Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich...

130
Die Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Michaela Potzner aus Forchheim

Transcript of Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich...

Page 1: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Die Rolle der SoxC-Proteine im sich

entwickelnden zentralen und sympathischen

Säuger-Nervensystem

Den Naturwissenschaftlichen Fakultäten

der Friedrich-Alexander-Universität Erlangen-Nürnberg

zur

Erlangung des Doktorgrades Dr. rer. nat.

vorgelegt von

Michaela Potzner

aus Forchheim

Page 2: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

II

Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der

Friedrich-Alexander-Universität Erlangen-Nürnberg.

Tag der mündlichen Prüfung: 16. Februar 2010

Vorsitzender der Prüfungskommission: Prof. Dr. Eberhard Bänsch

Erstberichterstatter: Prof. Dr. Michael Wegner

Zweitberichterstatter: Prof. Dr. Andreas Burkovski

Page 3: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

III

Forschung ist immer das Weiterforschen, wo andere aufgehört haben,

das Weiterbauen auf Grundsteinen und Gerüsten, die andere vorbereitet haben,

und damit allerdings leider zugleich auch mitunter das Weitergehen auf Irrwegen,

die andere eingeschlagen haben.

Hubert S. Markl

Page 4: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

IV

Meinen Eltern gewidmet

Page 5: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Inhaltsverzeichnis

V

Inhaltsverzeichnis

ZUSAMMENFASSUNG IX

SUMMARY X

1 EINLEITUNG 1

1.1 Die Entwicklung des zentralen Nervensystems 1

1.2 Die glialen Zell-Populationen des zentralen Nervensystems 3

1.2.1 Spezifizierung oligodendroglialer Zellen 4

1.2.2 Terminale Differenzierung oligodendroglialer Zellen 5

1.2.3 Myelinbildung in oligodendroglialen Zellen 7

1.3 Die Entwicklung des sympathischen Nervensystems 9

1.3.1 Die sympathoadrenale Zell-Population des sympathischen Nervensystems 10

1.3.2 Spezifizierung sympathoadrenaler Zellen 11

1.3.3 Differenzierung sympathoadrenaler Zellen 12

1.4 Die Familie der Sox-Proteine 16

1.4.1 Die Gruppe C der Sox-Proteine 17

1.4.1.1 Sox4 18 1.4.1.2 Sox11 20 1.4.1.3 Sox12 21

2 PROBLEMSTELLUNG 23

3 ERGEBNISSE 24

3.1 Funktionelle Analyse der SoxC-Proteine im zentralen Nervensystem der Maus 24

3.1.1 Entwicklung oligodendroglialer Zellen im Rückenmark von Sox11-defizienten Mäusen 25

3.1.2 Überexpressionsstudien der Sox-Proteine der Gruppe C in oligodendroglialen Zellen 27

3.1.2.1 Generierung MBP-Sox4-transgener Mäuse 28 3.1.2.2 Expression des MBP-Sox4-Transgens im zentralen Nervensystem 30 3.1.2.3 Analyse des Phänotyps MBP-Sox4-transgener Mäuse 33

3.2 Funktionelle Analyse der SoxC-Proteine im sympathischen Nervensystem der Maus 42

3.2.1 Expression von Sox4 und Sox11 im sympathischen Nervensystem 43

3.2.2 Zelltypspezifische Expression von Sox4 und Sox11 45

3.2.3 Induktion der Sox4-Expression durch den Faktor Sox11 47

Page 6: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Inhaltsverzeichnis

VI

3.2.4 Analyse des sympathoadrenalen Phänotyps SoxC-defizienter Tiere 49

3.2.4.1 Untersuchung der Gangliengröße in SoxC-defizienten Tieren 49 3.2.4.2 Untersuchung der Differenzierung sympathischer Neurone in SoxC-defizienten Tieren 52 3.2.4.3 Untersuchung der Proliferation im sympathischen Nervensystem SoxC-defizienter Tiere 57 3.2.4.4 Untersuchung der Apoptose im sympathischen Nervensystem SoxC-defizienter Tiere 59

3.2.5 Auswirkung der SoxC-Protein-Defizienz im sympathischen Nervensystem adulter Tiere 61

4 DISKUSSION 63

4.1 Das MBP-Sox4-transgene Mausmodell 63

4.1.1 Expression des Sox4-Transgens in terminal differenzierenden Oligodendrozyten 64

4.1.2 Der MBP-Sox4-transgene Phänotyp im Vergleich zu Mausmutanten mit ähnlichem Erscheinungsbild 66

4.1.3 Bedeutung von Sox4 für die Reifung der Oligodendrozyten 67

4.2 Deletion von Sox4 und Sox11 im sympathischen Nervensystem 70

4.2.1 Regulation der Sox4- und Sox11-Expression in den sympathischen Ganglien 70

4.2.2 Verzögerte noradrenerge Differenzierung sympathischer Vorläuferzellen in SoxC- defizienten Ganglien 72

4.2.3 Bedeutung von Sox4 und Sox11 für die Proliferation und Apoptose sympathoadrenaler Zellen 73

4.2.3.1 Sox11 beeinflusst früh-embryonal die Proliferation sympathischer Vorläuferzellen 74 4.2.3.2 Sox4 bedingt spät-embryonal das Überleben sympathischer Neurone 75

5 MATERIAL 78

5.1 Mausstämme 78

5.2 Chemikalien und allgemeine Reagenzien 78

5.3 Zusammensetzung der Puffer und Lösungen 79

5.4 Oligonukleotide 81

5.5 In situ Sonden 82

5.6 Antikörper 83

5.6.1 Primärantikörper 83

5.6.2 Sekundärantikörper 85

6 METHODEN 86

6.1 Tierhaltung 86

6.2 Standardmethoden 86

Page 7: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Inhaltsverzeichnis

VII

6.3 Isolierung und Analytik von Nukleinsäuren 87

6.3.1 Isolierung von genomischer DNA aus Schwanz- oder Choriongewebe 87

6.3.2 Präparation von Gesamt-RNA 87

6.3.3 Polymerase-Kettenreaktion (PCR) zur Amplifikation von DNA-Fragmenten 88

6.3.4 Genotypisierungs-PCR 89

6.3.5 Reverse-Transkription und RT-PCR-Analyse 90

6.3.6 Herstellung von DIG-markierten cRNA-Sonden mittels in vitro Transkription 91

6.4 Histologische Methoden 92

6.4.1 Präparation embryonaler und postnataler Gewebe 92

6.4.2 PPD-Färbungen und Elektronenmikroskopie 93

6.4.3 In situ Hybridisierung 94

6.4.4 Immunhistochemie auf Gefrierschnitten 95

6.4.5 BrdU-Färbung 96

6.4.6 TUNEL-Färbung 96

7 ABKÜRZUNGSVERZEICHNIS 98

8 LITERATURVERZEICHNIS 101

PUBLIKATIONEN 118

PRÄSENTATIONEN 118

LEBENSLAUF 119

DANKSAGUNG 120

Page 8: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Abbildungsverzeichnis

VIII

Abbildungsverzeichnis

Abb. 1: Die Domänenstruktur des ventralen Rückenmarks. ..................................................... 2

Abb. 2: Schematische Darstellung der Oligodendrozyten-Entwicklung ................................... 6

Abb. 3: Entstehung der sympathoadrenalen Zell-Population................................................... 11

Abb. 4: Schematische Darstellung der Entwicklung noradrenerger Neurone ......................... 13

Abb. 5: Die Gruppe C der Sox-Proteine .................................................................................. 18

Abb. 6: Spezifische Expression von Sox4 und Sox11 in oligodendroglialen Zellen............... 25

Abb. 7: Quantifizierung oligodendroglialer Zellen im Sox11-defizienten Rückenmark......... 26

Abb. 8: Schematische Darstellung des MBP-Sox4-Transgen-Konstrukts............................... 28

Abb. 9: Southern-Blot Analyse von Wildtyp- und MBP-Sox4-transgenen Tieren.................. 29

Abb. 10: Quantitative RT-PCR zum Nachweis der Sox4-Expression im ZNS. ...................... 30

Abb. 11: Das postnatale Expressionsmuster des MBP-Sox4-Transgens im ZNS. .................. 31

Abb. 12: Zelltypspezifische Expression des MBP-Sox4-Transgens........................................ 33

Abb. 13: Expression von MBP und PLP im Rückenmark MBP-Sox4-transgener Tiere......... 34

Abb. 14: Expression des MBP-Proteins im Rückenmark transgener Tiere. ............................ 35

Abb. 15: Oligodendrogliale Parameter im Rückenmark MBP-Sox4-transgener Tiere. .......... 36

Abb. 16: Mikrogliale Parameter im Kleinhirn MBP-Sox4-transgener Tiere........................... 37

Abb. 17: Expression des MBP-Proteins in den Transgen-exprimierenden Gehirn-Regionen. 38

Abb. 18: Myeliniserung der Axone im Rückenmark MBP-Sox4-trangener Tiere. ................. 39

Abb. 19: Die Myelin-Ultrastruktur im Rückenmark MBP-Sox4-transgener Tiere. ................ 40

Abb. 20: Die g-Ratio im Rückenmark MBP-Sox4-transgener Tiere. ...................................... 41

Abb. 21: Expression von Sox4 und Sox11 in den sympathischen Ganglien. .......................... 43

Abb. 22: Zelltypspezifische Expression von Sox4 und Sox11. ............................................... 46

Abb. 23: Expression von Sox4 und Sox11 in SoxC-defizienten sympathischen Ganglien. .... 48

Abb. 24: Die Größe sympathischer Ganglien in SoxC-defizienten Tieren.............................. 50

Abb. 25: Analyse der Fläche und Zellzahl SoxC-defizienter sympathischer Ganglien........... 51

Abb. 26: Expression noradrenerger Marker in den sympathischen Ganglien SoxC- defizienter Tiere........................................................................................................ 53

Abb. 27: Expression noradrenerger und neuronaler Marker in den sympathischen Ganglien SoxC-defizienter Tiere.............................................................................................. 55

Abb. 28: Proliferation in den sympathischen Ganglien SoxC-defizienter Tiere...................... 57

Abb. 29: Bestimmung der Proliferation in den sympathischen Ganglien SoxC-defizienter Tiere.......................................................................................................................... 58

Abb. 30: Bestimmung der Apoptose in sympathischen Ganglien SoxC-defizienter Tiere ..... 60

Abb. 31: Phänotyp adulter Mäuse mit spezifischen Sox4- und Sox11-Deletionen im sympathischen Nervensystem................................................................................... 62

Page 9: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Zusammenfassung

IX

Zusammenfassung

Während der Embryonalentwicklung übernehmen die Transkriptionsfaktoren der Sox-

Proteinfamilie in unterschiedlichen Geweben und Zelltypen wichtige regulatorische

Aufgaben. Die beiden Sox-Proteine der Untergruppe C Sox4 und Sox11 weisen im sich

entwickelnden zentralen und peripheren Nervensystem ein stark überlappendes Expressions-

muster auf. Dennoch konnten, vermutlich aufgrund funktioneller Redundanz zwischen den

SoxC-Proteinen, in Sox4- oder Sox11-defizienten Tieren keine neuralen Defekte nach-

gewiesen werden.

Um Einblicke in die Funktion der SoxC-Proteine im entstehenden Säuger-Nervensystem zu

erhalten, wurde im Rahmen dieser Arbeit zunächst die Rolle von Sox4 nach Überexpression

in terminal differenzierenden Oligodendrozyten genauer untersucht. Zu diesem Zweck

wurden transgene Mäuse generiert, die das Sox4-Transgen unter dem MBP-Promotor

exprimierten. In diesen Tieren traten postnatal auffällig unkontrollierte Zitterbewegungen und

dyskinetische Reaktionen auf, die mit schweren Myelin-Defekten im zentralen Nervensystem

verbunden waren. Die Hypomyelinisierung im Rückenmark und Gehirn konnte durch das

Verharren postmitotischer Oligodendrozyten in einem prä-myelinisierenden Zustand erklärt

werden. Demzufolge wirken die Sox-Proteine der Gruppe C Differenzierungsprozessen in

glialen Zellen entgegen und tragen zum zeitlich korrekten Einsetzen der terminalen

Differenzierung bei.

Zur Aufklärung der funktionellen Redundanz zwischen Sox4 und Sox11 wurden im zweiten

Teil der Arbeit beide SoxC-Gene spezifisch in den zukünftigen noradrenergen und adrenergen

Neuronen des sympathischen Nervensystems deletiert. In SoxC-doppelt-defizienten Mäusen

wurde während der Embryogenese eine stark reduzierte Gangliengröße festgestellt. Dieser

Phänotyp wird durch frühe Defekte in der Proliferation sympathoadrenaler Zellen und einer

späten Zunahme apoptotischer Neurone ausgelöst. Aufgrund der zeitlich versetzten

Expression von Sox4 und Sox11 in den sich entwickelnden Ganglien konnte für beide

Transkriptionsfaktoren ein sequenzieller Bedarf aufgezeigt werden. Sox11 kontrolliert

vorwiegend die frühe Proliferation sympathoadrenaler Zellen, während Sox4 hauptsächlich

für das Überleben sympathischer Neurone verantwortlich ist. Für die noradrenerge Differen-

zierung hingegen spielen Sox4 und Sox11 eine eher untergeordnete Rolle. Dies kontrastiert

mit dem Einfluss der SoxC-Proteine auf die Differenzierung glialer Zellen und beweist, dass

die Funktion von Sox4 und Sox11 Gewebe- und Kontext-abhängig ist.

Page 10: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Summary

X

Summary

Transcription factors of the Sox protein family have important regulatory functions in

different tissues and cell types during embryogenesis. The SoxC proteins Sox4 and Sox11

show a strong overlapping expression pattern in the central and peripheral nervous systems.

However, mice with a Sox4 or Sox11 deletion show no neural phenotype presumably because

of functional redundancy among SoxC proteins.

To gain insight into the possible functions of SoxC proteins in the developing mammalian

nervous system, the role of Sox4 was initially studied following overexpression in terminal

differentiating oligodendrocytes. For this purpose, transgenic mice were generated in which

the Sox4 transgene was expressed under the control of the MBP promotor. Postnatally, these

animals developed tremors and dyskinetic behaviours combined with severe myelin defects in

the central nervous system. The significant hypomyelination of white matter tracts in the

spinal cord and brain could be explained by the persistence of postmitotic oligodendrocytes in

a premyelinating or early myelinating state. Sox proteins of the group C thus prevent terminal

differentiation of glial precursors and contribute to the temporally precise initiation of the

final developmental stage.

To elucidate the functional redundancy between Sox4 and Sox11, both SoxC genes were

specifically deleted in prospective noradrenergic and adrenergic neurons of the sympathetic

nervous system. As a consequence, sympathetic ganglia in SoxC double deficient mice were

strongly reduced in size during embryogenesis. This phenotype arises from an early

proliferation defect of sympathoadrenal cells followed by an increase in apoptosis of

sympathetic neurons during later stages. Due to the temporal difference in the expression of

SoxC proteins in sympathetic ganglia, a sequential requirement of Sox4 and Sox11 could be

demonstrated during development of the sympathetic nervous system. Sox11 is primarily

responsible for the proliferation of tyrosine hydroxylase expressing cells in early sympathetic

ganglia, whereas Sox4 ensures the survival of sympathetic neurons during later

developmental stages. In contrast, Sox4 and Sox11 play only a minor role for noradrenergic

differentiation. This contrasts with the strong impact of SoxC proteins on glial differentiation

and demonstrates that the function of Sox4 and Sox11 is context, as well as cell type and

tissue dependent.

Page 11: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

1

1 Einleitung

1.1 Die Entwicklung des zentralen Nervensystems

In der Maus wird die Neurulation ektodermalen Gewebes (Neuroektoderm) am Embryonaltag

7,5 durch die Chorda dorsalis (Notochord) und das seitlich benachbarte paraxiale Mesoderm

induziert (Kelly & Melton, 1995). Daran beteiligt sind die zur TGF-β-Superfamilie gehören-

den BMP-Proteine (bone morphogentic proteins) BMP-2 und BMP-4 sowie die endogenen

BMP-Antagonisten Noggin und Chordin (Thomsen, 1997). Durch komplexe Einsenkungs-,

Faltungs- und Aufwölbungsvorgänge des Neuroektoderms entsteht das Neuralrohr aus dem

letztendlich das zentrale Nervensystem (ZNS) mit seinen beiden Komponenten Gehirn und

Rückenmark hervorgeht (Smith & Schoenwolf, 1997; Colas & Schoenwolf, 2001; Copp et al.,

2003). Aus den drei primären Vesikeln am rostralen Ende des Neuralrohrs entstehen die

Anlagen für das Vorderhirn (Prosencephalon), das Mittelhirn (Mesencephalon) und das

Rautenhirn (Rhombencephalon) mit Hirnstamm. Die weiter kaudal gelegenen Bereiche

entwickeln sich zum späteren Hinterhirn und Rückenmark (Kaufman & Bard, 1999).

Neben der frühen rostro-kaudalen Regionalisierung des zentralen Nervensystems findet auch

eine spätere dorso-ventrale Musterbildung statt (Abb. 1). Diese definierte Kompartimen-

tierung entsteht durch die Sekretion spezifischer Signalmoleküle vom Notochord und den

Somiten, noch bevor sich das Neuralrohr komplett geschlossen hat (Tanabe & Jessell, 1996).

