基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率...

49
(平成 29 9 9 日作成) 経営学系専門科目 基礎数学 2 講義ノート 首都大学東京 都市教養学部 経営学系 授業のテーマ 経済学・経営学を学ぶうえで必要な数学手法のうち,積分と確率を中心に学ぶ. 確率・統計や不確実性を扱う際に重要な諸概念を講義する.また,適時問題演習を行い,論理的 思考や数学の概念の理解と実践的な計算能力の向上を図る. 授業の到達目標 経済学・経営学関連の大学講義に必要な数学の概念を理解し,計算方法を習得 する.特に,不確実性に付随する諸概念を理解することと確率分布の期待値計算のための積分の 計算に重点を置く. テキスト 本講義ノートを毎回持参すること.ホームページからもダウンロード可能.章末の練 習問題,演習問題,復習問題については各自の予習,復習に利用されたい.教員が講義中に利用 することもある.この他,講義中にレジュメを配ることもある. ホームページ http://www.comp.tmu.ac.jp/bizmath/ スケジュール,連絡事項,問題解答などを掲載するので確認すること. 本講義ノート,問題解答 がダウンロード可能. 1

Transcript of 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率...

Page 1: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

(平成 29 年 9 月 9 日作成)

経営学系専門科目 基礎数学2 講義ノート首都大学東京 都市教養学部 経営学系

授業のテーマ 経済学・経営学を学ぶうえで必要な数学手法のうち,積分と確率を中心に学ぶ.確率・統計や不確実性を扱う際に重要な諸概念を講義する.また,適時問題演習を行い,論理的思考や数学の概念の理解と実践的な計算能力の向上を図る.

授業の到達目標 経済学・経営学関連の大学講義に必要な数学の概念を理解し,計算方法を習得する.特に,不確実性に付随する諸概念を理解することと確率分布の期待値計算のための積分の計算に重点を置く.

テキスト 本講義ノートを毎回持参すること.ホームページからもダウンロード可能.章末の練習問題,演習問題,復習問題については各自の予習,復習に利用されたい.教員が講義中に利用することもある.この他,講義中にレジュメを配ることもある.

ホームページ http://www.comp.tmu.ac.jp/bizmath/

スケジュール,連絡事項,問題解答などを掲載するので確認すること. 本講義ノート,問題解答がダウンロード可能.

1

Page 2: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

目次

基礎数学 2

ページ 日付A. 微分1. 微分 1 微分,合成関数の微分,積の微分 · · · 3 10/4・10/11

2. 微分 2 テーラー展開 · · · 9 10/11

B.積分3. 積分 1 定積分,不定積分,原始関数 · · · 12 10/18

4. 積分 2 部分積分,置換積分 · · · 17 10/25・11/8

まとめ 演習 1(予備日) 11/15

C.確率と確率変数5. 確率 基本事象,事象,確率,条件付き確率 · · · 24 11/22

6. 確率変数 1 確率変数,分布関数,期待値 · · · 29 11/29

7. 確率変数 2 積率母関数,確率変数の独立性 · · · 33 12/6

D.確率変数の分布8. 分布 1 ベルヌーイ分布,二項分布 · · · 37 12/13

9. 分布 2 一様分布,正規分布 · · · 40 12/20・1/10

10. 分布 3 ポワソン分布,指数分布 · · · 46 1/17

まとめ 演習 2(予備日) 1/24

期末試験 1/31(予定)

(1,2は基礎数学 1の復習,5,6は統計学 I,IIの復習)

ギリシャ文字

α アルファ η エータ ν ニュー τ タウβ ベータ θ, Θ シータ ξ クシ υ ウプシロンγ, Γ ガンマ ι イオタ o オミクロン ϕ,Φ ファイδ, ∆ デルタ κ カッパ π,Π パイ χ カイε イプシロン λ, Λ ラムダ ρ ロー ψ,Ψ プサイζ ゼータ µ ミュー σ,Σ シグマ ω,Ω オメガ

2

Page 3: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

1 微分1 微分,合成関数の微分,積の微分項目 n次関数・指数関数・対数関数の微分

記号 f ′(x),d

dxf(x)

公式 (xn)′ = nxn−1, (ex)′ = ex, (lnx)′ = 1x

合成関数の微分 d

dxf(g(x)) = f ′(g(x))g′(x)

積の微分 (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)

1.1 微分

・関数 f : D → Rのグラフ上で十分近い 2点 (a, f(a)), (a+∆x, f(a+∆x))を通る直線を考える.x軸方向の変化 (xの増分)∆x = (a+∆x)− a に対して,y軸方向の変化 (yの増分)は∆y =

f(a+∆x)− f(a) なので,その直線の傾きは

∆y

∆x=f(a+∆x)− f(a)

∆x

である.したがって 2点 (a, f(a)), (a+∆x, f(a+∆x))を通る直線は

y − f(a) =f(a+∆x)− f(a)

∆x(x− a)

である.もし fのグラフが滑らか(とがっていない)であれば,∆xを小さくする (∆x→ 0)ときに,この直線は点 (a, f(a))における接線に近づくであろう.その際に2点 (a, f(a)), (a+∆x, f(a+∆x))

を通る直線の傾きが近づく極限の値

lim∆x→0

f(a+∆x)− f(a)

∆x

を関数 f の点 aにおける微係数といい,f ′(a)と表す.したがって f ′(a)は,なめらかな f のグラフの点 (a, f(a))における接線の傾きを意味する.

・定義域上のすべての点 x ∈ Dに対して,その点における微係数を対応させる関数 f ′ : D → Rをf の導関数という.f ′(x)を

df

dx(x),

d

dxf(x)

とも表す.関数 f からその導関数 f ′を求めることを,微分する,という.関数 f を n回微分した結果を n階微分 (階は orderの訳)といい,下記のように書く.

f (n),dnf

dxn; f (n)(x),

dnf

dxn(x),

dn

dxnf(x)

3

Page 4: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

1.2 具体的な関数の微分

・公式:主な関数の微分 f ′(x) = lim∆x→0

f(x+∆x)− f(x)

∆xの結果

'

&

$

%

f(x) = a (aは定数) ⇒ f ′(x) = 0(f ′(x) = lim

∆x→0

a− a

∆x= 0

)f(x) = x ⇒ f ′(x) = 1

(f ′(x) = lim

∆x→0

(x+∆x)− x

∆x= 1

)f(x) = x2 ⇒ f ′(x) = 2x

(f ′(x) = lim

∆x→0

(x+∆x)2 − x2

∆x= lim

∆x→0(2x+∆x) = 2x

)f(x) = xn (n = 0) ⇒ f ′(x) = nxn−1

f(x) = ex ⇒ f ′(x) = ex

f(x) = lnx ⇒ f ′(x) = 1x

・重要な性質:微分は線形(関数 f に導関数 df

dxを対応づける写像 d

dxは線形写像)

d

dx(f(x) + g(x)) =

d

dxf(x) +

d

dxg(x),

d

dx(αf(x)) = α

d

dxf(x)

(例)

d

dx(x3 + 2x+ 3) =

d

dx(x3) + 2

d

dx(x) +

d

dx3 = 3x2 + 2

1.3 合成関数と積の微分

・合成関数 f(g(x))の値は,先ず xから z = g(x)を計算し,次にその結果の z = g(x)を f(z)に代入して y = f(z) = f(g(x))を計算する,という 2段階の計算の結果である.

'

&

$

%

'

&

$

%

'

&

$

%• • •• •R

g

R

fX Z Y

x z = g(x) y = f(z) = f(g(x))

・ f(x) = exと g(x) = x2の合成関数

f(g(x)) = f(x2) = ex2

・ f(x) = exと g(x) = x2の積f(x)g(x) = exx2

4

Page 5: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

・ f(x) = exと g(x) = x2の微分はわかっているが,合成関数 f(g(x)) = ex2 や積 f(x)g(x) = exx2

の微分はどうなるであろうか?どちらも,単独の微分の結果 f ′(x) = ex, g′(x) = 2xに関連があるはずである.'

&

$

%

合成関数の微分 d

dxf(g(x)) = f ′(g(x))g′(x) (外側から微分してかけ算)

dy

dx=dy

dz

dz

dx(このようにも記述できる)

ただし y = f(z), z = g(x)

積の微分 (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x) (ひとつずつ微分)

これらは複雑な関数を微分する際に便利な公式であるが,特によく使うのは次の 2つの公式である.

d

dxf(a+ bx) = bf ′(a+ bx) ,

d

dxln g(x) =

g′(x)

g(x)(対数微分)

g(x) = a+ bx ⇒ f(g(x)) = f(a+ bx), g′(x) = b ⇒ d

dxf(a+ bx)) = bf ′(a+ bx)

f(x) = lnx ⇒ f(g(x)) = ln g(x), f ′(x) =1

x⇒ d

dxf(g(x)) =

g′(x)

g(x)

(例) · d

dxea+bx = bea+bx, · d

dxex

2= 2xex

2, · d

dxln(a+ bx) =

b

a+ bx

· d

dx(3x2 − 5x+ 3)4 = 4(3x2 − 5x+ 3)3(6x− 5), · d

dx

(1

a+ bx

)= − b

(a+ bx)2,

· d

dx(exx2) = exx2 + 2exx, · d

dx(−5x+ 2) lnx = −5 lnx+

−5x+ 2

x

· d

dx

(−2x+ 6)(3x2 + x+ 1)

= −2(3x2 + x+ 1) + (−2x+ 6)(6x+ 1)

= −18x2 + 32x+ 4

· d

dx

(x+ 3)

√2− x

=

d

dx

(x+ 3)(2− x)

12

= (2− x)

12 − 1

2(x+ 3)(2− x)−

12

・商の公式合成関数の微分の公式で f(x) = 1

x を適用すれば

d

dx

(1

g(x)

)= − g′(x)

