Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ......

19
Moormann, Buhmann 1 Baugrundverbesserung mit steifen Säulen und pfahlähnlichen Traggliedern - Anforderungen, Bemessung und Anwendungsgrenzen von „Rigid Inclusions“ Ch. Moormann, P. Buhmann Institut für Geotechnik der Universität Stuttgart 1 Motivation Bei Baugrundverhältnissen, die eine den Anforderungen an die Gebrauchstaug- lichkeit oder Standsicherheit entsprechende Flachgründung nicht ermöglichen, kommen für die Gründung von Ingenieurbauwerken und Infrastrukturmaßnah- men neben Pfahlgründungen bzw. Kombinierten Pfahl-Plattengründungen (KPP) häufig Baugrundverbesserungsmaßnahmen als eine technisch und ökonomisch vorteilhafte Gründungskonzeption zur Anwendung (Abb. 1). Während „klassi- sche“ Baugrundverbesserungen auf eine Veränderung der Eigenschaften des an- stehenden Baugrundes im Sinne eines flächig verbesserten, gleichmäßigen Trag- verhaltens abzielen, ist für Tiefgründungen der Lastabtrag über Einzelelemente in tiefer liegende, tragfähige Baugrundschichten charakteristisch. Die Anforde- rungen an das Bemessungs- und Nachweiskonzept unterscheiden sich nachhaltig. Abb. 1: Gründungskonzepte nach Handbuch Eurocode 7, Band 1, und Bau- grundverbesserung mit pfahlartigen Tragelementen und Entkopplung durch lastverteilende Tragschicht

Transcript of Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ......

Page 1: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

Moormann, Buhmann 1

Baugrundverbesserung mit steifen Säulen und pfahlähnlichen

Traggliedern - Anforderungen, Bemessung und Anwendungsgrenzen

von „Rigid Inclusions“

Ch. Moormann, P. Buhmann Institut für Geotechnik der Universität Stuttgart

1 Motivation Bei Baugrundverhältnissen, die eine den Anforderungen an die Gebrauchstaug-lichkeit oder Standsicherheit entsprechende Flachgründung nicht ermöglichen, kommen für die Gründung von Ingenieurbauwerken und Infrastrukturmaßnah-men neben Pfahlgründungen bzw. Kombinierten Pfahl-Plattengründungen (KPP) häufig Baugrundverbesserungsmaßnahmen als eine technisch und ökonomisch vorteilhafte Gründungskonzeption zur Anwendung (Abb. 1). Während „klassi-sche“ Baugrundverbesserungen auf eine Veränderung der Eigenschaften des an-stehenden Baugrundes im Sinne eines flächig verbesserten, gleichmäßigen Trag-verhaltens abzielen, ist für Tiefgründungen der Lastabtrag über Einzelelemente in tiefer liegende, tragfähige Baugrundschichten charakteristisch. Die Anforde-rungen an das Bemessungs- und Nachweiskonzept unterscheiden sich nachhaltig.

Abb. 1: Gründungskonzepte nach Handbuch Eurocode 7, Band 1, und Bau-grundverbesserung mit pfahlartigen Tragelementen und Entkopplung durch lastverteilende Tragschicht

Page 2: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

2 Moormann, Buhmann

Neben diesen „klassischen“ Baugrundverbesserungsverfahren kommen zuneh-mend rasterförmig angeordnete „steife“ Säulen bzw. „pfahlartige“ Tragglieder unterschiedlicher Ausbildung und Ausführung zum Einsatz, mit denen die Ein-wirkungen - je nach Steifigkeit von Säule und Untergrund - eher punktuell in die tieferen und meist tragfähigeren Schichten abgetragen werden, ohne jedoch die mittragende Wirkung des zwischen den Säulen anstehenden Bodens aufzugeben. Eine Unterscheidung in die Kategorien „Baugrundverbesserung“ und „Tiefgrün-dung“ ist in diesem Fall häufig nicht eindeutig möglich. Dies gilt insbesondere, wenn Elemente mit im Vergleich zu dem umgebenden Boden deutlich höherer Steifigkeit zum Einsatz kommen, beispielsweise Rüttelortbetonsäulen, Verdrän-gungsbetonsäulen, vermörtelte Rüttelstopfsäulen, CMC-Säulen o.ä. (Abb. 2).

Abb. 2: „steife“ Säulen bzw. „pfahlartige“ Tragglieder zur Baugrundverbesse-rung: Verfahrensbeispiele

Für derartige pfahlartige Tragglieder, die zu einer punktförmigen Stützung für die zu gründende Struktur führen, bestehen keine allgemein anerkannte Bemes-sungs- und Nachweisverfahren, so dass häufig projektspezifische Betrachtungen für den Einzelfall erforderlich werden.

Im Rahmen der Überarbeitung des Eurocode 7 wird derzeit auf europäischer Ebene die Definition und der Umgang mit solchen „rigid inclusions“ diskutiert, wobei der vorliegende Entwurf als wesentliches Unterscheidungskriterium zwi-schen Baugrundverbesserung und Pfahlgründung die Anordnung einer lastvertei-lenden, granularen oder auch bindemittelstabilisierten bindigen Tragschicht oberhalb der Säulenköpfe vorsieht.

