine oder mehrere Stator-Magneten an der Außenfläche des Stators befestigt ist. Die Stator-Magnete sind in einer allgemein kreisförmigen Anordnung um die Ständerachse angeordnet und ein erstes Magnetfeld. Ein Anker ist an dem Stator befestigt ist, so daß es dreht sich mit dieser, den Anker mit einer Achse parallel zur Ständerachse. Einen oder mehrere Rotoren, von dem Anker durch eine Achse angeordnet sind und mit ihm gekoppelt, damit jeder Rotor um eine Achse zu drehen, wobei jeder Rotor in einer Ebene rotierenden Allgemeinen mit der Achse des Ankers ausgerichtet ist. Jeder Rotor weist einen oder mehrere Rotormagnete, wobei jeder Rotormagneten zum Erzeugen eines zweiten Magnetfeldes. Das zweite Magnetfeld jedes Rotormagneten erzeugten Wechselwirkung mit dem ersten magnetischen Feldes, um zu bewirken, wobei jeder Rotor um die Rotorachse drehen. Eine Verbindungsanordnung verbindet Antriebs jeden Rotor zu dem Stator, um den Anker zu veranlassen, um die Ankerachseaxis, wodurch die unidirektionale Drehantriebskraftmotive power des Motors zu drehen.

HINTERGRUND DER ERFINDUNG

Diese Erfindung bezieht sich auf dynamoelektrische Motorstrukturen und insbesondere Dreh- und Linearmotoren mit Permanentmagneten. Herkömmliche Elektromotoren beruhen auf der Wechselwirkung von Magnetfeldern, um eine Kraft, die in beiden Dreh- oder Linearbewegung Ergebnisse. Die Magnetfelder in herkömmlichen Elektromotoren Erzeugen eines Drehstrompower werden, indem ein extern bereitgestellte elektrische Strom durch die Leiter entweder in einem Stator erzeugt wird (dh stationären Teil des Motors), der einen Rotor (dh Drehabschnitt ) oder sowohl den Stator und den Rotor. Die Drehkraft des Motors ergibt sich aus einem rotierenden Magnetfeld, das durch Kommutieren des elektrischen Stroms erzeugt wird, entweder durch ein Umschalten des Stroms durch verschiedene Leiter, wie in einem Gleichstrommotor oder durch eine Polaritätsumkehr des elektrischen Stroms in einer Wechsel Strommotor.

Es ist gut bekannt, daß eine Klasse von Materialien, wie ferromagnetische Materialien bekannt sind, sind auch geeignet zur Erzeugung eines Magnetfeldes mit einmal erregt ist. Ferromagnetische Materialien mit hoher Koerzitivkraft als Permanentmagnete bekannt. Permanentmagnete sind in der Lage Speichern einer endlichen Menge an Energie und die Fähigkeit beibehalten wird, um eine wesentliche Magnetfeld zu erzeugen, bis die gespeicherte Energie verbraucht ist.

Es sind elektrische Motoren, die Permanentmagneten entweder in der Statorteil des Motors bzw. der Rotorteilportion des Motors zu verwenden. Diese Motoren erreichen eine kleine Größe für die Leistungsmenge, die durch den Motor geliefert, da die Motoren zu vermeiden, die stromführenden Leiter, um das magnetische Feld, welches sonst durch die Dauermagneten erzeugt wird, zu erzeugen. Diese herkömmlichen Permanentmagnetmotoren erfordern noch eine externe Stromquellesource of an ein rotierendes Magnetfeld erzeugen.

Es sind auch Dauermagnetmotoren, die Permanentmagnete sowohl für den Stator und dem Rotor verwendet entwickelt. Zum Beispiel US-Pat. Nr 4598221 offenbart einen Permanentmagnet-Motor, der auf einer externen Stromquelle, um die Magnetfelder des Rotors um neunzig Grad mit Bezug auf den wechselwirkenden Stator Magnetfelder drehen stützt die kontra magnetische Anziehung und Abstoßung zwischen dem Rotor und de