(g(x))2(g(x) = 0)

が得られる.さらに積の微分の公式を用いると,商の公式

d

dx

(f(x)

g(x)

)=f ′(x)g(x)− f(x)g′(x)

(g(x))2, (g(x) = 0)

5

Page 6: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

が得られる.(例)

d

dx

(a+ bx

c+ dx

)=b(c+ dx)− d(a+ bx)

(c+ dx)2, (c+ dx = 0)

・対数微分の続きh(x) = f(x)g(x)とするとき,両辺の対数を取り

lnh(x) = ln f(x) + ln g(x)

両辺を微分することによりh′(x)

h(x)=f ′(x)

f(x)+g′(x)

g(x)

が成立する.(例)

f(x) = x, g(x) = ex, h(x) = f(x)g(x) = xex

⇒ (積の微分) h′(x) = f ′(x)g(x) + f(x)g′(x) = ex + xex

(対数微分) h′(x) = h(x)

(f ′(x)

f(x)+g′(x)

g(x)

)= xex

(1

x+ex

ex

)= ex + xex

or lnh(x) = ln(xex) = lnx+ ln ex = lnx+ x

⇒ h′(x)

h(x)=

1

x+ 1 ⇒ h′(x) = h(x)

(1

x+ 1

)= ex(1 + x)

6

Page 7: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

練習問題

Ex 1-1. 次の関数を xで微分しなさい

(a)√x (b)

√x2 + 1 (c) exp

(−x

2

2

)(d) ln(x2 + 1)

Ex 1-2. 次の関数を xで微分しなさい.

(a) ax (b)x1−γ

1− γ(γ = 1) (c) xex

2

Ex 1-3. 次の関数の 1階微分および 2階微分を求めなさい.

(a) exp(a+ bx) (b) exp(a+ bx+ cx2

)(c) ln(1 + x) (d)x(1 + x)n

演習問題

Problem 1-1. 次の関数を xで微分しなさい.

(a) (1 + x)2 (b) (3x2 + 5x+ 6)3 (c)√

2x2 + 3x− 1

(d) 5ex2−5x+2 (e) ln(−2x+ 8) (f)

(x+

1

x

)a

(g) (1 + x)2(3 + x)3 (h) x5(1 + x)2 (i) (1 + x)ax1−a

(j) xe−x2(k)

2x+ 3

x2 − 3x+ 1(l) (x+ 3)

√2− x

(ヒント:(a)-(f)は合成関数の微分の公式,(g)-(l)は積の微分の公式を用いる)

Problem 1-2. 次の関数を xで微分しなさい.

(a)1

1 + x2(b)

x2

(1 + ex)2(c) x2ex

Problem 1-3. 指数関数 exの微分は exであった.一般の底 a > 0の場合,指数関数 axの微分はどうなるか.(ヒント: ax = eln ax が成り立つことを使う.)

Problem 1-4. x > 0とする.対数関数 lnxの微分は 1x であった.一般の底 a > 0の場合,対数関

数 loga xの微分はどうなるか.(ヒント: loga xに対数関数の底の変換公式を適用して二つの自然対数の商の形にする.)

7

Page 8: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

復習問題

Quiz 1-1. 次の関数を xで微分しなさい.

(a) (1−x)2 (b) (x2+5x)3 (c) (1+ax)2(1+bx)3 (d) ex(1+x)−1 (e) (1+x)aax

Quiz 1-2. 次の関数を xで微分しなさい

(a) y =1− x

1 + x(b) y =

√1 + x4 (c) y =

ex

x(d) y = ln(2x2 − 1)

Quiz 1-3. 次の関数の導関数の値が 0となる点 xを求めなさい.(a,bは「極値点」,cは「変曲点」を求める問題)

(a) − (x− a)2 + b (b)1√2πσ

exp

(−(x− µ)2

2σ2

)(c) (b)の導関数

8

Page 9: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

2 微分2 テーラー展開項目 テーラー展開公式 f(x) = f(x0) + f ′(x0)(x− x0) +

12f

′′(x0)(x− x0)2 + · · ·

2.1 テーラー展開

・ f を n回微分して得られた導関数を f (n)と表し,n階微分という.

(例) f(x) = xm ⇒ f (n)(x) = m(m− 1) · · · (m− n+ 1)xm−n, f(x) = ex ⇒ f (n)(x) = ex

・ある点 x0の周辺の点 xで(複雑な)関数 f の値を簡単な関数で近似したいことがことがある.その場合,まず考えるのが接線である.点 x0の 1階微分で得られる接線は,x0の周辺において関数 f の値を 1次関数(直線)で近似している.2次関数を加えれば近似がよくなるであろう.さらに 3次関数,4次関数,…と高次の関数を際限なく加えた結果は,x0の周辺において関数 f

に一致することが知られている.その際の n次関数の係数に n階微係数 f (n)(x0)が現れ,以下のx0の周りのテーラー展開が得られる.これを「x = x0の周りのテーラー展開」という.

f(x) = f(x0) +

f ′(x0)

1!(x− x0) +

f ′′(x0)

2!(x− x0)

2 + · · ·+ f (n)(x0)

n!(x− x0)

n + · · ·

x0における微分の値によって,x0の周辺の点 xにおける関数の値 f(x)を決定できることを意味している.右辺は n次関数 (x− x0)

nの形の項の無限和である.当然,x0が変われば右辺の展開の結果も変わることが多い(変わらないこともある).

(例)

· ex = 1 +1

1!x+

1

2!x2 + · · ·+ 1

n!xn + · · · =

∞∑n=0

1

n!xn (exを x = 0の周りでテーラー展開)

· ex = e+e

1!(x− 1) +

e

2!(x− 1)2 + · · ·+ e

n!(x− 1)n + · · · =

∞∑n=0

e

n!(x− 1)n

(exを x = 1の周りでテーラー展開)

· x2 = 1 +2

1!(x− 1) +

2

2!(x− 1)2 +

0

3!(x− 1)3 +(以降ずっとゼロ)= x2

(x2を x = 1の周りでテーラー展開. 多項式は結局もとの形に戻る)

· x3 = 1 +3

1!(x− 1) +

6

2!(x− 1)2 +

6

3!(x− 1)3 +

0

4!(x− 1)4 +(以降ずっとゼロ)= x3

(x3を x = 1の周りでテーラー展開. 多項式は結局もとの形に戻る)

9

Page 10: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

図 1: y = lnx(実線)と y = x− 1(点線)

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

図 2: y = lnx(実線)と y = x− 1− 12(x− 1)2(点線)

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

図 3: y = lnx(実線)と y = x− 1− 12(x− 1)2 + 1

3(x− 1)3(点線)

10

Page 11: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

練習問題

Ex 2-1. 次の関数の x = 1の周りの 2次までのテーラー展開を求めなさい.

(a) exp(x− 1) (b) exp(−(x− 1)2

)(c) ln(1 + x)

復習問題

Quiz 2-1. (テーラー展開)次の関数 f(x)の x = 0における 2次までのテーラー展開を求めなさい.

(a) f(x) =√1− x (b) f(x) = ln(1+x+x2) (c) f(x) = ex ln(1+x)

Quiz 2-2. テーラー展開を用いて次式が成立することを示しなさい.∞∑k=0

xk

k!e−x = 1

11

Page 12: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

3 積分1 定積分,不定積分,原始関数記号 定積分

∫ ba f(x)dx,不定積分

∫ xa f(t)dt,原始関数

∫f(x)dx

公式 d

dx

∫ x

af(t)dt = f(x)

3.1 定積分

・関数 f : [a, b] → Rは連続関数(グラフに不連続点がない関数)と仮定する.

・区間 [a, b]上で,x軸と y = f(x)によって囲まれた図形の (符号付き)面積を考える.区間をN 等分

a = x0 < x1 < · · · < xN = b, (xi − xi−1 = (b− a)/N = h)

すれば,区間 [a, b]上で,x軸と y = f(x)によって囲まれた図形の (符号付き)面積は,

幅 h高さ f(xi)の「短冊」の集まりの面積N∑i=1

f(xi)h によって近似できる.

分割を細かくした極限 (N → ∞, h→ 0)を∫ b

af(x)dx と表し,f の [a, b]における定積分という.

(区分求積法)N∑i=1

f(xi) h

∫ b

af(x) dx

・積分∫ b

af(x)dx内の関数 f(x)を被積分関数と呼ぶ.

・定積分の性質(定積分を “符号付きの面積”とみなして下記性質を考えるとわかりやすい)

線形性∫ b

a(f(x) + g(x))dx =

∫ b

af(x)dx+

∫ b

ag(x)dx∫ b

aαf(x)dx = α

∫ b

af(x)dx

積分区間の分割∫ b

af(x)dx =

∫ c

af(x)dx+

∫ b

cf(x)dx

区間幅ゼロでは定積分=ゼロ∫ a

af(x)dx = 0

積分方向∫ b

af(x)dx = −

∫ a

bf(x)dx

(⇐ 0 =

∫ a

a=

∫ b

a+

∫ a

b

)・定義から定積分の値を実際に計算することは困難である.しかし,次の不定積分・原始関数との関係がわかれば,原始関数を通して定積分の値を計算できる.

12

Page 13: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

3.2 不定積分と原始関数

・積分区間の下限 aを適当に固定し,定積分を上限 bの関数とみなしたものを f の不定積分といい,

F (x) =

∫ x

af(t)dt

と表す(下限の aが定まっていない,という意味で “不定”).面積の意味(定積分の構成)からわかるように面積の増分は短冊になるので

F (x+ h)− F (x) =

∫ x+h

xf(t)dt ≈ f(x)h

である.したがって F の導関数は

F (x+ h)− F (x)

h→ f(x) (h→ 0)

となる.すなわち,不定積分を微分すれば元の関数が得られる.(微積分学の基本定理)

d

dx

∫ x

af(t)dt = f(x) (微積分学の基本定理)

・一方で,導関数が f となる関数G(Gは性質G′ = f を満たす)を f の原始関数といい

G(x) =

∫f(x)dx

と表す.

