Analog Design 1

download Analog Design 1

of 32

Transcript of Analog Design 1

  • 8/7/2019 Analog Design 1

    1/32

    Design of CMOS low dropoutDesign of CMOS low dropout

    voltage regulatorvoltage regulator

    Project guide :

    Mrs Varsha Prasad

    NMIT

    By :

    Savitha M M

    1NT09LVS13

    NMIT1

    NMIT

  • 8/7/2019 Analog Design 1

    2/32

    ContentsContents

    y Introduction

    y Literature survey

    y

    Selection of tools for the projecty Project work execution stages

    y Design of LDO voltage regulator

    y

    Questions

    2NMIT

  • 8/7/2019 Analog Design 1

    3/32

    IntroductionIntroduction

    y

    Design of a 3-5V 50mA CMOS low Drop-out (LDO) linearregulator with a single compensation capacitor.

    yThe circuit realization to be developed with respect to the

    loop-gain response, the transient response, the output

    noise, the output accuracy, as well as the standby power

    consumption.

    yThe proposed LDO regulator to be implemented in the

    0.6um CMOS process. Maximum output load current upto

    50mA and the regulated output voltage should be 2.8V

    should be supported.yThe regulator should provide a full load transient response

    less than 5mV overshoots and undershoots.

    yPower supply reject rate better than -65dB

    yOutput noise of 0.02 uV/sqrt Hz at 100 kHz 3NMIT

  • 8/7/2019 Analog Design 1

    4/32

    Literature surveyLiterature survey

    y Cmos low dropout voltage regulator-Vincent lixiang bu

    y Design of analog CMOS integrated

    circuits-B.Razaviy CMOS analog circuit design-Phillip.E.Allen

    and Douglas R.Holberg

    y

    Handbook of operational amplifierapplications-Ken Martin

    y Understanding terms and definitions of

    LDO voltage regulators-Bang S Lee of TI4NMIT

  • 8/7/2019 Analog Design 1

    5/32

    Selection of tools for the projectSelection of tools for the project

    Evaluated H-Spice and T-Spice.

    Selected T-Spice v 13.0 because of its more

    user friendly waveform viewer

    5NMIT

  • 8/7/2019 Analog Design 1

    6/32

    Project work execution stagesProject work execution stages

    y Design of a 2 stage opamp

    y Simulation of unity gain buffer : input

    common mode range

    y Simulation of open loop gain

    y Simulation of transfer function

    y Simulation of phase margin

    y Simulation of amplifier compensation

    y Simulation of power dissipation

    6NMIT

  • 8/7/2019 Analog Design 1

    7/32

    execution stages contdexecution stages contd

    y Simulation of CMRR

    y Simulation of slew rate

    y

    Simulation of o/p resistance

    7NMIT

  • 8/7/2019 Analog Design 1

    8/32

    Design of 2 stage opampDesign of 2 stage opamp

    8NMIT

  • 8/7/2019 Analog Design 1

    9/32

    Design of 2 stage opamp contd..Design of 2 stage opamp contd..

    Ibias 30A

    S1=S2 3

    S3=S4 10

    S5=S8 7.5

    S6 61

    S7 23

    Rl 1mega ohm

    Vin 2.5V

    9NMIT

  • 8/7/2019 Analog Design 1

    10/32

    Simulation of unity gain buffer : inputSimulation of unity gain buffer : input

    common mode rangecommon mode range

    The input common-mode range of this op amp extends from

    -2.20V to 2.00V

    10NMIT

  • 8/7/2019 Analog Design 1

    11/32

    Unity gain buffer AC waveformUnity gain buffer AC waveform

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Time (ms)

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Voltage(V)

    v(vout)

    v(q6)

    y1= y2= dy=999.52m -1.00 -2.00

    unity ainac

    11NMIT

  • 8/7/2019 Analog Design 1

    12/32

  • 8/7/2019 Analog Design 1

    13/32

    Simulation of open loop gainSimulation of open loop gain

    The input offset voltage for this op amp = 0.26mV

    The open-loop gain of this op amp = 2179The open-loop gain of this op amp in db= 67db

    13NMIT

  • 8/7/2019 Analog Design 1

    14/32

    Open loop gain waveformOpen loop gain waveform

    -1.0 -0.5 0.0 0.5 1.0

    in (mV)

    -0.5

    0.0

    0.5

    Voltage(V)

    (

    out)

    205.12m

    (q6)

    382.04u

    1 2 d382.04u 211.31u -170.74u y1 y2 dy199.67m -172.37m -372.05m

    open_loop

    14NMIT

  • 8/7/2019 Analog Design 1

    15/32

  • 8/7/2019 Analog Design 1

    16/32

    Transfer function waveformTransfer function waveform

    10 100 1k 10k 100k 1M 10M 100M

    Freque cy (Hz)

