“H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct...

23
Kentarou Mawatari (Osaka U.) PPP2019 - Kyoto - 2019.7.30 /23 “H-COUP”で物理を探る 馬渡 健太郎 1 1. H-COUP とは ? 2. なぜ H-COUP ? 3. H-COUPでどのよう に物理を探るのか ? 4. まとめと展望 共同研究者: 兼村 晋哉 (大阪大) 菊地 真吏子 (北九州高専) 桜井 亘大 (Karlsruhe/大阪大) 柳生 (大阪大)

Transcript of “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct...

Page 1: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

“H-COUP”で物理を探る

馬渡 健太郎

1

1. H-COUP とは ?

2. なぜ H-COUP ?

3. H-COUPでどのように物理を探るのか ?

4. まとめと展望

共同研究者:

兼村 晋哉 (大阪大) 菊地 真吏子 (北九州高専) 桜井 亘大 (Karlsruhe/大阪大)

柳生 慶 (大阪大)

Page 2: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

1. H-COUPとは ?

2

Page 3: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23 3

Comput.Phys.Commun.233(2018)134

http://www-het.phys.sci.osaka-u.ac.jp/~kanemu/HCOUP_HP1013/HCOUP_HP.html

Loop effects on the Higgs decay widths in extended Higgs models [1803.01456, PLB]Full NLO calculations of Higgs boson decay rates in models with non-minimal scalar sectors [1906.10070]

+K. Mawatari

Version 2 is coming very soon!

Page 4: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

H-COUP v1 and v2: 1-min tutorial

• go to the H-COUP webpage.

• download the H-COUP file.

• (install LoopTools.)

• $ unzip H-COUP-2.0.zip

• edit Makefile to specify the PATH to LoopTools

• $ make (to compile)

• edit an input file (HSM, THDMs, IDM)

• $ ./hcoup (to run the program)

4

Page 5: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

H-COUP v1: Input and Output

5

Input

Output

Page 6: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

2. なぜH-COUP ?

6

Page 7: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

新物理(New Physics)の兆候が未だに現れない…

7

SUSY(超対称性)粒子の質量への制限

Model Signature!L dt [fb−1] Mass limit Reference

Incl

usi

veS

ea

rch

es

3rd

gen.

squark

sdir

ect

pro

duct

ion

EW

dir

ect

Lo

ng

-liv

ed

pa

rtic

les

RP

V

q̃q̃, q̃→qχ̃01

0 e, µ 2-6 jets EmissT 36.1 m(χ̃

01)<100 GeV 1712.023321.55q̃ [2×, 8× Degen.] 0.9q̃ [2×, 8× Degen.]

mono-jet 1-3 jets EmissT 36.1 m(q̃)-m(χ̃

01)=5 GeV 1711.033010.71q̃ [1×, 8× Degen.] 0.43q̃ [1×, 8× Degen.]

g̃g̃, g̃→qq̄χ̃01

0 e, µ 2-6 jets EmissT 36.1 m(χ̃

01)<200 GeV 1712.023322.0g̃

m(χ̃01)=900 GeV 1712.023320.95-1.6g̃̃g Forbidden

g̃g̃, g̃→qq̄(ℓℓ)χ̃01

3 e, µ 4 jets 36.1 m(χ̃01)<800 GeV 1706.037311.85g̃

ee, µµ 2 jets EmissT 36.1 m(g̃)-m(χ̃

01 )=50 GeV 1805.113811.2g̃

g̃g̃, g̃→qqWZχ̃01

0 e, µ 7-11 jets EmissT 36.1 m(χ̃

01) <400 GeV 1708.027941.8g̃

SS e, µ 6 jets 139 m(g̃)-m(χ̃01)=200 GeV ATLAS-CONF-2019-0151.15g̃

g̃g̃, g̃→tt̄χ̃01

0-1 e, µ 3 b EmissT 79.8 m(χ̃

01)<200 GeV ATLAS-CONF-2018-0412.25g̃

SS e, µ 6 jets 139 m(g̃)-m(χ̃01)=300 GeV ATLAS-CONF-2019-0151.25g̃

b̃1b̃1, b̃1→bχ̃01/tχ̃

±1

Multiple 36.1 m(χ̃01)=300 GeV, BR(bχ̃

01)=1 1708.09266, 1711.033010.9b̃1b̃1 Forbidden

Multiple 36.1 m(χ̃01)=300 GeV, BR(bχ̃

01)=BR(tχ̃

±1 )=0.5 1708.092660.58-0.82b̃1b̃1 Forbidden

Multiple 139 m(χ̃01)=200 GeV, m(χ̃

±1 )=300 GeV, BR(tχ̃

±1 )=1 ATLAS-CONF-2019-0150.74b̃1b̃1 Forbidden

b̃1b̃1, b̃1→bχ̃02 → bhχ̃

01

0 e, µ 6 b EmissT 139 ∆m(χ̃

02 , χ̃

01)=130 GeV, m(χ̃

01)=100 GeV SUSY-2018-310.23-1.35b̃1b̃1 Forbidden

∆m(χ̃02 , χ̃

01)=130 GeV, m(χ̃

01)=0 GeV SUSY-2018-310.23-0.48b̃1b̃1

t̃1 t̃1, t̃1→Wbχ̃01 or tχ̃

01

0-2 e, µ 0-2 jets/1-2 b EmissT 36.1 m(χ̃

01)=1 GeV 1506.08616, 1709.04183, 1711.115201.0t̃1

t̃1 t̃1, t̃1→Wbχ̃01

1 e, µ 3 jets/1 b EmissT 139 m(χ̃

01)=400 GeV ATLAS-CONF-2019-0170.44-0.59t̃1

t̃1 t̃1, t̃1→τ̃1bν, τ̃1→τG̃ 1 τ + 1 e,µ,τ 2 jets/1 b EmissT 36.1 m(τ̃1)=800 GeV 1803.101781.16t̃1