Daran beteiligt sind im Fall der Rückenmarksanlage der Fibroblasten-Wachstumsfaktor

(FGF), die Retinsäure (RA), Sonic Hedgehog (Shh) sowie BMP-4 und BMP-7. Das vom

Notochord abgegebene Signalmolekül Sonic Hedgehog (Chiang et al., 1996) führt im

ventralen Neuralrohrbereich zur Ausbildung der Bodenplatte. Im weiteren Verlauf sezernieren

das Notochord und die Zellen der Bodenplatte des Rückenmarks selbst Sonic Hedgehog, das

in dorsale Richtung diffundiert und sowohl einen dorso-ventralen Konzentrationsgradienten

im Neuralrohr ausbildet (Yamada et al., 1991; Ericson et al., 1997; Briscoe & Ericson, 2001)

als auch die Spezifizierung ventraler Zelltypen kontrolliert (Marti et al., 1995; Roelink et al.,

1995; Chiang et al., 1996; Ericson et al., 1996). An der Ausbildung dorsaler Strukturen sind

unter anderem die beiden Signalmoleküle BMP-4 und BMP-7 beteiligt, die vom Oberflächen-

ektoderm und später von der Deckplatte sezerniert werden. Die Balance zwischen Sonic

Hedgehog und den beiden BMP-Faktoren bestimmt hauptsächlich die dorso-ventrale

Polarisierung des Neuralrohrs (Placzek et al., 1991; Arkell & Beddington, 1997; Graham,

Page 12: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

2

1997). Durch den Einfluss der entgegengesetzt gerichteten Shh- und BMP-Konzentrations-

gradienten entstehen entlang der proliferativen Ventrikulärzone genau definierte Vorläufer-

domänen des zukünftigen Rückenmarks (Abb. 1). Bestimmte Shh-Konzentrationen

reprimieren einerseits die Homeodomänen-(HD)-Transkriptionsfaktoren der Klasse I, zu

denen Pax7, Pax6, Irx3, Dbx1 und Dbx2 gehören und aktivieren andererseits die HD-Proteine

der Klasse II, wie Nkx6.1 und Nkx2.2. Dadurch bilden sich ventrale und dorsale Domänen-

grenzen des embryonalen Rückenmarks aus (Briscoe et al., 2000). Durch ihre Funktion als

direkte transkriptionelle Repressoren sind die HD-Proteine der Klasse I und II in der Lage

sich gegenseitig zu regulieren, um gezielt definierte Grenzen in der Expression der einzelnen

Transkriptionsfaktoren innerhalb der Ventrikulärzone aufzubauen (Briscoe & Ericson, 2001;

Muhr et al., 2001). Aufgrund der kombinatorischen Expression der verschiedenen HD-

Proteine kann die ventrale Hälfte der Ventrikulärzone in fünf definierte Vorläuferdomänen

(p0, p1, p2, pMN und p3) von dorsal nach ventral unterteilt werden. Aus diesen Domänen

gehen während der Neurogenese zunächst verschiedene Vorläuferzellen neuronaler Sub-

klassen hervor. Dabei entwickeln sich aus der pMN-Domäne zunächst Motoneurone und aus

derselben Region entstehen zum Zeitpunkt der Gliogenese Oligodendrozytenvorläuferzellen

(Lee & Jessell, 1999; Anderson, 2001; Briscoe & Ericson, 2001; Rowitch, 2004).

Abb. 1: Die Domänenstruktur des ventralen Rückenmarks. Die dorso-ventrale Polarisierung des zukünftigen Rückenmarks wird durch die entgegengesetzt gerichteten Gradienten der Signalmoleküle Shh und BMP bestimmt, die von der ventralen Bodenplatte (FP) bzw. der dorsalen Deckplatte (RP) abgegeben werden. Anschließend entstehen durch die spezifische Expression verschiedener HD-Proteine der Klasse I und II genau definierte Vorläufer-domänen (p0, p1, p2, pMN, p3) aus denen zunächst verschiedene neuronale Subklassen (V0, V1, V2, MN, V3) und später auch gliale Zellen (Astro, Oligo) hervorgehen. Abbildung entnommen aus (Anderson, 2001).

Page 13: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

3

Daneben spezifiziert die p2-Domäne sowohl V2-Interneurone als auch Astrozyten (Briscoe et

al., 2000; Jessell, 2000). Die dorsalen Vorläuferdomänen entstehen zusätzlich durch die

Expression der induktiven Signalproteine aus der BMP-, FGF- und Wnt-Familie (Lee &

Jessell, 1999; Muroyama et al., 2002; Caspary & Anderson, 2003).

Durch die Auswanderung der neuronalen Subtypen aus der Ventrikulärzone formiert sich

während der neuralen Entwicklung die Mantelzone des Rückenmarks, die später auch als

graue Substanz bezeichnet wird. Diese Schicht enthält vor allem die Zellkörper der Neurone,

die ihre Axone nach außen senden. Dadurch entsteht eine weitere Lage des Rückenmarks, die

Marginalzone. Die charakteristische Färbung dieser später so genannten weißen Substanz ist

auf den hohen Anteil an Myelin zurückzuführen, der von der Oligodendroglia gebildet wird.

1.2 Die glialen Zell-Populationen des zentralen Nerven-

systems

Rudolph Virchow führte 1856 den Begriff der Neuroglia ein und bezeichnete damit gliale

Zellen als Teil des Bindegewebes, die den Neuronen als so genannter “Nervenkitt” dienen.

Heutzutage ist allerdings bekannt, dass die Neuroglia aus unterschiedlichen glialen Zell-

Populationen besteht, die wichtige Funktionen für Proliferation, Differenzierung und das

Überleben von Neuronen übernehmen (Volterra & Meldolesi, 2005). Dazu gehören im

zentralen Nervensystem die Astrozyten und Oligodendrozyten, die beide ähnlich den

Neuronen dem Neuroektoderm entstammen und als Makroglia bezeichnet werden (Miller,

2002; Rowitch, 2004).

Fibrilläre Astrozyten tauchen zuerst in der Marginalzone des Rückenmarks auf und werden

oftmals durch das Intermediärfilamentprotein GFAP (glial fibrillary acidic protein), das

während der Zelldifferenzierung exprimiert wird, nachgewiesen (Eng et al., 1971; Bignami et

al., 1972). Morphologisch gesehen können die sternenförmigen Astrozyten in zwei Haupt-

klassen unterteilt werden: Die S100β-positiven protoplasmatischen Astrozyten und die

GFAP-positiven fibrillären Astrozyten. Dabei sind protoplasmatische Astrozyten bereits ab

dem Embryonaltag 14,5 in der Mantelzone aufzufinden, während fibrilläre Astrozyten sich

überwiegend in der weißen Substanz befinden.

Page 14: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

4

Neben den Astrozyten sind die Oligodendrozyten die zweite Hauptklasse glialer Zelltypen im

zentralen Nervensystem. Sie besitzen kleine, runde Zellkerne mit einem hohen Anteil an

Heterochromatin. Ihre zellulären Fortsätze bilden Markscheiden aus Myelin, die die Axone

der Neurone spiralförmig umhüllen und dadurch elektrisch isolieren (Norton, 1984; Salzer,

2003). Somit kann eine schnelle saltatorische Erregungsleitung an den Ranvierschen

Schnürringen gewährleistet werden. Terminal differenzierte Oligodendrozyten sind in der

Lage, mehrere Axone in der weißen Substanz des zentralen Nervensystems zu isolieren,

wohingegen die Schwannzellen als myelinisierende Glia des peripheren Nervensystems

(PNS) jeweils nur ein Axon ummanteln.

Die Mikroglia ist dagegen mesodermalen Ursprungs und ihre hämatopoetischen, mono-

cytischen Vorläuferzellen wandern in das zentrale Nervensystem ein. Dort besitzen sie als

Immunzellen antigenpräsentierende Eigenschaften und sind in der Lage, sich in phago-

zytierende Makrophagen umzuwandeln (Barron, 2003).

1.2.1 Spezifizierung oligodendroglialer Zellen

In der Maus spezifizieren sich ab dem Embryonaltag 11,5 oligodendrogliale Vorläuferzellen

(Stolt et al., 2006) durch die gegenläufigen Konzentrationsgradienten der Signalmoleküle

BMP-4 und Sonic Hedgehog bzw. Notch (Pringle et al., 1996; Mekki-Dauriac et al., 2002).

Durch das wechselseitige und kombinatorische Zusammenwirken verschiedener Trans-

kriptionsfaktoren wird die Spezifizierung der Oligodendrozyten in der pMN-Domäne voran-

getrieben (Lu et al., 2002; Zhou & Anderson, 2002; Sun et al., 2003; Cai et al., 2005;

Vallstedt et al., 2005).

So initiiert Sonic Hedgehog zunächst die Expression der bHLH (basic helix-loop-helix)-

Transkriptionsfaktoren Olig1 und Olig2 (Lu et al., 2000; Zhou et al., 2000) (Abb. 2). Olig2

wird dabei unter der Kontrolle der HD-Proteine Nkx6.1 und Nkx6.2 exprimiert (Novitch et

al., 2001; Liu et al., 2003) und ist zusammen mit Olig1 während der frühen Embryogenese für

die Determinierung der Motoneurone sowie der Oligodendrozyten von Bedeutung

(Takebayashi et al., 2002; Zhou & Anderson, 2002). Mit Hilfe von Nkx6.1/Nkx6.2-

Doppelmutanten konnte erstmals bewiesen werden, dass es spät-embryonal zusätzlich zur

pMN-Domäne einen weiteren Ursprungsort von Oligodendrozytenvorläuferzellen in der

dorsalen Hälfte des Rückenmarks gibt (Cai et al., 2005; Vallstedt et al., 2005).

Page 15: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

5

Auch spielt der HMG-Box-Transkriptionsfaktor Sox9 eine wichtige Rolle in der

Oligodendrozyten-Spezifizierung (Stolt et al., 2003). In Sox9-defizienten Mäusen sind die

oligodendroglialen Vorläuferzellen an den früh-embryonalen Zeitpunkten stark reduziert,

wobei sich die Anzahl der Vorläufer an den späten Entwicklungsstadien wieder regenerieren

kann. Der Grund hierfür ist wahrscheinlich eine kompensatorische Wirkung der ko-

exprimierten beiden anderen Mitglieder der Gruppe E der Sox-Proteinfamilie, Sox8 und

Sox10 (Stolt et al., 2004; Stolt et al., 2005). So wird Sox10 bereits ab dem Zeitpunkt der

Spezifizierung in den oligodendroglialen Vorläuferzellen exprimiert und bleibt in den myelin-

bildenen Oligodendrozyten erhalten (Kuhlbrodt et al., 1998b; Stolt et al., 2002).

Von der pMN-Domäne der Ventrikulärzone wandern die Oligodendrozytenvorläufer als

bipolare Zellen in die zukünftige Mantelzone des Rückenmarks aus (Miller, 2002; Rowitch,

2004; Vallstedt et al., 2005; Richardson et al., 2006). In der Membran von bereits

determinierten migrierenden oligodendroglialen Vorläufern ist der Rezeptor PDGF-Rα

(platelet-derived growth factor receptor-alpha) lokalisiert, der durch die Bindung des

Mitogens PDGF (platelet-derived growth factor) unreife Oligodendrozyten einerseits zur

Proliferation sowie zur Migration anregt und andererseits ihr Überleben sichert (Pringle &

Richardson, 1993; Nishiyama et al., 1996). Neben PDGF stimulieren auch Neurotrophin-3

und Neuregulin-1 die Proliferation der Pro-Oligodendrozyten und inhibieren gleichzeitig ihre

Differenzierung zu GalC (Galactosylcerebrosid)-exprimierenden prä-myelinisierenden

Oligodendrozyten (Barres et al., 1994; Canoll et al., 1996). Die zielgerichtete Wanderung

sowie die Verbreitung und Reifung oligodendroglialer Vorläuferzellen in der weißen

Substanz des Rückenmarks wird von dem Laminin-ähnlichen Molekül Netrin-1 unterstützt

(Tsai et al., 2006). Nach ihrer Reifung zu nicht wandernden aber proliferierenden Pro-

Oligodendrozyten mit vielen Zellfortsätzen präsentieren sie das Oberflächen-Antigen O4

(Bansal & Pfeiffer, 1992; Ono et al., 1995; Tsai et al., 2006).

1.2.2 Terminale Differenzierung oligodendroglialer Zellen

Pro-Oligodendrozyten durchlaufen an ihrem Bestimmungsort eine letzte Teilungsphase, bevor

sie schließlich aus dem Zellzyklus austreten und zu postmitotischen myelinbildenden

Oligodendrozyten differenzieren (Pfeiffer et al., 1993; Woodruff et al., 2001; Jessen, 2004).

In den sich differenzierenden Oligodendrozyten wird die Expression des

Page 16: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

6

Transkriptionsfaktors Sox9 (Stolt et al., 2003), des Rezeptors PDGF-Rα und des

Proteoglykans NG2 abgeschaltet (Abb. 2). Dagegen werden die Transkriptionsfaktoren Olig1,

Olig2 und Sox10 kontinuierlich von der Spezifizierung bis nach der terminalen

Differenzierung in den Oligodendrozyten exprimiert (Lu et al., 2000; Zhou et al., 2000; Stolt

et al., 2002). Postmitotische Oligodendrozyten bilden verzweigte Fortsätze aus und

differenzieren zunächst zu prä-myelinisierenden Oligodendrozyten, die GalC und das Enzym

CNP (zyklische Nukleotid-Phosphodiesterase) exprimieren (Baumann & Pham-Dinh, 2001)

(Abb. 2). Ungefähr ein bis zwei Tage vor der Geburt der Maus befindet sich diese Zell-

Population in der Marginalzone des Rückenmarks und zeigt ein erhöhtes Expressionsniveau

der Proteine Nkx2.2 (Fu et al., 2002) und Sox10 (Stolt et al., 2002). Im Rückenmark von

Sox10-, Nkx2.2- oder Olig1-defizienten Mäusen konnte trotz einer relativ normalen

Entwicklung der Pro-Oligodendrozyten eine starke Beeinträchtigung der terminalen Differen-

zierung und der Expression von Myelingenen in den postmitotische Oligodendrozyten

nachgewiesen werden (Qi et al., 2001; Lu et al., 2002; Stolt et al., 2002; Xin et al., 2005).

Abb. 2: Schematische Darstellung der Oligodendrozyten-Entwicklung. In den Vertebraten spezifizieren sich ausgehend von den neuroepithelialen Vorläuferzellen zunächst oligodendrogliale Vorläufer, die sich über die Pro-Oligodendrozyten zu den prä-myelinisierenden und letztendlich zu den terminal differenzierten Oligodendrozyten entwickeln. Dabei exprimieren die Oligodendrozyten verschiedene Markerproteine, die ihr jeweiliges Entwicklungsstadium kennzeich-nen. Abbildung entnommen und leicht verändert aus (Woodruff et al., 2001).

Page 17: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

7

Aufgrund des ähnlichen Phänotyps der Sox10-, Nkx2.2- und Olig1-Mausmutanten ist

anzunehmen, dass diese Proteine mit hoher Wahrscheinlichkeit während der oligodendro-

glialen Differenzierung miteinander kooperieren (Liu et al., 2007). Neben Sox10 beeinflusst

auch Sox8, aus der Gruppe E der Sox-Proteine, die Differenzierung der Oligodendrozyten. So

konnte an früh-postnatalen Stadien in den terminal differenzierenden Oligodendrozyten Sox8-

defizienter Mäuse eine reduzierte Expression der beiden Myelingene MBP und PLP

festgestellt werden (Stolt et al., 2004).

Ferner ist auch das HLH-Protein Mash1/Ascl1 (Mammalian achaete scute homolog 1/

Achaete-scute complex homolog 1) sowohl für die Spezifizierung (Parras et al., 2004) als auch

für die terminale Differenzierung der Oligodendrozyten von Bedeutung (Battiste et al., 2007;

Sugimori et al., 2008). Folglich zeigten Ascl1-Überexpressionsstudien, dass dieses Protein

mit den beiden Faktoren Olig2 und Nkx2.2 kooperiert, und Ascl1-defiziente Mäuse wiesen

zum Zeitpunkt ihrer Geburt einen Differenzierungsdefekt in den myelinbildenden

Oligodendrozyten auf (Sugimori et al., 2007; Sugimori et al., 2008).

1.2.3 Myelinbildung in oligodendroglialen Zellen

Der Myelinisierungsprozess oligodendroglialer Zellen beginnt mit der Geburt und findet

hauptsächlich während der ersten drei postnatalen Wochen statt (Frank et al., 1999). Bereits in

der späten embryonalen Entwicklungsphase der Maus exprimieren differenzierte Oligoden-

drozyten das basische Myelinprotein (MBP) und das Proteolipidprotein (PLP) mit seiner

Isoform DM-20 (Abb. 2). Neben diesen beiden Hauptvertretern der Myelinproteine werden

auch Glykoproteine wie das Myelin-assozierte Glykoprotein (MAG) und das Myelin-Oligo-

dendrozyten-Glykoprotein (MOG) von reifen myelinisierenden Oligodendrozyten exprimiert.

Ein wichtiger Faktor, der die Myelinisierung im zentralen Nervensystem reguliert, ist der

Transkriptionsfaktor Sox10. Durch die Bindung von Sox10 als Monomer oder Dimer an regu-

latorische Elemente in den Promotorbereichen verschiedener Myelingene, wie beispielsweise

MBP oder PLP, kann das Myelinisierungsprogramm direkt in den Oligodendrozyten induziert

werden (Stolt et al., 2002). Weiterhin ist Sox10 zusammen mit Sox8 in der Lage als Hetero-

dimer an Konsensussequenzen im MBP-Promotorbereich zu binden und die MBP-Expression

zu aktivieren (Stolt et al., 2004). Im Zebrafisch findet die transkriptionelle Aktivierung der

Expression von MBP durch einen Olig1/Sox10-Komplex statt, der ebenfalls an ein

Page 18: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

8

konserviertes DNA-Motiv im MBP-Promotorbereich bindet (Li et al., 2007). Ein weiterer

Faktor, der verschiedene Myelingene reguliert und spezifisch von postmitotischen Oligo-

dendrozyten exprimiert wird, ist der vor kurzem entdeckte Myelin-Genregulatorische-Faktor

(MRF/Gm98) (Cahoy et al., 2008). Mittels MRF/Gm98-Überexpressionsstudien konnte eine

verstärkte Myelin-Genexpression in Oligodendrozytenvorläufer-Zellkulturen gezeigt werden.

Dagegen sind die prä-myelinisierenden Oligodendrozyten von MRF-defizienten Mäusen nicht

in der Lage, die Expression spezifischer Myelinproteine (MBP und PLP) zu aktivieren, um

dann die Axone zu myelinisieren. Infolgedessen tritt eine schwere Dysmyelinisierung des

zentralen Nervensystems auf (Emery et al., 2009).

Spezifische Myelinisierungsdefekte des zentralen Nervensystems konnten durch die shiverer-

Maus analysiert werden. Anhand einer spontanen Deletion der Exons 3-7 im MBP-Gen

kommt es zu einem kompletten Verlust aller MBP-Isoformen (Roach et al., 1983; Roach et

al., 1985; Molineaux et al., 1986), was zu einer schweren Dysmyelinisierung des zentralen

Nervensystems führt. Die Axone der Neurone sind äußerst gering oder gar nicht myelinisiert

und die einzelnen Myelinlamellen weisen in der Ultrastruktur eine unvollständige Kompak-

tierung auf. Homozygote Tiere dieser natürlichen MBP-Nullmutante zeigen im postnatalen

Stadium einen starken Tremor verbunden mit Ataxien und krampfartigen Anfällen

(Rosenbluth, 1980; Shen et al., 1985). Aufgrund dieses schweren Phänotyps ist die

Lebenserwartung der shiverer-Maus auf drei bis sechs Monate reduziert.