(例) xn + C =

∫nxn−1dx, ex + C =

∫exdx, lnx+ C =

∫1

xdx, (C は定数)

f の原始関数の定義(G′(x) = f(x))から

d

dx

∫f(x)dx = f(x) (f の原始関数の定義)

であり,また,f の導関数 f ′ =df

dxの原始関数の定義(f ′(x) = f ′(x))から

d

dxf(x)dx = f(x) (f ′の原始関数の定義)

である.これら 2式から微分と積分(原始関数)は互いに逆演算であることがわかる.

13

Page 14: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

・定数の微分はゼロになるので,f の原始関数に定数項を加えても,やはり f の原始関数になり,fの原始関数は無数に存在する.上記の微積分学の基本定理は不定積分 F が原始関数Gのひとつであることを示している.したがって,f の原始関数Gは不定積分にある定数 C を加えた形

G(x) =

∫f(x)dx =

∫ x

af(t)dt+ C

で表される.

すなわち,定積分の計算は,原始関数を用いて

∫ b

af(x)dx = F (b)− F (a) = G(b)−G(a) =

[G(x)

]ba

として計算すればよい.

・原始関数と不定積分は混同されやすいが,厳密には異なる出発点から得られた概念である.不定積分は区分求積法により得られた一方で,原始関数は微分により定義された.しかしながら,両者は密接な関係にあるので,(連続で滑らかな関数のみを扱うかぎり)原始関数と不定積分を同じものと理解しても大きな問題はない.

定積分 → 不定積分 F (x) =

∫ x

af(t)dt

不定積分 → 原始関数∫f(x)dx =

∫ x

af(t)dt+ C (微積分学の基本定理)

原始関数 → 定積分∫ b

af(x)dx = G(b)−G(a) =

[G(x)

]ba

原始関数 → 不定積分∫ x

af(t)dt = G(x)−G(a) =

[G(t)

]xa

微積分学の基本定理 d

dx

∫ x

af(t)dt = f(x)

f の原始関数の定義 d

dx

∫f(x)dx = f(x) (積分した結果を微分すれば元の関数)

f ′の原始関数の定義∫ (

d

dxf(x)

)dx = f(x) (微分した結果を積分すれば元の関数)

14

Page 15: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

・原始関数は,その定義にしたがって,微分の結果を見て求める.(具体的な表記では積分定数 C を付けること)'

&

$

%

d

dxG(x) = f(x) ⇔

∫f(x)dx = G(x)

d

dx

1

n+ 1xn+1 = xn ⇔

∫xn dx =

1

n+ 1xn+1 + C (n = −1)

d

dx

1

bea+bx = ea+bx ⇔

∫ea+bx dx =

1

bea+bx + C

d

dxlnx =

1

x⇔

∫1

xdx = lnx+ C

・定積分は原始関数を求めてから計算する.

∫ b

af(x)dx = G(b)−G(a) =

[G(x)

]ba

(例)[0, 1]上の関数 f(x) = 1

∫ 1

01dx =

[x]10= 1 (正方形の面積)

[0, 1]上の関数 f(x) = x

∫ 1

0xdx =

[12x2]10=

1

2(三角形の面積)

[0,∞)上の関数 f(x) = ae−ax (a > 0)

∫ ∞

0ae−axdx =

[− e−ax

]∞0

= 1,(

limx→−∞

ex = 0)

・積分計算は原始関数を見つけることに帰着するが,定義のみから原始関数を “発見”することは難しい.次回の部分積分・置換積分はその手助けになる,重要なツールである.

15

Page 16: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

練習問題

Ex 3-1. 次の原始関数(不定積分)を求めなさい.

(a)

∫(x+ x2 + x3)dx (b)

∫exdx (c)

∫1

xdx

Ex 3-2. 次の定積分を求めなさい.

(a)

∫ a

−a(x+ x2 + x3)dx (b)

∫ a

−aexdx (c)

∫ e

1

1

xdx

演習問題

Problem 3-1. 次の原始関数(不定積分)を求めなさい.

(a)

∫xndx (b)

∫(√x+ x

√x)dx (c)

∫2e2xdx

Problem 3-2. 次の曲線と 2直線および x軸で囲まれた部分の面積を求めなさい.

(a) y = x2 + 4, x = −1, x = 2 (b) y = x2 + 2x, x = −1, x = 2

復習問題

Quiz 3-1. 次の原始関数(不定積分)を求めなさい.

(a)

∫(6x3 + 10x2 + 5)dx (b)

∫(x1/2 + 5x−2/3)dx

Quiz 3-2. 次の定積分を求めなさい.

(a)

∫ a

−a(x2 + x5)dx (b)

∫ a

−ax2/3dx (c)

∫ a

1

1

xdx

Quiz 3-3. 関数

f(t) =

0 t < a

1

b− aa ≤ t ≤ b

0 b < t

の不定積分F (x) =

∫ x

−∞f(t)dt

を求めなさい.f のグラフを描き,xの値について場合分けすること:(1)x < a (2)a ≤ x ≤ b (3)b < x

16

Page 17: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

4 積分2 部分積分,置換積分項目 部分積分,置換積分

公式 部分積分∫ b

af ′(x)g(x)dx =

[f(x)g(x)

]ba−∫ b

af(x)g′(x)dx

置換積分∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(z)dz (z = g(x))

4.1 部分積分・置換積分

・部分積分,置換積分は積分計算において重要なツールである.積の微分の公式,合成関数の微分の公式の両辺の定積分を求めることにより得られる.(原始関数の形で表記することも可能)

部分積分 (↔積の微分)

∫ b

af ′(x)g(x)dx =

[f(x)g(x)

]ba−∫ b

af(x)g′(x)dx

置換積分 (↔合成関数の微分)

∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(z)dz (z = g(x))

4.2 部分積分

・部分積分↔積の微分積の微分 d

dx(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)の項を移項した関係式

f ′(x)g(x) =d

dx(f(x)g(x))− f(x)g′(x)

の両辺を区間 [a, b]上で積分する.微分と積分は逆演算なので右辺第 1項の積分(原始関数)はf(x)g(x)である.その結果,∫ b

af ′(x)g(x)dx =

[f(x)g(x)

]ba−∫ b

af(x)g′(x)dx

となる.これを部分積分という.積分区間の上端を xに変更して,不定積分の形で表すと∫ x

af ′(t)g(t)dt = f(x)g(x)− f(a)g(a)−

∫ x

af(t)g′(t)dt

となり,さらに原始関数で表せば∫f ′(x)g(x)dx = f(x)g(x)−

∫f(x)g′(x)dx

である.(右辺に現れるはずの項−f(a)g(a)は定数項なので,右辺第 2項の原始関数に含めた)

17

Page 18: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

(例)

·∫ b

alnx dx =

∫ b

a(x)′ lnx dx =

[x lnx

]ba−∫ b

ax1

xdx = b ln b− a ln a− b+ a

·∫ b

ax lnx dx =

∫ b

a

(x2

2

)′lnx dx =

[x2

2lnx

]ba

−∫ b

a

x2

2

1

xdx =

[x2

2lnx

]ba

−[x2

4

]ba

=b2

2ln b− a2

2ln a− b2

4+a2

4

·∫ b

aexx dx =

∫ b

a(ex)′x dx =

[exx]ba−∫ b

aex dx = beb − aea − eb + ea

·∫ b

a(1− x)e2x dx =

∫ b

a(1− x)

(e2x

2

)′dx =

[(1− x)e2x

2

]ba

−∫ b

a

(−e

2x

2

)dx

=

[(1− x)e2x

2

]ba

−[−e

2x

4

]ba

=(1− b)e2b

2− (1− a)e2a

2+e2b

4− e2a

4

・部分積分の活用方法積分内の被積分関数を様々な “形(パターン)”で見られるようになることが大切である.求める積分が f ′gの積分 ∫ b

af ′(x)g(x)dx

の形である場合に部分積分を用いる.積の 2項のどちらを f ′, gに取るか,という問題は,右辺に現れる fg′の積分∫ b

af(x)g′(x)dx

の計算が容易となるように f , gを決めればよい.たとえば,

I =

∫ 2

1x lnxdx

を計算するためには,その被積分関数の形から部分積分を用いるが,それを∫ 2

1x lnxdx =

∫ 2

1

(1

2x2)′

lnxdx (f(x) =1

2x2, g(x) = lnx)

と見るか, ∫ 2

1x lnxdx =

∫ 2

1x (x lnx− x)′ dx (f(x) = x lnx− x, g(x) = x)

と見るかによって,(結果はどちらも同じであるが)計算の容易さは異なる.前者の方法であれば計算が容易である.

I =

∫ 2

1

(1

2x2)′

lnxdx =

[1

2x2 lnx

]21

−∫ 2

1

1

2x2(lnx)′dx

= 2 ln 2−∫ 2

1

1

2x2

1

xdx (⇐ この積分であれば簡単)

= 2 ln 2−∫ 2

1

1

2xdx = 2 ln 2− 3

4

18

Page 19: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

4.3 置換積分

・置換積分↔合成関数の微分関数 f の原始関数を F とする.合成関数 F (g(x))の微分

d

dxF (g(x)) = F ′(g(x))g′(x)

の両辺を区間 [a, b]上で積分する.微分と積分は逆演算なので

F (g(b))− F (g(a)) =

∫ b

aF ′(g(x))g′(x)dx

となる.F は f の原始関数であることから∫ d

cf(z)dz = F (d)− F (c), F ′(z) = f(z)

である.c = g(a), d = g(b)として,これらを上式に代入すると∫ g(b)

g(a)f(z)dz =

∫ b

af(g(x))g′(x)dx

が得られる.左右を入れ替えた等式∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(z)dz (z = g(x))

を置換積分という(利用する際には左辺の形の積分を右辺に置き換えることが多い).z = g(x)とすると,g′(x) = dz

dxであるから

左辺 =

∫ b

af(g(x))g′(x)dx =

∫ b

af(z)

dz

dxdx =

∫ g(b)

g(a)f(z)dz =右辺

と理解できればよい.(3つめの等号は分数の約分と同じ)

原始関数の形でも置換積分は可能である.関数 f の原始関数が F であるとき,関数 f(g(x))g′(x)

の原始関数は,z = g(x)で置換すれば∫f(g(x))g′(x)dx =

∫f(z)dz = F (z) = F (g(x))

として得られる.