t̃1 t̃1, t̃1→cχ̃01 / c̃c̃, c̃→cχ̃

01

0 e, µ 2 c EmissT 36.1 m(χ̃

01)=0 GeV 1805.016490.85c̃

m(t̃1,c̃)-m(χ̃01 )=50 GeV 1805.016490.46t̃1

0 e, µ mono-jet EmissT 36.1 m(t̃1,c̃)-m(χ̃

01)=5 GeV 1711.033010.43t̃1

t̃2 t̃2, t̃2→t̃1 + h 1-2 e, µ 4 b EmissT 36.1 m(χ̃

01)=0 GeV, m(t̃1)-m(χ̃

01)= 180 GeV 1706.039860.32-0.88t̃2

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ 1 b EmissT 139 m(χ̃

01)=360 GeV, m(t̃1)-m(χ̃

01)= 40 GeV ATLAS-CONF-2019-0160.86t̃2t̃2 Forbidden

χ̃±1χ̃0

2 via WZ 2-3 e, µ EmissT 36.1 m(χ̃

01)=0 1403.5294, 1806.022930.6χ̃±

1 /χ̃0

2ee, µµ ≥ 1 Emiss

T 139 m(χ̃±1 )-m(χ̃

01 )=5 GeV ATLAS-CONF-2019-0140.205χ̃±

1 /χ̃0

2

χ̃±1χ̃∓

1 via WW 2 e, µ EmissT 139 m(χ̃

01)=0 ATLAS-CONF-2019-0080.42χ̃±

1

χ̃±1χ̃0

2 via Wh 0-1 e, µ 2 b/2 γ EmissT 139 m(χ̃

01)=70 GeV ATLAS-CONF-2019-019, ATLAS-CONF-2019-XYZ0.74χ̃±

1 /χ̃0

2χ̃±

1 /χ̃0

2 Forbidden

χ̃±1χ̃∓

1 via ℓ̃L/ν̃ 2 e, µ EmissT 139 m(ℓ̃,ν̃)=0.5(m(χ̃

±1 )+m(χ̃

01)) ATLAS-CONF-2019-0081.0χ̃±

1

τ̃τ̃, τ̃→τχ̃01 2 τ Emiss

T 139 m(χ̃01)=0 ATLAS-CONF-2019-0180.12-0.39τ̃ [τ̃L, τ̃R,L] 0.16-0.3τ̃ [τ̃L, τ̃R,L]

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃01

2 e, µ 0 jets EmissT 139 m(χ̃

01)=0 ATLAS-CONF-2019-0080.7ℓ̃

2 e, µ ≥ 1 EmissT 139 m(ℓ̃)-m(χ̃

01)=10 GeV ATLAS-CONF-2019-0140.256ℓ̃

H̃H̃, H̃→hG̃/ZG̃ 0 e, µ ≥ 3 b EmissT 36.1 BR(χ̃

01 → hG̃)=1 1806.040300.29-0.88H̃ 0.13-0.23H̃

4 e, µ 0 jets EmissT 36.1 BR(χ̃

01 → ZG̃)=1 1804.036020.3H̃

Direct χ̃+

1χ̃−

1 prod., long-lived χ̃±1 Disapp. trk 1 jet Emiss

T 36.1 Pure Wino 1712.021180.46χ̃±1

Pure Higgsino ATL-PHYS-PUB-2017-0190.15χ̃±1

Stable g̃ R-hadron Multiple 36.1 1902.01636,1808.040952.0g̃

Metastable g̃ R-hadron, g̃→qqχ̃01

Multiple 36.1 m(χ̃01)=100 GeV 1710.04901,1808.040952.4g̃ [τ( g̃) =10 ns, 0.2 ns] 2.05g̃ [τ( g̃) =10 ns, 0.2 ns]

LFV pp→ν̃τ + X, ν̃τ→eµ/eτ/µτ eµ,eτ,µτ 3.2 λ′311=0.11, λ132/133/233=0.07 1607.080791.9ν̃τ

χ̃±1χ̃∓

1 /χ̃02 → WW/Zℓℓℓℓνν 4 e, µ 0 jets Emiss

T 36.1 m(χ̃01)=100 GeV 1804.036021.33χ̃±

1 /χ̃0

2 [λi33 ! 0, λ12k ! 0] 0.82χ̃±1 /χ̃

0

2 [λi33 ! 0, λ12k ! 0]

g̃g̃, g̃→qqχ̃01, χ̃

01 → qqq 4-5 large-R jets 36.1 Large λ′′

112 1804.035681.9g̃ [m(χ̃0

1)=200 GeV, 1100 GeV] 1.3g̃ [m(χ̃0

1)=200 GeV, 1100 GeV]Multiple 36.1 m(χ̃

01)=200 GeV, bino-like ATLAS-CONF-2018-0032.0g̃ [λ′′

112=2e-4, 2e-5] 1.05g̃ [λ′′

112=2e-4, 2e-5]

t̃t̃, t̃→tχ̃01, χ̃

01 → tbs Multiple 36.1 m(χ̃

01)=200 GeV, bino-like ATLAS-CONF-2018-0031.05g̃ [λ′′

323=2e-4, 1e-2] 0.55g̃ [λ′′

323=2e-4, 1e-2]

t̃1 t̃1, t̃1→bs 2 jets + 2 b 36.7 1710.071710.61t̃1 [qq, bs] 0.42t̃1 [qq, bs]

t̃1 t̃1, t̃1→qℓ 2 e, µ 2 b 36.1 BR(t̃1→be/bµ)>20% 1710.055440.4-1.45t̃1

1 µ DV 136 BR(t̃1→qµ)=100%, cosθt=1 ATLAS-CONF-2019-0061.6t̃1 [1e-10< λ′23k<1e-8, 3e-10< λ′

23k<3e-9] 1.0t̃1 [1e-10< λ′

23k<1e-8, 3e-10< λ′

23k<3e-9]

Mass scale [TeV]10−1 1

ATLAS SUSY Searches* - 95% CL Lower LimitsJuly 2019

ATLAS Preliminary√

s = 13 TeV

*Only a selection of the available mass limits on new states orphenomena is shown. Many of the limits are based onsimplified models, c.f. refs. for the assumptions made.