Page 19: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

9

1.3 Die Entwicklung des sympathischen Nervensystems

Neben dem Parasympathikus und dem enterischen Nervensystem bildet das sympathische

Nervensystem (SNS) die dritte Komponente des autonomen Nervensystems. Die Vorläufer-

zellen des Sympathikus sowie der beiden anderen Teilsysteme entstehen aus migrierenden

multipotenten Stammzellen, den Neuralleistenzellen (LaBonne & Bronner-Fraser, 1998). Die

prä-migratorische Neuralleiste entsteht als transiente Struktur am Übergang zwischen dem

Oberflächen- und Neuroektoderm und durchläuft eine epitheliale-mesenchymale Transition

(EMT). Diese morphologische Zell-Veränderung wird durch die Wnt6-Expression der

Epidermis und die BMP-Signale des zukünftigen Neuralrohrs initiiert (LaBonne & Bronner-

Fraser, 1999; Garcia-Castro et al., 2002). Noch vor dem Verlassen des Zellverbands im

dorsalen Neuralrohr exprimieren diese wanderungsfähigen Zellen bestimmte Transkriptions-

faktoren und Oberflächenmoleküle, die sie von den umgebenden ektodermalen Zellen

unterscheiden. Dazu gehören FoxD3 (Kos et al., 2001), Slug (Nieto et al., 1994), Snail und

Sox9 (Cheung et al., 2005) sowie verschiedene Cadherine und Zelladhäsionsmoleküle (Pla et

al., 2001). Am Embryonaltag 8,5 der Maus lösen sich diese determinierten Neuralleisten-

zellen von der dorsalen Region des Neuralrohrs ab, um entlang der rostro-caudalen Achse auf

definierten Migrationspfaden in die Peripherie auszuwandern (Garcia-Castro & Bronner-

Fraser, 1999). Dort angelangt differenzieren sie zu unterschiedlichen Zelltypen und Geweben.

Es ist vom Zeitpunkt der Auswanderung, vom rostro-caudalen Ursprungsort der multi-

potenten Neuralleistenzellen sowie von intrinsischen und extrinsischen Faktoren während

ihrer Migration abhängig, welche der verschiedenen Neuralleisten-Derivate aus den

Vorläufern generiert werden. Folglich wird die Neuralleiste in vier verschiedene Bereiche

eingeteilt: einen kranialen, einen Rumpf-, einen sakralen und einen vagalen Abschnitt

(Anderson, 1997). Die Neuralleistenzellen aus dem Rumpf entwickeln sich zum Beispiel zu

sensorischen und sympathischen Neuronen, zu chromaffinen Zellen der Nebenniere, zu extra-

adrenalen Paraganglien (z.B. das Organ von Zuckerkandl), zu Melanozyten, zu Schwann-

zellen und zu Satellitenglia in den Ganglien (Huber, 2006).

Die sympathischen Neurone lassen sich in prä- und postganglionäre Neurone einteilen, aus

denen das sympathische Nervensystem aufgebaut ist. Die Zellkörper der präganglionären

Neurone sind im oberen Brust- und Lendenbereich des Rückenmarks lokalisiert. Die Axone

dieser Neurone verlassen das Rückenmark über die Vorderwurzel und ziehen zu den

außerhalb des Rückenmarks in der Peripherie liegenden sympathischen Ganglien. Dort

Page 20: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

10

angelangt bilden sie Synapsen mit postganglionären Neuronen. Ein Großteil der

sympathischen Ganglien ist paarweise rechts und links in den jeweiligen Segmenten der

Wirbelsäule angeordnet und über Nervenstränge miteinander zu Ganglienketten verbunden.

Diese Grenzstrangganglien, auch Paravertebralganglien genannt, werden ihrer Lage nach in

Hals-, Brust-, Bauch- und Steißganglien eingeteilt. Zu den Grenzstrangganglien gehören das

Ganglion im oberen Halsbereich (superior cervical ganglion), von dem die gesamte

sympathische Innervierung des Kopfes ausgeht, das Brustbeinganglion (stellate ganglion) und

die sympathische Kette. Präganglionäre sympathische Nervenfasern können aber auch ohne

Umschaltung durch die Grenzstrangganglien direkt die sekundären Prävertebralganglien

ansteuern, zu denen die Ganglien der oberen (superior mesenteric ganglion) und unteren

(inferior mesenteric ganglion) Bauchhöhle gehören. Von dort aus ziehen die Nervenfasern zu

den inneren Organen (Glebova & Ginty, 2005).

1.3.1 Die sympathoadrenale Zell-Population des sympathischen

Nervensystems

Neuralleistenzellen, die für Sox10 positiv sind, migrieren von der Rumpfregion in

segmentaler Organisation durch die anterioren Teile der Somiten am Notochord vorbei und

sammeln sich vorerst dorso-lateral in engem Kontakt zur Aorta (Loring & Erickson, 1987;

Teillet et al., 1987; Britsch et al., 1998; Perris & Perissinotto, 2000; Krull, 2001). Diese Zell-

Population entwickelt sich zu den sympathoadrenalen (SA) Zellen und bildet zunächst die

primäre sympathische Ganglienkette (Abb. 3). Mit einer zweiten Zell-Wanderung entstehen

die endgültigen sympathischen Ganglien sowie die Anlagen des Nebennierenmarks. Infolge

intrinsischer und extrinsischer Signale differenzieren die sympathoadrenalen Zellen zu

sympathischen Neuronen, die die Gene für die beiden katecholaminergen Enzyme TH

(Tyrosine hydroxylase) und DBH (Dopamine-β-hydroxylase) exprimieren, sowie zu endo-

krinen chromaffinen Zellen der Nebenniere. Dabei sind TH und DBH in den sympathischen

Neuronen essentiell für die Synthese des noradrenergen Transmitters Noradrenalin. Die

chromaffinen Zellen sind zusätzlich positiv für PNMT (Phenylethanolamin-N-methyltrans-

ferase), das letzte Enzym der Adrenalinsynthese, und bilden die typischen großen chrom-

affinen Vesikel aus (Anderson et al., 1991; Le Douarin et al., 2004; Huber, 2006). Daneben

stellen die SIF (small intensely fluorescent)-Zellen, bezogen auf ihre Morphologie, eine

Page 21: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

11

Zwischenform der beiden oben genannten Zelllinien dar. Ähnlich den chromaffinen Zellen

besitzt diese intermediäre Zell-Population einerseits Vesikel zur Speicherung von

Katecholaminen und ist andererseits in der Lage durch die Ausbildung von Neuriten einen

neuronalen Phänotyp anzunehmen. Somit fungieren SIF-Zellen möglicherweise als endokrine

Zellen oder als Interneurone (Jew, 1985; Matthews, 1989) und sind oftmals in sympathischen

Ganglien anzutreffen (Tanaka & Chiba, 1996).

Abb. 3: Entstehung der sympathoadrenalen Zell-Population. Die Neuralleistenzellen aus der Rumpfregion sammeln sich an der dorsalen Aorta und bilden dort die primäre sympathische Ganglienkette (spg). Durch die induktiven BMP-Signale der dorsalen Aorta findet eine Spezifizierung der Neuralleistenzellen zu den sympathoadrenalen (SA)-Zellen statt. Diese exprimieren die pan-neuronalen Marker NF und SCG10 sowie die beiden Gene TH und DBH, die differenzierte noradrenerge Neurone kennzeichnen. Mit einer zweiten Zell-Wanderung entstehen die endgültigen sympathischen Ganglien (sg) und die Nebennieren-Anlagen (ag). Nt: Neuralrohr; no: Notochord. Abbildung entnommen aus (Huber, 2006).

1.3.2 Spezifizierung sympathoadrenaler Zellen

Unter dem Einfluss der BMPs (in der Maus BMP-2 und BMP-4), die aus der Wand der

dorsalen Aorta sezerniert werden, spezifizieren sich die Vorläuferzellen in den primären

sympathischen Ganglien zu den sympathoadrenalen Zellen (Shah et al., 1996). Mittels in vivo

Experimenten konnte im Huhn gezeigt werden, dass durch die induzierende Wirkung von

BMP-4 und BMP-7 die Anzahl an Zellen, die Neurofilament 160 (NF160) sowie TH bzw.

DBH exprimieren, erhöht werden kann. Noggin inhibiert hingegen die BMP-4-Signal-

Page 22: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

12

transduktion und unterdrückt somit die Produktion sympathoadrenaler Zellen (Reissmann et

al., 1996; Schneider et al., 1999). Neben der fundamentalen Rolle der BMPs bei der

Spezifizierung dieser Zell-Population sind diese Signalmoleküle auch für die Entwicklung

parasympathischer Neurone von Bedeutung (Muller & Rohrer, 2002). Daher scheinen noch

weitere unbekannte Faktoren an der Bildung sympathoadrenaler Zellen beteiligt zu sein.

Beispielsweise exprimieren aviäre migrierende Neuralleistenzellen aus der Rumpfregion den

für die Subpopulationen des autonomen Nervensystems spezifischen Transkriptionsfaktor

Cash-1 (Chicken Achaete-Scute homolog 1), bevor BMP-4 von der Wand der dorsalen Aorta

sezerniert und der BMP-Rezeptor aktiviert wird (Ernsberger et al., 1995; McPherson et al.,

2000). Auch könnten Signale von den Somiten, dem ventralen Neuralrohr und dem Noto-

chord mit den BMPs kooperieren, um die Spezifizierung sympathoadrenaler Zellen zu

gewährleisten. Ferner exprimieren diese Vorläufer frühe neuronale Marker wie zum Beispiel

NF160 und das Neuronen-spezifische Tubulin-β-III sowie den HD-Transkriptionsfaktor

Phox2b (Paired-Like Homeobox 2B) (Pattyn et al., 1999).

1.3.3 Differenzierung sympathoadrenaler Zellen

Nach der Spezifizierung der sympathoadrenalen Vorläuferzellen in den primären Ganglien

wandern diese Zellen ein zweites Mal und gelangen in ihre Zielgebiete: Die sekundären

sympathischen Ganglien und das Mark der Nebenniere (Anderson et al., 1991). Dort ist ihre

terminale Differenzierung zu den sympathischen Neuronen, den SIF-Zellen und den chrom-

affinen Zellen zunächst von lokalen Umgebungssignalen wie zum Beispiel den Wachstums-

faktoren FGF (fibroblast growth factor) und NGF (nerve growth factor) abhängig. Weiterhin

wird in den prä- und paravertebralen sympathischen Ganglien die Ausprägung des nor-

adrenergen neuronalen Phänotyps der postganglionären sympathischen Neurone durch ein ko-

ordiniertes Netzwerk verschiedener Transkriptionsfaktoren reguliert (Huber, 2006) (Abb. 4).

Dabei induzieren zuerst die BMPs aus der Wand der dorsalen Aorta die Faktoren

Mash1/Ascl1 und Phox2b in den sympathoadrenalen Vorläufern (Schneider et al., 1999). In

diesen Zellen werden während weiterer Differenzierungsprozesse der HD-Faktor Phox2a, der

bHLH-Faktor Hand2 und der Zinkfinger-Transkriptionsfaktor Gata3 sowie die pan-

neuronalen Marker NF160 und SCG10 (Superior Cervical Ganglia 10) exprimiert (Abb. 4).

Page 23: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

13

Letztendlich werden in den terminal differenzierten noradrenergen Neuronen die für die

Katecholaminsynthese verantwortlichen Enzyme TH und DBH aktiviert (Goridis & Rohrer,

2002).

Abb. 4: Schematische Darstellung der Entwicklung noradrenerger Neurone. Neuralleistenzellen werden durch die BMP-Signalmoleküle zu sympathischen Vorläufern spezifiziert. Diese Zell-Population exprimiert eine Reihe von verschiedenen Transkriptionsfaktoren (Mash1, Phox2b, Hand2, Gata3), die sowohl die Expression der noradrenergen Marker TH und DBH als auch die der neuronalen Faktoren NF160 und SCG10 kontrollieren. Aufgrund lokaler Umgebungssignale und bestimmter Transkriptionsfaktoren differenzieren sympathische Vorläufer zu postmitotischen noradrenergen Neuronen. Abbildung entnommen und leicht verändert aus (Goridis & Rohrer, 2002).

Der pro-neuronale bHLH-Transkriptionsfaktor Mash1 bestimmt sehr früh in der Entwicklung

neuronale Differenzierungsprozesse (Guillemot et al., 1993; Mao & Nadal-Ginard, 1996; Ma

et al., 1997) und wird u.a. in den Vorläuferzellen der sympathischen, parasympathischen und

enterischen Neurone transient exprimiert (Lo et al., 1991; Guillemot & Joyner, 1993). Seine

Expression beginnt mit der Ansammlung der sympathoadrenalen Vorläufer in den primären

sympathischen Ganglien und endet mit der Bildung der sekundären sympathischen Ganglien.

Die Überexpression von Mash1 in Zellkulturen klonaler muriner Neuralleistenzellen ist

ausreichend, um initiale Schritte noradrenerger Differenzierung in den sympathoadrenalen

Vorläufern auszulösen (Lo et al., 1998). Mash1-defiziente Mäuse zeigen hingegen keine

Phox2a-Expression in den sympathischen Vorläuferzellen, was letztlich zu einem Verlust der

noradrenerg differenzierten Zell-Population führt. In diesen Mäusen entwickelt sich ein

Großteil der sympathoadrenalen Vorläufer in den sympathischen Ganglien nur bis zum

Stadium der frühen Neuroblasten. Dennoch scheint die Expression früher neuronaler Marker

Page 24: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

14

wie Phox2b, Hand2 und Tubulin-β-III nicht gestört zu sein (Sommer et al., 1995). Somit wird

Mash1 für den Übergang von der Vorläuferzelle zur differenzierten, noradrenergen Zelle

benötigt (Huber et al., 2002; Huber, 2006).

In den Vertebraten wird der HD-Transkriptionsfaktor Phox2b in den noradrenergen Neuronen

des zentralen Nervensystems und in den neuronalen Zellen des peripheren Nervensystems

exprimiert (Pattyn et al., 1999). Ähnlich wie Mash1 ist Phox2b in den sympathoadrenalen

Zellen ab dem Zeitpunkt ihrer Aggregation an der dorsalen Aorta nachweisbar. Obwohl im

Huhn der zu Mash1 homologe Faktor Cash-1 der Phox2b-Expression vorausgeht (Ernsberger

et al., 1995), konnte in Mash1-defizienten Mäusen gezeigt werden, dass Phox2b unabhängig

von Mash1 exprimiert werden kann (Hirsch et al., 1998; Huber et al., 2002). Im Vergleich zu

Mash1-defizienten Mäusen bleiben die sympathoadrenalen Zellen in den Phox2b-defizienten

Tieren in einem noch unreiferen Zustand. Dieser Defekt ist äußerst schwerwiegend und wird

bereits an den früh-embryonalen Zeitpunkten offensichtlich. So sind am Embryonaltag 13,5

keine sympathischen Ganglien aufzufinden und die terminale Differenzierung sympathischer

Vorläuferzellen unterbleibt (Morin et al., 1997; Pattyn et al., 1999). Mit Hilfe von in vitro

Studien konnte eine direkte Bindung von Phox2b an die Promotorregion der Gene TH und

DBH gezeigt werden (Kim et al., 1998; Lo et al., 1999; Adachi et al., 2000). Das mit Phox2b

eng verwandte HD-Protein Phox2a (Valarche et al., 1993; Morin et al., 1997; Pattyn et al.,

1997) aktiviert Phox2b und ist an der autonomen Neurogenese beteiligt (Stanke et al., 1999).

Trotzdem ist Phox2a für die Entwicklung sympathischer Neurone verzichtbar oder durch

Phox2b ersetzbar. Die einzige beobachtbare Anomalie in Phox2a-defizienten Mäusen ist eine

veränderte Morphologie des oberen zervikalen Ganglions (Morin et al., 1997).

Neben den beiden Transkriptionsfaktoren Mash1 und Phox2b ist der bHLH-Faktor Hand2

(dHand) zusätzlich an der Ausprägung des BMP-induzierten noradrenergen Phänotyps

beteiligt (Howard et al., 2000). Zeitlich gesehen wird Hand2 infolge von Phox2b exprimiert

und spielt somit eine Rolle bei der transkriptionellen Regulation der Expression von TH und

DBH, die die katecholaminerge Differenzierung kennzeichnen (Howard et al., 1999; Howard

et al., 2000; Morikawa et al., 2005; Lucas et al., 2006; Morikawa et al., 2007). DBH-

Promotorstudien konnten zeigen, dass Hand2 über Protein-Protein-Wechselwirkungen mit

Phox2a und anderen transkriptionellen Regulatoren interagiert und somit die DBH-

Expression reguliert (Rychlik et al., 2003; Xu et al., 2003). Sowohl Hand2-defiziente

Page 25: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

15

Zebrafische als auch spezifische Deletionen von Hand2 in murinen Neuralleistenzellen zeigen

eine reduzierte Genexpression für TH und DBH in den frühen sympathischen Ganglien

(Lucas et al., 2006; Morikawa et al., 2007; Hendershot et al., 2008). Somit ist der

Transkriptionsfaktor Hand2 essentiell für die Expression von TH bzw. DBH.

Ein weiterer wichtiger Faktor noradrenerger Differenzierung in den sympathischen Neuronen

ist der murine Zinkfinger-Transkriptionsfaktor Gata3, der im Huhn als Gata2 bezeichnet wird.