Im Rahmen des Beitrags werden aufbauend auf numerischen Simulationen von Fallbeispielen das Tragverhalten solcher Systeme untersucht und Anforderungen an den Entwurf und die Bemessung definiert. Zudem werden Hinweise zur Risi-kobeurteilung und zu Anwendungsgrenzen solcher Baugrundverbesserungen mit

Page 3: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

Moormann, Buhmann 3

„pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag zur Klassifizierung vorgestellt. Dabei werden auch Parallelen hinsichtlich des Entwurfs und der Be-messung von Kombinierten Pfahl-Plattengründungen (KPP) und Baugrundver-besserungen mittels „rigid inclusions“ diskutiert.

2 Bestehende Regelwerke

2.1 Nationale und internationale Regelungen

In der aktuellen Fassung des Eurocode 7 bzw. des Normenhandbuchs EC 7, Band 1 (Deutschland), werden in Abschnitt 5.5 Baugrundverbesserungen nur sehr knapp und allgemein handelt, ohne dass die sehr unterschiedlichen Formen und Anwendungsgebiete solcher Verfahren thematisiert oder explizit berücksichtigt werden. Eurocode 7, Teil 1, enthält in seiner derzeitigen Fassung auch keine Vorgaben zur Bemessung von Baugrundverbesserungen, sondern unterscheidet lediglich die konventionellen Gründungsformen einer Flachgründung, einer Pfahlgründung und einer Kombinierten Pfahl-Plattengründung (KPP). Insoweit obliegt es dem Ingenieur, in Abhängigkeit von den projektspezifischen Randbe-dingungen zu entscheiden, ob die Bemessung einer Baugrundverbesserung mit „steifen“ Säulen bzw. pfahlartigen Tragelementen

als Flachgründung unter Ansatz von durch die Baugrundverbesserung erhöh-ten Bodenkennwerten,

als Pfahlgründung unter der Annahme, dass 100 % der Einwirkungen auf die als annährend „starr“ angenommenen Säulen entfallen, oder

als KPP unter Berücksichtigung der kombinierten Tragwirkung von Säulen und umgebenden Boden

oder aber als ein anderweitiges Ersatzmodell

erfolgt (Abb. 1), eine Entscheidung, die letztlich die Kenntnis des tatsächlichen Tragverhaltens der Baugrundverbesserung bedingt.

Im Rahmen der vorbereitenden Abstimmungen zur Erarbeitung der nächsten Ge-neration der Eurocodes, deren Herausgabe für 2020 geplant ist, hat die Evolution Group 14 „Ground Improvement“ des TC250/SC7 Vorschläge für die zukünftige Regelung von Bodenverbesserungen im Rahmen des Eurocode 7 erarbeitet. Im Hinblick auf die Thematik einer Baugrundverbesserung mit Säulen bzw. pfahlar-tigen Tragelementen enthalten diese Vorschläge die Definition von „rigid inclu-sions“ als diskrete, im Baugrund hergestellte Elemente mit definierten geometri-schen und mechanischen Eigenschaften, die, quantifiziert durch eine einaxiale Druckfestigkeit, deutlich steifer als der umgebende Baugrund und von dem zu

Page 4: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

4 Moormann, Buhmann

gründenden Bauwerk „entkoppelt“ sind (Abb. 3). Die zur „Entkoppelung“ einge-setzte lastverteilende Tragschicht („load transfer platform“) kann aus einer Trag-schicht gut verdichteten granularen Materials (´ungebunden´), aus bindemittel-stabilisiertem (bindigen) Material (´gebunden´) oder einer bewehrten Tragschicht (´bewehrt´) bestehen. Analog dem in Deutschland für eine Kombinierte Pfahl-Plattengründung (KPP) in (AK 2.1 „Pfähle“ 2001) definierten Vorgehen wird von der Evolution Group 14 ein rechnerischer Nachweis der Lastaufteilung in Säulen und Boden sowie der Nachweis der inneren Tragfähigkeit der Säulen (STR) gefordert, während ein Nachweis der äußeren Tragfähigkeit (ULS) der Säulen (GEO) nicht erforderlich ist.

Abb. 3: Baugrundverbesserung mittels Säulen bzw. pfahlartigen Traggliedern, durch eine „lastverteilende Tragschicht“ vom Bauwerk „entkoppelt“

Der Arbeitskreis 2.8 „Stabilisierungssäulen“ der Deutschen Gesellschaft für Geo-technik (DGGT) erarbeitet Empfehlungen für Stabilisierungssäulen, die als Tro-cken- und Nassmörtelsäulen, hydraulisch gebundene Stopfsäulen sowie Boden-mischsäulen ausgeführt werden können. Die noch nicht veröffentlichten Empfeh-lungen, die über frühere Ansätze für sehr schlanke CSV-Säulen (AK 2.8 „Stabili-sierungssäulen“ 2010) weit hinausgehen werden, sollen Aspekte der Planung, der Bemessung und der Nachweisführung für die vorgenannten hydraulisch gebun-denen, unbewehrten Säulen mit relativ kleinen Durchmessern enthalten (Neidhart 2014). Das für eine Baugrundverbesserung mittels Stabilisierungssäulen (STS) entwickelte Nachweiskonzept sieht im Entwurf in einem ersten Schritt eine Fall-prüfung nach dem Kriterium vor, ob der Nachweis der äußeren Tragfähigkeit (ULS) der Gründung als Flachgründung unter (rechnerischer) Vernachlässigung der Säulen nach EC 7 geführt werden kann.