Model ℓ, γ Jets† EmissT

!L dt[fb−1] Limit Reference

Ext

rad

ime

nsi

on

sG

au

ge

bo

son

sC

ID

ML

QH

eavy

qu

ark

sE

xcite

dfe

rmio

ns

Oth

er

ADD GKK + g/q 0 e, µ 1 − 4 j Yes 36.1 n = 2 1711.033017.7 TeVMD

ADD non-resonant γγ 2 γ − − 36.7 n = 3 HLZ NLO 1707.041478.6 TeVMS

ADD QBH − 2 j − 37.0 n = 6 1703.091278.9 TeVMth

ADD BH high!pT ≥ 1 e, µ ≥ 2 j − 3.2 n = 6, MD = 3 TeV, rot BH 1606.022658.2 TeVMth

ADD BH multijet − ≥ 3 j − 3.6 n = 6, MD = 3 TeV, rot BH 1512.025869.55 TeVMth

RS1 GKK → γγ 2 γ − − 36.7 k/MPl = 0.1 1707.041474.1 TeVGKK mass

Bulk RS GKK →WW /ZZ multi-channel 36.1 k/MPl = 1.0 1808.023802.3 TeVGKK mass

Bulk RS GKK →WW → qqqq 0 e, µ 2 J − 139 k/MPl = 1.0 ATLAS-CONF-2019-0031.6 TeVGKK mass

Bulk RS gKK → tt 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 36.1 Γ/m = 15% 1804.108233.8 TeVgKK mass

2UED / RPP 1 e, µ ≥ 2 b, ≥ 3 j Yes 36.1 Tier (1,1), B(A(1,1) → tt) = 1 1803.096781.8 TeVKK mass

SSM Z ′ → ℓℓ 2 e, µ − − 139 1903.062485.1 TeVZ′ mass

SSM Z ′ → ττ 2 τ − − 36.1 1709.072422.42 TeVZ′ mass

Leptophobic Z ′ → bb − 2 b − 36.1 1805.092992.1 TeVZ′ mass

Leptophobic Z ′ → tt 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 36.1 Γ/m = 1% 1804.108233.0 TeVZ′ mass

SSM W ′ → ℓν 1 e, µ − Yes 139 CERN-EP-2019-1006.0 TeVW′ mass

SSM W ′ → τν 1 τ − Yes 36.1 1801.069923.7 TeVW′ mass

HVT V ′ →WZ → qqqq model B 0 e, µ 2 J − 139 gV = 3 ATLAS-CONF-2019-0033.6 TeVV′ mass

HVT V ′ →WH/ZH model B multi-channel 36.1 gV = 3 1712.065182.93 TeVV′ mass

LRSM WR → tb multi-channel 36.1 1807.104733.25 TeVWR mass

LRSM WR → µNR 2 µ 1 J − 80 m(NR) = 0.5 TeV, gL = gR 1904.126795.0 TeVWR mass

CI qqqq − 2 j − 37.0 η−LL 1703.0912721.8 TeVΛ

CI ℓℓqq 2 e, µ − − 36.1 η−LL 1707.0242440.0 TeVΛ

CI tttt ≥1 e,µ ≥1 b, ≥1 j Yes 36.1 |C4t | = 4π 1811.023052.57 TeVΛ

Axial-vector mediator (Dirac DM) 0 e, µ 1 − 4 j Yes 36.1 gq=0.25, gχ=1.0, m(χ) = 1 GeV 1711.033011.55 TeVmmed

Colored scalar mediator (Dirac DM) 0 e, µ 1 − 4 j Yes 36.1 g=1.0, m(χ) = 1 GeV 1711.033011.67 TeVmmed

VVχχ EFT (Dirac DM) 0 e, µ 1 J, ≤ 1 j Yes 3.2 m(χ) < 150 GeV 1608.02372700 GeVM∗Scalar reson. φ→ tχ (Dirac DM) 0-1 e, µ 1 b, 0-1 J Yes 36.1 y = 0.4, λ = 0.2, m(χ) = 10 GeV 1812.097433.4 TeVmφ

Scalar LQ 1st gen 1,2 e ≥ 2 j Yes 36.1 β = 1 1902.003771.4 TeVLQ mass

Scalar LQ 2nd gen 1,2 µ ≥ 2 j Yes 36.1 β = 1 1902.003771.56 TeVLQ mass

Scalar LQ 3rd gen 2 τ 2 b − 36.1 B(LQu3 → bτ) = 1 1902.081031.03 TeVLQu

3mass

Scalar LQ 3rd gen 0-1 e, µ 2 b Yes 36.1 B(LQd3 → tτ) = 0 1902.08103970 GeVLQd

3mass

VLQ TT → Ht/Zt/Wb + X multi-channel 36.1 SU(2) doublet 1808.023431.37 TeVT mass

VLQ BB →Wt/Zb + X multi-channel 36.1 SU(2) doublet 1808.023431.34 TeVB mass

VLQ T5/3T5/3 |T5/3 →Wt + X 2(SS)/≥3 e,µ ≥1 b, ≥1 j Yes 36.1 B(T5/3 →Wt)= 1, c(T5/3Wt)= 1 1807.118831.64 TeVT5/3 mass

VLQ Y →Wb + X 1 e, µ ≥ 1 b, ≥ 1j Yes 36.1 B(Y →Wb)= 1, cR (Wb)= 1 1812.073431.85 TeVY mass

VLQ B → Hb + X 0 e,µ, 2 γ ≥ 1 b, ≥ 1j Yes 79.8 κB= 0.5 ATLAS-CONF-2018-0241.21 TeVB mass

VLQ QQ →WqWq 1 e, µ ≥ 4 j Yes 20.3 1509.04261690 GeVQ mass

Excited quark q∗ → qg − 2 j − 139 only u∗ and d∗, Λ = m(q∗) ATLAS-CONF-2019-0076.7 TeVq∗ mass

Excited quark q∗ → qγ 1 γ 1 j − 36.7 only u∗ and d∗, Λ = m(q∗) 1709.104405.3 TeVq∗ mass