An den frühen Entwicklungszeitpunkten der sympathoadrenalen Zell-Population taucht Gata3

in den primären sympathischen Ganglien auf und später in den sympathischen Neuronen

sowie in den chromaffinen Zellen. Gata3-defiziente Mäuse sind embryonal letal und sterben

am Embryonaltag 11 aufgrund eines erheblichen Mangels an Noradrenalin (Pandolfi et al.,

1995). Bedingt durch die starke Beeinträchtigung in der Entwicklung noradrenerger Gewebe

werden TH und DBH kaum mehr exprimiert, was zum Verlust der sympathoadrenalen Zellen

führt (Lim et al., 2000; Moriguchi et al., 2006). In Gata3-defizienten Tieren wird zudem

Mash1 nicht wie üblicherweise am Embryonaltag 14,5 abgeschaltet, sondern verstärkt ex-

primiert, was zu einem Differenzierungsdefekt der sympathoadrenalen Zellen führt. Gata3 ist

somit essentiell für die Aktivierung der TH- und DBH-Expression und der damit verbundenen

Differenzierung sowie dem Überleben sympathoadrenaler Zell-Derivate (Moriguchi et al.,

2006). Ferner konnte gezeigt werden, dass die Gata2/3-Expression in den sympathischen

Ganglien nach derjenigen von Mash1, Phox2b und Hand2 einsetzt und durch Phox2b

induziert wird (Tsarovina et al., 2004). Weiterhin wirkt Gata3 regulierend auf die Faktoren

Mash1, Phox2b und Hand2 zurück. Somit scheinen die an der Differenzierung sympathischer

Neurone beteiligten Transkriptionsfaktoren über ein regulatorisches Netzwerk und nicht über

eine lineare Signalkaskade zu wirken (Tsarovina et al., 2004; Moriguchi et al., 2006).

Zusätzlich greifen weitere Transkriptionsfaktoren wie zum Beispiel AP-2β, Trim11 oder

Insm1 aktiv in die transkriptionelle Regulation der Ausbildung des noradrenergen Phänotyps

sympathischer Neurone mit ein (Hong et al., 2008a; Hong et al., 2008b; Wildner et al., 2008).

Page 26: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

16

1.4 Die Familie der Sox-Proteine

Im Jahr 1990 entdeckten John Gubbay und Andrew Sinclair den geschlechtsbestimmenden

Transkriptionsfaktor SRY (sex-determining region on Y chromosome) als erstes Mitglied der

Sox-Proteinfamilie (Gubbay et al., 1990; Sinclair et al., 1990). SRY ist auf dem Y-Chromo-

som der Säugetiere kodiert und enthält als DNA-Bindedomäne eine so genannte SRY-Box,

von der sich der Name der Sox-Proteine ableitet. Die Sox-Proteine gehören zur Superfamilie

der HMG (high mobility group)-Proteine, deren DNA-Bindedomäne in vielen verschiedenen

Proteinen identifiziert wurde. Die aus ca. 80 Aminosäuren bestehende HMG-Domäne des

SRY-Faktors ist zu mindestens 50 Prozent in den Sox-Proteinen konserviert. Aufgrund dieser

Sequenz-Homologie in der HMG-Box bilden SRY und die Sox (Sry-related HMG-box)-

Proteine eine Untergruppe der HMG-Box-Superfamilie. Sox-Proteine binden mit ihrer HMG-

Domäne sequenzspezifisch über die kleine Furche der DNA-Doppelhelix an die ihnen

gemeinsame heptamere Konsensussequenz 5`-A/T A/T CAA A/T G-3` (Harley et al., 1994;

Weiss, 2001). Dabei wird die DNA um einen Winkel von 70-85° gebeugt, was zu ihrer

partiellen Entwindung führt (Ferrari et al., 1992; Connor et al., 1994; Werner et al., 1995).

Über die HMG-Domäne finden nicht nur Protein-DNA-, sondern auch Protein-Protein-

Wechselwirkungen statt (Ambrosetti et al., 1997; Hosking et al., 2001; Wissmuller et al.,

2006). In Säugetieren wurden 20 unterschiedliche Sox-Proteine identifiziert, die aufgrund der

Phylogenie und Sequenz-Homologie ihrer HMG-Domäne in acht Untergruppen (A-J)

eingeteilt werden. (Pevny & Lovell-Badge, 1997; Wegner, 1999; Bowles et al., 2000;

Schepers et al., 2002). Dabei sind die Aminosäuresequenzen der HMG-Box zwischen den

einzelnen Mitgliedern einer Gruppe zu mehr als 80 Prozent identisch.

Bestimmte Sox-Proteine übernehmen eine funktionelle Rolle im Nervensystem der Verte-

braten als wichtige transkriptionelle Regulatoren neuronaler sowie glialer Entwicklungs-

prozesse. Dazu gehören die Mitglieder der SoxB1-, SoxB2-, SoxC-, SoxD- und SoxE-

Gruppen (Lefebvre et al., 2007). So wird die Spezifizierung und das Fortbestehen neuraler

Stammzellen durch die Transkriptionsfaktoren der SoxB1-Gruppe (Sox1, Sox2, Sox3)

reguliert, während die neuronale Differenzierung durch die Mitglieder der SoxB2-Gruppe

(Sox14 und Sox21) beeinflusst wird (Bylund et al., 2003; Pevny & Placzek, 2005; Sandberg

et al., 2005; Wegner & Stolt, 2005). Die Transkriptionsfaktoren der Gruppe C der Sox-

Proteine, Sox4, Sox11 und Sox12 werden im Rahmen der Neurogenese transient in

spezifizierten, reifenden, neuronalen Vorläuferzellen exprimiert und anschließend in den sich

Page 27: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

17

differenzierenden Neuronen ausgeschaltet (Hargrave et al., 1997; Jay et al., 1997; Kuhlbrodt

et al., 1998a; Cheung et al., 2000). Ferner sind die beiden Faktoren Sox4 und Sox11 im

zentralen Nervensystem an der Aktivierung pan-neuronaler Gene beteiligt (Bergsland et al.,

2006). Die Proteine der SoxD- und SoxE-Gruppe spielen während der Gliogenese des

zentralen Nerven-systems eine entscheidende Rolle. So werden Spezifizierungs-, Reifungs-

und terminale Differenzierungsprozesse verschiedener glialer Zelltypen durch das

Zusammenwirken der Sox-Proteine der Gruppe E (Sox8, Sox9 und Sox10) vorangetrieben,

während die Transkriptionsfaktoren der Gruppe D (Sox5 und Sox6) die Entwicklung

oligodendroglialer Zellen reprimieren (Wegner & Stolt, 2005; Stolt & Wegner, 2009).

1.4.1 Die Gruppe C der Sox-Proteine

Zu den Sox-Proteinen der Gruppe C gehören die Vertreter Sox4, Sox11 und Sox12, die vor

allem im Menschen, der Maus und auch in den meisten anderen Vertebraten vorkommen

(Abb. 5). Evolutionär gesehen entstanden sie bereits sehr früh durch Genduplikations-

vorgänge, da sowohl in Drosophila melanogaster als auch in anderen Invertebraten nur ein

einziges SoxC-Gen nachgewiesen werden konnte (Cremazy et al., 2001; Guth & Wegner,

2008). Die Gene der SoxC-Untergruppe besitzen, wie die Mitglieder der Gruppe B, keine

Exon-Intron-Struktur und werden jeweils von einem einzelnen Exon kodiert. Die DNA-

Bindedomäne (HMG-Box) der SoxC-Proteine befindet sich im N-terminalen Drittel und ist

innerhalb der drei Mitglieder hoch konserviert (Jay et al., 1995; Kuhlbrodt et al., 1998a;

Maschhoff et al., 2003). Zudem konnte im C-terminalen Drittel der drei Transkriptions-

faktoren ein weiterer sequenzhomologer Bereich als Transaktivierungsdomäne identifiziert

werden (Wegner, 1999; Bowles et al., 2000; Schepers et al., 2002). Aufgrund ihres hohen

Verwandtschaftsgrades werden den drei SoxC-Proteinen Sox4, Sox11 und Sox12 ähnliche

biochemische Eigenschaften zugedacht. Folglich können sie bei örtlich und zeitlich

gemeinsamer Expression in einem Gewebe den Verlust des jeweiligen anderen Proteins

kompensieren und weisen aus diesem Grund eine funktionelle Redundanz auf. Alle drei

SoxC-Proteine zeigen ein stark überlappendes Expressionsmuster im sich entwickelnden

Nervensystem und scheinen daher eine wichtige Rolle bei neuronalen Reifungsprozessen zu

spielen (Cheung et al., 2000; Hoser et al., 2008).

Page 28: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

18

Abb. 5: Die Gruppe C der Sox-Proteine. Sox4 und Sox11 aus der Maus (mo-Sox4, mo-Sox11), Sox12 aus dem Menschen (hu-Sox12) und Sox24 aus der Regenbogenforelle (tr-Sox24) besitzen keine Introns (ni) und weisen im N-terminalen Drittel eine HMG-Box (schwarze Box) und im C-terminalen Drittel eine Transaktivierungsdomäne (TA: hellgrauer Kasten mit roter Umrandung) auf. Weiße Box: hoch konservierter Bereich; hellblaue Raute: serinreiche Sequenz; gelbe Form: saure Region; dunkelblaues Rechteck: prolin-glutaminreicher Bereich. Abbildung entnommen und leicht verändert aus (Bowles et al., 2000).

1.4.1.1 Sox4

Der Transkriptionsfaktor Sox4, der von einem 4,9 kb großen einzelnen Exon kodiert wird

(Schilham et al., 1993), zeigt eine transaktivierende Kapazität auf die Transkription. Die dafür

verantwortliche Transaktivierungsdomäne ist im serinreichen Bereich des C-Terminus

lokalisiert. Weiterhin konnte nachgewiesen werden, dass Sox4 in den T- und B-Lymphozyten

von adultem Thymusgewebe sowie in den Gonaden und im fötalen Gehirn der Maus

exprimiert wird (van de Wetering et al., 1993). In der frühen Embryogenese konnten Sox4-

Transkripte in den Branchialbögen, der Trachea und dem Ösophagus detektiert werden

(Schilham et al., 1996; Ya et al., 1998). An spät-embryonalen Zeitpunkten wird Sox4 dagegen

in der Epiphysenfuge der sich entwickelnden Knochen exprimiert und über das Parathyroid-

hormon und seinen Rezeptor reguliert (Reppe et al., 2000). Daher scheint Sox4, ähnlich den

Transkriptionsfaktoren Sox5, Sox6 und Sox9, eine Rolle in der Chondrozyten-Entwicklung

einzunehmen (Sekiya et al., 2002). Ferner konnte auch gezeigt werden, dass Sox4 postnatal

an der Knochenbildung beteiligt ist (Nissen-Meyer et al., 2007). Weitere Sox4-Expressions-

orte in der Maus sind sowohl die neuronalen als auch die glialen Vorläuferzellen (Cheung et

al., 2000; Bergsland et al., 2006; Hoser et al., 2007; Potzner et al., 2007), die Endokardkissen

und Endokardleisten des Herzens am Embryonaltag 13 (Schilham et al., 1996), sowie die

Page 29: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

19

endokrinen Zellen des Pankreas im Zebrafisch und in der Maus (Lioubinski et al., 2003;

Mavropoulos et al., 2005; Wilson et al., 2005). Daneben konnte in bestimmten malignen

Tumorarten wie dem klassischen Medulloblastom (Lee et al., 2002) oder dem Prostatakrebs

(Liu et al., 2006) eine Überexpression von Sox4 nachgewiesen werden. Durch induzierte

Repression von Sox4 mittels RNA-Interferenz konnte in den Prostata-Krebszellen eine

erhöhte Apoptose und somit eine anti-apoptotische Wirkung von Sox4 gezeigt werden (Liu et

al., 2006; Pramoonjago et al., 2006). Dagegen übt Sox4 einen pro-apoptotischen Effekt in

hepatozellulären Karzinomzellen aus (Ahn et al., 2002; Hur et al., 2004). Somit scheint Sox4

in Abhängigkeit vom jeweiligen Gewebe den kontrollierten Zelltod zu beeinflussen.

Mittels Mausmutanten, in denen die kodierende Sequenz für Sox4 deletiert wurde, konnte die

Funktion dieses Proteins analysiert werden. Dabei demonstrieren histologische Unter-

suchungen von Sox4-defizienten Mäusen sowohl Fehlbildungen der Herzklappen als auch

schwere Missbildungen der Ausstrombahn des Herzens. Darüber hinaus wird die Entwicklung

der Lymphozyten auf dem pro-B-Zellstadium angehalten. Aufgrund der Herzklappen-

insuffizienz sterben diese Tiere am Embryonaltag 14 (Schilham et al., 1996).

Die Analyse des Expressionsmusters von Sox4 im sich entwickelnden zentralen Nerven-

system von Wildtyp-Tieren zeigt, dass Sox4 in den neuralen Vorläuferzellen, die aus der

proliferierenden Ventrikulärzone des Neuralrohrs auswandern, verstärkt exprimiert wird. Im

weiteren Verlauf differenzieren die Vorläufer zu reifen Neuronen, in denen die Sox4-

Expression abgeschaltet wird (Cheung et al., 2000). Weiterhin finden sich größere Mengen an

Sox4-Transkripten in bestimmten Regionen des sich entwickelnden Gehirns. Zu diesen

Bereichen gehören der zerebrale Kortex, der Thalamus, der Hippokampus und der cerebelläre

Kortex. Trotz dieser starken Sox4-Expression im Gehirn sowie im Rückenmark zeigen Sox4-

defiziente Embryonen keine abnorme Entwicklung im zentralen Nervensystem bis zum

Zeitpunkt ihres Todes an 14 dpc. Ein möglicher Grund hierfür ist die nahe biochemische

Verwandtschaft von Sox4 zu dem Protein Sox11, sowie ein ähnliches embryonales

Expressionsmuster beider Transkriptionsfaktoren. Deshalb könnte Sox11 den Funktions-

verlust von Sox4 an den frühen Zeitpunkten der Entwicklung im zentralen Nervensystem

kompensieren (Cheung et al., 2000).

Page 30: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

20

1.4.1.2 Sox11

Neben Sox4 konnte mit Sox11 ein weiterer Vertreter der Gruppe C in der Maus identifiziert

werden (Gubbay et al., 1990). Durch Aminosäure-Sequenzanalysen konnten im C-terminalen

Bereich Homologien zwischen dem humanen SOX11, das auf dem kurzen Arm des

Chromosoms 2 (2p25) lokalisiert ist, und dem murinen sowie dem aviären Sox11 festgestellt

werden. In den carboxyterminalen Regionen von Sox4 und Sox11 wurden erhebliche

Ähnlichkeiten festgestellt, denn beide Sox-Proteine enthalten eine serinreiche Domäne und

zeigen eine 82%-ige Übereinstimmung in den letzten 34 Aminosäuren. Auch Sox11 besitzt,

wie bereits schon für Sox4 gezeigt, in dieser Region eine stark transaktivierende Funktion

(van de Wetering et al., 1993; Kuhlbrodt et al., 1998a; Dy et al., 2008; Hoser et al., 2008). In

den drei Organismen Maus, Huhn und Mensch können Sox11-Transkripte in den reifenden

Neuronen des sich entwickelnden zentralen sowie peripheren Nervensystems detektiert

werden, deren Vorkommen im weiteren Verlauf der Entwicklung wieder abnimmt (Jay et al.,

1995; Uwanogho et al., 1995). Daneben weisen Xenopus-Studien darauf hin, dass Sox11

durch die Expression von Chordin induziert wird, mit der Nemo-like Kinase (NLK) kooperiert

und dabei die neurale Entwicklung stimuliert (Hyodo-Miura et al., 2002).

Durch Analysen in der eigenen Arbeitsgruppe konnten Sox4- und Sox11-Transkripte in

oligodendroglialen Vorläuferzellen, nicht aber in terminal differenzierten Oligodendrozyten

nachgewiesen werden (Kuhlbrodt et al., 1998a). Zudem wird Sox11 in verschiedenen murinen

Organen und Geweben während der Embryonalentwicklung exprimiert. Dazu gehören

beispielsweise das Riechepithel, die Epithelien der Speiseröhre, des Magens, des Pankreas

und der Speicheldrüsen sowie die Branchialbögen, die Ohren, die Augen, die Gaumenplatte,

die Lunge, die Niere, die Milz und die Extremitäten (Jay et al., 1995; Hargrave et al., 1997).

Ferner wird Sox11 sowohl in neuronalen Vorläuferzellen als auch in unreifen Neuronen

während der adulten Neurogenese exprimiert. Durch die zeitgleiche Ko-Expression mit dem

Mikrotubulus-assozierten Protein Doublecortin (DCX), das postmitotische unreife Neurone

charakterisiert, wird Sox11 eine mögliche regulative Rolle in der Differenzierung neuronaler

Zellen im adulten zentralen Nervensystem zugeordnet (Haslinger et al., 2009). Ähnlich wie

bereits für Sox4 gezeigt, kann eine starke Sox11-Expression auch zu malignen embryonalen

Medulloblastomen führen (Lee et al., 2002). Somit können beide Transkriptionsfaktoren,

Sox4 und Sox11, zu einem malignen Phänotyp beitragen, indem sie Wachstum und

Proliferation entarteter Zellen fördern.

Page 31: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

21

Anhand von Sox11-defizienten Mausmutanten, die in der eigenen Arbeitsgruppe generiert

wurden, konnte die Funktion von Sox11 während der Embryogenese genauer untersucht

werden (Sock et al., 2004). Diese Mäuse sterben aufgrund einer kongenitalen Zyanose kurz

nach ihrer Geburt. Neben pulmonaler Insuffizienz bedingt durch eine Lungenhypoplasie

führen kardiovaskuläre Fehlbildungen zu schweren Herzfehlern. Die Ursachen für diese

Entwicklungsdefekte sind vielschichtig. Einerseits konnte eine unvollständige Trennung der

Scheidewand zwischen der rechten und linken Herzkammer beobachtet werden und

andererseits entspringen sowohl die Aorta als auch die Lungenarterie aus dem rechten

Ventrikel. Außerdem fand oftmals keine Trennung der Ausstrombahn des Herzens in Aorta

und Truncus pulmonalis statt. Neben den komplexen Herzdefekten treten in 70 Prozent der

Sox11-defizienten Tiere Lippen-Kiefergaumenspalten und Verschlussdefekte der Bauchhöhle

sowie des Augenlids auf. Außerdem zeigen die abdominalen Organe wie der Magen und der

Pankreas eine hypomorphe Struktur, wohingegen die Milz vollständig fehlt. Weitere

phänotypische Merkmale der Sox11-Mausmutanten sind Ossifikationsdefekte des Schädels

und Skelettfehlbildungen. Trotz dieser zahlreichen Schäden lassen sich keine signifikanten

Störungen in der neuronalen Entwicklung des zentralen und peripheren Nervensystems in den

Sox11-defizienten Mäusen erkennen (Sock et al., 2004). Auch in diesem Fall könnte der

ausbleibende neuronale Phänotyp mit der weit reichenden Ko-Expression von Sox4 und

Sox11 erklärt werden. Ferner zeigte die Arbeitsgruppe um Jonas Muhr anhand von Elektro-

porationsstudien in das frühe Neuralrohr des Huhns das potenzielle Zusammenwirken der

beiden SoxC-Proteine bei der Differenzierung pro-neuraler Zellen. Dabei werden beide

Transkriptionsfaktoren für die Expression pan-neuronaler Gene, wie zum Beispiel von

Tubulin-β-III (Tubb3) benötigt. Das Gen Tubb3 wurde in dieser Studie als ein mögliches

direktes Zielgen von Sox-Proteinen der Gruppe C identifiziert (Bergsland et al., 2006).

