Computergestützte Biophysik I Bert de Groot, Udo Schmitt, Helmut Grubmüller · 2012-04-26 ·...
Embed Size (px)
Transcript of Computergestützte Biophysik I Bert de Groot, Udo Schmitt, Helmut Grubmüller · 2012-04-26 ·...

Computergestützte Biophysik I
Bert de Groot, Udo Schmitt, Helmut Grubmüller
Max Planck-Institut für biophysikalische ChemieTheoretische und Computergestützte BiophysikAm Fassberg 1137077 Göttingen
Tel.: 201-2308 / 2300Email: [email protected]
[email protected]@gwdg.de
www.mpibpc.gwdg.de/groups/grubmueller

Overview: Computational Biophysics I
L1/P1: Introduction, Protein structure and function, molecular dynamics, approximations, numerical integration, argon
L2/P2: Tertiary structure, force field contributions, efficientalgorithms, electrostatics methods, protonation, periodic boundaries, solvent, ions, NVT/NPT ensembles, analysis
L3/P3: Protein data bank, structure determination by NMR / x-ray; refinement
L4/P4: Monte Carlo, Normal mode analysis, principal components
L5/P5: Aquaporin / ATPase: two examples from current research
L6/P6: Quantenmechanische Methoden: Grundlagen, Hartree-Fock
L7/P7: Dichtefunktionaltheorie, Semiempirische Methoden

Bio-MolecularQuantum Mechanics
Density Functional Theory &QM/MM & Applications

Enzymes: life‘s catalyst
• Proteins that catalyze chemical reactions• Highly specific (for ONE substrate)• Dramatic acceleration of reaction rates

How do enzymes achieve this dramatic accelaration?
-Destabilizing the reactants/productsvs. stabilizing the transition state
- Purely electrostatic effect
- Nuclear Quantum effects (tunneling)
- Special Promoting vibrations
- preorganization of enzyme
catk
E S ES EP E P+ → → +�

Enzymatic activityinvolves „chemistry“Enzymatic activity
involves „chemistry“Breakdown of empirical force fields: no chemical bond
breaking and formation in „harmonic models“
L R
L Rc L c Rψ = +

Summary
• Molecular Hamiltonian (electrons+nuclei)• Born-Oppenheimer approximation• Hartree product + antisymmetry -> Slater Det• Variational principle -> HF equations• LCAO: atomic basis for MO• Basis set (GTO)• Hartree-Fock solution basis for post-Hartree-
Fock methods (pertubation or variational) • Efficient software packages available

Born-Oppenheimer approximation
22 2
,
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ| |ˆ| | | |
i jiP p
k i i j k lk lk i i j
e Z Ze Z eH T T
r rr R R R< <= + −∑ + ∑ + ∑
−− −
2 2ˆ ˆˆ ˆ2 2
i iP i p i
i e
P pT T
M m
⟨ ⟩ ⟨ ⟩⟨ ⟩ = ∑ ⟨ ⟩ = ∑≪
1836i
e
M
m≥1.)
ˆ ˆˆ( , )elecH r R

Hartree-Fock method
• Mean field ansatz (Hartree)
1 1 2 2( ; ) ( ) ( ) ( ) ( )k k N Nr R r r r rφ φ φΦ = Φ =�� �
…
22 2
,
2 2 2
,
2
ˆ ˆˆ ˆ ˆ| | | | | |
ˆ
ˆ ˆ ˆ2 | | | |
ˆˆ ˆ| |
i jielec p
k i i j k lk i i j k l
k i
k k i k le k i k l
kk k l
k l
e Z Ze Z eH T
r R R R r r
p e Z eC
m r R r r
eh C
r r
< <
<
<
= −∑ + ∑ + ∑− − −
= ∑ −∑ + ∑ +− −
= ∑ + ∑ +−
product ansatzSpatial orbitals

Density Functional Theory (DFT)
• wavefunction <-> electron density
3N dimensional object 3 dimensional
( )1, , , , , ,i j N
x x x xΨ … … … ( )rρ�
2( ) ( )
i
i
r rρ ϕ=∑� �

Density Functional Theory (DFT)
( ) ( )( )
( )
2
1 1 2 1, , , , , ,
0
N electrons
N i j Nr N ds dx dx x x x x
r
r dr N
ρ
ρ
ρ
= ⋅ Ψ
→ ∞ =
=
∫ ∫
∫
�… … … … …
�
� �

History of Electronic Structure Methods
• Thomas,Fermi 1927: first DFT (self consistent field!)• Hartree 1928: Hartree equation • Fock 1930: Hartree-Fock• Roothaan,Hall 1951: LCAO in HF• Hohenberg-Kohn 1964: famous theorem(s)• Kohn-Sham 1965: variational (practical) approach

Hohenberg-Kohn Theorem
2nucleii
i i
e Z( ) = external potential from nuclei =
|r - r |ext
V r ∑�
� �
22 2
,
2 2 2
,
2 2
ˆ ˆˆ ˆ ˆ| | | | | |
ˆ
ˆ ˆ ˆ2 | | | |
ˆ
ˆ ˆ2 | |
i jielec p
k i i j k lk i i j k l
k i
k k i k le k i k l
kext
k k le k l
e Z Ze Z eH T
r R R R r r
p e Z eC
m r R r r
p eV C
m r r
< <
<
<
= −∑ + ∑ + ∑− − −
= ∑ −∑ + ∑ +− −
= ∑ + ∑ + +−

Hohenberg-Kohn Theorem
ext
ext elec
The external potential V (r) is (to within a constant) a unique functional
ˆof (r); since, in turn V (r) fixes H we see that the many particle ground
state is a unique functional of (r)
ρ
ρ
�
� �
�
nucleii
i i
Z( ) = external potential from nuclei =
|r - r |ext
V r ∑�
� �
( ) ( )ext
r V rρ ⇒� � ( ) ( )
extV r rρ⇒� �

Proof “Existence Theorem”
ext extV ( ) V ( ) that give rise to the same (r) associated with r r ρ′≠ Ψ�� �
reduction ad absurdum: proof by contradiction
[ ] [ ]( ) ( ) ( )ext ext
F V r r F V rρ ′= =� � �
0ˆ ˆ ˆ;
extH H V H E= + Ψ = Ψ 0
ˆ ˆ ˆ; ext
H H V H E′ ′ ′ ′ ′ ′= + Ψ = Ψ
ˆ ˆ ˆ ˆ ˆE H H H H H′ ′ ′ ′ ′ ′ ′ ′= Ψ Ψ < Ψ Ψ = Ψ Ψ + Ψ − Ψ
ext ext
E E V V′ ′ ′ ′< + Ψ − Ψ
( ) ( ) ext extE E dr r V Vρ′ ′< + −∫� �
( ) ( ) ext extE E dr r V Vρ′ ′< + −∫� �
E E E E′ ′+ < + [ ] ( )E rρ→ ( ) ( )ext
V r rρ⇒� �

“Variational Theorem”
[ ] [ ] [ ] [ ]int extE T V Vρ ρ ρ ρ= + +
2
ˆ ˆˆ ˆ| |
elec extk l
k l
eH T V C
r r<= + ∑ + +
−
“The ground state energy can be obtained variationally: the density
that minimizes the total energy is the exact ground state density”
[ ] ˆ( )elec
E r Hρ = Ψ Ψ
[ ] [ ]( ) ( )E r E rρ ρ ′<

Kohn-Sham equation
DFT analogon to Hartree-Fock equations:
[ ] [ ] [ ] [ ]0 int extE T V Vρ ρ ρ ρ= + +
( ) ( ) 0elec elecdr r N dr r Nρ ρ= → − =∫ ∫� � � �
[ ] [ ] [ ] [ ]( )0 int ( ( ) ) 0ext elec
E T V V dr r Nδ ρ δ ρ ρ ρ λ ρ= + + − − =∫� �
So far everything is exact: ab initio !!!
But what are the Functionals? [ ] [ ] [ ]int, and ext
T V Vρ ρ ρ

Kohn-Sham approximations
[ ] [ ] [ ]int, and ext
T V Vρ ρ ρ
( ) extdr r Vρ∫� �
1 ( ) ( )[ ( )]
2 | |XC
r rdr dr E r
r r
ρ ρρ
′′ +
′−∫ ∫� �
� � �� �
5
3[ ( )] ( )
Thomas-Fermi
T r dr rρ ρ∫� � �∼
Uniform electron gas:
N electrons in box of volume V with neutralizing background charge
4
3[ ( )] ( ) XCE r dr rρ ρ∫� � �∼
10% error