Ist die Gründung auch unter Vernachlässigung der Säulen standsicher kann ein weiterer Nachweis der äußeren Tragfähigkeit der Säulen entfallen, jedoch ist der

Page 5: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

Moormann, Buhmann 5

Nachweis der inneren Tragfähigkeit der Säulen zu führen. Ist die Gründung unter Vernachlässigung der Säulen nicht ausreichend standsicher, ist der Grenzzustand der Tragfähigkeit differenzierter zu untersuchen und zwar entweder als Flach-gründung auf einem Baugrund mit infolge der „weichen“ Säulen erhöhten bo-denmechanischen Kennwerten oder aber bei „steifen/starren“ Säulen als Pfahl-gründung mit dem Nachweis des vollständigen Lastabtrags über die Mantelrei-bung und den Spitzendruck der Säulen.

Die Fallunterscheidung „weiche“ oder „steife/starre“ Säule erfolgt in Abhängig-keit des zu berechnenden Steifigkeitsverhältnisses zwischen dem Bettungsmodul der Säulen ks,StS und dem Bettungsmodul des dazwischen anstehenden Bodens ks. Je nach Steifigkeitsverhältnis wird für ks,StS/ks ≤ 50 ein gemeinsamer Lastabtrag von „weichen“ duktilen Säulen und Boden („schwimmende Gründung“) oder für ks,StS/ks > 50 ein einer Pfahlgründung entsprechendes Tragverhalten der „starren“ Säulen vorausgesetzt und ein entsprechendes Nachweisschema vorgegeben.

Wehr & Sondermann (2012) bezeichnen gestützt auf Ansätze von Priebe (1995) und Kirsch (2004) ein Steifigkeitsverhältnis von ks,StS/ks = 40 bis 50 zwischen den Bettungsmoduli von Säule und Boden als obere rechnerisch anzusetzende Grenze für Baugrundverbesserungsverfahren. Die in dem Regelwerk EBGEO (AK 5.2 der DGGT 2010) für die Bemessung von bewehrten Erdkörpern auf punkt- oder linienförmigen Traggliedern enthaltenen Ansätze, die von einer Stüt-zung des bewehrten Erdkörpers durch steife, punktförmige Tragglieder ausgeht, setzt hierfür ein Steifigkeitsverhältnis von ks,StS/ks > 75 voraus.

Die unterschiedlichen Annahmen zum Steifigkeitsverhältnis zeigen, dass eine eindeutige Fallunterscheidung über das Steifigkeitsverhältnis nicht möglich ist, sondern die Übergänge im Tragverhalten fließend sind. Zu berücksichtigen ist ferner, dass das als Unterscheidungskriterium für das Nachweiskonzept genutzte Steifigkeitsverhältnis bereits vorlaufend eine zutreffende rechnerische Untersu-chung des Tragverhaltens der Baugrundverbesserung und damit eine entspre-chende realitätsnahe Modellbildung voraussetzt.

Empfehlungen zur Bemessung und zum Nachweis von Baugrundverbesserungen mit Säulen und pfahlartigen Tragelementen sind auch aus Skandinavien und Frankreich bekannt. Die französische Richtlinie „ASIRI Amélioration des sols par les inclusions rigides“ (IREX 2012) ist die wohl derzeit umfassendste Emp-fehlung für die Bemessung von Baugrundverbesserungen mit „rigid inclusions“.

2.2 Regelungen für Schienenwege

Für die Gründung von Schienenwegen auf nicht ausreichend tragfähigem Unter-grund, für die häufig säulenförmige Baugrundverbesserungen zur Ausführung kommen, bestehen nationale Regelungen; in Deutschland unterscheidet das be-stehenden bahnspezifischen Regelwerk für Fahrweggründungen der Deutschen

Page 6: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

6 Moormann, Buhmann

Bahn AG, hier die Ril 836, zunächst grundsätzlich zwischen „Untergrundverbes-serungsmaßnahmen“ (Modul 4202) und „Tiefgründungen“ (Modul 4203) (Abb. 4).

Abb. 4: Regelungen für Fahrwege der Deutschen Bahn auf pfahlartigen Trag-elementen: „Verpfählungen“ und „Tiefgründungen“

Dabei sind Untergrundverbesserungen als Maßnahmen definiert, „die ein verbes-sertes gleichmäßiges Tragverhalten des Bodens im gesamten Ausbreitungs-bereich einer Oberflächenbelastung zum Ziel haben“. Gründungssysteme, bei denen die Einwirkungen „überwiegend“ über Einzelelemente mit und ohne Mit-wirkung des umgebenden Bodens in den tieferen Untergrund abgetragen werden, gelten indes als Tiefgründungen im Sinne des Moduls 4203, bei denen der Nachweis der Krafteinleitung in die Einzelelemente nachzuweisen ist. Dabei ist die Einbindung der Säulen in tragfähige Bodenschichten bzw. die Ausbildung als „schwimmende Gründung“ das maßgebende Unterscheidungskriterium: Nach Modul 4202 werden „Verpfählungen“ als Untergrundverbesserung verstanden, soweit „der anstehende Untergrund durch Einbringen engstehender Pfähle oder Säulen, in der Regel als schwimmende Gründung, in seinem Scherverhalten anisotrop verbessert wird“. Werden durch die Pfähle oder Säulen hingegen „planmäßig oder herstellungsbedingt Lasten in tragfähige Bodenschichten einge-tragen, ist eine Tiefgründung nach den Regelungen des Moduls 4203 auszubil-den“. Eine konkrete Entscheidungshilfe für die Klassifizierung fehlt indes.