19

Page 20: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

(例)

·∫ b

aex

2x dx =

∫ b

aex

2 1

2(x2)′ dx =

∫ b2

a2ez

1

2dz =

1

2

(eb

2 − ea2), (0 < a < b)

·∫ b

ax(1− x)6 dx =

∫ b

a((1− x)− 1)(1− x)6(1− x)′ dx =

∫ 1−b

1−a(z − 1)z6 dz

=

∫ 1−b

1−a(z7 − z6) dz =

[z8

8− z7

7

]1−b

1−a

=(1− b)8

8− (1− b)7

7− (1− a)8

8+

(1− a)7

7

·∫ b

a

x

(3− x)2dx =

∫ b

a

(3− x)− 3

(3− x)2(3− x)′ dt =

∫ 3−b

3−a

z − 3

z2dz =

∫ 3−b

3−a

(1

z− 3

z2

)dz

=

[ln z +

3

z

]3−b

3−a

= ln(3− b) +3

3− b− ln(3− a)− 3

3− a

·∫ b

a

lnx+ 4

xdt =

∫ b

a(lnx+ 4)(lnx)′ dt =

∫ ln b

ln a(z + 4) dz =

[z2

2+ 4z

]ln b

ln a

=(ln b)2

2+ 4 ln b− (ln a)2

2− 4 ln a

・置換積分の活用方法被積分関数が f(g(x))g′(x)の形である積分∫ b

af(g(x))g′(x)dx

に置換積分を用いる.その際には

z = g(x), dz = g′(x)dx,x a → b

z g(a) → g(b)

として被積分関数および積分区間に代入すればよい.∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(z)dz

(例) ∫ b

af(α+ βx)dx =

∫ α+βb

α+βa

1

βf(z)dz (z = α+ βx, dz = βdx)∫ b

af(x2)xdx =

∫ b2

a2

1

2f(z)dz (z = x2, dz = 2xdx)∫ b

a

f(lnx)

xdx =

∫ ln b

ln af(z)dz

(z = lnx, dz =

dx

x

)

20

Page 21: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

4.4 部分積分と置換積分

・部分積分と置換積分のどちらを用いればよいか,を判断するには,部分積分でも述べたとおり,積分内の被積分関数を様々な “形(パターン)”で見られるようになることが大切である.

部分積分 (↔積の微分)

∫ b

af ′(x)g(x)dx =

[f(x)g(x)

]ba−∫ b

af(x)g′(x)dx

置換積分 (↔合成関数の微分)

∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(z)dz (z = g(x))

左辺の被積分関数の形を見て,'

&

$

%

∫ b

af ′(x)g(x)dx ⇒ 部分積分

∫ b

af(g(x))g′(x)dx ⇒ 置換積分

と考えてみることが手がかりとなる.

(例) ∫ b

ae−x2

x2dx 部分積分∫ b

ae−x2

x2dx =

∫ b

a

(e−x2

)′ −x2dx = −1

2

[e−x2

x]ba+

1

2

∫ b

ae−x2

dx∫ b

ae−x2

xdx 置換積分 (z = −x2, dz = −2xdx)∫ b

ae−x2

xdx =

∫ −b2

−a2ez(−1

2

)dz = −1

2[ez]−b2

−a2 =e−a2 − e−b2

2

・上記例内に現れる積分∫ b

ae−x2

dxはこれ以上の計算を進めることはできないが,

置換積分により,標準正規分布の分布関数

N(z) =

∫ z

−∞

1√2πe−t2/2dt

を用いて表すことができる.(分布関数については後述の確率変数を参照すること)z =

√2xで置換すれば (dz =

√2dx)∫ b

ae−x2

dx =

∫ √2b

√2a

e−z2/2 dz√2=

∫ √2b

−∞e−z2/2 dz√

2−∫ √

2a

−∞e−z2/2 dz√

2=

√πN(

√2b)−

√πN(

√2a)

と変形できる.N(z)の値を正確に計算することはできないが,非常に精度のよい近似値をスプレッドシートや統計関連の表で容易に得ることができる.

21

Page 22: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

練習問題

Ex 4-1. 次の定積分を求めなさい.

(a)

∫ a

−axexdx (b)

∫ a

−ax2exdx

Ex 4-2. 次の原始関数(不定積分)を求めなさい.

(a)

∫ea+bxdx (b = 0) (b)

∫axdx (a > 0)

Ex 4-3. lnxと x軸に囲まれた部分の面積を考えることにより次の不等式を示しなさい.

ln 1 + ln 2 + ln 3 + · · ·+ lnn <

∫ n+1

1lnxdx

演習問題

Problem 4-1. 次の定積分を求めなさい.

(a)

∫ a

−axe−x2

dx (b)

∫ a

0e−kxdx (k > 0) (c)

∫ ∞

0e−kxdx (k > 0)

Problem 4-2. 次の原始関数(不定積分)を求めなさい.

(a)

∫x−0.3dx (b)

∫f ′(x)

f(x)dx (f(x) > 0) (c)

∫lnxdx

Problem 4-3. 置換積分を用いて次の等式を確認しなさい.∫ b

a

1√2πσ

exp

(−(x− µ)2

2σ2

)dx =

∫ b−µσ

a−µσ

1√2π

exp

(−z

2

2

)dz

ただし σ > 0とする.

22

Page 23: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

復習問題

Quiz 4-1. 次の定積分を求めなさい. ∫ a

1lnxdx

Quiz 4-2. (置換積分) 次の原始関数(不定積分)を求めなさい.

(a)

∫(x3 + 5x)10(3x2 + 5)dx

(b)

∫2(ex + 3x2)(ex + 6x)dx

(c)

∫2x

(x2 + 2)10dx

Quiz 4-3. (部分積分) 次の原始関数(不定積分)を求めなさい.

(a)

∫x3exdx

(b)

∫x3√1 + x2

dx

(c)

∫x lnx dx

Quiz 4-4. 次の積分を求めなさい.

(a)

∫(x2 + 5)10xdx

(b)

∫ 2

0(x2 + 5)10xdx

(c)

∫ 0

−2(x2 + 5)10xdx

(d)

∫ 2

−2(x2 + 5)10xdx

23

Page 24: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

5 確率 基本事象,事象,確率,条件付き確率項目 基本事象,事象,可算加法族,確率記号 確率 P (A)

記号 条件付き確率 P (A | B) =P (A ∩B)

P (B)

5.1 基本事象と事象

・標本空間,事象,基本事象将来の不確実性を,起こり得る試行結果(シナリオ)の全体として表現する.試行 : 偶然現象を人為的に引き起こしたり,実験すること

名前 記号 意味 1回サイコロを振る場合基本事象 ω ∈ Ω ひとつの起こり得る試行結果 ωi = iの目がでる試行結果標本空間 Ω 試行結果の全体(シナリオの全体) Ω = ω1, ω2, . . . , ω6事象 A ⊆ Ω ある性質を持つ試行結果の全体 A = 偶数 = ω2, ω4, ω6

(ベン図)Ω

A'&

$%

rω1 r

ω2

基本事象は標本空間の要素であることに対して,事象は標本空間の部分集合であることに注意.基本事象 ωと 1つの要素から成る事象 ωは異なる概念である.

試行の例 :サイコロを 1回振る試行

基本事象 ωi = iの目が出る結果標本空間 Ω = ω1, ω2, . . . , ω6 = 1, 2, 3, 4, 5, 6 ( ωiと iを同一視)

奇数の目が出る事象 A = 1, 3, 53以下の目が出る事象 B = 1, 2, 3

空事象 ϕ 起こり得ない事象, Ωc = ϕ, ϕc = Ω

事象は標本空間の部分集合なので,事象の演算は集合の演算と同じ.

和事象 A ∪B = ω ∈ Ω | ω ∈ A or ω ∈ B 余事象 Ac = ω ∈ Ω | ω /∈ A積事象 A ∩B = ω ∈ Ω | ω ∈ A and ω ∈ B AとBは排反 A ∩B = ϕ

ド・モルガンの法則(A ∩B)c = Ac ∪Bc, (A ∪B)c = Ac ∩Bc

24

Page 25: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

5.2 事象の集まりF

・事象の集まり F = A | A ⊆ Ωが次の性質を満たすとき,F は可算加法族という.

1) ϕ ∈ F 2) A ∈ F ⇒ Ac ∈ F 3) Ai ∈ F (i = 1, 2, · · · ) ⇒∪i

Ai ∈ F

いずれの条件も,次の確率を矛盾なく定義することに由来する.条件 2)は,事象Aの確率 P (A)を計算できるのであれば,余事象Acの確率 P (Ac)も計算できることを意味する.同様に,条件 3)は,個々の事象Aiの確率 P (Ai)を計算できるのであれば,和事象

∪iAiの確率 P (

∪iAi)も計算できることを意味する.