Kohn-Sham approximations
1 1 1
2 2 2
1 2
( ) ( ) ( )
( ) ( ) ( )1( , , , )
!
( ) ( ) ( )
a b a N
a b a N
N
a N b N a N N
x x x
x x xx x x
N
x x x
ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ
+
+
+
Φ =
⋯
⋯…
⋮ ⋮ ⋮
⋯
21
2i i
i i
T t= − ∇ =∑ ∑
Slater determinant
21[ ( )] [ ( )]
2i i i XC
i
T r T rρ ϕ ϕ ρ= − ∇ +∑� �
Kinetic energy part:
XC XC[ ( )] E [ ( )] = E [ ( )]XC
T r r rρ ρ ρ′+� � �
2( ) ( )
i
i
r rρ ϕ=∑� �
Still unkown!!!
[ ]T ρ

Kohn-Sham equation
[ ] [ ] [ ] [ ]
[ ]
0 int
21 1 ( ) ( )= [ ( )]
2 2 | |
ext
i i i XC ext
i
E T V V
r rdr dr E r V
r r
ρ ρ ρ ρ
ρ ρϕ ϕ ρ ρ
= + +
′′− ∇ + + +
′−∑ ∫ ∫
� �� � �
� �
Hartree energy
( )N N
0 ij i
i=1 j=1
[{ }] E [ ] - i j ij
L ϕ ρ λ ϕ ϕ δ= −∑∑2
( ) ( )i
i
r rρ ϕ=∑� �
N N
0 ij i
i=1 j=1
[{ }] = E [{ }] - 0i i j
Lδ ϕ δ ϕ λ δ ϕ ϕ =∑∑

Kohn-Sham equation
[ ]2( )1
( ) ( ) ( ) ( ) 1, 2, ,2 ( )
Kohn-Sham non-linear integro-differential equations
XC
Hartree ext i i i
E rv r v r r r i N
r
δ ρϕ ε ϕ
δρ
− ∇ + + + = =
…
( ) ( ) ( ) 1, 2, ,KS
i i i ih r r r i Nϕ ε ϕ= = …
But can be recast in matrix form-> ideal for computers
HC SCε=
Self-consistent field method (SCF)
""
( ) ( )
LCAO (linear combination
of atomic orb.)
basis set !!!!
atomicorbitals
i i
i
r c rφ χ= ∑

In search for the divine Functional(s)
• Local density approximation (LDA)
• Generalized Gradient Approximation (GGA) 1980is (BLYP,P PBE)
• Hybrid (B3LYP) 1996
[ ( )] ( ) [ ( )] energy densityXC XCE r dr r rρ ρ ε ρ= ∫� � � �
13 1
39 3
[ ( )] ( )8
XC r rε ρ ρπ
= −
� � Thomas,Fermi,Slateretc.
Becke: “everything is legal” approach
Perdew: ”based on first principles”[ ( ), ( )]XC r rε ρ ρ∇� �
Combine Hartree-Fock with DFT !

Success of DFT
• Treat electron correlation based on density
• No rigorous way how to improve results = find better functional ( trial & error )
• Approximate (semi-empirical)
• Modern hybrid functionals B3LYP:Hartree-Fock < B3LYP < MP2 < CI
( )1( ) , , , , , ,i j N
r x x x xρ ↔ Ψ�
… … …
4N∼
4N∼
5 6N
−∼
Ne∼

Basis sets
• Atom centered: • Slater-Type orbitals GaussianTO
( )1
( , , , , , , )
( , )Ar rn m
l
r n l m
r e Yζ
χ θ φ ζ
θ φ− −−
∼
Spherical harmonicsQuantum numbersn,l,m
parameter
2( )
( , , , , , , )
Ar r i j k
x y z i j k
e x y zζ
χ ζ
− −
∼
parameter
Ar
- good approximation
- slow computation
- Pretty bad approximation
- Vary fast
- Take many of them in LCAO!