1.4.1.3 Sox12

Sox12 ist das dritte Mitglied der Gruppe C und wurde bei seiner Entdeckung zunächst als

Sox22 bezeichnet (Jay et al., 1997). Im menschlichen Embryo wird SOX12 in zahlreichen

mesodermalen und vereinzelt in entodermalen Derivaten exprimiert (Jay et al., 1997).

Während der Embryogenese der Maus konnte ein weitgehend überlappendes Expressions-

muster von Sox12 mit den beiden anderen SoxC-Proteinen, Sox4 und Sox11, in den

Page 32: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Einleitung

22

verschiedenen Geweben und im sich entwickelnden Nervensystem aufgezeigt werden (Hoser

et al., 2008). Im Vergleich zu Sox4 und Sox11 liefert Sox12 ein sehr gleichförmiges, aber

deutlich schwächeres Expressionssignal. Auch das dritte Mitglied der Sox-Proteine besitzt

transaktivierende Kapazitäten, die allerdings im Vergleich zu denjenigen von Sox11 sehr viel

geringer sind (Dy et al., 2008; Hoser et al., 2008). Überraschenderweise entwickeln sich

Sox12-defiziente Mäuse normal und zeigen keine offensichtlichen phänotypischen Ver-

änderungen im Gegensatz zu den oben beschriebenen schweren Entwicklungsdefekten der

Sox4- bzw. Sox11-defizienten Mäuse (Schilham et al., 1996; Sock et al., 2004; Hoser et al.,

2008). Diese Beobachtungen sprechen dafür, dass die beiden Proteine Sox4 und Sox11 den

Verlust von Sox12 kompensieren können, während Sox12 die fehlende Sox4- oder Sox11-

Expression scheinbar nicht ersetzen kann. Somit könnte es sich bei dem dritten Mitglied der

Gruppe C der Sox-Proteine, um eine nichtreziproke funktionelle Redundanz zwischen Sox12

und den beiden anderen SoxC-Proteinen handeln.

Page 33: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Problemstellung

23

2 Problemstellung

Die Transkriptionsfaktoren der Sox-Proteinfamilie sind entscheidend an der Regulation

verschiedener Entwicklungsprozesse beteiligt. Die starke und überlappende Expression von

Sox4 und Sox11 in neuralen Geweben deutet auf eine wichtige funktionelle Rolle dieser

beiden SoxC-Proteine im sich entwickelnden Nervensystem hin. Dennoch konnten nach

Deletion von Sox4 oder Sox11 keine neuralen Defekte in den entsprechenden Maus-Modellen

nachgewiesen werden. Dies lässt eine gegenseitige Kompensation von Sox4 und Sox11

vermuten, bedingt durch die hohe Übereinstimmung der Aminosäuresequenzen beider SoxC-

Proteine und den daraus resultierenden vergleichbaren biochemischen Eigenschaften.

Daher sollte im ersten Teil dieser Arbeit die Funktion der SoxC-Proteine im zentralen

Nervensystem mittels Überexpressionsstudien untersucht werden. Für die Analyse sollten

transgene Mäuse generiert werden, die den Transkriptionsfaktor Sox4 unter dem MBP-

Promotor in terminal differenzierenden Oligodendrozyten exprimieren. Mittels histologischer

Methoden sollte an postnatalen Entwicklungsstadien MBP-Sox4-transgener Tiere die zelltyp-

spezifische Expression des Sox4-Transgens und die Auswirkungen auf die Entwicklung

oligodendroglialer Zellen analysiert werden.

Darüber hinaus sollte mittels Gendeletionsstudien die Funktion von Sox4 und Sox11 im sich

entwickelnden sympathischen Nervensystem untersucht werden. Um mögliche kompensato-

rische Effekte zwischen den beiden SoxC-Proteinen zu vermeiden, sollten im zweiten Teil

dieser Arbeit Sox4/Sox11-doppelt-defiziente Embryonen generiert werden. Dafür sollten

Tiere mit einer konstitutiven Deletion des Sox11-Gens im gesamten Organismus und einer

spezifischen Sox4-Deletion in den sympathoadrenalen Vorläuferzellen der sich entwickelnden

sympathischen Ganglien verwendet werden. Durch immunhistochemische Färbungen und In

situ Hybridisierungen von pan-neuronalen sowie noradrenergen Marker und Regulatorgenen

sollten mögliche Effekte auf die Entwicklung sympathoadrenaler Zellen in Sox4/Sox11-

doppelt-defizienten sympathischen Ganglien analysiert werden. Zusätzlich sollten Pro-

liferationsstudien Aufschluss über die Teilungsraten sympathoadrenaler Zellen geben und das

Überleben sympathischer Neurone in den SoxC-defizienten Tieren mittels Apoptosestudien

untersucht werden. Durch die Analyse der Aufgaben von Sox4 und Sox11 in verschiedenen

Zelltypen des Nervensystems sollte geklärt werden, ob die SoxC-Proteine immer gleichartige

oder unterschiedliche, den Entwicklungsabläufen angepasste Funktionen ausüben.

Page 34: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

24

3 Ergebnisse

3.1 Funktionelle Analyse der SoxC-Proteine im zentralen

Nervensystem der Maus

Die beiden Transkriptionsfaktoren Sox4 und Sox11 werden wie viele andere Sox-Proteine

während der murinen Entwicklung in verschiedenen Geweben exprimiert. Darunter befinden

sich Neuralleistenderivate, Neurone, Astrozyten und Oligodendrozyten (Schilham et al.,

1996; Kuhlbrodt et al., 1998a; Bergsland et al., 2006; Hoser et al., 2007). Trotz des stark

überlappenden Expressionsmusters beider Transkriptionsfaktoren im sich entwickelnden

zentralen Nervensystem konnten bisher weder in Sox4- noch in Sox11-defizienten Mäusen

neurale Defekte nachgewiesen werden (Cheung et al., 2000; Sock et al., 2004). Der Grund

hierfür könnte die angenommene funktionelle Redundanz beider Faktoren sein, bedingt durch

den hohen Grad der Übereinstimmung in der Aminosäuresequenz beider SoxC-Proteine und

den daraus resultierenden analogen biochemischen Eigenschaften.

Da konstitutive Sox4-defiziente Tiere während der Embryogenese und Sox11-defiziente

Mäuse spätestens zum Zeitpunkt der Geburt versterben (Schilham et al., 1996; Sock et al.,

2004) sollte im ersten Teil der Arbeit die Rolle der SoxC-Proteine im zentralen Nervensystem

mittels Überexpressionsstudien analysiert werden. Dazu wurden transgene Mäuse generiert,

die entweder Sox4 oder Sox11 spezifisch unter dem MBP-Promotor in den sich terminal

differenzierenden Oligodendrozyten exprimieren.

Page 35: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

25

3.1.1 Entwicklung oligodendroglialer Zellen im Rückenmark von

Sox11-defizienten Mäusen

Zu Beginn der Studie konnte zuerst die spezifische Expression beider SoxC-Proteine in den

oligodendroglialen Zellen des Rückenmarks reproduziert werden (Kuhlbrodt et al., 1998a).

Dazu wurden immunhistochemische Färbungen mit Antikörpern gegen Sox4 (Abb. 6G und H)

bzw. Sox11 (Abb. 6J und K) und die Oligodendrozyten spezifischen Transkriptionsfaktoren

Sox10 (Abb. 6A und D) bzw. Olig2 (Abb. 6B und E) auf transversalen Gefrierschnitten der

Herzregion von 18,5 dpc (days post coitum) Wildtyp-Embryonen durchgeführt. Sowohl Sox4

als auch Sox11 zeigten zu diesem Zeitpunkt eine deutliche Ko-Expression mit den beiden

Faktoren Sox10 bzw. Olig2 in den Pro-Oligodendrozyten der Marginalzone des dorsalen

Rückenmarks (Abb. 6M, N, P und Q). Dagegen konnte mit dem basischen Myelinprotein

MBP und den beiden Mitgliedern der Gruppe C, Sox4 und Sox11, kein überlappendes

Expressionsmuster detektiert werden (Abb. 6C, F, I, L, O und R).

Abb. 6: Spezifische Expression von Sox4 und Sox11 in oligodendroglialen Zellen. Auf transversalen Schnitten von 18,5 dpc Wildtyp-Embryonen wurden immunhistochemische Färbungen durchgeführt. Die Fluoreszenzaufnahmen der oben gezeigten Bilder sind aus der Marginal-zone des dorsalen Rückenmarks. Die Antikörper gegen Sox4 (G, H und I) bzw. Sox11 (J, K und L) sind in grün und die Antikörper gegen Sox10 (A und D), Olig2 (B und E) bzw. MBP (C und F) in rot gezeigt. Die Ko-Expression von Sox4 oder Sox11 mit den oligodendroglialen Markern Sox10 bzw. Olig2 ist durch ein gelbes Signal gekennzeichnet (M, N, P und Q). Zusätzlich wurden die Zellkerne mit dem Fluoreszenzfarbstoff DAPI (4`, 6`-diamidino-2-phenylindol) in blau markiert (O und R).

Page 36: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

26

Das Myelin-Strukturprotein MBP ist kennzeichnend für die Zell-Population terminal

differenzierter Oligodendrozyten. Daher weisen die oben gezeigten Ko-Expressionsanalysen

(Abb. 6M-R) darauf hin, dass beide Transkriptionsfaktoren der Gruppe C nur in den oligoden-

droglialen Vorläufern exprimiert (Abb. 6M, ,N, P und Q) und bei beginnender Differenzierung

herunterreguliert werden (Abb. 6O und R). Bisher konnte die funktionelle Rolle der beiden

SoxC-Proteine im zentralen Nervensystem im Allgemeinen und speziell in der Entwicklung

oligodendroglialer Zellen nicht bis ins Detail analysiert werden. Für derartige Studien können

Sox4-defiziente Mäuse nicht herangezogen werden, da die Embryonen bereits an 14 dpc

absterben (Schilham et al., 1996) und zu diesem Zeitpunkt die Oligodendrozyten-Entwicklung

erst begonnen hat. In Sox11-defizienten Mäusen ist der Embryonaltag 18,5 das letztmögliche

analysierbare Stadium, da Sox11-Nullmutanten aufgrund einer kongenitalen Zyanose

perinatal letal sind (Sock et al., 2004). Untersuchungen des Rückenmarks von Sox11-

defizienten Mäusen an 18,5 dpc ergaben keine signifikanten Unterschiede bezüglich der

Verteilung und Anzahl von Sox10-positiven Zellen (Abb. 7A, B und E). Dabei kennzeichnet

der Transkriptionsfaktor Sox10 zu diesem spät-embryonalen Entwicklungszeitpunkt vor allem

oligodendrogliale Vorläufer sowie erste terminal differenzierende Oligodendrozyten.

Abb. 7: Quantifizierung oligodendroglialer Zellen im Sox11-defizienten Rückenmark. Auf transversalen Rückenmarksschnitten von Wildtyp (wt)- (A und C) und Sox11lacZ/lacZ (ko)- Embryonen (B und D) wurden am Embryonaltag 18,5 sowohl immunhistochemische Färbungen mit dem Oligodendrozyten spezifischen Marker Sox10 (A und B), als auch In situ Hybridisierungen mit DIG-markierten cRNA-Sonden gegen MBP (C und D) und PLP (nicht gezeigt) durchgeführt. Die Anzahl der MBP-, PLP- und Sox10-positiven Zellen wurde in den Rückenmarkshälften von mindestens 15 verschiedenen Schnitten (10 µm bzw. 20 µm) aus der thorakalen Rumpfregion von jeweils zwei unabhängigen Embryonen pro Genotyp ausgezählt. Die Ergebnisse wurden als Säulendiagramm ± Standardabweichung dargestellt (E).

Page 37: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

27

Um festzustellen, ob die terminale Differenzierung in den Sox11-defizienten Tieren

zeitgemäß einsetzt, wurden In situ Hybridisierungen mit spezifischen RNA-Sonden gegen die

beiden Myelingen-Transkripte MBP und PLP auf 18,5 dpc transversalen Rückenmarks-

schnitten durchgeführt (Abb. 7C und D). Auch hier waren die Quantifizierungen von MBP-

und PLP-exprimierenden Oligodendrozyten in dem Sox11-defizienten Rückenmark mit

denjenigen in den Wildtyp-Tieren vergleichbar (Abb. 7E). Somit kann davon ausgegangen

werden, dass die terminale Differenzierung trotz des Fehlens von Sox11 planmäßig beginnt.

Dennoch besteht die Möglichkeit der Maskierung eines Sox11-spezifischen Defekts durch die

Ko-Expression des vermutlich redundanten SoxC-Proteins Sox4 in den oligodendroglialen

Zellen des Sox11-defizienten Rückenmarks (Cheung et al., 2000).

3.1.2 Überexpressionsstudien der Sox-Proteine der Gruppe C in

oligodendroglialen Zellen

Da mit Hilfe der zur Verfügung stehenden Mausmutanten eine weiterführende Analyse nicht

möglich war, sollten neue Erkenntnisse über die Funktionalität der beiden SoxC-Proteine im

zentralen Nervensystem durch Sox4- und Sox11-Überexpressionsstudien in den differen-

zierenden Oligodendrozyten des postnatalen Rückenmarks transgener Mauslinien gewonnen

werden. Zur Herstellung der transgenen Tiere wurden die offenen Leserahmen von Sox4 bzw.

Sox11 unter die Kontrolle eines MBP-Promotor-Fragments gebracht. Frühere Studien

konnten zeigen, dass durch diesen Promotor die Expression des LacZ-Transgens in den sich

terminal differenzierenden Oligodendrozyten mit Beginn der Myelinisierung spezifisch

angeschaltet wird (Foran & Peterson, 1992). Aufgrund absinkender Aktivität dieses MBP-

Promotors zu späteren postnatalen Entwicklungsphasen, wurde eine transiente Expression der

beiden SoxC-Transgene erwartet. Das Einbringen der MBP-Sox4- und MBP-Sox11-Plasmid-

konstrukte in befruchtete Oozyten brachte in beiden Fällen Tiere hervor, die das Transgen im

Genom integriert hatten. Dabei wiesen allerdings die Nachkommen der MBP-Sox11

transgenen Tiere keine Expression des Sox11-Transgens auf. Daher konnte die funktionelle

Analyse der Überexpression der SoxC-Proteine im zentralen Nervensystem nur an verschie-

denen postnatalen Entwicklungsstadien MBP-Sox4-transgener Mäuse durchgeführt werden.

Page 38: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

28

3.1.2.1 Generierung MBP-Sox4-transgener Mäuse

Zur Generierung MBP-Sox4-transgener Mäuse wurde zuerst ein 3,1 kb großes Promotor-

Fragment des murinen MBP-Gens (von Position -3109 bis +31) zusammen mit einer EGFP-

Poly(A)-Kassette aus dem pIRES-EGFP-Vektor (Clontech; Heidelberg, Deutschland) in den

pWHERE-Vektor (Invitrogen; San Diego, CA) eingefügt. Dies erfolgte über die Pac1

Restriktionsschnittstelle zwischen zwei hintereinander liegende H19 Isolatorsequenzen. Diese

Elemente sollten die Expression des Sox4-Transgens von möglichen Einflüssen

regulatorischer Bereiche an der Integrationsstelle abschirmen. Anschließend wurde ein 2 kb

großes Fragment des Sox4-Gens aus der Ratte (Rattus norvegicus; Genbank-Ref.

XM_344594) mit dem vollständigen offenen Leserahmen von Sox4 über die EcoRI-

Restriktionsschnittstelle zwischen dem MBP-Promotor-Fragment und der IRES-EGFP-

Poly(A)-Kassette eingesetzt (Abb. 8). Somit konnte die Expression des Sox4-Transgens über

die Ko-Expression mit EGFP und der damit verbundenen Autofluoreszenz detektiert werden.

Abb. 8: Schematische Darstellung des MBP-Sox4-Transgen-Konstrukts. Das MBP-Sox4-Transgen, eingefasst von den H19 Isolatorsequenzen, besteht aus dem murinen MBP-Promotor-Fragment (Positionen -3109 bis +31), dem offenen Leserahmen von Sox4 aus der Ratte und einer IRES-EGFP-Poly(A)-Kassette. Daneben sind die Restriktionsschnittstellen für Pac1 (P) und EcoRI (E) in diesem Konstrukt enthalten. pA: Poly-(A)-Signal, H19ins: H19 Isolator. Mit freundlicher Genehmigung von E. Sock.

Zur Erzeugung der transgenen Tiere wurde das MBP-Sox4-Konstrukt über die Pac1

Restriktionsschnittstelle aus dem pWHERE-Vektor isoliert, aufgereinigt und in Zusammen-

arbeit mit M. Bösl (MPI für Neurobiologie, Martinsried) in den männlichen Pronukleus

befruchteter FVB/N Oozyten mikroinjiziert. Als Ergebnis wurden zehn transgene Weibchen

und neun transgene Männchen (Founder-Tiere) erhalten, wobei nur die Nachkommen von

zwei transgenen Weibchen das MBP-Sox4-Transgen exprimierten. Es stellte sich heraus, dass

Page 39: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

29

die H19 Isolatoren zu epigenetischen Prägungen führten, die die Transgen-Expression bei der

Vererbung über die männliche Keimbahn still legten. Daher konnte das Sox4-Transgen nur

über die weibliche Keimbahn weitergegeben werden. Die MBP-Sox4-transgenen Tiere

wurden mittels PCR-Analysen genotypisiert und ergaben mit den gewählten Primern für das

Sox4-Transgen ein 566 bp langes DNA-Produkt. Ferner wurde die Anzahl der transgenen

Sox4-Kopien, die in das Genom integriert waren, durch Southern-Blot Analyse bestimmt

(Abb. 9). Dazu wurde die von EcoRI geschnittene genomische DNA mit einer radioaktiv

markierten, 0,6 kb langen Sonde hybridisiert. Aufgrund ihrer spezifischen Bindung an den

HMG-Domänen-kodierenden Bereich des Sox4-Gens konnte für das endogene Sox4-Gen ein

3,4 kb großes und für das transgene Sox4-Gen ein 2 kb großes Fragment detektiert werden

(Abb. 9). Die Berechnung der Anzahl integrierter transgener Sox4-Kopien in das murine

Genom erfolgte über die Bestimmung des Verhältnisses der Bandenintensitäten zwischen dem

endogenen Sox4-Gen und dem MBP-Sox4-Transgen im Phospho-Imager. In zwei MBP-Sox4

exprimierenden Founder-Weibchen konnten 11 bzw. 13 Kopien nachgewiesen werden (Abb.