Page 7: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

Moormann, Buhmann 7

Nach Ril 836 sind für „Verpfählungen“ zugelassene oder geregelte Elemente zu verwenden, wobei neben biegesteifen Pfahlelementen bei begrenzten Horizontal-lasten auch Stabilisierungssäulen zum Einsatz kommen können.

Auch für den Fall, dass die Säulen in diesem Sinne als Untergrundverbesserung betrachten werden können, ist durch einen entsprechenden Nachweis der inneren Tragfähigkeit nachzuweisen, dass die in den Säulen gegebenenfalls auftretenden Querbeanspruchungen aufgenommen werden können.

Für Baugrundverbesserungen unter Ingenieurbauwerken der Deutschen Bahn bestehen keine anerkannten bahnspezifischen Regelwerke, so dass in diesem Fall stets Untersuchungen und Zulassungen im Einzelfall erforderlich werden.

3 Verfahren und Risiken der Bauausführung

Für Baugrundverbesserungen mit pfahlartigen Tragelementen werden im Regel-fall unbewehrte Elemente mit entsprechender axialer Steifigkeit wie Betonrüttel- bzw. Rüttelortbetonsäulen, Verdrängungsbetonsäulen, CMC-Säulen o.ä. einge- Tab. 1: Vorschlag zur Klassifizierung und Abgrenzung der Risikoeinstufung

von klassischen Baugrundverbesserungsverfahren und pfahlähnlichen Tragelementen zur Baugrundverbesserung (basierend auf Wehr & Sondermann 2012)

Page 8: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

8 Moormann, Buhmann

setzt, deren Ausführung nach bauaufsichtlichen Zulassungen oder unter Bezug auf EN 12699 erfolgt; im Einzelfall können aber auch Fertigteilrammpfähle aus Beton, Mikropfähle oder andere Pfahlsysteme eingesetzt werden.

Wehr & Sondermann (2012) entwickelten einen Ansatz zur Klassifizierung und Abgrenzung der Risikoeinstufung von klassischen Baugrundverbesserungsver-fahren und pfahlähnlichen Tragelementen zur Baugrundverbesserung, dessen wesentlicher konzeptioneller Ansatz in Tabelle 1 zusammengefasst wird.

Danach ist insbesondere bei unbewehrten Säulen mit kleinem Durchmesser (D ≤ 30 cm) und im Verhältnis zum umgebenden Boden hoher axialer Steifigkeit, also Systemen der Kategorie C, besondere Sorgfalt hinsichtlich der Berechnung und Bemessung geboten, da eine Fehleinschätzung der inneren Beanspruchung der Säulen unter vertikalen und horizontalen Einwirkungen aus Bauwerkslasten und/ oder Bodenverschiebungen zu einem Versagen der Säulen und einem damit ver-bundenen Verlust der Gesamtstandsicherheit der Gründung führen kann. In die-sem Zusammenhang ist für die Säulen auch die Sicherheit gegen Knicken zu un-tersuchen. Darüber hinaus ist bei der Bauausführung besonders darauf zu achten, dass die Säulen durch Bodenhebungen, Erdarbeiten oder Baustellenverkehr nicht unbeabsichtigt auf Querkraft oder Zug beansprucht werden und infolge dessen abscheren oder reißen.

Die Einteilung der Säulen gemäß dieser Klassifizierung ist im Einzelfall indes nicht eindeutig, da beispielsweise Vollverdrängungssäulen auch mit Durchmes-sern > 30 cm hergestellt werden können, insbesondere aber auch da die Bau-grundverhältnisse und damit das Steifigkeitsverhältnis zwischen Säulen und Bo-den und die hieraus resultierende Lastaufteilung in dem Bewertungsschema keine unmittelbare Berücksichtigung finden.

4 Tragverhalten von “rigid inclusions” Das Tragverhalten von Baugrundverbesserungsverfahren mit „steifen“ Säulen bzw. pfahlähnlichen Tragelementen ist von den Wechselwirkungen zwischen dem direkt über Sohlspannungen in den Boden eingetragenen Lastanteil und den durch diesen verursachten Setzungen sowie den auf die Säulen entfallenden Lastanteil und dem hieraus resultierenden Widerstandssetzungsverhalten der Säulen abhängig, das wiederum durch die mögliche Einbindung der Säulen in tragfähigere, steifere Schichten beeinflusst wird.

Die das Tragverhalten einer solchen Baugrundverbesserung mit „rigid inclusi-ons“ und lastverteilender Tragschicht prägenden Wechselwirkungen ähneln dabei den das Tragverhalten einer Kombinierten Pfahl-Plattengründung (KPP) prägen-den Interaktionseinflüssen zwischen Platte und Pfählen (Katzenbach & Moor-mann 2001; Nguyen & et al. 2014). So beeinflusst der direkt über Bodenpressung

Page 9: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

Moormann, Buhmann 9

abgetragene Lastanteil das Spannungsniveau im Boden und damit die mobilisier-bare Mantelreibung der Säulen.