Basis sets
But in DFT also so-called
“plane waves”
i ( ) ( ) k r
k
r a k eφ ⋅=∑� �
�
��

Electronic structuresoftware packages
• Gaussian,Molpro,Q-Chem,CPMD,Turbomole,Jaguar etc. written in Fortran,C,C++
Provide efficient implementations of electronicstructure methods on modern supercomputersand user-friendly interfaces (use by non-specialist)
Nobel prize Kohn 1998

What can we do with DFT?
DNA crystal
2x12 base pairs
Water + counter ions
periodic boundary cond.
2388 atoms
~ 40 000 basis functions

Towards Larger SystemsQuantum mechanical/Molecular Mechanical
(QM/MM)
• Warshel & Levitt 1976MM regionTotal system
Active site (QM)
5 6~ 10 atoms−
~10-200 atoms only
/ˆ ˆ ˆ
total QM MM QM MMH H H H= + +
ˆelec
HForce field
coupling
12 6
/ˆ ( ) ( )
ˆ
electrons MM nuclei MM nuclei MMj i j ij ij
QM MM
i j i j i j ij iji j i j
eQ eZ QH
R Rr R R R
σ σ= + + −
− −∑ ∑ ∑ ∑ ∑ ∑


QM/MM
• Solution to the length scale “barrier” in biophysics
• Main problem: MM part is purely classical
• Violation of antisymmetry principle of total (QM+MM) wavefunction
• -> MM/QM interaction does not lead to proper electron repulsion and dispersion interaction (= van der Waals) !!!!
• Electronic polarization only treated in QM part

MM region
ab initio dynamics of biological systems
QM/MM molecular dynamics
Total system
Active site (QM)
Classical force fields
(CHARMM, GROMOS96 etc.)
~10-100 atoms only
5 6~ 10 atoms−
- density functional theory (DFT)
- “on the fly” computation of ab initio
forces on the nuclei
- simultaneous integration of electronic and nuclear degrees of freedom
- nuclear dynamics classical (point particle approximation)

Total System
72.5 Å
Total system size:
28 650 atoms

System III
membranewith125 POPCphosphor lipids

System II
6504 SPC/E water molecules

System I
protein (230 amino acids)
QM region:
protonated water network consist-ing of 4 and 6 water molecules, respectively

3 Distance Classes for the Coulombic Force Calculation:
QMρ
i(r
i)
MM
NumericalDiscretization of ρi(ri)
MM
MM
Point ChargeApproximation of ρi(ri)
MultipoleExpansion of ρi(ri)

ab initio (DFT) computation of infrared “fingerprint”
i t
tot tot
0
1I( ) dt e (0) (t)
2
∞− ωω = ⟨µ ⋅µ ⟩
π ∫� �
3
tot i i(t) e Z R (t) e d r (r;R(t)) rµ = − ρ∑ ∫� �� ��

Multi-State Empirical Valence Bond(MS-EVB)
Multi-State Empirical Valence Bond(MS-EVB)
- basic idea: quantum resonance of electronic states representing
stable species
- approximate method to model reactivereactive PES

MS-EVB algorithm
• generate relevant EVB states (dynamical adaptive basis)
• compute EVB energy matrix elements(~N force field calculations)
• diagonalize EVB matrix• compute Hellmann-Feynman forces
• perform MD step
10 ns of dynamics in NVE ensemble shows NO drift in kinetic temperature !!!!

Multistate EmpiricalValence Bond (MS-EVB)
Identify stable
chemical species
Find accurate intra- and
intermolecular force field
Compute ab initio PES (binding energies,
minimum energy paths, barrier heights)
Determine off-diagonal elements
(Functional form + parameters)
ab initio ab initio qualityquality PES PES forfor
reactivereactive systemssystems
TIP3P,H3O+ ff
H3O+, H2O

Schmitt&Voth J. Phys. Chem. 1998





“Proton antenna” in bR

“Proton antenna” in bR
• Direct dynamics of proton transfer in bRusing MSEVB

MethodenspektrumMethodenspektrum
CI, MP
CASPT2
CI, MP
CASPT2Length scale
predictivity
Kontinuumelektrostatik
“Coarse graining”
Kontinuumelektrostatik
“Coarse graining”
Empirische KraftfelderEmpirische Kraftfelder
fsp
sn
s
t i
me
Approximative
Methoden
Approximative
Methoden
HF, DFTHF, DFT
nm

Praktikum 28.01.2008 15.00 Uhr
• hands-on experience with Molpro• DFT calculations on water,amino acids etc.• QM/MM example• Multistate Empirical Valence Bond (MSEVB)

Overview: Computational Biophysics II
Sommersemester 2007
L1/P1: Elektrostatik in Proteinen
L2/P2: Free energy calculations, force probe simulations
L3/P3: Nichtgleichgewichtsthermodynamik
L4/P4: Ratentheorie
L5/P5: Enzymkatalyse: Molekulare Details chemischer Reaktionen
L6/P6: Bioinformatik: Sequence Alignment
L7/P7: Strukturvorhersage, Homology Modeling