9 und nicht gezeigte Daten), die mit hoher Rate an die Nachkommen weitergegeben wurden.

Die folgende Analyse wurde an den Jungtieren des Founder-Weibchens mit der geringeren

Kopienanzahl des Transgens durchgeführt. Die Nachkommen des zweiten transgenen Weib-

chens wiesen einen ähnlichen, aber mehr ausgeprägten Phänotyp auf (nicht gezeigte Daten).

Abb. 9: Southern-Blot Analyse von Wildtyp- und MBP-Sox4-transgenen Tieren. Die genomische DNA von Wildtyp (wt)- und MBP-Sox4-transgenen (tg)-Nachkommen des in der Analyse verwendeten weiblichen Founder-Tiers wurde mit EcoRI geschnitten und mit einer Sox4-spezifischen Sonde hybridisiert. Die Größen für das endogene sowie für das transgene Sox4-Gen sind am linken Rand des Blots in kb angegeben. wt: 3,4 kb; tg: 2,0 kb. Die Kopienzahl des Transgens wurde mit einem Phospho-Imager bestimmt und unterhalb der Spur angegeben. Mit freundlicher Genehmigung von E. Sock.

Page 40: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

30

3.1.2.2 Expression des MBP-Sox4-Transgens im zentralen Nervensystem

Zu Beginn der funktionellen Analyse Sox4-transgener Mäuse sollte die Sox4-Expression in

den MBP-Sox4 Tieren mit derjenigen in den Wildtyp-Mäusen, während postnataler

Entwicklungsphasen, verglichen werden. Um die Menge an Sox4-Transkripten für beide

Genotypen im zentralen Nervensystem zu bestimmen, wurde zunächst Gesamt-RNA aus

Gehirn und Rückenmark an verschiedenen postnatalen Stadien isoliert. Mittels quantitativer

reverser Transkriptions-PCR (RT-PCR) konnte in den analysierten Geweben transgener

Nachkommen zum postnatalen Zeitpunkt P7 eine zwei bis dreifach erhöhte Menge von Sox4-

Transkripten gegenüber der endogenen Sox4-Expression in den Wildtyp-Geweben festgestellt

werden (Abb. 10). Dennoch lieferte dieser geringe Unterschied in der relativen Sox4-

Genexpression transgener Mäuse bezüglich der Wildtyp-Kontrolltiere, einen Hinweis auf eine

starke Expression des MBP-Sox4-Transgens in den oligodendroglialen Zellen. Der Grund

hierfür ist die weit verbreitete sowie hohe endogene Expression von Sox4 in den verschie-

denen Zellen des zentralen Nervensystems an den frühen postnatalen Stadien (Cheung et al.,

2000). Im weiteren Verlauf der Entwicklung wird die endogene Sox4-Expression im zentralen

Nervensystem stark herunterreguliert (Kuhlbrodt et al., 1998a), wohingegen diejenige des

MBP-Sox4-Transgens erhalten bleibt. Dies zeigte sich an einer sieben- bis achtfachen Menge

an Sox4-Transkripten in den transgenen Mäusen am Postnataltag 14 relativ zu der Sox4-

Expression in den neuralen Geweben der Wildtyp-Mäuse (Abb. 10).

Abb. 10: Quantitative RT-PCR zum Nachweis der Sox4-Expression im ZNS. Aus Gehirn und Rückenmark von MBP-Sox4-transgenen Tieren sowie Wildtyp-Mäusen unter-schiedlicher postnataler Entwicklungsstadien (P7, P14 und Adult) wurde Gesamt-RNA isoliert. Als Nachweis für die Sox4-Expression wurden quantitative RT-PCR Analysen mit der hergestellten cDNA durchgeführt. Die Werte wurden auf β-Actin normiert und als ein Vielfaches der Wildtyp-Werte ± Standardabweichung dargestellt. wt: Wildtyp; P: Postnataltag.

Page 41: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

31

Aufgrund der nachlassenden MBP-Promotor-Aktivität an den späten postnatalen

Entwicklungsphasen (Foran & Peterson, 1992) waren die endogene und die transgene Sox4-

Expression der adulten Tiere miteinander vergleichbar (Abb. 10).

Anhand der EGFP-Autofluoreszenz sowie durch immunhistochemische Färbungen gegen

EGFP konnte das postnatale Expressionsmuster des MBP-Sox4-Transgens im zentralen

Nervensystem mit zellulärer Auflösung analysiert werden (Abb. 11). Bereits einen Tag nach

der Geburt, am Postnataltag 1, wurden auf Gefrierschnitten des Rückenmarks transgener

Tiere wenige vereinzelte EGFP-exprimierende Zellen in der zukünftigen weißen Substanz des

Rückenmarks nachgewiesen (Abb. 11A). In diesem Gewebe nahm die Anzahl der EGFP-

positiven Zellen im Laufe der postnatalen Entwicklung von P7, über P14 bis hin zu P29

kontinuierlich zu (Abb. 11B-D). Dagegen konnte in den vier Monate (4 Mo) alten transgenen

Tieren keine sichtbare EGFP-Expression mehr gezeigt werden (Abb. 11E). Mit zunehmendem

Alter wurden die durch EGFP markierten Zellen nicht nur in der Marginalzone, sondern auch

in der grauen Substanz des Rückenmarks detektiert (Abb. 11C und D). Die zeitliche und

lokale Expression EGFP-positiver Zellen deuten darauf hin, dass das MBP-Sox4-Transgen

selektiv in den sich differenzierenden Oligodendrozyten exprimiert wird.

Abb. 11: Das postnatale Expressionsmuster des MBP-Sox4-Transgens im ZNS. Auf transversalen Gefrierschnitten des Rückenmarks (A-E), des Vorderhirns (L-O) sowie auf sagittalen Schnitten des Kleinhirns (G-J) von MBP-Sox4-transgenen Mäusen wurden am Postnataltag 1 (A), 7 (B, G und L), 14 (C, H und M), 29 (D, I und N) und nach vier Monaten (4 Mo) (E, J und O) immunhistochemische Färbungen mit Antikörpern gegen EGFP durchgeführt. Der mit einem Rechteck markierte Bereich in den Hämatoxylin-Eosin-Übersichtsfärbungen des Kleinhirns in F und des Vorderhirns in K ist in G-J sowie in L-O vergrößert dargestellt.

Page 42: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

32

Ein dem Rückenmark ähnliches Expressionsmuster für das Sox4-Transgen zeigten auch zwei

weitere Regionen des zentralen Nervensystems: Die weiße Substanz des Kleinhirns (Abb.

11G-J) und der im Vorderhirn liegende Corpus callosum Fasertrakt (Abb. 11L-O). Dabei

konnten in den Fasertrakten des Kleinhirns bzw. im Corpus callosum erstmals ab dem

Postnataltag 7 positive EGFP-Signale detektiert werden (Abb. 11G und L). Diese relativ spät

beginnende EGFP-Expression in den beiden Gehirn-Regionen im Vergleich zum Rückenmark

(Abb. 11A), erfolgte gemäß dem zeitlich versetzten Start der Oligodendrozyten-Differen-

zierung in den verschiedenen Bereichen des zentralen Nervensystems. Ferner wurden, wie im

Rückenmark bereits gezeigt (Abb. 11E), sowohl in der weißen Substanz des Kleinhirns als

auch im Corpus callosum von vier Monate alten MBP-Sox4-transgenen Tieren nur noch

wenige EGFP-positive Zellen nachgewiesen (Abb. 11J und O).

Im Gegensatz zum zentralen Nervensystem zeigten Untersuchungen an Gefrierschnitten von

Ischiasnerven des peripheren Nervensystems transgener Mäuse keine EGFP-Autofluoreszenz

(nicht gezeigte Daten). Der Grund hierfür ist, dass der verwendete MBP-Promotor die für die

MBP-Expression in den Schwannzellen des peripheren Nervensystems verantwortlichen

regulatorischen Elemente nicht enthält. Somit wird das MBP-Sox4-Transgen spezifisch in den

sich differenzierenden Oligodendrozyten des zentralen Nervensystems exprimiert.

In weiterführenden Experimenten sollte mittels immunhistochemischer Färbungen auf trans-

versalen Gefrierschnitten des postnatalen Rückenmarks der Stadien P3 (Abb. 12 A-H) und P7

(Abb. 12 I-P) die zelltypspezifische Expression des MBP-Sox4-Transgens aufgeklärt werden.

Dabei exprimierten EGFP-positive Zellen gleichzeitig den Oligodendrozyten-Marker Sox10

(Abb. 12A-D), wohingegen mit dem Astrozyten-Marker GFAP (Abb. 12 I-L) oder mit dem

pan-neuronalen-Marker NeuN (Abb. 12M-P) keine deutlich überlappende Expression gezeigt

werden konnte. Auch exprimierte am postnatalen Stadium P3 ein bestimmter Anteil EGFP-

positiver Zellen in der Marginalzone des frühen Rückenmarks das basische Myelinprotein

MBP (Abb. 12 E-H). Ähnliche Ergebnisse wurden ebenfalls auf transversalen Gefrierschnitten

des Vorderhirns erzielt (nicht gezeigte Daten). Auch hier konnten im Corpus callosum

Sox10/EGFP- bzw. MBP/EGFP-exprimierende Zellen detektiert werden. Anhand der defini-

tiven Ko-Expression EGFP-positiver Zellen mit Sox10 sowie mit dem basischen Myelin-

protein MBP am Postnataltag 3 wurde das MBP-Sox4-Transgen selektiv in den sich differen-

zierenden Oligodendrozyten nachgewiesen (Abb. 12D und H).

Page 43: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

33

Abb. 12: Zelltypspezifische Expression des MBP-Sox4-Transgens. Auf transversalen Gefrierschnitten des Rückenmarks von MBP-Sox4-transgenen Tieren der Entwicklungsstadien P3 (A-H) und P7 (I-P) wurden immunhistochemische Färbungen mit Anti-körpern gegen EGFP (A, E, I und M) (alle in grün), Sox10 (Oligodendrozyten-Marker) (B), MBP (Myelin-Marker) (F), GFAP (Astrozyten-Marker) (J) und NeuN (pan-neuronaler-Marker) (N) (alle in rot) durchgeführt. Die beiden rechten vertikalen Bilderreihen zeigen die Überlagerungen EGFP-exprimierender Zellen jeweils mit den zelltypspezifischen Antikörpern Sox10 (C und D), MBP (G und H), GFAP (K und L) und NeuN (O und P). Ko-Expressionen sind als gelbes Signal gekenn-zeichnet. Der mit einem Rechteck markierte Bereich in C, G, K und O ist in D, H, L und P vergrößert dargestellt.

3.1.2.3 Analyse des Phänotyps MBP-Sox4-transgener Mäuse

Die Nachkommen der zwei MBP-Sox4-Founder-Weibchen entwickelten zu Beginn der

zweiten postnatalen Woche auffällige, unkontrollierte Zitterbewegungen. Diese Verhaltens-

weise erinnerte stark an den beschriebenen Phänotyp der shiverer-Maus, die Myelin-Defekte

im zentralen Nervensystem aufweist (Shen et al., 1985). Zusätzlich zeigten die MBP-Sox4-

transgenen Tiere eine Reihe dyskinetischer Reaktionen, wie krampfartige Anfälle mit

ausgeprägten Krümmungs- und Streckungs-Bewegungen des Rumpfes und der Gliedmaßen.

Der Schweregrad dieses Phänotyps verstärkte sich bis zum Ende der vierten postnatalen

Woche. Im weiteren Verlauf der Entwicklung erholten sich die MBP-Sox4-transgenen Tiere

sukzessiv von ihren Krankheitssymptomen, so dass sie im Alter von zwei Monaten nicht mehr

von den Wildtyp-Geschwistertieren zu unterscheiden waren. Im Hinblick auf die zelltyp-

Page 44: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

34

spezifische Expression des MBP-Sox4-Transgens in den sich terminal differenzierenden

Oligodendrozyten und aufgrund des sichtbaren Phänotyps der Mausmutanten wurden schwere

Myelinisierungsdefekte im zentralen Nervensystem vermutet. Daher sollte anhand von In situ

Hybridisierungen mit spezifischen RNA-Sonden gegen MBP und PLP die Expression dieser

beiden Myelingene in der weißen Substanz des postnatalen Rückenmarks genau analysiert

werden (Abb. 13). Bereits am Postnataltag 1 waren in den MBP-Sox4-transgenen Mäusen die

MBP- und PLP-positiven Zellen in der Marginalzone des Rückenmarks im Vergleich zu den

Wildtyp-Tieren stark reduziert (Abb. 13B und D zu A und C). Diese reduzierte Menge an

Myelingen-Transkripten in den MBP-Sox4-transgenen Tieren konnte auch an den folgenden

Stadien P7, P14 und P29 beobachtet werden (Abb. 13E-P).

Abb. 13: Expression von MBP und PLP im Rückenmark MBP-Sox4-transgener Tiere. Auf transversalen Gefrierschnitten des Rückenmarks von Wildtyp (wt)- (A, C, E, G, I, K, M und O) sowie MBP-Sox4-transgenen (tg)-Tieren (B, D, F, H, J, L, N und P) der Stadien P1 (A-D), P7 (E-H), P14 (I-L) und P29 (M-P) wurden In situ Hybridisierungen mit DIG-markierten cRNA-Sonden gegen MBP (A, B, E, F, I, J, M und N) bzw. PLP (C, D, G, H, K, L, O und P) durchgeführt.

Page 45: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

35

Dennoch nahm die MBP- bzw. PLP-Expression im Rückenmark während der postnatalen

Entwicklung mit zunehmendem Alter der MBP-Sox4 Tiere stetig zu (Abb. 13 F, H, J, L, N

und P). Die Anzahl der MBP- bzw. PLP-exprimierenden Zellen in den transgenen Tieren war

im Vergleich zu derjenigen in den Wildtyp-Geschwistertieren geringer (Abb. 13F, H, J, L, N,

und P zu E, G, I, K, M und O). Der Unterschied in der Expression beider Myelingene

zwischen den Sox4-transgenen Tieren und den Wildtyp-Mäusen war an späteren

Entwicklungsstadien wie P29 kleiner als an den früh postnatalen Zeitpunkten P7 und P14.

Der Nachweis der Myelinisierung auf Proteinebene mittels immunhistochemischer Färbungen

mit Antikörpern gegen MBP führte zu ähnlichen Ergebnissen (Abb. 14). Auch in diesem Fall

war die Zahl MBP-positiver Zellen in der Marginalzone des transgenen Rückenmarks

verglichen mit der Anzahl in den Wildtyp-Geschwistertieren schon am Postnataltag 1

reduziert (Abb. 14A und F). An den späteren postnatalen Entwicklungsstadien nahm die Zahl

MBP-exprimierender Zellen unabhängig vom jeweiligen Genotyp stark zu, so dass einzelne

MBP-positive Zellen nicht mehr voneinander unterschieden werden konnten (Abb. 14B-E und

G-J). Vielmehr war die MBP-Protein-Expression in der weißen Rückenmarkssubstanz von

Wildtyp- und MBP-Sox4-transgenen Tieren flächendeckend. Dabei war an den beiden

Stadien P7 und P14 der MBP-positive Bereich in der Marginalzone des transgenen Rücken-

marks, verglichen mit den analogen Regionen in den Wildtyp-Mäusen, wesentlich schmaler

und die Signalstärke der MBP-positiven Zellen war deutlich unregelmäßiger (Abb. 14B und C

zu G und H).

Abb. 14: Expression des MBP-Proteins im Rückenmark transgener Tiere. Auf transversalen Gefrierschnitten des Rückenmarks von MBP-Sox4-transgenen (tg)- (A-E) und Wildtyp (wt)-Tieren (F-J) wurden an den Postnataltagen 1 (A und F), 7 (B und G), 14 (C und H) und 29 (D und I) sowie nach vier Monaten (4 Mo) (E und J) immunhistochemische Färbungen mit Antikörpern gegen MBP durchgeführt.

Page 46: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

36

Am Postnataltag 29 war der Unterschied in der MBP-Expression zwischen den transgenen-

und Wildtyp-Tieren weniger offensichtlich (Abb. 14D und I) und in den adulten, vier Monate

alten MBP-Sox4 Tieren kaum mehr erkennbar (Abb. 14E und J). Somit zeigten MBP und PLP

In situ Hybridisierungen sowie immunhistochemische Färbungen gegen MBP, dass die redu-

zierte Myelingenexpression im Rückenmark MBP-Sox4-transgener Tiere eine verminderte

MBP-Protein-Expression zur Folge hatte.

Aufgrund der geringeren Myelinprotein-Produktion in den MBP-Sox4-transgenen Mäusen

wurden zunächst Veränderungen in der Oligodendrozyten-Population vermutet. Daher sollten

Färbungen mit Antikörpern gegen den Oligodendrozyten spezifischen Marker Sox10 auf

postnatalen transgenen Rückenmarksschnitten der Stadien P1, P7 und P14 durchgeführt und

die Anzahl der Sox10-positiven Zellen bestimmt werden. Die erhaltenen Resultate lieferten

allerdings keine wesentlichen numerischen Veränderungen der analysierten Zell-Population

im Vergleich zu den Wildtyp-Geschwistertieren (Abb. 15A). Somit schien die Oligodendro-

zyten-Population im Rückenmark beider Genotypen weitgehend konstant zu bleiben.

Daneben zeigten auch Proliferationsstudien mit den Markern Ki67 oder PCNA keine

deutliche Veränderung der Zahl proliferierender Oligodendrozyten im Rückenmark von

transgenen Tieren der Entwicklungsstadien P1, P7 und P14 (Abb. 15B und nicht gezeigte

Daten). Weiterhin wurden in den transgenen Mäusen keine Ko-Expressionen der EGFP-

positiven Zellen mit den beiden Proliferationsmarkern Ki67 bzw. PCNA nachgewiesen, was

auf eine postmitotische, oligodendrogliale Expression des Sox4-Transgens hinweist.