Excited quark b∗ → bg − 1 b, 1 j − 36.1 1805.092992.6 TeVb∗ mass

Excited lepton ℓ∗ 3 e, µ − − 20.3 Λ = 3.0 TeV 1411.29213.0 TeVℓ∗ mass

Excited lepton ν∗ 3 e,µ, τ − − 20.3 Λ = 1.6 TeV 1411.29211.6 TeVν∗ mass

Type III Seesaw 1 e, µ ≥ 2 j Yes 79.8 ATLAS-CONF-2018-020560 GeVN0 mass

LRSM Majorana ν 2 µ 2 j − 36.1 m(WR ) = 4.1 TeV, gL = gR 1809.111053.2 TeVNR mass

Higgs triplet H±± → ℓℓ 2,3,4 e,µ (SS) − − 36.1 DY production 1710.09748870 GeVH±± mass

Higgs triplet H±± → ℓτ 3 e,µ, τ − − 20.3 DY production, B(H±±L→ ℓτ) = 1 1411.2921400 GeVH±± mass

Multi-charged particles − − − 36.1 DY production, |q| = 5e 1812.036731.22 TeVmulti-charged particle mass

Magnetic monopoles − − − 34.4 DY production, |g | = 1gD , spin 1/2 1905.101302.37 TeVmonopole mass

Mass scale [TeV]10−1 1 10√s = 8 TeV

√s = 13 TeV

partial data

√s = 13 TeVfull data

ATLAS Exotics Searches* - 95% CL Upper Exclusion LimitsStatus: May 2019

ATLAS Preliminary"L dt = (3.2 – 139) fb−1

√s = 8, 13 TeV

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Non-SUSY粒子(e.g. 余剰次元模型のKaluza-Klein粒子)の質量への制限

Page 8: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

LHCデータ 標準模型(SM)の予言

8

しかし、ヒッグスセクターの測定精度はまだまだ。

理論的にヒッグス2重項が1つである理由はなく、新物理模型の多くはヒッグスセクターの拡張を要請。

⇡<latexit sha1_base64="tZV0dqJVTOQWNQDS3mrM2x3xk4c=">AAACaXichVFNSwJBGH7cvsw+NLtIXSQxOslsBH2chC4e/cgUVGR3G2tx3V12V8mkP9CtU5CngojoZ3TpD3TwJ0TdDLp06HVdiJLqHWbmmWfe551nZmRTU22HsZ5PGBufmJzyTwdmZufmg6GF8L5tNC2F5xVDM6yiLNlcU3Wed1RH40XT4lJD1nhBru8O9gstbtmqoe85bZNXGtKhrtZURXKIKpQl07SM42ooxhLMjegoED0QgxdpI3SLMg5gQEETDXDocAhrkGBTK0EEg0lcBR3iLEKqu89xigBpm5TFKUMitk7jIa1KHqvTelDTdtUKnaJRt0gZRZw9sTvWZ4/snj2zj19rddwaAy9tmuWhlpvV4Fkk9/6vqkGzg6Mv1Z+eHdSw5XpVybvpMoNbKEN96+Sin9vJxjur7Jq9kP8r1mMPdAO99abcZHi2iwB9gPjzuUdBfj2xnRAzG7FkyvsJP5axgjV67k0kkUIaedfcOS7R9b0KYSEiLA1TBZ+nWcS3EGKfSpiMjA==</latexit><latexit sha1_base64="tZV0dqJVTOQWNQDS3mrM2x3xk4c=">AAACaXichVFNSwJBGH7cvsw+NLtIXSQxOslsBH2chC4e/cgUVGR3G2tx3V12V8mkP9CtU5CngojoZ3TpD3TwJ0TdDLp06HVdiJLqHWbmmWfe551nZmRTU22HsZ5PGBufmJzyTwdmZufmg6GF8L5tNC2F5xVDM6yiLNlcU3Wed1RH40XT4lJD1nhBru8O9gstbtmqoe85bZNXGtKhrtZURXKIKpQl07SM42ooxhLMjegoED0QgxdpI3SLMg5gQEETDXDocAhrkGBTK0EEg0lcBR3iLEKqu89xigBpm5TFKUMitk7jIa1KHqvTelDTdtUKnaJRt0gZRZw9sTvWZ4/snj2zj19rddwaAy9tmuWhlpvV4Fkk9/6vqkGzg6Mv1Z+eHdSw5XpVybvpMoNbKEN96+Sin9vJxjur7Jq9kP8r1mMPdAO99abcZHi2iwB9gPjzuUdBfj2xnRAzG7FkyvsJP5axgjV67k0kkUIaedfcOS7R9b0KYSEiLA1TBZ+nWcS3EGKfSpiMjA==</latexit><latexit sha1_base64="tZV0dqJVTOQWNQDS3mrM2x3xk4c=">AAACaXichVFNSwJBGH7cvsw+NLtIXSQxOslsBH2chC4e/cgUVGR3G2tx3V12V8mkP9CtU5CngojoZ3TpD3TwJ0TdDLp06HVdiJLqHWbmmWfe551nZmRTU22HsZ5PGBufmJzyTwdmZufmg6GF8L5tNC2F5xVDM6yiLNlcU3Wed1RH40XT4lJD1nhBru8O9gstbtmqoe85bZNXGtKhrtZURXKIKpQl07SM42ooxhLMjegoED0QgxdpI3SLMg5gQEETDXDocAhrkGBTK0EEg0lcBR3iLEKqu89xigBpm5TFKUMitk7jIa1KHqvTelDTdtUKnaJRt0gZRZw9sTvWZ4/snj2zj19rddwaAy9tmuWhlpvV4Fkk9/6vqkGzg6Mv1Z+eHdSw5XpVybvpMoNbKEN96+Sin9vJxjur7Jq9kP8r1mMPdAO99abcZHi2iwB9gPjzuUdBfj2xnRAzG7FkyvsJP5axgjV67k0kkUIaedfcOS7R9b0KYSEiLA1TBZ+nWcS3EGKfSpiMjA==</latexit><latexit sha1_base64="tZV0dqJVTOQWNQDS3mrM2x3xk4c=">AAACaXichVFNSwJBGH7cvsw+NLtIXSQxOslsBH2chC4e/cgUVGR3G2tx3V12V8mkP9CtU5CngojoZ3TpD3TwJ0TdDLp06HVdiJLqHWbmmWfe551nZmRTU22HsZ5PGBufmJzyTwdmZufmg6GF8L5tNC2F5xVDM6yiLNlcU3Wed1RH40XT4lJD1nhBru8O9gstbtmqoe85bZNXGtKhrtZURXKIKpQl07SM42ooxhLMjegoED0QgxdpI3SLMg5gQEETDXDocAhrkGBTK0EEg0lcBR3iLEKqu89xigBpm5TFKUMitk7jIa1KHqvTelDTdtUKnaJRt0gZRZw9sTvWZ4/snj2zj19rddwaAy9tmuWhlpvV4Fkk9/6vqkGzg6Mv1Z+eHdSw5XpVybvpMoNbKEN96+Sin9vJxjur7Jq9kP8r1mMPdAO99abcZHi2iwB9gPjzuUdBfj2xnRAzG7FkyvsJP5axgjV67k0kkUIaedfcOS7R9b0KYSEiLA1TBZ+nWcS3EGKfSpiMjA==</latexit>

