Baustoffdesign Funktionen - Eigenschaften - TU...

63
Baustoffdesign Thomas A. BIER Institut für Keramik, Glas- und Baustofftechnik, Leipziger Straße 28, 09596 Freiberg, Baustoffdesign Funktionen - Eigenschaften

Transcript of Baustoffdesign Funktionen - Eigenschaften - TU...

Baustoffdesign

Thomas A. BIER

Institut für Keramik, Glas- und Baustofftechnik, Leipziger Straße 28, 09596 Freiberg,

BaustoffdesignFunktionen - Eigenschaften

Baustoffdesign

Material

Chemie

Mineralogie

Feinheit (SO, PSD)

Zemente PZ, TZ, C$

Füllstoffe

Organische StoffeDispergierbare Pulver

Zusatzmittel

Material

Chemie

Mineralogie

Feinheit (SO, PSD)

Zemente PZ, TZ, C$

Füllstoffe

Organische StoffeDispergierbare Pulver

Zusatzmittel

Verfahren

Mischen und Erhärtung

TemperaturAutoklav

Trocknen

Pressen /ExtrudierenZiegel

KS Stein

Macro Defect Free

DSP

Funktionen

Festigkeit

Konsistenz

VerarbeitungViskosität

Fließgrenze

Offene Zeit

Dauerhaftigkeit

Farbe/Optik

DämmungWärme

Schall

Schwinden/Quellen

Permeabilität

Elektr. Leitfähigkeit

Haftzugfestigkeit

Baustoffdesign

Material

Zemente PZ, TZ, C$

Füllstoffe

Organische StoffeDispergierbare Pulver

Zusatzmittel

Material

Zemente PZ, TZ, C$

Füllstoffe

Organische StoffeDispergierbare Pulver

Zusatzmittel

Verfahren

Mischen und Erhärtung

Funktionen

Festigkeit

Konsistenz

VerarbeitungViskosität

Fließgrenze

Offene Zeit

Dauerhaftigkeit

Farbe/Optik

Schwinden/Quellen

Haftzugfestigkeit

Baustoffdesign

PerformanceSelf flow values CSTB cylinder

Gel or open time cup or knife test

Setting time Vicat needle

Mechanical strength prisms 4 x 4 x 16

PerformanceSelf flow values CSTB cylinder

Gel or open time cup or knife test

Setting time Vicat needle

Mechanical strength prisms 4 x 4 x 16

Measuring Mechanical Performance

Baustoffdesign

Hobart Mischer

Baustoffdesign

Slurry preparation

700 rpm

Slurry mixing method

Chemical stirrer

0.1

0.2

0.3

1 2 30 7Mixing time (min)

Mix

ing

ener

gy (J

)

4 5 6

Grout slurry

Time periods for mixing the slurry

2 min normal

7 min excessive

Baustoffdesign

Abbindezeit nach Vicat:DIN EN 196 Teil 3

Baustoffdesign

Technological properties: Setting TimeMethod

Setting: Automatic Vicat needle test (EN 196) Penetration depth = f(time)

Baustoffdesign

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00

0

10

20

30

40

Starvis 3003 F Xanthan Gum Potato starch F 9110 MHEC 6000 PR K 200 M

Pen

etra

tion

dept

h [m

m]

Time [hh:mm]

Technological properties Setting TimeResults

Baustoffdesign

Typical technological tests: - V-funnel times and self flow values

Technological properties: FlowMethods

Baustoffdesign

Baustoffdesign

Flow value, Flow decay, Working time

Experiment

Result

Time

Decay

Working time

Flowvalue

d1d0 = 100 mm

70 mm

50 mm

(Verarbeitbarkeit – Frischbeton bzw. Mörtel)

Baustoffdesign

Entrained Air

Sedimentation

Self Compaction

Flow Value [mm]

Stagnation Fu

nnel

Tim

e [s

]

Workability Evaluation according to DAfStB

DAfStb-Richtlinie Selbstverdichtender Beton (Ausgabe Nov, 2003) ANHANG Q; Q.1 Seite 32