Anders als bei einer KPP, bei der die Pfähle in aller Regel mit der meist steifen Bodenplatte kraftschlüssig verbunden sind und bei der die Entkopplung der Pfahlköpfe von der Bodenplatte der Ausnahmefall ist (Moormann et al. 2010; Tradigo et al. 2015), wird das Tragverhalten von Baugrundverbesserungen mit entkoppelten, pfahlartigen Tragelementen - zusätzlich zu den die KPP prägenden Wechselwirkungen - durch die aus der lastverteilenden Tragschicht resultieren-den Interaktionen geprägt: Diese zwischen dem Bauwerk und den Säulenköpfen angeordnete, lastverteilende nachgiebige Schicht beeinflusst maßgeblich die Lastaufteilung zwischen Säulen und Boden (Abb. 5) und damit das Gesamttrag-verhalten, wobei die dabei in der Tragschicht mobilisierte Gewölbewirkung und die Lastkonzentration auf den Säulen (siehe Abb. 3) insbesondere von der Mäch-tigkeit der Tragschicht sowie von der Steifigkeit und der Scherfestigkeit des Tragschichtmaterials abhängig ist (Briançon & Simon 2012; Eskişar et al. 2012; Yun-min et al. 2008). Das Trag- und Verformungsverhalten der lastverteilenden Schicht ist ferner für die Mobilisierung von negativer Mantelreibung im oberen Bereich der Säulen verantwortlich (Abb. 5), wodurch es in den Säulen bis zur neutralen Ebene zunächst zu einer Zunahme der inneren Normalkraftbeanspru-chung kommt und der Lastabtrag in den Baugrund über (positive) Mantelreibung und Spitzendruck erst im unteren Abschnitt der Säulen erfolgt. Die Säulen sind dabei bezüglich ihrer äußeren Tragfähigkeit (Widerstand) in der Regel deutlich höher ausgenutzt als bei einer konventionellen Pfahlgründung.

Abb. 5: Tragverhalten von Baugrundverbesserungsverfahren mit pfahlähnli-chen Tragelementen

Obgleich steife Säulen im Regelfall im Verdrängungsverfahren eingebracht wer-den, wird die herstellungsbedingte Veränderung des Spannungszustandes und der Lagerungsdichte des zwischen den Säulen verbleibenden Bodens häufig nicht berücksichtigt, da sowohl bei analytischen Berechnungsverfahren wie auch ins-besondere bei der numerischen Simulation des Tragverhaltens einfache, aner-

Page 10: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

10 Moormann, Buhmann

kannte Ansätze zur Berücksichtigung der herstellungsbedingten Auswirkungen nicht zur Verfügung stehen.

In der Literatur finden sich zudem vergleichsweise wenige Fallbeispiele, in de-nen die Herstellungsauswirkungen und das Tragverhalten für Baugrundverbesse-rungen mit pfahlartigen Tragelementen experimentell unter realen Randbedin-gungen untersucht wurden. Suleiman et al. (2016) haben jüngst einen Feldver-such zur Untersuchung der Installationseffekte von CMC-Säulen (Controlled Modulus Column) veröffentlicht, bei dem mit einem intensiven Messprogramm die Spannungsänderungen und Verformungen in einem sehr weichen sandigen Schluff (cu = 6 kN/m², Es = 2,1 MN/m²) im Umfeld einer freistehenden CMC-Säule sowohl während der Säulenherstellung als auch infolge der Belastung der (Einzel-)Säule aufgezeichnet wurde. Danach konnte nur eine geringe bleibende Erhöhung der horizontalen Spannungen um h = 8 kN/m² gemessen werden, die Reichweite der herstellungsbedingten Auswirkungen im Boden war auf einen Radius von etwa 2 bis 3D von der Oberfläche Säulenschaft begrenzt.

5 Variantenstudie Im Rahmen einer Konzeptstudie wurde das Tragverhalten von unterschiedlich konzipierten Baugrundverbesserungen unter einem in einem Stahlbeton-Trog geführten zweigleisigen Schienenweg, also einem Ingenieurbauwerk, untersucht. Für die Baugrundsituation wird eine dem süddeutschen Raum entnommene Situ-ation zu Grunde gelegt, die durch ein Zweischichtsystem mit bindigen Deck-schichten weicher und steifer Konsistenz über einer als Halbfestgestein ausgebil-deten steiferen Schicht geprägt ist (Abb. 6). In der nachfolgend dokumentierten Betrachtung wird die Steifigkeit des Halbfestgesteins als ´tragfähige Schicht´ um den Faktor 8 höher angesetzt als die Steifigkeit der bindigen Deckschichten (Es1/Es2 = 1/8).

Untersucht werden neben einer klassischen Flachgründung eine Baugrundverbes-serung mittels im Rüttelstopfverfahren (RSV) hergestellten Schottersäulen (D = 70 cm), die in einem dreiecksförmigen Raster von e = 1,7 m angeordnet sind, und eine Baugrundverbesserung mittels Stabilisierungs- bzw. Betonsäulen (STS) (D = 32 cm), die ebenfalls in einem dreiecksförmigen Raster mit e = 1,7 m angeordnet werden. Für beide Baugrundverbesserungsformen wird jeweils die Variante einer „schwimmenden Gründung“ untersucht, bei der die Fußebene der Säulen 1,0 m über der Oberfläche des steiferen Halbfestgesteins endet, als auch eine Variante, bei der die Säulen 2,5 m in das Halbfestgestein einbinden. In allen vorgenannten Varianten werden die RSV- bzw. STS-Säulen mittels einer 0,5 m mächtigen granularen Tragschicht von der Bodenplatte des Trogbauwerks ent-koppelt. Im Sinne einer Grenzbetrachtung wird zusätzlich noch eine Variante untersucht, bei der die in das Halbfestgestein einbindenden STS-Säulen ohne

Page 11: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

Moormann, Buhmann 11

a) Grundriss

b) Schnitt

Abb. 6: Baugrundverbesserung mittels Säulen bzw. pfahlartigen Traggliedern und Entkoppelung vom Bauwerk durch Tragschicht

lastverteilende Tragschicht direkt an die Bodenplatte des Trogs angeschlossen werden.