pp

500 µb�1

80 µb�1

W Z t̄t t

t-chan

Wt

2.0 fb�1

H

total

tt̄H

VBF

VH

WW WZ ZZ t

s-chan

t̄tW t̄tZ tZjWWW

WWZ

10�1

1

101

102

103

104

105

106

1011

�[p

b]Status: March 2019

ATLAS Preliminary

Run 1,2ps = 7,8,13 TeV

Theory

LHC ppps = 7 TeV

Data 4.5 � 4.6 fb�1

LHC ppps = 8 TeV

Data 20.2 � 20.3 fb�1

LHC ppps = 13 TeV

Data 3.2 � 79.8 fb�1

Standard Model Total Production Cross Section Measurements

精密測定によるヒッグスセクターの究明が新物理探索の鍵!

Page 9: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

拡張ヒッグス模型の例

•HSM: Higgs singlet model (a real singlet scalar) [free parameters]

• THDM: Two Higgs doublet model (with softly broken Z2 symmetry +CP conservation) [free parameters]

9

field mixing(tree)

quantum effect by additional bosons(loop)

• h(125)以外のスカラー粒子の存在 (H,A,H±,…)

• h(125) couplingのSM予言からのずれ*愛甲さんのポスター

発表 (明日)

Page 10: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

ヒッグス結合の測定精度@HL-LHC+ILC

10

ILC500 is necessary.

ILC can improve significantly.

Only ILC can measure.

180M Higgs (HL-LHC)+ 0.6M (ILC250)

European strategy: ILC [1901.09829]

relatively clean even at the LHC.

より精密な予言が必要不可欠

O(1%) の精度

H-COUP !

Page 11: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23 11

Kanemura, Kikuchi, Yagyu[1511.06211, NPB]+[1608.01582, NPB]

Kanemura, Okada, Senaha, Yuan [hep-ph/0408364, PRD]Kanemura, Kikuchi, Yagyu [1401.0515, PLB]+[1502.07716, NPB]

Singlet extension THDM

Z2 charge assignment

IDM

Kanemura, Kikuchi, Sakurai, Yagyu[1605.08520, PRD]

Page 12: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

3. H-COUPでどのように物理を探るのか ?

12

Page 13: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

H-COUP applications: Higgs decays

13

Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu [1803.01456 (PLB), 1906.10070]

THDM THDM

pattern of the deviations ➡ selection of NP modelsmagnitude of the deviations ➡ NP scales

*桜井さんのポスター発表 (去年)

Page 14: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

0 250 500 750 1000

√s (GeV)

0

50

100C

ross

sec

tion

e+e−→hγ

[ab]ILC250!

Page 15: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

0 250 500 750 1000

√s (GeV)

0

100

200

300

400

Cro

ss s

ecti

on (

ab)

hγ (unpol)

P(e−, e

+) = (−0.8, 0.3)

H-COUP applications: Higgs productions

15

?

How much can new physics enhance (or reduce) the production rate?

κV

H±(±)

κf κV

γ

h

e−

e+

crossing symmetrywith h→Zff

κf (=t) κV H+ H++

IDM 1 1 ○ ×

ITM (Y=1) 1 1 ○ ○

THDM sβ-α -cβ-α/tβ

sβ-α ○ ×

Kanemura, Mawatari, Sakurai [1808.10268, PRD]

*馬渡の口頭発表 (去年)

Page 16: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

H-COUP v2: Branching ratios

16

Kanemura, Tsumura, Yagyu, Yokoya [1406.3294, PRD]

Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu [1906.10070]

LO

NLO in EW+QCD

Page 17: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

Loop effects by additional Higgs bosons

• Ne

17

exclu

ded

byun

itarit

y

Mmin≠0

Mm

in =0

0 < M2 < m2�

<latexit sha1_base64="4sDUxIzK/DrXyj2eLTlegZsIBWc=">AAACcXichVHLSgMxFD0d3/XRqhvFTbEoglBuq6BIFwU3boS2WhXUlpkx2uC8mJkWtPgD/oCCKwUR8TPc+AMu/ARxWcGNC2+nA6Ki3pDk5OSem5NEcwzp+URPEaWjs6u7p7cv2j8wOBSLD49seHbN1UVJtw3b3dJUTxjSEiVf+obYclyhmpohNrXD5db+Zl24nrStdf/IEbumemDJfamrPlNlyq6WM1mzspOvynKmEk9SioJI/ATpECQRRt6O32AHe7ChowYTAhZ8xgZUeNy2kQbBYW4XDeZcRjLYFzhBlLU1zhKcoTJ7yOMBr7ZD1uJ1q6YXqHU+xeDusjKBKXqkW2rSA93RM73/WqsR1Gh5OeJZa2uFU4mdjq29/asyefZR/VT96dnHPhYDr5K9OwHTuoXe1tePz5prS8WpxjRd0Qv7v6QnuucbWPVX/bogiheI8gekvz/3T7CRSaXnUpnCfDK3GH5FLyYwiRl+7wXksII8Snyui3Nc4irSVMaVhDLZTlUioWYUX0KZ/QDCMI5a</latexit>