Baustoffdesign

Plastisizers and Stabilisers

Baustoffdesign

After 3 min:300g mortar paste taken from top and bottom

Granulometry

Technological properties: SedimentationMethod

Early sedimentation: 1kg mortar paste filled into cylinder

Baustoffdesign

Later sedimentation: Cubes, cut after 7d

Polymer Gum Potato starch Cellulose 6000 Cellulose 200

Technological properties: SedimentationResults

Poymer Potato starch

just fines

Early Later not observed

Gum Cellulose 6000

PolymerCellulose 200 Starch

Baustoffdesign

Workability Boxes according to Wallevik

O.H. Wallevik, J.E. Wallevik, Rheology as a tool in concrete science: The use of rheographs and workability boxes,Cem. Concr. Res. (2011)

Baustoffdesign

Workability Boxes for SCC

O.H. Wallevik, J.E. Wallevik, Rheology as a tool in concrete science: The use of rheographs and workability boxes,Cem. Concr. Res. (2011)

Baustoffdesign

Workability Boxes for different Applications

O.H. Wallevik, J.E. Wallevik, Rheology as a tool in concrete science: The use of rheographs and workability boxes,Cem. Concr. Res. (2011)

Baustoffdesign

Rheological properties: Flow Curves Methods

Haake RheoStress 150 with building materials cellShear stress = f(shear rate)

0 50 100 150 200 250 300 3500

50100150200250300

Shea

r rat

e [1

/s]

Time [s]

Baustoffdesign

Different Plastisizers in SLU

Continuous flow conditions

100

1000

10000

100000

1000000

0.01 0.1 1 10 100 1000Shear Rate (1/s)

App

aren

t Vis

cosi

ty (m

Pa.s

) B_MF1641F

A_PP100F

C_MF2641F

D_MF2651FE_Casein

A_PP100F

Oscillation flow conditions

100

1000

10000

100000

1000000

0.01 0.1 1 10 100 1000 (rad/s)

| *|

(mPa

.s)

B_MF1641FA_PP100FC_MF2641FD_MF2651F

E_Casein

Oscillatory flow conditions

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 (rad/s)

G',

G''

(Pa)

B_MF1641F

D_MF2651F

E_Casein

G'

G''

Rheometer

Concentric-cylinder

[Tomohiro Emoto, Thomas A. Bier:”Rheological behavior as influenced by plasticizers and hydration kinetics” Cement and Concrete Research 37 (2007) ]

Baustoffdesign

Rheological properties: Flow Curves Shear Thinning behavior

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300

Scherrate (1/s)

Sche

rspa

nnun

g (P

a)

Polymer

StarchCellulose 200

GumCellulose 6000

Baustoffdesign

0 50 100 150 200 250 3000

100

200

300

400

500

600

700

800

900

1000 Starvis 3003 F Xanthan Gum Potato starch F 9110 MHEC 6000 PR K 200 M

She

ar s

tress

[Pa]

Shear rate [1/s]

Rheological properties Flow CurvesResults

Baustoffdesign

Festigkeiten

Baustoffdesign

Rheology and Structuring : Richards Locher Model

• Nucleation• Growth of hydrates

• Solubility• Particle –

Particle Interaction

• Massive Hydration• W/C Ratio

• Intrinsic Strength• Porosity

I II

III

IV

Baustoffdesign

Phase Development w/ Time

After 5 min water contact

Baustoffdesign

Phase Development w/ Time

After 140 min water contact

Baustoffdesign

Phase Development w/ Time

After 140 min water contact

Baustoffdesign

Phase Development w/ Time

After 15 hrs water contact

Baustoffdesign

Phase Development w/ Time

After 7 days water contact

Baustoffdesign

Phase Development w/ Time

After 56 days water contact

Baustoffdesign

Phase Development w/ Time

After 360 days water contact

Baustoffdesign

Phase Development w/ Time

After 36 6 days water contact

Baustoffdesign

Phase Development w/ Time

After 600 days water contact

Baustoffdesign

• Nucleation• Growth of hydrates

• Solubility• Particle – Particle Interaction w/SP

• Intrinsic Strength• Porosity

I II

III

IV

Rheology and Structuring : Self Levelling Underlayments

Oscillation flow curves

0

10

20

30

40

50

60

70

80

90

0,1 1 10 100 1000

(rad/s)

)

S6A_MFPP100FS6B_MF1641FS6C_MF2641FS6D_MF2651FS6F_Casein

Calorimetry (Versatz6b_Early time)

0

2

4

6

8

10

12

0 1 2 3 4 5

Time (hours)

Hea

t Evo

lutio

n (m

W/g

)

No.3_ohneNo.1_citricNo.1_citric_lithiumNo.3_allNo.2_vp2651No.2_vp2651_lithiumNo.3_SKW_pce_20%

vp+cit+lit

cit+lit

SKW_20%

cit

ohne

vp+lit

vp

Ref.