Die Berechnungen wurden mit einem dreidimensionalen Finite-Element Modell (PLAXIS 3D) unter Ansatz eines spannungsabhängigen elastoplastischen Stoffge-setzes (´Hardening Soil small strain´) durchgeführt.

Tabelle 2 fasst die Berechnungsergebnisse zusammen. Danach bleibt sowohl bei dem Einsatz der RSV-Säulen als auch bei den deutlich steiferen Betonsäulen (STS) der Charakter einer Baugrundverbesserung erhalten. Während bei Rüt-telstopfsäulen der über die Säulen abgetragene Lastanteil bei 44 % bis 46 % liegt,

Page 12: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

12 Moormann, Buhmann

Tab. 2: Rechnerische Ergebnisse der Variantenstudie

Setzung [cm] Lastverteilung Säulen / Boden [%]

mobilisierte mittlere Säulenkraft [kN]

a) Flachgründung

4,7 cm 100 % / 0 % -

b) RSV-Säulen ohne Einbindung + Tragschicht

2,6 cm 44 % / 56 % 68 kN

c) RSV-Säulen mit 2,5 m Einbindung + Tragschicht

2,4 cm 46 % / 54 % 72 kN

d) STS-Säulen ohne Einbindung + Tragschicht

1,7 cm 34 % / 66 % 56 kN

e) ST1S-Säulen mit 2,5 m Einbindung + Tragschicht

1,2 cm 36 % / 64 % 59 kN

f) STS-Säulen mit 2,5 m Einbindung, ohne Tragschicht

0,5 cm 81 % / 19 % 88 kN

ist dieser bei dem Einsatz von im Querschnitt deutlich kleineren, aber steiferen Stabilisierungssäulen mit 34 % bis 36 % kleiner, so dass trotz der steiferen Säu-len auch hier der größere Lastanteil von 64 % bis 66 % direkt über die Boden-spannungen abgetragen wird; der Anteil der mittragenden Wirkung des anste-henden Bodens ist also bei der Anwendung der Betonsäulen höher als bei der Rüttelstopfverdichtung. Durch die Einbindung der Säulen in das unterlagernde Halbfestgestein ergibt sich für beide Varianten (RSV, STS) bei den gewählten Steifigkeitsverhältnissen keine wesentliche Beeinflussung hinsichtlich Lastvertei-lung und Säulenkraft.

Werden die in das Halbfestgestein einbindenden Betonsäulen ohne lastverteilen-de Tragschicht an die Sohle des Trogbauwerks angeschlossen, wird die mittrag-ende Wirkung der Bodenplatte deutlich reduziert, bei dieser Variante werden bis zu rund 81 % der Einwirkungen von den Betonsäulen aufgenommen. Dies zeigt die maßgebliche Bedeutung einer lastverteilenden Tragschicht für die Lastauftei-lung in solchen Baugrundverbesserungen mit „rigid inclusions“ und insbesonde-re für die Aktivierung des Lastabtrags über Bodenspannungen.

Page 13: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

Moormann, Buhmann 13

Abb. 7: Rechnerische Bettungsmodulverteilung für Bodenplatte bei Einsatz von STS-Säulen (ohne Einbindung) mit lastverteilender Tragschicht

Die Spannungsverteilung unter der Bodenplatte ist abhängig von der Mächtigkeit und den bodenmechanischen Eigenschaften der Tragschicht, insbesondere deren Steifigkeit, aber auch Scherfestigkeit. Dabei kommt es bei den hier gewählten Randbedingungen bei den STS-Säulen (Abb. 7) als auch - in abgeschwächter Form - bei den RSV-Säulen zu einer gewissen Spannungskonzentration unter der Bodenplatte im Bereich über den Säulenköpfen, wobei die Auswirkungen auf die Stahlbetonbemessung der Bodenplatte im Vergleich zu dem Ansatz eines mittleren Bettungsmoduls gering sind.

Abb. 8: Vertikalspannungen im Baugrund und im Bereich der Säulen an Unterkante der lastverteilenden Schottertragschicht (ohne Einbindung)

Page 14: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

14 Moormann, Buhmann

Abb. 8 verdeutlicht die Zusammenhänge durch Visualisierung der Vertikalspan-nungen im Baugrund und im Bereich der Säulen an der Unterkante der granula-ren Tragschicht. Die Lastkonzentration im Bereich des Kopfes einer Säule hängt zum einen von der Tragwirkung der lastverteilenden Schicht und zum anderen von dem Zusammenwirken der Steifigkeiten der am Lastabtrag beteiligten Bau-werks- und Gründungselemente sowie des Baugrunds ab. Bei den vorliegenden Bedingungen kommt es zu sowohl für die relativ steifen pfahlartigen Betonsäu-len, als auch für relativ weiche Säulen einer Rüttelstopfverdichtung zu Span-