New physics effects of the EW corrections:

m2� ⇠ �v2 +M2

<latexit sha1_base64="aW1uq9YjCv9laGxzjmg/a7iD4uc=">AAACgHichVG7SgNBFD2urxgfidoINsGgCEKcXQVFLAQbGyE+YgLGhN11kgzZF7ubQAwWtv6AhZWCiNjoN9j4AxZ+glgq2Fh4s1kQFfUOM3PmzD13zsxojiE8n7HHDqmzq7unN9IX7R8YHIrFh0d2PLvm6jyj24bt5jTV44aweMYXvsFzjstVUzN4Vquutvazde56wra2/YbD90y1bImS0FWfqGJ83Czm0xVRUPKeMPMGCffVRL2gzKwXlGI8yVIsiMRPIIcgiTDSdvwSeezDho4aTHBY8AkbUOFR24UMBoe4PTSJcwmJYJ/jEFHS1iiLU4ZKbJXGMq12Q9aidaumF6h1OsWg7pIygUn2wK7YC7tn1+yJvf9aqxnUaHlp0Ky1tdwpxo7Htt7+VZk0+6h8qv707KOExcCrIO9OwLRuobf19YOTl62lzcnmFDtnz+T/jD2yO7qBVX/VLzb45imi9AHy9+f+CXaUlDyXUjbmkyvL4VdEMI4JTNN7L2AFa0gjQ+ce4RI3uJUkaVqaleR2qtQRakbxJaSlD4pwkx0=</latexit>

m2� ⇠ M2 :

m2� ⇠ �v2 :

<latexit sha1_base64="sllWAGjbFME1/9Z2GlrHOTUonoU=">AAACk3ichVG7SgNBFD2u7/iKiiDYBINiFSZRUNRC1MJGiI+o4CZhdzMxQ/bF7iYQgz9gLVhYKYiIf2AbC3/Awk8QSwUbC+9uFkRFvcvOnDn3njtnZlRbF67H2GOL1NrW3tHZ1R3p6e3rH4gODu24VsXReEazdMvZUxWX68LkGU94Ot+zHa4Yqs531fKKn9+tcscVlrnt1WyeNZQDUxSFpnhE5aMJIy+nSyKXkl1hxNZzqXlZjnzhZJ26FZRYlXKRfDTOEiyI2E+QDEEcYaSt6BVkFGBBQwUGOEx4hHUocOnbRxIMNnFZ1IlzCIkgz3GECGkrVMWpQiG2TOMBrfZD1qS139MN1BrtotPvkDKGCfbArtkLu2c37Im9/9qrHvTwvdRoVptabucHjke33v5VGTR7KH2q/vTsoYi5wKsg73bA+KfQmvrq4enL1vzmRH2SXbBn8n/OHlmDTmBWX7XLDb55Bv8Bkt+v+yfYSSWS04nUxkx8aTF8ii6MYRxTdN+zWMIa0sjQvie4RQN30oi0IC1Lq81SqSXUDONLSOsf3pGZrg==</latexit>

Decoupling

Non-decoupling

h

Φ

Φ

∼ 𝜆𝑣

(Φ=H,A,H+)

Page 18: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

Precision of the Higgs branching ratios at future colliders

18

Higgs physics at the HL-LHC[1902.00134]

1σ13%

6.7%

1.9%

1.4%

0.89%

27%

(3.2%

2σ26%

13.4%

3.8%

2.8%

1.78%

54%

6.4%

ILC250 [1710.07621]2000 fb-1

A) BWWNP ⇠ BWW

SM

B) BWWNP > BWW

SM

C) BWWNP < BWW

SM<latexit sha1_base64="9+N0+K/3be1kGSCfyZs7P1aM/q4=">AAAC33ichVHLSsNAFL2Jr1ofjboR3ASLopsyrYJFRNRu3Ch9WCsYLUmc6mBeJGlBQ9eCC3En4kpBRPwMN/6Ai+7ciksFNy68TSsqbfUOk7lz7jl3zmQUS2OOS0iF49vaOzq7At3Bnt6+/pAwMLjumEVbpVnV1Ex7Q5EdqjGDZl3manTDsqmsKxrNKfuJaj1XorbDTGPNPbDoli7vGqzAVNlFKC8cLk5K4vjStpfLlfOeZOviarIsOUwXf2KZlbIkBZeaUOeb8BJNeHONvLwQjkaIHyJpSL5KYahH0hRuQIIdMEGFIuhAwQAXcw1kcHBsQhQIWIhtgYeYjRnz6xTKEERtEVkUGTKi+/jdxd1mHTVwX+3p+GoVT9Fw2qgUYYw8klvySh7IHXkmHy17eX6PqpcDXJWallr50PFw5v1flY6rC3vfqj89u1CAuO+VoXfLR6q3UGv60uHZa2Y2PeaNkyvygv4vSYXc4w2M0pt6naLpCwj+fIDWyXosEp2KxFLT4YV4/SkCMAKjMIH/ewYWYBmSkMVzn7hOLsQJvMwf8Sf8aY3Kc3XNEPwK/vwTaX+z1g==</latexit>

Let’s consider3 scenarios:

for Bcc)