可算加法族の例

Ω1 = 0, 1, F1 = ϕ,Ω1, 0, 1

Ω2 = 1, 2, 3, 4, 5, 6, F2 = ϕ,Ω2, 1, 2, 3, 4, 5, 6,

F3 = ϕ,Ω2, 1, 3, 5, 2, 4, 6,

F4 = ϕ,Ω2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 5, 6, 3, 4, 5, 6

可算加法族ではない例

Ω2 = 1, 2, 3, 4, 5, 6, F5 = ϕ,Ω2, 1, 2, 3, 4, 1, 2, 3, 4,

F6 = ϕ,Ω2, 1, 2, 3, 4, 5, 6, 2, 3, 1, 4, 5, 6

5.3 確率 P

・確率 P についてP (A) =事象A(∈ F)が生起する確率

と呼ぶには,確率 P が事象の集合 F 上の関数であることが必要である.また,確率が矛盾なく定義できるには,次のことを要件とする.

公理的確率 確率 P は事象の生起の可能性の度合いを表す数字を矛盾なく与える,次のような集合 F 上の関数である.

1) P : F → [0, 1] 2) P (Ω) = 1

3) Ai ∩Aj = ϕ (i = j) ⇒ P

(∪i

Ai

)=∑i

P (Ai)

1),2)から,確率は 0以上 1以下の値で表され,全体の確率は 1となる.3)は,同時に起こることがない排反事象の和事象の確率はぞれぞれの事象の確率の和になる,という自然な条件である.3)の条件から,確率 P (A)は事象Aの「面積」と考えればよい(標本空間の「面積」は 1).

25

Page 26: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

Ω

A'&

$%r

ω

P

-r r0 1rP (A)

・サイコロのゆがみ具合によって特定の目がでる可能性が異なる状況は,違う確率によって表すことができる.

ゆがんでいないサイコロを振った結果事象A 1 2 3 4 5 6

確率 P1(A) 1/6 1/6 1/6 1/6 1/6 1/6

ゆがんでいるサイコロを振った結果事象A 1 2 3 4 5 6

確率 P2(A) 1/12 1/12 1/12 1/4 1/4 1/4

5.4 確率空間 (Ω,F , P )

・事象と確率の構造 F , P を導入した集合 Ωを確率空間 (Ω,F , P )という.

5.5 条件付き確率

・ 2つの事象 A,Bに対して,次の定義・公式があるが,加法定理と条件付き確率は「確率=面積」で考えると理解しやすい.

Ω

B

'&

$%

A Ac

加法定理 P (A ∪B) = P (A) + P (B)− P (A ∩B)

条件付き確率 P (A | B) =P (A ∩B)

P (B)

乗法定理 P (A ∩B) = P (B)P (A | B)

事象A,Bが独立 P (A ∩B) = P (A)P (B)

・事象の独立性2つの事象A,Bが独立とは,条件付き確率と条件なしの確率が等しいこと.

P (A | B) = P (A)

このときP (B | A) = P (B), P (A ∩B) = P (A)P (B)

が成立する.

26

Page 27: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

練習問題

Ex 5-1. (a) サイコロを 2回ふる場合の基本事象,標本空間,その和が偶数となる事象を記述しなさい.2個のサイコロを同時にふる場合はどうか.(b) サイコロを 1回ふった結果が偶数である条件の下で,6の目である確率を求めなさい.

Ex 5-2. P (Ac) = 1− P (A)を示しなさい.

演習問題

Problem 5-1. 事象A,Bについて

P (A ∪B) = 0.6, P (A ∩B) = 0.1, P (Ac ∩B) = 0.3

が成り立つ時,確率 P (A), P (B)の値を求めなさい.

Problem 5-2. 1枚のコインを投げて,表が出る結果を H (head),裏が出る結果を T (tail)と表し,3回コインを投げる結果(基本事象)ωを次のように表す.

ω = (x1, x2, x3) : xi = i回目の結果 (H or T), (i = 1, 2, 3)

例えば,1回目のみ表が出て,2,3回目に裏が出る基本事象 ωは (H,T,T)と表すことができる.

(a) 3回コインを投げる場合の基本事象をすべて列挙しなさい.

(b) 1回目に表が出る事象を A,3回のうち 2回だけ表が出る事象を Bとするとき,事象Aは

A = (H,H,H), (H,H,T), (H,T,H), (H,T,T)

のように表せる.同様に,事象B, A ∩B, A ∪Bをそれぞれ表しなさい.

Problem 5-3. 標本空間が Ω = ω1, ω2, ω3のとき,次の事象の集まりは可算加法族かどうか答えなさい.

(a) F1 = ϕ,Ω, ω1, ω2, ω3, ω1, ω2

(b) F2 = ϕ,Ω, ω3, ω1, ω2

(c) F3 = ϕ,Ω

27

Page 28: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

復習問題

Quiz 5-1. 以下の問に答えなさい.

(a) (加法定理) P (A) = 0.6, P (B) = 0.5, P (A∩B) = 0.3のとき,確率P (A∪B)

はいくらか.

(b) (条件付き確率)  P (B) = 0.6, P (A ∩B) = 0.3のとき,確率 P (A | B)はいくらか.

(c) (乗法定理) P (A | B) = 0.8, P (B) = 0.5のとき,確率 P (A ∩B)はいくらか.

(d) (独立) 事象AとBが独立で,P (A) = 0.5, P (A∩B) = 0.4のとき,確率 P (B)

はいくらか.

Quiz 5-2. 52枚のトランプから1枚引き抜くとき,事象A1 = 引き抜いたカード1枚はハートである,A2 = 引き抜いたカード1枚はキングである とすると,次の確率はいくらになるか.

(a) P (A1) (b) P (A2) (c) P (A1 ∩A2) (c) P (A1 ∪A2)

Quiz 5-3. 標本空間Ωの部分集合である事象A1とA2について,以下の式が成り立つことを公理的確率の定義から示しなさい.

(a) A1 ⊆ A2 ⇒ P (A1) ≤ P (A2)

(b) P (A1 ∩A2) ≤ P (A1) ≤ P (A1 ∪A2) ≤ P (A1) + P (A2)

Quiz 5-4. (ベイズの公式) 袋の中に大きさ(大・小)と色(赤・白)が異なる玉が全部で 10個入っている.このうち,赤い玉が 6個と白い玉が 4個で,赤くて大きい玉は 3個,白くて大きい玉は 2個である.いま袋に手を入れたところ大きい玉であった.この玉が赤い確率はいくらになるか.

28

Page 29: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

6 確率変数1 確率変数,分布関数,期待値

項目 確率変数,分布関数,期待値,平均,分散

記号 分布関数と密度関数 FX(x) =

∫ x

−∞fX(t)dt 期待値 E[h(X)] =

∫ ∞

−∞h(x)fX(x)dx

公式 E [aX + bY ] = aE [X] + bE [Y ] , V ar[aX + bY ] = a2V ar[X] + 2abCov[X,Y ] + b2V ar[Y ]

V ar[X] = E[X2]− (E[X])2 Cov[X,Y ] = E[XY ]− E[X]E[Y ]

6.1 確率変数

・実際に起こった試行結果 ωに関する情報は,確率変数の実現値を観測することによって得られる.確率変数X とは,シナリオ毎に何らかの情報(数値)を与える関数 X : Ω → R で,その実現値X(ω)の範囲を知ることによって,実際に起こっている事象 ω ∈ Ω | X(ω) ≤ xの確率を計算できるように

ω ∈ Ω | X(ω) ≤ x ∈ F , ∀x ∈ R

となっているものである.(名前に変数とあるが,実態は関数である)

・確率変数 X の実現値が可算個 x1, x2, · · · , xn, · · · であるような確率変数を離散確率変数といい,それ以外の場合(例えば,実現値が区間 [a, b]内のどの値もありうる場合)の確率変数を連続確率変数という.

・確率変数X に対して,実現値が x以下となる事象の確率

FX(x) = PX ≤ x = Pω ∈ Ω | X(ω) ≤ x

を xの関数と見て,確率変数X の分布関数という.分布関数から確率変数X の実現値とその確率のペアである確率分布を知ることができる.事象と面積の単調性から,分布関数は単調非減少で,FX(−∞) = 0, FX(+∞) = 1である.

Ω

X ≤ x'&

$%r

ω

P

-r r0 1rPX ≤ x

X

R -@ RrX(ω)

rx

・ 2つの確率変数X,Y の分布関数が等しいときに,X ∼ Y と書く.Y の分布が既知(正規分布などよく知られた分布)のときは,X は分布 Y に従う,という.

29

Page 30: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

6.2 離散確率変数と確率関数

離散確率変数X の実現値が特定の値 xを取る確率を確率関数という.

pX(x) = PX = x

分布関数の定義から,分布関数は確率関数を用いて

FX(x) = PX ≤ x =∑y≤x

pX(y)

と表すことができる.逆に,確率関数は分布関数の増分を意味する.

pX(x) = FX(x)− FX(x−), FX(x−) = limy→x, y<x

FX(y)

6.3 連続確率変数と密度関数

・連続確率変数X の分布関数が微分可能であれば

fX(x) =d

dxFX(x)

を密度関数という.

FX(x) =

∫ x

−∞fX(t)dt から,密度関数と x軸のある範囲に囲まれた領

域の面積が,確率変数がその範囲の値を取る確率になる.

FX(x+∆x)− FX(x) = Px < X ≤ x+∆x ≈ fX(x)∆x

分布関数と密度関数は,一方がわかれば他方もわかり,分布に関する同じ情報を持っている.

分布関数

確率関数密度関数

離散確率変数

2 4 6

x

0.2

0.4

0.6

0.8

1.0

F

差 ↓  和 ↑

2 4 6

x

0.1

0.2

0.3

0.4

p

確率関数

連続確率変数

-3 -2 -1 1 2 3

x

0.2

0.4

0.6

0.8

1.0

F

微分 ↓  積分 ↑

-3 -2 -1 1 2 3

x

0.1

0.2

0.3

0.4

f

密度関数

30

Page 31: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

6.4 期待値,平均,分散

・期待値=∑

(実現値)×(確率)

確率関数 pX を持つ離散確率変数X と,関数 hについて,

E[h(X)] =

∑x

h(x)pX(x)

は,確率変数 h(X)の実現値 h(x)を確率 pX(x)のウエイトで加重平均したものであり,これを確率変数 h(X)の期待値という.確率変数X が連続確率変数の場合には,その密度関数 fX を用いて

E[h(X)] =

∫ ∞

−∞h(x)fX(x)dx

を確率変数 h(X)の期待値という.特定の関数形の hの期待値には別の名前が与えられている.