Tab. 3: Numerische Ermittlung der innere Beanspruchung der Säulen unter horizontalen Einwirkungen aus dem Trog

innere Schnittgrößen aus Horizontallast

in x-Richtung

innere Schnittgrößen aus Horizontallast

in y-Richtung

resultierende Schnittkraft

a) Momentenbeanspruchung

 

max My,k = 3,3 kNm max Mx,k = 1,1 kNm Mk = 3,5 kNm

b) zugehörige Normalkraft

zugNk = 56 kN zugNk = 56 kN

c) Querkraftbeanspruchung

   

max Vx,k = 7,9 kN max Vy,k = 5,2 kN Vk = 9,5 kN

Page 15: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

Moormann, Buhmann 15

nungskonzentrationen oberhalb der Säulenköpfe. Grundsätzlich ist daher im Ein-zelfall zu prüfen, inwieweit bei einer durch eine Tragschicht entkoppelten Trag-werksstruktur Spannungskonzentrationen über den Säulen bzw. pfahlartigen Tra-gelementen bei der konstruktiven Bemessung der Bodenplatte zu berücksichtigen sind.

Der Nachweis der äußeren Tragfähigkeit (ULS) kann bei der gewählten Konfigu-ration problemlos unter Vernachlässigung der Säulen erbracht werden, so dass die Betrachtung eines Grenzzustandes unter Beteiligung der Säulen entfallen kann.

Nachzuweisen ist jedoch die innere Tragfähigkeit der Betonsäulen (ULS), wobei neben der axialen Belastung aus dem Trogbauwerk auch alle planmäßigen Hori-zontaleinwirkungen zu berücksichtigen sind, bei einem Schienenweg also übli-cherweise Einwirkungen aus Anfahren und Bremsen in Längsrichtung sowie Sei-tenstoß und Fliehkraft in Querrichtung des Trogbauwerks. Auf Grund der kom-plexen Wechselwirkungen von an den Seitenwänden mobilisierten Erddrücken und über die Bodenplatte mittels Reibung in die verdichtete granulare Trag-schicht eingetragenen Horizontalkräften kann der auf die Säulen entfallende Lastanteil nur numerisch ermittelt werden (Tab. 3). Der Nachweis der inneren Beanspruchung der Betonsäulen kann dann für einen überdrückten unbewehrten Betonquerschnitt unter Berücksichtigung der maßgebenden Einwirkungskombi-nationen erfolgen.

6 Resümee Die vorgestellten Überlegungen und numerischen Variantenuntersuchungen zei-gen die komplexen Wechselwirkungen, die das Tragverhalten von Baugrundver-besserungen mit pfahlartigen Tragelementen prägen und die Parallelen zu einer Kombinierten Pfahl-Plattengründung (KPP) zeigen, so dass im Hinblick auf Baugrundverbesserungen mit pfahlartigen Tragelementen unter axialer Bean-spruchung im Zuge der Überarbeitung des Eurocode 7 grundsätzlich auf die ent-sprechenden Regelungen im Abschnitt 7 „Pfahlgründungen“ verwiesen werden kann.

Werden die Säulen bzw. pfahlartigen Tragelemente von dem Bauwerk durch eine lastverteilende Tragschicht entkoppelt, sind zusätzlich der hierdurch bedingte maßgebliche Einfluss auf die Lastverteilung zwischen Säulen und Boden sowie die initiierte negative Mantelreibung im oberen Bereich der Säulen zu berück-sichtigen – zwei Wechselwirkungen, die in dieser Form bei Kombinierten Pfahl-Plattengründungen nicht auftreten.

Die vergleichenden Untersuchungen zu duktilen Schottersäulen und steiferen Stabilisierungssäulen zeigt, dass nicht allein das Steifigkeitsverhältnis zwischen

Page 16: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

16 Moormann, Buhmann

Säulen und Boden das Tragverhalten der Baugrundverbesserung beeinflusst und dass nicht per se steifere, aber im Querschnitt dünner Säulen eine risikoreiche Anwendung darstellen.

Die zuverlässige Beurteilung des Tragverhaltens einer Baugrundverbesserung mittels pfahlartigen Tragelementen erfordert die Kenntnis des Tragverhaltens und der Wechselwirkungen und damit eine entsprechend qualifizierte rechneri-sche Modellbildung des Gesamtsystems; hierfür eignen sich im besonderen Maße numerische Simulationsmodelle.

Unter den für die hier dokumentierte Variantenstudie gewählten Systembedin-gungen ist die entkoppelnde Tragschicht ein maßgebendes Unterscheidungskrite-rium gegenüber einer konventionellen Pfahlgründung (siehe Vergleich Variante e) und f) in Tab. 2). Allerdings ist dieses Kriterium für sich kein hinreichendes Charakteristikum, da weitere Einflüsse, wie die Steifigkeiten der Bodenschichten im Bereich der Säuleneinbindung das Tragverhalten ebenfalls maßgeblich prägen können.

Vereinfachte Bemessungsansätze zur Abschätzung der Interaktionseinflüsse, wie in Abb. 9 skizziert, dürften daher auch zukünftig Vorbemessungen vorbehalten bleiben.

Abb. 9: Ersatzmodell für vereinfachte Abbildung des Tragverhaltens einer Baugrundverbesserung mit pfahlartigen Tragelementen und lastver-teilender Tragschicht

Page 17: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

Moormann, Buhmann 17

Wichtig für alle Baugrundverbesserungen mit „steifen“ Säulen ist der Nachweis der inneren Tragfähigkeit der Säulen unter Berücksichtigung der vertikalen und horizontalen Einwirkungen aus Bauwerkslasten und gegebenenfalls vorhandenen Bodenverschiebungen. Bei der Ermittlung der Querkraftbeanspruchung der Säu-len ist im Regelfall die Gruppenwirkung zu berücksichtigen.