Page 19: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

Correlations among the Higgs branching ratios

19

1.5 < tan� < 10

0 < M2 < m2�

300 < m� < 1000GeV<latexit sha1_base64="8IPlIvVgqIVGakK6J8Uz3del2iM=">AAACpnichVFNSxtRFD2ObdVoa6obwU1oMLgo4U5iqZQsFBe6aYkfSQRH05nxGR/OFzMvAQ35A/4BF65aKEH8Gd1002Vb/AnFpUI3XXhnMlBaaXuHee/c8+6577z3rMCRkSK6GtKGHzx8NDI6lhmfePxkMvt0qh757dAWNdt3/HDbMiPhSE/UlFSO2A5CYbqWIxrW0Uq83uiIMJK+t6WOA7Hrmi1PHkjbVEw1s8sFvfiiYijTMyyhzIpOhpEpUOX1XqniNo3qodwrxUyZKM25hMh43jVCN7cq6r1mNk9FSiJ3H+gpyCONqp/tw8A+fNhow4WAB8XYgYmIvx3oIATM7aLLXMhIJusCPWRY2+YqwRUms0c8tjjbSVmP87hnlKht3sXhP2RlDnP0hS7ohj7RJX2nn3/t1U16xF6OebYGWhE0J09nNn/8V+XyrHD4S/VPzwoHWEy8SvYeJEx8Cnug75yc3Wy+2pjrFug9XbP/d3RFH/kEXufW/rAuNs6R4QfQ/7zu+6BeKurlYml9Ib+0mD7FKGbxDPN83y+xhDVUUeN9+/iMr/imzWtvtJrWGJRqQ6lmGr+F9vYOxamedg==</latexit>

600 < m� < 1000GeV (dark)<latexit sha1_base64="/OMJhcp2r4R0ClCjbiaXx0PYVXE=">AAACiHichVHLSiNBFD1pZzTGUaNuBDfBoChIuB3FFy6Cs5hZxkeiYEvobktTpF90dwIx+AH6Ay5cKQwyuHA7s57N/IALP0FcKriZxdx0GoZR1FtU1alT99w6VWV4lgxCotuE0vXhY3dPsjfV96l/YDA9NFwO3LpvipLpWq6/beiBsKQjSqEMLbHt+UK3DUtsGbXP7f2thvAD6TqbYdMTu7Z+4Mh9aeohU5V0dnKeaMWuaMWqXFGJSJtpab6d+SLK2szUnu7Xpo84i3IUReYlUGOQRRxFN30JDXtwYaIOGwIOQsYWdATcdqCC4DG3ixZzPiMZ7QscIcXaOmcJztCZrfF4wKudmHV43a4ZRGqTT7G4+6zMYIJu6Ds90G+6ojv682qtVlSj7aXJs9HRCq8yeDK68fSuyuY5RPWf6k3PIfaxGHmV7N2LmPYtzI6+cXj6sLG8PtGapAu6Z//ndEu/+AZO49H8tibWz5DiD1CfP/dLUM7n1Nlcfm0uW1iMvyKJMYxjit97AQV8RRElPvcY1/iBn0pKIWVBWeqkKolYM4L/Qln9Czh0lJY=</latexit>

A) BWWNP ⇠ BWW

SM<latexit sha1_base64="l+R+X24gThhO2ThF268TT5bDkGU=">AAACjXichVFLL0NBFP5cr6pHi43E5kZD2DRTj2hExGPBhpSqSpTm3mswcV+597YJN/0DFrYWViQiYmvLxsYfsPATxJLExsLpbQURnMnMnPnO+c58M0e1deF6jD3USLV19Q2NoaZwc0trWyTa3rHiWgVH4xnN0i1nVVVcrguTZzzh6XzVdrhiqDrPqrsz5Xi2yB1XWOayt2fzdUPZNsWW0BSPoHy0f2ogJ/dNb/jZbCnv5xxDXkiVcq4w5K9Yer6Uj8YScRaYzH44H6EYqpayoufIYRMWNBRggMOER74OBS6NNSTAYBO2Dp8whzwRxDlKCBO3QFmcMhRCd2ndptNaFTXpXK7pBmyNbtFpOsSU0cvu2QV7Znfskj2yt19r+UGNspY92tUKl9v5yEFX+vVflkG7h51P1p+aPWwhGWgVpN0OkPIrtAq/uH/0nB5b6vX72Cl7Iv0n7IHd0gvM4ot2tsiXjhH+2oDfnZXBeGIoPrg4HJtMVlsRQjd60E//PYpJzCGFDN17iCtc40aKSCPSuDRRSZVqqpxOfDNp9h0lCpgy</latexit>

HSM, IDM

• HSM/IDM predict Δμ~0.

• THDMs predict different correlations depending on the type of Yukawa int.

• The mass bounds from the direct searches/flavor constraints significantly reduce the allowed regions.

Page 20: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

Correlations among the Higgs branching ratios

20

1.5 < tan� < 10

0 < M2 < m2�

300 < m� < 1000GeV<latexit sha1_base64="8IPlIvVgqIVGakK6J8Uz3del2iM=">AAACpnichVFNSxtRFD2ObdVoa6obwU1oMLgo4U5iqZQsFBe6aYkfSQRH05nxGR/OFzMvAQ35A/4BF65aKEH8Gd1002Vb/AnFpUI3XXhnMlBaaXuHee/c8+6577z3rMCRkSK6GtKGHzx8NDI6lhmfePxkMvt0qh757dAWNdt3/HDbMiPhSE/UlFSO2A5CYbqWIxrW0Uq83uiIMJK+t6WOA7Hrmi1PHkjbVEw1s8sFvfiiYijTMyyhzIpOhpEpUOX1XqniNo3qodwrxUyZKM25hMh43jVCN7cq6r1mNk9FSiJ3H+gpyCONqp/tw8A+fNhow4WAB8XYgYmIvx3oIATM7aLLXMhIJusCPWRY2+YqwRUms0c8tjjbSVmP87hnlKht3sXhP2RlDnP0hS7ohj7RJX2nn3/t1U16xF6OebYGWhE0J09nNn/8V+XyrHD4S/VPzwoHWEy8SvYeJEx8Cnug75yc3Wy+2pjrFug9XbP/d3RFH/kEXufW/rAuNs6R4QfQ/7zu+6BeKurlYml9Ib+0mD7FKGbxDPN83y+xhDVUUeN9+/iMr/imzWtvtJrWGJRqQ6lmGr+F9vYOxamedg==</latexit>