    -

    0

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    oltageMag

    itude(dB)

    db(

    out )

    y1= y2= dy=67.31 8.04 - 9.27

    trans er

    16NMIT

  • 8/7/2019 Analog Design 1

    17/32

    Simulation of phase marginSimulation of phase margin

    10 100 1k 10k 100k 1

    10

    100

    eque cy(Hz)

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    olagePhase(d

    eg)

    p(

    ou

    )

    -177 29

    x1= x = dx=1 92k 36 90 36 89 y1= y2= dy=74 69 -175 44 -250 13

    phase

    Phase margin =180-175 = 5deg

    17NMIT

  • 8/7/2019 Analog Design 1

    18/32

    Simulation of amplifierSimulation of amplifier

    compensationcompensation

    20 deg phase = Cc is 0.3pfarad

    60 deg phase = Cc is 2.8pfarad

    18NMIT

  • 8/7/2019 Analog Design 1

    19/32

    Simulation of amplifierSimulation of amplifier

    compensationcompensation

    10 100 1k 10k 100k 1M 10M 100M

    Frequency (Hz)

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    Voltage

    Phase

    (deg)

    vp(vout)

    -120.62

    x1= x2= dx=1.92k 5.25M 5.25M y1= y2= dy=74.60 -119.04 -193.64

    amp6a

    19NMIT

  • 8/7/2019 Analog Design 1

    20/32

    Simulation of amplifierSimulation of amplifier

    compensation contdcompensation contd

    m ( s)

    -

    !

    "

    t

    (m

    )

    #

    (# $ %

    t)#

    (&

    '

    )

    amp6b

    Amplifier compensation improves phase margin and to

    achieve stable closed loopperformance 20NMIT

  • 8/7/2019 Analog Design 1

    21/32

    Simulation of power dissipationSimulation of power dissipation

    -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1 .5 2.0 2.5

    ( )

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    250

    Cu

    e

    t(uA)

    (

    ()

    ss)(

    ()

    dd)

    y1 y2 dy187.39u -187.49u -374.87u

    power8

    21NMIT

  • 8/7/2019 Analog Design 1

    22/32

    Simulation of CMRRSimulation of CMRR

    Common mode gain

    22NMIT

  • 8/7/2019 Analog Design 1

    23/32

    Common mode gain waveformCommon mode gain waveform

    10 100 1k 10k 100k

    F ( z)

    -0

    0

    -1

    2

    -1

    0

    -3

    2

    -3

    0

    -15

    -10

    -5

    0

    V

    l

    M

    i

    (

    )

    4

    5 6

    ( 4 7 8 9 )

    y1= y2= dy=- 19 - 9.68 - 2.49

    cmrr1

    23NMIT

  • 8/7/2019 Analog Design 1

    24/32

    Differential mode gain waveformDifferential mode gain waveform

    10 100 1k 10k 100k

    Fr y( z)

    0

    10

    @

    0

    A

    0

    40

    50

    60

    B

    0

    t

    tde(dB)

    C

    db(C

    D

    E

    t)

    y1= y2= dy=67.61 35.01 -32.60

    cmrr1a

    24NMIT

  • 8/7/2019 Analog Design 1

    25/32

    CMRR contdCMRR contd

    CMRR

    =

    Differential mode gain common mode gain

    At 10hz = 74.8db

    At 100khz = 74.69db

    25NMIT

  • 8/7/2019 Analog Design 1

    26/32

    Simulation of slew rateSimulation of slew rate

    Positive slew rate = 11.18v/sNegative slew rate = 9.76v/s

    With no load

    Positive slew rate = 11.12v/s

    Positive slew rate = 10.53v/s

    26NMIT

  • 8/7/2019 Analog Design 1

    27/32

    Slew rate waveformSlew rate waveform

    0.0 0.5 1.0 1.5 2.0

    Time (us)

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Voltage

    (V)

    v(vout)

    slewrate3

    27NMIT

  • 8/7/2019 Analog Design 1

    28/32

    Simulation of o/p resistanceSimulation of o/p resistance

    0.0 0.5 1.0 1.5 2.0

    Time ( s)

    - F .1

    - F .0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    V

    e(mV)

    v(vG

    H I )

    v(P 7)

    y1 y2 dy909.87u 295.06u -614.81u

    opres4

    28NMIT

  • 8/7/2019 Analog Design 1

    29/32

    Design of LDO voltage regulatorDesign of LDO voltage regulator

    This work is in progress

    29NMIT

  • 8/7/2019 Analog Design 1

    30/32

    LDO voltage regulator contd..LDO voltage regulator contd..

    This work is in progress

    30NMIT

  • 8/7/2019 Analog Design 1

    31/32

    LDO voltage regulator contdLDO voltage regulator contd

    Performance parameters:

    y Dropout voltage

    y Transient response

    y Power supply rejection

    y Line regulation

    y Load regulation

    y Output noise voltage

    y AccuracyThis work is in progress

    31NMIT

  • 8/7/2019 Analog Design 1

    32/32