No.1 No.2

No.3

Equipment

Baustoffdesign

Kalorimetrie

Baustoffdesign

Wärmefluß

Leitfähigkeit

Meßmethoden zur Charakterisierungder Hydratationskinetik

Lösungsphase Induktionsperiode

Massive Hydratphasenbildung

Zeit

Zeit

Baustoffdesign

Calorimetry

Baustoffdesign"Energie und Nachhaltigkeit im Bauwesen„ - Tagung Bauchemie - 8./9. Oktober 2009

Early Shrinkage Measurement

Baustoffdesign

Phasenentwicklung: System 1 mit Anhydrite

Baustoffdesign

Phase Development for a Binder with α Hemihydrate

Baustoffdesign

Phase Development for a Binder with α Hemihydrate

Baustoffdesign

Cluster AnalysisXRD Time Series 10

CAC OPC

CS

0

0.2

0.4

0.6

0.8

1

00.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1

System 1System 2

CAC OPC

CS

0

0.2

0.4

0.6

0.8

1

00.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1

System 1System 2

Baustoffdesign

Phase Development by XRD

CAC OPC

CS

0

0.2

0.4

0.6

0.8

1

00.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1

System 1System 2

CAC OPC

CS

0

0.2

0.4

0.6

0.8

1

00.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1

System 1System 2

Baustoffdesign

Microstructure of Hardened Cement Paste

Baustoffdesign

Physical aspects of Cement Hydration

Plastic mix Setting mix

Structure developing Stable final structure

Baustoffdesign

Porosität

Baustoffdesign

Porosity in Mortar and Concrete

Baustoffdesign

Different Pores and their Measurement

Baustoffdesign

Chemical Shrinkage Expansion

Baustoffdesign

Hydrous Phase - C2AH8

Baustoffdesign

Hydrous Phase - C3AH6

Baustoffdesign

Microstructural Arrangement of CAH Phasen

Baustoffdesign

Microstructural Arrangement of CAH Phasen

Baustoffdesign

Microstructural Arrangement of CAH Phasen

Baustoffdesign

Microstructural Arrangement of Ettringite

Baustoffdesign

MIP Porosity after 1 day of shrinkage and hydration

Series III

0,00

0,04

0,08

0,12

0,16

1 10 100 1000 10000

Pore Diameter (nm)

Pore

Vol

ume

(cc/

g)

System 4 -CSystem 5-CSystem 6-CSystem 7-CSystem 4 - VSystem 5 - VSystem 6 - VSystem 7 - V

Baustoffdesign

Series III

0

10

20

30

40

50

60

1 10 100 1000 10000

Pore Radius [nm]

dV/d

log(

r)

System 4 - CSystem 4 - VSystem 5 - CSystem 5 - VSystem 6 - CSystem 6 - V

MIP Porosity after 1 day of shrinkage and hydration

Baustoffdesign

Microstructure and Sorption

Baustoffdesign

Produkteigenschaften, Rheologie und Hydratationskinetik

Verzögerung

Drehmoment = F(T) Wärmefluß= F(T)Time

Verarbeitungszeit

Dis

pers

ion

RHEOMETER CALORIMETER

Ausbreitmaß

Ausbreitmaß = f(t)

ZuschlägeFüller

ZementWasser

Zusatzmittel

Beton Binder

Pi Pm

WT

LösungHydratation

Baustoffdesign

Early Shrinkage Measurement

Shrinkage Drain

Shrinkage Cone

Baustoffdesign

Early Shrinkage Measurement

Shrinkage Drain

Shrinkage Cone

Drying shrinkage vs. Sealed (Autogenous) shrinkage

Baustoffdesign

Volume Shrinkage under Water

Sketch from: O. Esping “Early age properties of self-compacting concrete - Effects of fine aggregate and limestone filler” PhD Thesis, Göteborg, Sweden, 2007