600 < m� < 1000GeV (dark)<latexit sha1_base64="/OMJhcp2r4R0ClCjbiaXx0PYVXE=">AAACiHichVHLSiNBFD1pZzTGUaNuBDfBoChIuB3FFy6Cs5hZxkeiYEvobktTpF90dwIx+AH6Ay5cKQwyuHA7s57N/IALP0FcKriZxdx0GoZR1FtU1alT99w6VWV4lgxCotuE0vXhY3dPsjfV96l/YDA9NFwO3LpvipLpWq6/beiBsKQjSqEMLbHt+UK3DUtsGbXP7f2thvAD6TqbYdMTu7Z+4Mh9aeohU5V0dnKeaMWuaMWqXFGJSJtpab6d+SLK2szUnu7Xpo84i3IUReYlUGOQRRxFN30JDXtwYaIOGwIOQsYWdATcdqCC4DG3ixZzPiMZ7QscIcXaOmcJztCZrfF4wKudmHV43a4ZRGqTT7G4+6zMYIJu6Ds90G+6ojv682qtVlSj7aXJs9HRCq8yeDK68fSuyuY5RPWf6k3PIfaxGHmV7N2LmPYtzI6+cXj6sLG8PtGapAu6Z//ndEu/+AZO49H8tibWz5DiD1CfP/dLUM7n1Nlcfm0uW1iMvyKJMYxjit97AQV8RRElPvcY1/iBn0pKIWVBWeqkKolYM4L/Qln9Czh0lJY=</latexit>

B) BWWNP > BWW

SM<latexit sha1_base64="rNLjOuMw3ne+DDja7kEksQuJCm8=">AAACinichVFNLwNRFD3GV1VRbCQ2E00bNs1rSRSJCBY2pFQ/EqWZGQ8T85WZaRMm/QP8AAsrEhGxsmVp4w9Y+AliSWJj4XZaQQT35b1337n33Hfeu7KlqY7L2EOT0NzS2tYe6Ah2hrq6e8K9fTnHLNsKzyqmZtoFWXK4pho866quxguWzSVd1nhe3p2rxfMVbjuqaay6exZf16VtQ91SFcklqBSOzo4UxdjshpfPV0te0dbFpXR1WvwKZBarpXAkEWe+ieyH8xGKoGFpM3yOIjZhQkEZOjgMuORrkODQWEMCDBZh6/AIs8lT/ThHFUHilimLU4ZE6C6t23Raa6AGnWs1HZ+t0C0aTZuYIqLsnl2wZ3bHLtkje/u1lufXqGnZo12uc7lV6jkYyLz+y9Jpd7HzyfpTs4stpHytKmm3fKT2CqXOr+wfPWcmV6JejJ2yJ9J/wh7YLb3AqLwoZ8t85RjBrw343ckl44nReHJ5LDKTarQigEEMYZj+exwzWEAaWbr3EFe4xo0QEpLChDBVTxWaGpx+fDNh/h263pau</latexit>

C) BWWNP < BWW

SM<latexit sha1_base64="IEfaOrkuJim98NbL8VwBH7mHO+0=">AAACinichVFLLwNRFP46XlWvYiOxmWgqbJrbkqjHQtTChpSqSpRmZlw16bwyM23CpH+AH2BhRSIiVrYsbfwBCz9BLElsLJxOK4jg3Nx7z/3O+c797j2ypamOy9hDQGhqbmltC7aHOjq7unvCvX1rjlm2FZ5VTM2012XJ4Zpq8Kyruhpft2wu6bLGc3IpVYvnKtx2VNNYdfcsvqlLRUPdURXJJagQjqZG8+Lw3JaXy1ULXt7WxaV0dUb8CmQWq4VwJB5jvonsh/MRiqBhaTN8jjy2YUJBGTo4DLjka5Dg0NhAHAwWYZvwCLPJU/04RxUh4pYpi1OGRGiJ1iKdNhqoQedaTcdnK3SLRtMmpogou2cX7JndsUv2yN5+reX5NWpa9miX61xuFXoOBjKv/7J02l3sfrL+1OxiB0lfq0raLR+pvUKp8yv7R8+ZqZWoN8xO2RPpP2EP7JZeYFRelLNlvnKM0NcG/O6sJWLxsVhieTwym2y0IohBDGGE/nsCs1hAGlm69xBXuMaN0CkkhElhup4qBBqcfnwzYf4duOKWrQ==</latexit>

Since the BRs are correlated among all the decay modes,each model predicts a particular pattern of the deviations for each scenario.

Page 21: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

BR(ττ) vs. BR(cc)

21

The measurement of h→cc is very important to disentangle the models.

ILC is necessary!

Page 22: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

BR(ττ) vs. BR(WW)

22

Synergy• Higgs coupling precision measurements at the ILC • direct searches for additional Higgs bosons at the LHC• indirect searches in flavor experiments

Page 23: “H-COUP”で物理を探るppp.ws/PPP2019/slides/Maw...H˜ 0.3 1 →ZG˜)=1 1804.03602 Direct χ˜+ 1 ˜χ − prod., long-livedχ˜± Disapp. trk 1 jet Emiss T 36.1 χ˜ 0.46 Pure

Kentarou Mawatari (Osaka U.)PPP2019 - Kyoto - 2019.7.30 /23

4. まとめと展望

• H-COUP v.1 was released in October, 2017.

- systematically calculates the renormalized 125GeV Higgs couplings at one-loop EW+QCD in various extended Higgs models (singlet extension, THDMs, inert doublet model).

• H-COUP v.2 will be released very soon.

- systematically calculates the 125GeV Higgs decay branching ratios at one-loop EW+QCD in various extended Higgs models (singlet extension, THDMs, inert doublet model).

• H-COUP v.3 ?

- other models? couplings/decays for additional Higgs bosons?- other renormalization schemes?- Higgs productions?- …

23

Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu [1803.01456, PLB] + [1906.10070]

Kanemura, Kikuchi, Sakurai, Yagyu[1710.04603, CPC]

e+e−→hγ; Kanemura, Mawatari, Sakurai [1808.10268, PRD]

H-COUP webpage: http://www-het.phys.sci.osaka-u.ac.jp/~kanemu/HCOUP_HP1013/HCOUP_HP.html

精密測定によるヒッグスセクターの究明が新物理探索の鍵!