Abb. 15: Oligodendrogliale Parameter im Rückenmark MBP-Sox4-transgener Tiere. (A) Die Anzahl der Sox10-positiven Zellen wurde in den Rückenmarkshälften von Wildtyp (wt)- und MBP-Sox4-transgenen (tg)-Tieren an den Postnatalstadien P1, P7 und P14 bestimmt. (B) Berechnung des prozentualen Anteils der Sox10 und Ki67 ko-exprimierenden Zellen an der Gesamtzahl Sox10-positiver Zellen im Rückenmark von Wildtyp (wt)- und MBP-Sox4-transgenen (tg)-Mäusen der Stadien P1, P7 und P14 ± Standardabweichung.

Page 47: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

37

Die reduzierte Zahl MBP- und PLP-exprimierender Zellen könnte auch auf eine erhöhte Rate

apoptotischer Zellen hinweisen. Dies würde möglicherweise mit einer Zunahme an aktivierter

Mikroglia einhergehen. Tatsächlich wurden morphologisch veränderte mikrogliale Zellen

zusammen mit EGFP-exprimierenden Oligodendrozyten in der weißen Substanz transgener

Kleinhirne detektiert (Abb. 16A und B zu C und D). Dennoch konnte die zu erwartende er-

höhte Apoptoserate in den Bereichen aktivierter Mikroglia mittels TUNEL- und Caspase-3-

Experimenten nicht bestätigt werden (nicht gezeigte Daten). Insgesamt zeigte die Analyse der

oligodendroglialen und mikroglialen Parameter neben den bisher beobachteten Myelinisie-

rungsdefekten im zentralen Nervensystem der Sox4-transgenen Mäuse, dass die MBP-Sox4-

exprimierenden, oligodendroglialen Zellen in einem postmitotischen, prämyelinisierenden

Entwicklungszustand arretiert werden und nicht zu myelinisierenden Oligodendrozyten

differenzieren.

Abb. 16: Mikrogliale Parameter im Kleinhirn MBP-Sox4-transgener Tiere. Immunhistochemische Färbungen mit Antikörpern gegen den mikroglialen Marker Iba-1 und EGFP-Autofluoreszenz auf transversalen Gefrierschnitten von MBP-Sox4-transgenen (tg)- (A und B) und Wildtyp (wt)- (C und D) Kleinhirnen am Postnataltag 7. Der mit einem Rechteck markierte Bereich in A und C ist in B und D vergrößert dargestellt.

Page 48: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

38

Ebenso wie im Rückenmark wurde auch in zwei weiteren Bereichen des zentralen Nerven-

systems, der bereits angesprochenen weißen Substanz des Kleinhirns und im Corpus callosum

des Vorderhirns, eine Reduktion der Myelinproteine in den transgenen Mäusen im Vergleich

zu den Wildtyp-Tieren nachgewiesen (Abb. 17). Im Gegensatz zu der wesentlich früheren

MBP-Protein-Expression in der Marginalzone des Rückenmarks an P1 treten im Klein- und

Vorderhirn erste Myelinisierungsprozesse am Postnataltag 7 auf. Daher wurde an den beiden

Entwicklungsstadien P7 und P14 in den MBP-Sox4-transgenen Fasertrakten des Gehirns

gegenüber den Wildtyp-Tieren erstmals eine verminderte MBP-Expression offensichtlich

(Abb. 17A-H). Auch konnte in den untersuchten Gehirn-Regionen der MBP-Sox4-transgenen

Tiere für die spät-postnatalen und adulten Stadien (P29 und 4 Mo) eine reduzierte Menge an

MBP-positiven Zellen bestätigt werden (Abb. 17I, K, M und O). Im Vergleich zu der eher

homogenen MBP-Expression im Corpus callosum von Wildtyp-Gehirnen am Entwicklungs-

zeitpunkt P29, wurden in den transgenen Tieren immer noch einzelne MBP-exprimierende

Zellen detektiert (Abb. 17L zu K).

Abb. 17: Expression des MBP-Proteins in den Transgen-exprimierenden Gehirn-Regionen. Auf sagittalen Kleinhirn- sowie transversalen Corpus callosum-Gefrierschnitten von MBP-Sox4-transgenen (tg)- (A, C, E, G, I, K, M und O) und Wildtyp (wt)-Tieren (B, D, F, H, J, L, N und P) an den Postnataltagen 7 (A-D), 14 (E-H), 29 (I-L) und nach vier Monaten (4 Mo) (M-P) wurden immun-histochemische Färbungen mit Antikörpern gegen MBP durchgeführt.

Page 49: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

39

Ferner zeigte ein vier Monate alter Corpus callosum in MBP-Sox4-transgenen Mäusen ein

deutlich schwächeres MBP-Signal und eine wesentlich schmalere Gesamtbreite des Faser-

trakts im Vergleich zu den Wildtyp-Tieren (Abb. 17O zu P). Die reduzierte und verzögerte

Expression der beiden Myelingene MBP und PLP könnte Abnormalitäten in der Myelin-

struktur zur Folge haben. Daher wurden zunächst auf Rückenmarksschnitten MBP-Sox4-

transgener Tiere an verschiedenen postnatalen Entwicklungsstadien (P7, P14, P29 und 4 Mo)

PPD (Para-Phenylendiamin)-Färbungen durchgeführt (Abb. 18). Das Ziel dieser Unter-

suchungen war es, einen genaueren Einblick in die Myelinisierung der Axone in der weißen

Substanz des Rückenmarks von transgenen Mäusen und Wildtyp-Tieren zu erhalten. Augen-

scheinlich war an P7, P14 und P29 die Anzahl myelinisierter Axone in der Marginalzone des

Rückenmarks MBP-Sox4-transgener Tiere stark reduziert (Abb. 18A, B und C) und die

Myelinschicht deutlich dünner ausgeprägt als im Rückenmark der Wildtyp-Geschwistertiere

(Abb. 18A-C zu E-G). Lediglich im adulten transgenen Rückenmark wurde eine zu Wildtyp-

Mäusen vergleichbare Anzahl und Verteilung myelinisierter Axone sowie eine ähnliche

Schichtdicke der Myelinscheiden beobachtet (Abb. 18D zu H). Der Grund für die Regenera-

tion der Myelinschicht zu diesem späten Stadium ist der Verlust der transgenen Sox4-Ex-

pression in den Oligodendrozyten, bedingt durch die aufgehobene MBP-Promotor-Aktivität.

Abb. 18: Myeliniserung der Axone im Rückenmark MBP-Sox4-trangener Tiere. Auf transversalen Gefrierschnitten des Rückenmarks von MBP-Sox4-transgenen (tg)- (A-D) und Wildtyp (wt)-Tieren (E-H) an den Postnataltagen 7 (A und E), 14 (B und F), 29 (C und G) und nach vier Monaten (4 Mo) (D und H) wurden PPD (Para-Phenylendiamin)-Färbungen durchgeführt, um die Myelinscheiden um die Axone darzustellen.

Page 50: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

40

Abschließend konnte durch elektronenmikroskopische (EM) Aufnahmen die Myelin-

Ultrastruktur in der Marginalzone des Rückenmarks transgener Tiere an den postnatalen

Stadien P14 und P29 genauer analysiert werden (Abb. 19). Mit dieser Methode konnte die

Hypomyelinisierung transgener Axone als Ergebnis der PPD-Färbung bestätigt werden.

Abb. 19: Die Myelin-Ultrastruktur im Rückenmark MBP -Sox4-transgener Tiere. Elekronenmikroskopische Aufnahmen von ultradünnen (50 nm) transversalen Rückenmarksschnitten MBP-Sox4-transgener (tg)- und Wildtyp (wt)-Tiere an den Postnatalstadien P14 (A und B) und P29 (C und D). Die Balkenlänge in A entspricht 1 µm.

Durch die Berechnung der g-Ratio myelinisierter Axone in den in Abb. 19 gezeigten EM-

Abbildungen ließ sich der Unterschied in der Stärke der Myelinschicht bei Axonen des

Rückenmarks von MBP-Sox4- und Wildtyp-Tieren quantifizieren (Abb. 20A und B). Die g-

Ratio wird durch das Verhältnis zwischen dem eigentlichen Durchmesser der Axone zu dem

Durchmesser der Axone inklusive ihrer Myelinschicht bestimmt. Somit liegen die Werte der

g-Ratio zwischen null und eins, wobei Axone mit dicker Myelinschicht die niedrigsten Werte

aufweisen. An den beiden untersuchten postnatalen Entwicklungsstadien P14 und P29

verlagerte sich die durchschnittliche g-Ratio von niedrigen Werten in den Wildtyp-Tieren

(P14: 0,79 ± 0.06 und P29: 0,76 ± 0,07) hin zu einem hohen Wert (0,93 ± 0,04) in den

transgenen Tieren. Die Statistiken der analysierten Stadien und Genotypen zeigten, dass die

Axone mit einer durchschnittlich höheren g-Ratio, also mit dünnen Myelinscheiden,

bevorzugt in der weißen Substanz des Rückenmarks MBP-Sox4-transgener Tiere vorkamen.

Dagegen waren die Axone mit niedriger g-Ratio ausschließlich in den Wildtyp-Tieren

anzutreffen (Abb. 20A und B). Dabei war das Ausmaß der Hypomyelinisierung unabhängig

vom jeweiligen Durchmesser der betroffenen Axone (Abb. 20C und D).

Page 51: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

41

Abb. 20: Die g-Ratio im Rückenmark MBP-Sox4-transgener Tiere. Die Statistiken (A und B) zeigen den prozentualen Anteil von Axonen mit einer g-Ratio von 1,0 bis 0,55 für die Entwicklungsstadien P14 (A) bzw. P29 (B) sowie für Wildtyp (wt) und Transgenen (tg) Genotyp. Dagegen geben die Scatter-Blots (C und D) die g-Ratio als Funktion des entsprechenden Axon-Durchmessers an. Dabei sind sowohl kleine als auch große Axone gleichermaßen von der Hypomyelinisierung betroffen. In Zusammenarbeit mit C. Griffel und A.N. Garratt (MDC für Molekulare Medizin, Berlin).

Page 52: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

42

3.2 Funktionelle Analyse der SoxC-Proteine im sympa-

thischen Nervensystem der Maus

Neben der im ersten Teil der Arbeit aufgezeigten reprimierenden Wirkung der Sox4-

Expression auf die Differenzierung sich entwickelnder Oligodendrozyten wurde in ähnlichen

Studien der negative Einfluss von Sox4 auf die Differenzierung von Radialgliazellen und

Astrozyten des zentralen Nervensystems bestätigt (Hoser et al., 2007). Dagegen konnte die

Arbeitsgruppe um Jonas Muhr durch Elektroporationsstudien von Sox4 und Sox11 in das

Neuralrohr des Huhns vorzeitige Differenzierungsprozesse in den neuronalen Vorläuferzellen

induzieren (Bergsland et al., 2006). Somit wurde nachgewiesen, dass die SoxC-Proteine

während der Entwicklung des zentralen Nervensystems sowohl eine aktivierende als auch

reprimierende Funktion auf die Differenzierung neuronaler bzw. glialer Zellen ausüben.

Ob Sox4 und Sox11 neben ihrer Rolle als Differenzierungsfaktoren im zentralen

Nervensystem eine ähnliche Funktion in den Zellen des sich entwickelnden sympathischen

Nervensystems übernehmen, sollte im zweiten Teil der Arbeit untersucht werden. Potenziell

auftretende Kompensationseffekte zwischen Sox4 und Sox11, bedingt durch ihre Ko-

Expression in den sympathischen Ganglien (Hoser et al., 2008), sollten durch die

gleichzeitige Deletion beider Gene ausgeschlossen werden. Dafür wurden Sox4/Sox11-

doppelt-defiziente Tiere mit einer konstitutiven Deletion des Sox11-Gens im gesamten

Organismus und einer spezifischen Sox4-Deletion in den sympathoadrenalen Vorläuferzellen

des sich entwickelnden sympathischen Nervensystems generiert. Es besteht allerdings die

Möglichkeit, dass Sox12 als dritter Transkriptionsfaktor der Gruppe C der Sox-Proteine

aufgrund seiner stark überlappenden Expression mit Sox4 und Sox11 zur funktionellen

Kompensation in den sich entwickelnden sympathischen Ganglien beiträgt. Die bisherigen

Analysen zur Funktion von Sox12 sprechen aber im Vergleich zu Sox4 und Sox11 für einen

geringeren Einfluss dieses Faktors auf die Entwicklung neuraler Gewebe (Hoser et al., 2008).

Page 53: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

43

3.2.1 Expression von Sox4 und Sox11 im sympathischen

Nervensystem

Um den Zeitraum der Expression von Sox4 und Sox11 in den sich entwickelnden

sympathischen Ganglien zu analysieren, wurden zunächst immunhistochemische Färbungen

mit Antikörpern gegen Sox4 und Sox11 auf Gefrierschnitten von murinen Wildtyp-

Embryonen an den Stadien 11,5 dpc bis 18,5 dpc durchgeführt (Abb. 21). Dabei ließ sich am

Embryonaltag 11,5 nur in 15% aller Zellen des Ganglions ein schwach positives Sox4-Signal

nachweisen (Abb. 21A und I). Im Gegensatz dazu wurde an diesem frühen Zeitpunkt der

Transkriptionsfaktor Sox11 bereits wesentlich stärker und nahezu in der Hälfte (46%) aller

Zellen in den sympathischen Ganglien exprimiert (Abb. 21E und I). Am Embryonalstadium

12,5 nahmen sowohl die Signalstärke als auch die Zahl der Sox4-exprimierenden Zellen

deutlich zu (Abb. 21B) und beide Parameter erreichten an 14.5 dpc ihr Maximum (Abb. 21C).

Abb. 21: Expression von Sox4 und Sox11 in den sympathischen Ganglien. Auf transversalen Gefrierschnitten aus dem Herzbereich von murinen Wildtyp-Embryonen der Entwicklungsstadien 11,5 dpc (A und E), 12,5 dpc (B und F), 14,5 dpc (C und G) und 18,5 dpc (D und H) wurden immunhistochemische Färbungen mit Antikörpern gegen Sox4 (A-D) und Sox11 (E-H) durchgeführt. Die mit einem weiß umrandeten Rechteck markierten Bereiche an 12,5 dpc und 14,5 dpc zeigen Vergrößerungen sympathischer Zellen von Sox11+/lacZ-Embryonen, die mit Antikörpern gegen Sox4 (in rot) und β-Gal (in grün) gefärbt wurden. Die Ko-Expression beider Marker ist als gelbes Signal dargestellt. (I) Die Statistik zeigt die Anzahl Sox4- (weißer Balken) und Sox11- (schwarzer Balken) positiver Zellen in den sympathischen Ganglien von Wildtyp-Embryonen am Stadium 11,5 dpc relativ zu der Gesamtzahl Dapi-positiver Zellkerne.

Page 54: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

44

Zu diesem Zeitpunkt ging aber die Signalstärke und damit die Proteinmenge des

Transkriptionsfaktors Sox11 in den Zellen der sympathischen Ganglien zurück (Abb. 21G)

und an dem spät-embryonalen Stadium 18,5 dpc wurden nur noch wenige Sox11-positive

Zellen detektiert (Abb. 21H). Im Vergleich dazu konnte zu diesem Zeitpunkt der Entwicklung

eine deutliche Anzahl Sox4-exprimierender Zellen in den Ganglien beobachtet werden (Abb.

21D). Dagegen wurden in den adulten Ganglien weder Sox4- noch Sox11-positive Zellen

nachgewiesen (nicht gezeigte Daten).

Aufgrund des sich stark überlappenden Expressionsprofils der SoxC-Proteine in den

sympathischen Ganglien stellte sich nun die Frage, ob beide Faktoren in unterschiedlichen

Zell-Populationen oder in denselben Zellen exprimiert werden. Da für Sox4 und Sox11 nur

Antikörper aus der gleichen Spezies zur Verfügung standen, konnten die folgenden Ko-

Expressionsstudien nicht auf Wildtyp-Embryonen durchgeführt werden. Daher wurden

transversale Gefrierschnitten von Sox11+/lacZ-Embryonen herangezogen, in denen ein Sox11-

Allel durch das lacZ-Gen ersetzt wurde. Diese Tiere entwickeln keinen von Wildtyp-Tieren

abweichenden Phänotyp und konnten somit für die folgenden Untersuchungen verwendet

werden (Sock et al., 2004). Als äquivalenter Marker für die Sox11-Expression in den

sympathischen Ganglien der Sox11+/lacZ-Embryonen wurde ein Antikörper gegen β-Galacto-

sidase (β-Gal) verwendet, der an den beiden analysierten embryonalen Stadien 12,5 dpc und

14,5 dpc eine ausgeprägte Ko-Lokalisation mit dem Antikörper gegen Sox4 aufwies (Abb. 21

weiß umrandete Rechtecke zwischen B und F sowie C und G). Am Entwicklungszeitpunkt

12,5 dpc exprimierten nahezu alle β-Gal-positiven Zellen im sympathischen Ganglion Sox4

(Abb. 21 weiß umrandetes Rechteck zwischen B und F), wohingegen an 14,5 dpc ein Großteil

der Sox4-exprimierenden Zellen zusätzlich für den Marker β-Gal positiv waren (Abb. 21 weiß

umrandetes Rechteck zwischen C und G). Durch In situ Hybridisierungen mit DIG-markierten

cRNA-Sonden gegen Sox4 und Sox11 wurden auch auf mRNA-Ebene ähnliche Ergebnisse

im Expressionsprofil beider SoxC-Transkriptionsfaktoren erzielt (nicht gezeigte Daten). An

dem früh-embryonalen Stadium 12,5 dpc konnte eine im Vergleich zu Sox4 vermehrte

Expression an Sox11-Transkripten in den Zellen der sympathischen Ganglien nachgewiesen

werden, die zum späteren Stadium 18,5 dpc im Verhältnis zur Sox4-Genexpression erniedrigt

war. Eine vergleichbare Expressionsstärke zeigten beide SoxC-Gene nur am Embryonaltag

14,5. Neben der in Abb. 21 gezeigten Expression der beiden SoxC-Transkriptionsfaktoren in

den sympathischen Ganglien von Wildtyp-Mausembryonen wurden in Zusammenarbeit mit

der Arbeitsgruppe von H. Rohrer (MPI, Frankfurt) Sox4- und Sox11-Transkripte auch in den

Page 55: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

45

sympathischen Ganglien von Hühner-Embryonen detektiert. Die beiden Transkriptions-

faktoren konnten nach Beginn der Phox2b-Expression und vor dem Expressionsstart der

noradrenergen Differenzierungsmarker TH und SCG10 in den sympathischen Ganglien

detektiert werden. Die Expression beider SoxC-Gene überlappt zeitlich gesehen mit der von

Gata2 und setzt kurz nach der von Hand2 ein (Tsarovina et al., 2004 und nicht gezeigte

Daten). Die Expression von Sox4 und Sox11 wurde während der gesamten Beobachtungs-

phase bis hin zum Embryonaltag zehn (E10) nachgewiesen.