平均 E[X] =

∫ ∞

−∞xfX(x)dx 分散 V ar[X] = E[(X − E(X))2]

n次モーメント E[Xn] 共分散 Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])]

相関係数 ρ(X,Y ) =Cov[X,Y ]√

V ar[X]√V ar[Y ]

・平均は線形であるが,分散は線形ではない

E[aX + bY ] = aE[X] + bE[Y ]

V ar[aX + bY ] = a2V ar[X] + 2abCov[X,Y ] + b2V ar[Y ]

分散の展開はベクトルの関係式 |ax+ by|2 = a2|x|2 + 2abx · y + b2|y|2 に対応する.

・分散の計算は定義V ar[X] = E[(X − E(X))2]

を展開した

V ar[X] = E[(X − E(X))2] = E[X2 − 2E[X]X + (E[X])2] = E[X2]− 2E[X]E[X] + (E[X])2

= E[X2]− (E[X])2

の形で計算するほうが便利なことが多い.共分散も同様に

Cov[X,Y ] = E[(X − E(X))(Y − E[Y ])] = E[XY − E[X]Y − E[Y ]X + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]

V ar[X] = E[X2]− (E[X])2 Cov[X,Y ] = E[XY ]− E[X]E[Y ]

31

Page 32: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

練習問題

Ex 6-1. 次のようにゆがみのあるサイコロを 1回ふった結果の目を表す確率変数をX とする.X の分布関数 FX(x) = PX ≤ xのグラフを描きなさい.

X(ω) 1 2 3 4 5 6

PX = i 0.1 0.1 0.1 0.2 0.2 0.3

演習問題

Problem 6-1. 確率変数Xの分布関数FXの値についてFX(0) = 0.5, FX(1) = 0.7, FX(2) = 1

とわかっているとき,次の確率を求めなさい.

(a) P0 < X ≤ 1 (b) P1 < X ≤ 2 (c) P0 < X ≤ 2 (d) P2 < X

復習問題

Quiz 6-1. (連続確率変数の分布関数) 確率変数Xの分布関数が FX(x) =∫ x0

110e

−t/10dtであるとき,FX(10)はいくらになるか.

Quiz 6-2. (期待値) 確率変数Xは,実現値が−2 < x < 4の範囲で密度関数は f(x) = (x+2)/18

である.次の期待値を求めなさい.(a) E(X) (b) E[(X + 2)3] (c) E[6X − 2(X + 2)3]

Quiz 6-3. 以下の等式が成立することを示せ.

(a) E(2X) = 2E(X) (b) V ar(2X) = 4V ar(X)

(c) Cov(2X,Y ) = 2Cov(X,Y ) (d) ρ(2X,Y ) = ρ(X,Y )

32

Page 33: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

7 確率変数2 積率母関数,確率変数の独立性項目 積率母関数,独立な確率変数

記号 積率母関数 mX(t) = E[etX]

公式 独立な確率変数 mX+Y (t) = mX(t)mY (t)

7.1 独立な確率変数

・ 2つの確率変数X,Y について下記の条件が成立するとき,確率変数Xと Y は独立であるという.任意の実数 x, yに対して,2つの事象 X ≤ xと Y ≤ yが独立である.すなわち,

PX ≤ x, Y ≤ y = PX ≤ xPY ≤ y, ∀x, y ∈ R

(同時確率 PX ≤ x, Y ≤ yがそれぞれの事象の確率の積 PX ≤ xPY ≤ yに等しい)

・ 2つの確率変数X,Y が独立であるとき,X,Y を含む期待値の計算はそれぞれ個別に行えばよい.和の期待値は,期待値の線形性から,常に(独立であっても独立でなくても)期待値の和である.

E[f(X) + g(Y )] = E[f(X)] + E[g(Y )]

積の期待値は,独立でない場合には,相互に影響しあうので,期待値の積と等しくはないが,

E[f(X)g(Y )] = E[f(X)]E[g(Y )] (X と Y が独立ではないとき)

独立であれば,X,Y を含む期待値の計算はそれぞれ個別に行えばよいので,期待値の積と等しくなる.つまり,2つの確率変数X,Y が独立であるとき,すべての関数 f, gについて

E[f(X)g(Y )] = E[f(X)]E[g(Y )] (X と Y が独立であるとき)

が成立する.(逆も正しい)したがって,X,Y が独立であるとき,共分散は

Cov[X,Y ] = E[XY ]− E[X]E[Y ] = 0 である.よって

V ar[X + Y ] = V ar[X] + 2Cov[X,Y ] + V ar[Y ]

= V ar[X] + V ar[Y ] (X と Y が独立のとき)

33

Page 34: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

7.2 積率母関数

・積率:モーメント E[Xn]

・積率母関数確率変数X に対して,tを変数とする関数を期待値によって定義する.

mX(t) = E

[etX]

mX を確率変数Xの積率母関数 (moment generating function)と呼ぶ.名前が示唆する,積率母関数がモーメントを生み出す関数であることは,テーラー展開を用いて次のように確認できる.

tを定数とみなして,xの関数 etxを x = 0の周りでテーラー展開する.

etx =

∞∑k=0

(etx)(k) |x=0

k!(x− 0)k =

∞∑k=0

tk

k!xk =

∞∑k=0

xk

k!tk

両辺の xに確率変数X を代入して期待値を取る.

E[etX]

= E

[ ∞∑k=0

Xk

k!tk

]=

∞∑k=0

E[Xk]

k!tk

すなわち#

"

!mX(t) =

∞∑k=0

E[Xk]

k!tk = 1 + E[X]t+

E[X2]

2!t2 +

E[X3]

3!t3 + · · ·+ E [Xn]

n!tn + · · ·

が得られた.積率母関数の展開式である右辺の tnの係数にXの n次モーメントE[Xn]が現れている.一方で,上式は積率母関数mX の t = 0の周りでのテーラー展開でもある.したがって,テーラー展開の係数と微分の関係から,E[Xn]はm

(n)X (0)と等しい.

m

(n)X (0) = E[Xn]

このことは,積率母関数の定義式を tで微分しても得られる.

mX(t) = E[etX]

⇒ m′X(t) = E

[XetX

]⇒ m′

X(0) = E [X]

⇒ m(2)X (t) = E

[X2etX

]⇒ m

(2)X (0) = E

[X2]

⇒ m(3)X (t) = E

[X3etX

]⇒ m

(3)X (0) = E

[X3]

34

Page 35: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

したがって,積率母関数を得ることができれば,そこから平均,分散も計算できる.

E[X] = m′

X(0), V ar[X] = E[X2]− (E[X])2 = m(2)X (0)− (m′

X(0))2

7.3 分布と積率母関数

・分布確率変数X の分布は,その分布関数 FX で特徴づけられるが,実は,モーメントの集合

E[X], E[X2], E[X3], . . . , E[Xn], . . .

によっても分布は特徴づけられる.したがって,これらモーメントを生み出す積率母関数mX は分布関数 FX と同じ情報を持っている.2つの確率変数X,Y が同じ分布関数を持つとき,X ∼ Y と表記したが,それは,Xと Y のそれぞれの積率母関数が等しい,ということでもある.

X ∼ Y ⇔ FX(x) = FY (x), ∀x ∈ R ⇔ mX(t) = mY (t), ∀t ∈ R

・独立な確率変数2つの確率変数X,Y から,別の確率変数X + Y を考えよう.その積率母関数は定義より

mX+Y (t) = E[et(X+Y )

]= E

[etXetY

]である.最右辺の積の期待値が,期待値の積に変形できるかどうかは,X,Y が独立かどうかに依存する.X,Y が独立であれば

mX+Y (t) = E[etXetY

]= E

[etX]E[etY]= mX(t)mY (t)

である.また,逆も真である.したがって,X,Y が独立かどうかは,mX+Y とmXmY が等しいかどうかで定まる.'

&

$

%

X と Y は独立 ⇔ E[f(X)g(Y )] = E[f(X)]E[g(Y )], ∀f, g

⇔ mX+Y (t) = mX(t)mY (t), ∀t ∈ R

35

Page 36: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

練習問題

Ex 7-1. 2つの確率変数X,Y は独立であれば Cov[X,Y ] = 0 を示しなさい.

Ex 7-2. 2つの独立な確率変数X,Y を用いて,新たに 2つの確率変数を

U = aX + bY, V = cX + dY (a, b, c, dは定数)

とするとき,E[U ], V ar[U ], Cov[U, V ] を E[X], E[Y ], V ar[X], V ar[Y ] を用いて表しなさい.

演習問題

Problem 7-1. a, bを定数としたとき,maX+b(t) = ebtmX(at)を示せ.

Problem 7-2. mX(t) =1

1− t2のとき,E(X)と V ar(X)を求めよ.

Problem 7-3. cX(t) = ln (mX(t))で定義される関数をキュムラント母関数という. c′X(0) = E(X),

c(2)X (0) = V ar(X)となることを示せ.

復習問題

Quiz 7-1. X と Y が独立のとき,以下の等式が成立することを示せ.

V ar[X + Y ] = V ar[X] + V ar[Y ]

36

Page 37: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

8 分布1 ベルヌーイ分布,二項分布記号 Be(p), B(n, p)

各種分布の平均,分散,積率母関数の計算を行う.

8.1 ベルヌーイ分布 X ∼ Be(p)

成功 (x = 1)か失敗 (x = 0)かの結果を表す分布.pは成功する確率.