Untersuchungen von Bohn (2015) zeigen, dass herstellungsbedingte Imperfekti-onen und Lotabweichungen der Säulen < 3 % im Regelfall zu keinen bemes-sungsrelevanten Zusatzbeanspruchungen führen. Besondere Sorgfalt ist indes geboten, um unplanmäßige (Querkraft-)Beanspruchungen der im Regelfall un-bewehrten Säulen während der Herstellung zu vermeiden.

7 Literatur Arbeitskreis 2.1 „Pfähle“ der DGGT (Hrsg.) (2001)

Richtlinie für den Entwurf, die Bemessung und den Bau von Kombinierten Pfahl-Plattengründungen (KPP) („KPP-Richtlinie“). 2001, in: „Kombinierte Pfahl-Plattengründungen“, Hanisch, J., Katzenbach, R., König, G. (Eds.), Ernst & Sohn, Berlin, 2002.

Arbeitskreis 2.8 „Stabilisierungssäulen“ der DGGT (Hrsg.) (2001) Merkblatt für die Herstellung, Bemessung und Qualitätssicherung von Sta-bilisierungssäulen zur Untergrundverbesserung - Teil I: CSV-Verfahren. 1. Nachdruck, Januar 2005.

Arbeitskreis 5.2 „Berechnung und Dimensionierung von Erdkörpern mit Beweh-rungseinlagen aus Geokunststoffen“ der DGGT (Hrsg.) (2010)

EBGEO: Empfehlungen für den Entwurf und die Berechnung von Erdkör-pern mit Bewehrungen aus Geokunststoffen. Abschnitt 10: „Gründungs-systeme mit geokunststoffummantelten Säulen“. DGGT, Ernst & Sohn, 2. Aufl.

Bohn, C. (2016) Serviceability and safety in the design of rigid inclusions and combined pile-

raft foundations. Civil Engineering. Université Paris-Est, 2015, <NNT: 2015PEST1096> <tel-01259962>

Briançon, L. and Simon, B. (2012) Performance of Pile-Supported Embankment over Soft Soil - Full-Scale Experiment. J. Geotech. Geoenviron. Eng. 138(4), 551–561.

DB Netz AG (2008) Ril 836 „Erdbauwerke und sonstige geotechnische Bauwerke planen, bauen und instandhalten“, 1. Aktualisierung, gültig ab 01.10.2008, DB Netz AG.

Page 18: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

18 Moormann, Buhmann

Eskişar, T., Otani, J., Hironaka, J. (2012) Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT. Geotextiles and Geomembranes 32, 44–54.

IREX (2012) ASIRI Amélioration des sols par les inclusions rigides (Recommandations for the design, construction and control of rigid inclusion ground improve-ments), France.

Katzenbach, R., Moormann, Ch. (2001) Recommendations for the design and construction of piled rafts. Proc. XVth ICSMGE, 27-31 August 2001, Istanbul, Balkema, Rotterdam, Vol. 2, 927-930.

Kirch, F. (2004) Experimentelle und numerische Untersuchungen zum Tragverhalten von Rüttelstopfsäulen. Mitteilunten des Institutes für Grundbau und Bodenme-chanik der Technischen Universität Braunschweig, Heft 75.

Moormann, Ch., Svensson, H., Humpf, K. (2010) Gründungsoptimierung im internationalen Großbrückenbau – Neue Ent-wicklungen und aktuelle Projekterfahrungen. Vorträge der 31. Baugrundta-gung, München, 03.-06. November 2010, Deutsche Gesellschaft für Geo-technik (DGGT), Essen, 211-218.

Suleiman, M.T., Ni, L., Davis, C., Lin, H., Xiao, S. (2016) Installation effects of Controlled Modulus Column ground improvement piles on surrounding soil. J. Geotech. Geoenviron. Eng., ASCE, 142(1): 04015059.

Neidhart, Th. (2014) Bericht des Arbeitskreises 2.8 „Stabilisierungssäulen“ der DGGT. Geotech-nik 3/2014.

Nguyen, D. D. C., Kim, D.-S., Jo, S.-B. (2014) Parametric study for optimal design of large piled raft foundations on sand. Computers and Geotechnics 55, 14–2.

Priebe, H. (1995) Die Bemessung von Rüttelstopfverdichtungen. Bautechnik 72(3), 183-191.

Tradigo, F., Pisanò, F., di Prisco, C., Mussi, A. (2015). Non-linear soil–structure interaction in disconnected piled raft foundations. Computers and Geotechnics 63, 121–134.

Yun-min, C., Wei-ping, C., Ren-peng, C. (2008) An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotextiles and Geomembranes 26(2), 164–17.

Page 19: Baugrundverbesserung mit steifen Säulen und … · Kombinierten Pfahl-Plattengründungen (KPP) ... Moormann, Buhmann 3 „pfahlartigen Tragelementen“ gegeben sowie ein Vorschlag

Moormann, Buhmann 19

Wehr, J., Sondermann, W. (2012) Risiken bei der Bemessung von Baugrundverbesserungsmethoden und pfahlähnlichen Traggliedern. BauPortal 5/2012, 32-36.