実現値 X = 0, 1

確率関数 pX(x) =

p x = 1

1− p x = 0

平均 E[X] =

1∑x=0

xpX(x) = 0× (1− p) + 1× p = p

分散 V ar[X] = E[X2]− (E[X])2 = E[X]− (E[X])2 = p− p2 = p(1− p)

積率母関数 mX(t) = E[etX]= e0 × (1− p) + et × p = pet + 1− p

積率母関数からモーメント,平均,分散の計算d

dtmX(t) =

d2

dt2mX(t) =

E[X] =d

dtmX(0) =

E[X2] =d2

dt2mX(0) =

V ar[X] = E[X2]− (E[X])2 =

8.2 二項分布 X ∼ B(n, p)

独立なベルヌーイ試行(成功確率 p)を n回繰り返し行った結果の成功の回数を表す分布

実現値 X = 0, 1, . . . , n

確率関数 pX(x) = nCxpx(1− p)n−x

平均 E[X] =n∑

x=0

xpX(x) =n∑

x=0

x nCxpx(1− p)n−x = np

分散 V ar[X] = E[X2]− (E[X])2 = np(1− p)

37

Page 38: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

確率関数の和が 1であることは,復習問題 Quiz 8-1で確認されたい.積率母関数

mX(t) = E[etX]=

n∑x=0

etxnCxpx(1− p)n−x

=n∑

x=0

nCx

(etp)x

(1− p)n−x

=(etp+ 1− p

)n二項分布X は独立なベルヌーイ分布 Yi (i = 1, 2, . . . , n)の和であるから

X = Y1 + Y2 + · · ·+ Yn

と表される.Yiの積率母関数はmYi(t) = etp+ 1− pであり,これらは独立なので

mX(t) = m∑ni=1 Yi

(t) =

n∏i=1

mYi(t) =(etp+ 1− p

)nとしてもmX を導出できる.

積率母関数からモーメント,平均,分散の計算

d

dtmX(t) =

d2

dt2mX(t) =

E[X] =d

dtmX(0) =

E[X2] =d2

dt2mX(0) =

V ar[X] = E[X2]− (E[X])2 =

38

Page 39: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

練習問題

Ex 8-1. X ∼ B(n, p)であるとする.X の分散が最大になるときの pの値を求めよ.

演習問題

Problem 8-1. X ∼ B(n1, p), Y ∼ B(n2, p)であり,X と Y は独立であるとする.このとき,X + Y ∼ B(n1 + n2, p)であることを示せ.

Problem 8-2. Xi (i = 1, 2, . . . , n)は互いに独立であり,Xi ∼ Be(p)であるとする.このとき,

標本平均 X =

∑ni=1Xi

nについて次を求めよ.

(a) E[X] (b) V ar[X] (c) mX(t)

Problem 8-3. X ∼ B(n, p)のとき,n−X の分布を求めよ.

復習問題

Quiz 8-1. 二項定理

(a+ b)n =n∑

x=0

nCxaxbn−x

を用いて,二項分布X ∼ B(n, p)の確率関数 pX(x)が確かに∑n

x=0 pX(x) = 1を満たしていることを確認せよ.

Quiz 8-2. 二項分布X ∼ B(n, p)において,その平均は以下のように計算できる.

E[X] =n∑

x=0

xnCxpx(1− p)n−x =

n∑x=0

xn!

x!(n− x)!px(1− p)n−x

=

n∑x=1

xn!

x!(n− x)!px(1− p)n−x =

n∑x=1

n!

(x− 1)!(n− x)!px(1− p)n−x

= npn∑

x=1

(n− 1)!

(x− 1)!((n− 1)− (x− 1))!px−1(1− p)(n−1)−(x−1)

= npn−1∑x=0

(n− 1)!

x!((n− 1)− x)!px(1− p)(n−1)−x

= npn−1∑x=0

n−1Cxpx(1− p)(n−1)−x = np(p+ (1− p))n−1 = np.

これにならいE[X(X − 1)]を計算し,

V ar[X] = E[X2]− E[X]2 = E[X(X − 1)] + E[X]− E[X]2

と考えることによって分散を求めよ.

39

Page 40: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

9 分布2 一様分布,正規分布記号 U(a, b), N(µ, σ2)

公式 X ∼ N(µ, σ2) ⇔ X − µ

σ∼ N(0, 1)

9.1 一様分布 U ∼ U(a, b)

実数 Rのうち区間 [a, b]上のみに均等に実現値が起こる事象の分布

密度関数 fU (x) =

1

b− aa ≤ x ≤ b

0 x < a, b < x

分布関数 FU (x) =

∫ x

−∞fU (t)dt

=

p

x < aの場合∫ x

−∞0dt = 0

a ≤ x ≤ bの場合∫ x

a

1

b− adt =

x− a

b− a

b < xの場合 FU (b) +

∫ x

b0dt = 1

=

0, x < a

x− a

b− a, a ≤ x ≤ b

1, b < x

平均 E[U ] =

∫ ∞

−∞xfU (x)dx =

∫ b

a

x

b− adx =

[x2

2(b− a)

]ba

=a+ b

2

分散 V ar[U ] =

∫ ∞

−∞(x− E[U ])2fU (x)dx =

∫ b

a

(x− E[U ])2

b− adx

=

[(x− E[U ])3

3(b− a)

]ba

=1

3(b− a)

[(b− a

2

)3

−(−b− a

2

)3]=

(b− a)2

12

積率母関数 mU (t) = E[etU]=

∫ b

a

etx

b− adx

=

[etx

t(b− a)

]ba

=etb − eta

t(b− a), t = 0

∫ b

a

1

b− adx = 1, t = 0

40

Page 41: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

積率母関数からモーメントの計算をするには,ロピタルの定理

limx→α

f(x) = limx→α

g(x) = 0, limx→α

g′(x)

f ′(x)は収束する ⇒ lim

x→α

g(x)

f(x)= lim

x→α

g′(x)

f ′(x)

を用いる.計算は長いが簡単なので,平均,分散をモーメントから確かめてほしい.(ヒント)t = 0のとき

m′U (t) =

1

b− a

(betb − aeta)t− (etb − eta)

t2=

1

b− a

[betb − aeta

t− etb − eta

t2

]m′

U (0) = limt→0

1

b− a

[betb − aeta

t− etb − eta

t2

]

=1

b− alimt→0

d

dt

(betb − aeta)

)d

dtt

d2

dt2(etb − eta

)d2

dt2t2

 (ロピタルの定理を,最初の項には 1回,第 2項には 2回適用する(分母の微分の結果が定数!))

=1

b− alimt→0

[b2etb − a2eta

1− b2etb − a2eta

2

]=

1

b− a

b2 − a2

2

=a+ b

2

m(2)U (t) =

1

b− a

[b2etb − a2eta

t− 2

betb − aeta

t2+ 2

etb − eta

t3

]m

(2)U (0) = lim

t→0

1

b− a

[b2etb − a2eta

t− 2

betb − aeta

t2+ 2

etb − eta

t3

]

=1

b− alimt→0

d

dt

(b2etb − a2eta)

)d

dtt

− 2

d2

dt2(betb − aeta

)d2

dt2t2

+ 2

d3

dt3(etb − eta

)d3

dt3t3

 (ロピタルの定理を,分母が tnの項に n回適用する(分母の微分の結果が定数!))

=1

b− alimt→0

[b3etb − a3eta

1− 2

b3etb − a3eta

2+ 2

b3etb − a3eta

6

] 

=1

b− a

b3 − a3

3

=a2 + ab+ b2

3

41

Page 42: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

9.2 標準正規分布 Z ∼ N(0, 1)

平均 0,分散 1の正規分布

密度関数 fZ(x) = ϕ(x) =1√2π

exp

(−x

2

2

), x ∈ R

分布関数 FZ(x) = N(x) =

∫ x

−∞fZ(t)dt

平均 E[Z] =

∫ ∞

−∞xfZ(x)dx = 0 (密度関数が偶関数)

分散 V ar[Z] =

∫ ∞

−∞x2fZ(x)dx =

1√2π

∫ ∞

−∞x

(− exp

(−x

2

2

))′dx (部分積分)

=1√2π

[−x exp

(−x

2

2

)]∞−∞

+

∫ ∞

−∞

1√2π

exp

(−x

2

2

)dx

= 1

積率母関数 mZ(t) = E[etZ]=

∫ ∞

−∞etxfZ(x)dx =

1√2π

∫ ∞

−∞exp

(tx− x2

2

)dx

=1√2π

∫ ∞

−∞exp

(−(x− t)2

2+t2

2

)dx

= exp

(1

2t2)∫ ∞

−∞

1√2π

exp

(−(x− t)2

2

)dx

= exp

(1

2t2)

積率母関数からモーメント,平均,分散の計算

d

dtmZ(t) =

d2

dt2mZ(t) =

E[Z] =d

dtmZ(0) =

E[Z2] =d2

dt2mZ(0) =

V ar[Z] = E[Z2]− (E[Z])2 =

42

Page 43: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

9.3 正規分布 X ∼ N(µ, σ2)

平均 µ,分散 σ2の正規分布

密度関数 fµ,σ2(x) =1√2πσ

exp

(−(x− µ)2

2σ2

)=

1

σϕ

(x− µ

σ

), x ∈ R

分布関数 Fµ,σ2(x) =

∫ x

−∞

1

σϕ

(t− µ

σ

)dt

=

∫ (x−µ)/σ

−∞ϕ(u)du

(u =

t− µ

σで置換

)= N

(x− µ

σ

)平均 E[X] =

∫ ∞

−∞xfµ,σ2(x)dx =

∫ ∞

−∞x1

σϕ

(x− µ

σ

)dx

=

∫ ∞

−∞(µ+ σu)ϕ(u)du

(u =

x− µ

σで置換

)= µ

∫ ∞

−∞ϕ(u)du+ σ

∫ ∞

−∞uϕ(u)du = µ+ σE[Z] = µ

分散 V ar[X] =

∫ ∞

−∞(x− µ)2fµ,σ2(x)dx =

1√2πσ

∫ ∞

−∞(x− µ)σ2

(− exp

(−(x− µ)2

2σ2

))′dx

=1√2πσ

[−(x− µ)σ2 exp

(−(x− µ)2

2σ2

)]∞−∞

+ σ2∫ ∞

−∞

1√2πσ

exp

(−(x− µ)2

2σ2

)dx

= σ2

積率母関数 mX(t) = E[etX]=

∫ ∞

−∞etxfµ,σ2(x)dx =

∫ ∞

−∞

1√2πσ

exp

(tx− (x− µ)2

2σ2

)dx

=

∫ ∞

−∞

1√2πσ

exp

(−(x− µ− tσ2)2

2σ2+ µt+

t2σ2

2

)dx

= exp

(µt+

t2σ2

2

)∫ ∞

−∞

1√2πσ

exp

(−(x− (µ+ tσ2)

)22σ2

)dx

= exp

(µt+

σ2

2t2)

積率母関数からモーメント,平均,分散の計算

d

dtmX(t) =

d2

dt2mX(t) =

43

Page 44: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

E[X] =d

dtmX(0) =

E[X2] =d2

dt2mX(0) =

V ar[X] = E[X2]− (E[X])2 =

9.4 正規分布の線形変換・標準化

・正規分布X ∼ N(µ, σ2)を線形変換した確率変数 a+ bX の分布関数は

P (a+ bX ≤ x) = P

(X ≤ x− a

b

)= N

( x−ab − µ

σ

)= N

(x− (a+ bµ)

)となり,正規分布N(a+ bµ, b2σ2)の分布関数である.

すなわち,正規分布を線形変換しても正規分布になり,特に,標準化X 7→ X − µ

σすれば,標準

正規分布になる(重要!).'

&

$

%

X ∼ N(µ, σ2) ⇒ a+ bX ∼ N(a+ bµ, b2σ2)

X ∼ N(µ, σ2) ⇔ X − µ

σ∼ N(0, 1)

・上記のことを積率母関数を使って確かめよう.

X ∼ N(µ, σ2) ⇔ mX(t) = exp

(µt+

σ2

2t2)

であるから

X ∼ N(µ, σ2) ⇒ ma+bX(t) = E[et(a+bX)] = exp

((a+ bµ)t+

b2σ2

2t2)

を示せばよい(各自確認すること).

・正規分布X ∼ N(µ, σ2)に対して次式が成立する.(積率母関数mX(1))

E[exp(X)] = exp

(E[X] +

1

2V ar[X]

)

44

Page 45: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

練習問題

Ex 9-1. 確率変数X が次の分布のとき,確率変数−X の分布を求めなさい.

(a) U(a, b) (b) U(−1, 1) (c) N(µ, σ2) (d) N(0, 1)

演習問題

Problem 9-1. (a) 連続確率変数X の分布関数を FX(x)とする.確率変数 Y = FX(X)は一様分布 U(0, 1)に従うことを示しなさい.(ヒント:(i)確率変数 Y の分布関数FY (y) = PY ≤ yと (ii)分布関数の定義を考える.)

(b) Y ∼ U(0, 1)とする.ある連続確率変数の分布関数 F を用いて,確率変数X = F−1(Y )を定義したとき,X の分布関数は F になることを示しなさい.ここで F−1は F の逆関数である.

復習問題

Quiz 9-1. 標準正規分布 Z の確率について次の事実がわかっている.

P1 < Z = 0.1587, P1.645 < Z = 0.05, P2 < Z = 0.0228

これを用いて,確率変数X が正規分布N(100, 102)にしたがうとき,次の値を求めなさい.(a) 確率 PX > 120 (b) 確率 PX > 90 (c) 確率 P90 ≤ X ≤ 110(d) P100− 10a ≤ X ≤ 100 + 10a = 0.9を満たす正の定数 a

Quiz 9-2. 正規分布X ∼ N(µ, σ2)を用いて確率変数 Y を Y = eX(対数正規分布)とおく.Yの n次モーメントを求めなさい.

45

Page 46: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

10 分布3 ポワソン分布,指数分布記号 Po(λ), Exp(λ)

10.1 ポワソン分布 X ∼ Po(λ)

滅多に起きない,あるイベント(交通事故など)が,一定時間内(1日など)に起きる回数を表す分布(離散確率変数).λ > 0は平均頻度.

実現値 X = 0, 1, . . . , n, . . .

確率関数 pX(x) =λxe−λ

x!

平均 E[X] =

∞∑x=0

xpX(x) =∞∑x=0

xλxe−λ

x!=

∞∑x=1

λ(x−1)+1e−λ

(x− 1)!= λ

∞∑x=0

λxe−λ

x!= λ

E[X2] =

∞∑x=0

x2λxe−λ

x!=

∞∑x=1

xλ(x−1)+1e−λ

(x− 1)!= λ

∞∑x=0

(x+ 1)λxe−λ

x!= λ(λ+ 1)

分散 V ar[X] = E[X2]− (E[X])2 = λ

λはX ∼ Po(λ)の平均を表すパラメータであるが,ポワソン分布では分散とも一致する.確率関数の和が 1であることは,練習問題 Ex 10-1で確認されたい.積率母関数

mX(t) = E[etX]=

∞∑x=0

etxλxe−λ

x!= e−λee

tλ∞∑x=0

(etλ)xe−etλ

x!= e(e

t−1)λ

積率母関数からモーメント,平均,分散の計算

d

dtmX(t) =

d2

dt2mX(t) =

E[X] =d

dtmX(0) =

E[X2] =d2

dt2mX(0) =

V ar[X] = E[X2]− (E[X])2 =

46

Page 47: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

ポワソン分布は二項分布の極限分布と考えることが出来る.二項分布B(n, p)において,n→ ∞,

p→ 0, np→ λという状況を考える.このとき,二項分布の確率関数は以下のようにポワソン分布の確率関数に近づいていく.

nCxpx(1− p)n−x

=n(n− 1) · · · (n− x+ 1)

x!px(1− p)n−x

=n

n

n− 1

n· · · (n− x+ 1)

n

(np)x

x!

(1− p)n

(1− p)x(分母分子に nxをかけた)

ここで n→ ∞, p→ 0, np→ λという極限操作を行えば

limn→∞,p→0,np→λ

nCxpx(1− p)n−x = 1 · 1 · · · 1 · λ

x

x!

limn→∞,p→0,np→λ

(1− np/n)n

1

となる.ところで,一般論として, lim

n→∞an = a ⇒ lim

n→∞

(1− an

n

)n= e−aであるので,上の式

の右辺にある極限部分は

limn→∞,p→0,np→λ

(1− np

n

)n= e−λ

である.よって

limn→∞,p→0,np→λ

nCxpx(1− p)n−x =

λxe−λ

x!

を得る.

10.2 指数分布 T ∼ Exp(λ)

指数分布はポワソン分布から導くことが出来る.Xtを,時刻 t(≥ 0)までにあるイベントが起こる回数とし,Xt ∼ Po(λt)とする.最初のイベントが起こるまでの時間を T としたとき,このT がしたがう分布を指数分布といい,Exp(λ)で表す.

PT > t = P時刻 tまでにイベントが 1回も起きない = PXt = 0 = e−λt

であることより,T の分布関数は

FT (t) = PT ≤ t = 1− PT > t = 1− e−λt (t ≥ 0)

となる.

47

Page 48: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

密度関数 fT (t) =dFT (t)

dt= λe−λt (t ≥ 0)

平均 E[T ] =

∫ ∞

−∞tfT (t)dt =

∫ ∞

0tλe−λtdt =

∫ ∞

0t(−e−λt)′dt (部分積分) · · · = 1

λ

E[T 2] =

∫ ∞

−∞t2fT (t)d =

∫ ∞

0t2λe−λtdt =

∫ ∞

0t2(−e−λt)′dt (部分積分) · · · = 2

λ2

分散 V ar[T ] = E[T 2]− (E[T ])2 =1

λ2

積率母関数 mT (u) = E[euT]=

∫ ∞

0eutλe−λtdt =

[− λ

λ− ue−(λ−u)t

]∞0

λ− u, (u < λ)

積率母関数からモーメント,平均,分散の計算

d

dtmT (t) =

d2

dt2mT (t) =

E[T ] =d

dtmT (0) =

E[T 2] =d2

dt2mT (0) =

V ar[T ] = E[T 2]− (E[T ])2 =

48

Page 49: 基礎数学2 講義ノート - Tokyo Metropolitan University5. 確率 基本事象,事象,確率,条件付き確率 24 11/22 6. 確率変数1 確率変数,分布関数,期待値

練習問題

Ex 10-1. ポワソン分布の確率関数 pX(x) =λxe−λ

x!が,確かに

∞∑x=0

pX(x) = 1を満たしているこ

とを確認せよ.(ヒント:eλを λ = 0の周りでテイラー展開してみよ.)

演習問題

Problem 10-1. X ∼ Po(λ1), Y ∼ Po(λ2) であり,X と Y は独立であるとする.このとき,X + Y ∼ Po(λ1 + λ2)であることを示せ.

復習問題

Quiz 10-1. T ∼ Exp(λ)のとき,P (T > s+ t|T > s) = P (T > t)を示せ.(これは「あるイベントが時刻 sまでに起こらなかったという情報が与えられたもとで,さらにそこから時間 tが経過してもまだ起こらない」という条件付確率(=左辺)が,単に「スタート時点から時間 tが経過してもイベントが起こらない」確率(=右辺)に等しいことを表している.これを指数分布の無記憶性という.)

49