Die Analyse von Sox4 und Sox11 in den sich entwickelnden Ganglien von Maus und Huhn

ergab ein leicht unterschiedliches Expressionsprofil der beiden Transkriptionsfaktoren in den

untersuchten Organismen. In der Maus ist die Expression von Sox11 an den früh-

embryonalen Stadien im Vergleich zu derjenigen von Sox4 stärker ausgeprägt (Abb. 21E und

F zu A und B), wobei zu den späteren Entwicklungsphasen die Expression von Sox11 im

Verhältnis zu Sox4 schneller abnimmt (Abb. 21G und H zu C und D). Im Gegensatz dazu sind

in den sich entwickelnden sympathischen Ganglien des Huhns die Expressionsstärken von

Sox11 und Sox4 miteinander vergleichbar.

3.2.2 Zelltypspezifische Expression von Sox4 und Sox11

In den sympathischen Ganglien befinden sich zu bestimmten Entwicklungszeitpunkten

verschiedene Zelltypen, die aufgrund der Expression spezifischer Gene voneinander unter-

schieden werden können. Der HMG-Transkriptionsfaktor Sox10 wird sowohl in undifferen-

zierten Neuralleistenzellen als auch in Gliazellen exprimiert (Britsch et al., 2001; Kim et al.,

2003; Reiprich et al., 2008). Spezifizierte sympathoadrenale Vorläuferzellen exprimieren den

Transkriptionsfaktor Phox2b und differenzierende katecholaminerge Neurone sind durch die

Expression des Enzyms Tyrosinhydroxylase (TH) charakterisiert. Um herauszufinden, in

welchen Zellen die beiden Faktoren Sox4 und Sox11 in den sympathischen Ganglien ex-

primiert werden, wurden immunhistochemische Färbungen mit spezifischen Antikörpern auf

transversalen Gefrierschnitten verschiedener Embryonalstadien von Wildtyp-Mäusen durch-

geführt (Abb. 22). Dabei konnte zu keinem Zeitpunkt der Entwicklung des sympathischen

Nervensystems eine überlappende Expression zwischen dem Transkriptionsfaktor Sox10 und

Sox4 oder Sox11 festgestellt werden (Abb. 22A, F und nicht gezeigte Daten).

Page 56: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

46

Abb. 22: Zelltypspezifische Expression von Sox4 und Sox11. Auf transversalen Gefrierschnitten aus dem Herzbereich von Wildtyp-Embryonen der Entwicklungs-stadien 12,5 dpc (A-C und F-H) und 14,5 dpc (D, E, I und J) wurden immunhistochemische Färbungen durchgeführt. Dabei verwendete Antikörper waren Sox4 (A-E) und Sox11 (F-J) (beide in grün), die mit Antikörpern gegen Sox10 (A und F) (Marker für Glia und Neuralleistenzellen), Phox2b (B, D, G und I) (Marker für sympathoadrenale Vorläufer) und TH (C, E, H und J) (noradrenerger neuronaler Marker) (alle in rot) kombiniert wurden. Ko-Expressionen sind als gelbes Signal erkennbar.

Somit sind weder die Stammzellen der Neuralleiste noch die gliale Zell-Population die vor-

wiegenden Expressionsorte von Sox4 und Sox11. Dagegen wiesen beide Transkriptions-

faktoren an den untersuchten Entwicklungsstadien 12,5 dpc und 14,5 dpc ein deutlich

überlappendes Expressionssignal mit dem Homeodomänen-Faktor Phox2b auf (Abb. 22B, D,

G und I). Ebenso konnten an beiden Entwicklungszeitpunkten Ko-Expressionen der SoxC-

Proteine mit dem Enzym TH nachgewiesen werden, das unreife sowie reife sympathische

Neurone charakterisiert (Abb. 22C, E, H und J). Dennoch exprimierte ein bestimmter Anteil

sympathoadrenaler Zellen ausschließlich den katecholaminergen Differenzierungsmarker TH

(Abb. 22C und E). Im Laufe der Entwicklung sympathischer Ganglien nahm die Zahl der

Zellen, die nur TH, aber nicht Sox4 oder Sox11 exprimierten, zu. Bei diesen Zellen handelt es

sich vermutlich um reifende noradrenerge Neurone (nicht gezeigte Daten). Während diesem

Prozess scheint die Expression der Faktoren der Gruppe C herunterreguliert zu werden.

Page 57: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

47

3.2.3 Induktion der Sox4-Expression durch den Faktor Sox11

Aufgrund des deutlich überlappenden Expressionsmusters der beiden Sox-Proteine der

Gruppe C (siehe Abb. 21) in den sympathoadrenalen Vorläufern sympathischer Ganglien

könnte sowohl Sox4 als auch Sox11 die Expression des jeweils anderen Transkriptionsfaktors

beeinflussen. Zur Überprüfung einer gegenseitigen Regulation der SoxC-Proteine wurden die

folgenden Experimente an Mausembryonen mit einer Deletion des Sox4 oder des Sox11 Gens

durchgeführt. Die Deletion von Sox11 (Sox11lacZ/lacZ) war konstitutiv im gesamten Embryo,

wobei das Sox11-Gen durch das Marker-Gen lacZ ersetzt wurde. Die Deletion von Sox4

wurde mit Hilfe des Cre-loxP-Systems spezifisch in den sympathoadrenergen Zellen erreicht

(Sox4loxP/loxP). Um zu gewährleisten, dass Sox4 nur in den Zellen des sympathischen

Nervensystems ausgeschaltet ist, wurde das DBH::Cre-Transgen verwendet (Parlato et al.,

2007). Unter der Kontrolle des Promotors des Dopamin-β-Hydroxylase Gens (DBH) wird die

Expression der Cre-Rekombinase bereits an früh-embryonalen Zeitpunkten aktiviert und

demzufolge wird Sox4 in den zukünftigen noradrenergen und adrenergen Neuronen des

zentralen sowie peripheren Nervensystems deletiert. Durch immunhistochemische Färbungen

mit Antikörpern gegen Sox4 konnte auf transversalen Schnitten von Sox4loxP/loxP, DBH::Cre-

Mäusen (im Folgenden als Sox4∆/∆ bezeichnet) der Stadien 12,5 dpc und 14,5 dpc die

spezifische Sox4-Deletion in den sympathischen Ganglien nachgewiesen werden (Abb. 23A

und B). Trotz der fehlenden Sox4-Expression in den sympathoadrenalen Zellen der

analysierten Ganglien, wurden keine Unterschiede in der Sox11-Expression festgestellt (Abb.

23C und D zu Abb. 21 F und G). Ferner konnte weder ein direkter Einfluss von Sox4 auf die

Sox11 exprimierenden Zellen noch eine verstärkte Expression von Sox11 in Abwesenheit von

Sox4 beobachtet werden. Dies führte zu der Annahme, dass der Transkriptionsfaktor Sox4 zu

den analysierten Zeitpunkten der frühen Embryonalentwicklung für die Sox11-Expression in

den sympathischen Ganglien keine Rolle spielt. Dagegen wurden am Embryonaltag 12,5 dpc

in den Sox11-defizienten sympathischen Ganglien keine Sox4-positiven Zellen detektiert

(Abb. 23E). Dies steht im Gegensatz zu den Ergebnissen bei Wildtyp-Geschwistertieren, wo

Sox4 bereits an 11,5 dpc detektiert wurde (Abb. 21A). Erst drei Tage später, an 14,5 dpc,

konnten schließlich wenige Sox4-positive Zellen in den Sox11-defizienten sympathischen

Ganglien nachgewiesen werden (Abb. 23F).

Page 58: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

48

Abb. 23: Expression von Sox4 und Sox11 in SoxC-defizienten sympathischen Ganglien. Auf transversalen Gefrierschnitten aus dem Herzbereich von Sox4∆/∆- (A-D) und Sox11lacZ/lacZ- (E-H) Embryonen der Entwicklungsstadien 12,5 dpc (A, C, E und G) sowie 14,5 dpc (B, D, F und H) wurden immunhistochemische Färbungen mit Antikörpern gegen Sox4 (A, B, E und F) und Sox11 (C, D, G und H) durchgeführt. Die sympathischen Ganglien wurden mit Antikörpern gegen TH detektiert und mit einer weißen Linie umrandet.

Dabei ließ die Lokalisierung der Sox4-positiven Zellen am äußeren Rand der Sox11-

defizienten Ganglien auf den Einfluss bestimmter Umgebungssignale schließen, die an der

Sox4-Induktion beteiligt sein könnten (Abb. 23F). Allerdings normalisierte sich an den späten

Stadien der Embryonalentwicklung die Sox4-Expression in den Sox11-defizienten Ganglien

und war mit derjenigen in Wildtyp-Embryonen vergleichbar (nicht gezeigte Daten). Dieses

Expressionsmuster deutete auf eine zeitlich begrenzte zellintrinsische Induktion der Sox4-

Expression durch den Faktor Sox11 während der frühen Entwicklung des sympathischen

Nervensystems hin.

Page 59: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

49

3.2.4 Analyse des sympathoadrenalen Phänotyps SoxC-defizienter

Tiere

In den nun folgenden Untersuchungen sollten neue Erkenntnisse hinsichtlich der

funktionellen Rolle der SoxC-Proteine im sympathischen Nervensystem erzielt werden. Unter

3.2.3 konnte bereits gezeigt werden, dass die Sox11-Expression in Sox4-defizienten

sympathischen Ganglien unverändert war und dass umgekehrt die Sox4-Expression in Sox11-

defizienten Ganglien nach verzögerter Induktion ein normales Niveau erreichen konnte (siehe

Abb. 23C, D und E, F). In den Sox4∆/∆-Einzelmutanten liegt also in einem dem Wildtyp

entsprechenden Zeitraum der Embryonalentwicklung das Protein Sox11 und in den

Sox11lacZ/lacZ-Embryonen ab dem Zeitpunkt 14,5 dpc der Faktor Sox4 in den sympathischen

Ganglien vor. Diese Ergebnisse und die hohe Übereinstimmung der biochemischen

Eigenschaften, sprechen für potenziell kompensatorische Effekte zwischen den

Transkriptionsfaktoren Sox4 und Sox11 während der Entwicklung sympathischer Ganglien.

Daher sollten neben den Sox4∆/∆- und den Sox11lacZ/lacZ-Einzelmutanten ebenso SoxC-

doppelt-defiziente Tiere (Sox4∆/∆, Sox11lacZ/lacZ; auch als dko bezeichnet) in die Analyse der

sympathischen Ganglien mit aufgenommen werden.

3.2.4.1 Untersuchung der Gangliengröße in SoxC-defizienten Tieren

Der augenscheinlichste Phänotyp der SoxC einfach- sowie doppelt-defizienten Mäuse im

Vergleich zu Wildtyp-Tieren war die reduzierte Gangliengröße, die durch immunhisto-

chemische Färbungen mit Antikörpern gegen TH dargestellt werden konnte (Abb. 24). Bereits

am Embryonaltag 11,5 wurden im Herzbereich der Sox11lacZ/lacZ- und der dko-Tiere auffällig

kleine sympathische Ganglien beobachtet (Abb. 24 C und D zu A). Zu diesem Zeitpunkt

entsprach die Fläche der TH-positiven Zellen in den Sox11- bzw. doppelt-defizienten Tieren

ungefähr einem Drittel verglichen mit der Ganglien-Fläche in den Wildtyp-Mäusen (Abb.

25A). Der nahezu identische Phänotyp in Tieren dieser Genotypen kann vermutlich dadurch

erklärt werden, dass Sox11 an 11,5 dpc der vorherrschende Faktor ist und die Sox4-

Expression an den frühen Entwicklungszeitpunkten von Sox11 abhängig ist (siehe Abb. 21E

und Abb. 23E). Daher ist in der Summe die Expression der SoxC-Proteine an 11,5 dpc in

Page 60: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

50

Sox11lacZ/lacZ- und doppelt-defizienten Embryonen vergleichbar niedrig. Dagegen waren die

sympathischen Ganglien an 11,5 dpc in den Sox4∆/∆-Tieren nur geringfügig kleiner als die

entsprechenden Ganglien der Wildtyp-Tiere (Abb. 24B zu A). Mit zunehmender Sox4-

Expression in den sympathischen Ganglien der Wildtyp-Mäuse am Embryonaltag 14,5 (Abb.

21C) wurde auch die Auswirkung der Sox4-Deletion auf die Gangliengröße in den Sox4∆/∆-

Tieren deutlicher (Abb. 24E zu F). Denn zu diesem Entwicklungszeitpunkt entsprach die

Größe der Sox4-defizienten Ganglien nur noch 75% derjenigen von Wildtyp-Tieren (Abb.

25A). Im Vergleich zum Wildtyp ist die Größe der Ganglien in Sox11lacZ/lacZ- und dko-

Embryonen an 14,5 dpc auf weniger als die Hälfte reduziert (Abb. 24G und H zu E sowie Abb.

25A). Im weiteren Verlauf der Entwicklung nahm die Größe der sympathischen Ganglien in

den doppelt-defizienten Mäusen noch weiter ab, so dass sie an 18,5 dpc nur noch ein Viertel

der Größe in den Wildtyp-Tieren umfassten (Abb. 24L zu I sowie Abb. 25A).

Abb. 24: Die Größe sympathischer Ganglien in SoxC-defizienten Tieren. Auf transversalen Gefrierschnitten aus dem Herzbereich von Wildtyp (wt)- (A, E und I), Sox4∆/∆- (B, F, und J), Sox11lacZ/lacZ- (C, G und K) und Sox4∆/∆, Sox11lacZ/lacZ (dko)- (D, H und L) Embryonen der Entwicklungsstadien 11,5 dpc (A-D), 14,5 dpc (E-H) und 18,5 dpc (I-L) wurden immunhisto-chemische Färbungen mit Antikörpern gegen TH durchgeführt.

Page 61: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

51

Die Größe der Ganglien in den Sox11lacz/lacz-Tieren nahm im Laufe der Entwicklung des

sympathischen Nervensystems zu und erreichte an 18,5 dpc nahezu den Umfang der Wildtyp-

Ganglien (Abb. 24K zu I sowie Abb. 25 A). Demgegenüber waren die sympathischen Ganglien

in den Sox4∆/∆-Tieren in dieser spät-embryonalen Entwicklungsphase stark reduziert (Abb.

24J zu I). Sie wiesen keine Größenzunahme zwischen 14,5 dpc und 18,5 dpc auf (Abb. 24F zu

J) und ihre Ganglienfläche entsprach ungefähr zwei Dritteln derjenigen in den Wildtyp-Tieren

(Abb. 25A). Der sichtbare Größenunterschied der sympathischen Ganglien in den SoxC-

defizienten Tieren ging auch einher mit Veränderungen der Zellzahl im Ganglion (Abb. 25B).

Im Vergleich zu den Wildtyp-Tieren war die Anzahl an Dapi-positiven Zellen in den Sox11-

sowie doppelt-defizienten Ganglien bereits am Entwicklungsstadium 11,5 dpc reduziert,

während die Sox4∆/∆-Tiere erst am Embryonaltag 14,5 betroffen waren. Entsprechend der

Regeneration der Gangliengröße in den Sox11lacZ/lacZ-Mäusen an 18,5 dpc normalisierte sich

auch die Zellzahl der sympathischen Ganglien (Abb. 25B). Übereinstimmend mit der

reduzierten Fläche TH-positiver Zellen am Entwicklungszeitpunkt 18,5 dpc in den Sox4-

sowie doppelt-defizienten sympathischen Ganglien war auch die Anzahl Dapi-positiver

Zellen an diesem Stadium geringer (Abb. 25A und B).

Abb. 25: Analyse der Fläche und Zellzahl SoxC-defizienter sympathischer Ganglien. (A) Der Mittelwert der TH-positiven Fläche sympathischer Ganglien wurde in den Wildtyp (wt)-, Sox4∆/∆-, Sox11lacZ/lacZ- und dko-Embryonen an den Embryonaltagen 11,5 (weiße Balken), 14,5 (graue Balken) und 18,5 (schwarze Balken) quantifiziert. Die relativen Werte der Ganglienflächen ver-schiedener Genotypen sowie Stadien wurden in Relation zur Größe der Wildtyp-Ganglien an 18,5 dpc bestimmt, deren Mittelwert auf 100% gesetzt wurde. Für alle Gangliengrößen konnten bezogen auf die Wildtyp-Ganglien an 18,5 dpc, mit Ausnahme der Sox11lacZ/lacZ-Ganglien an diesem Stadium, statistisch signifikante Unterschiede ermittelt werden (p<0,001). (B) Der Mittelwert der Gesamt-zellzahl sympathischer Ganglien verschiedener Genotypen und Stadien wurde durch Quanti-fizierungen der Dapi-positiven Kerne bestimmt. Mit dem Students t-Test konnten für alle Ganglien bezogen auf die Wildtyp-Ganglien gleichen Alters mit Ausnahme der Sox4∆/∆-Ganglien an 11,5 dpc und 14,5 dpc sowie der Sox11lacZ/lacZ-Ganglien an 18,5 dpc statistisch signifikante Unterschiede gezeigt werden (p<0,001). Daten in (A) und (B) sind als Mittelwerte ± Standardfehler dargestellt.

Page 62: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

52

Somit beeinflussen die SoxC-Transkriptionsfaktoren, in Abhängigkeit von ihrem

Expressionsmaximum, zu unterschiedlichen Zeitpunkten die Entwicklung der sympathischen

Ganglien. An den früh-embryonalen Stadien übernimmt der Faktor Sox11 eine entscheidende

Rolle in der Ganglien-Entwicklung, während Sox4 an spät-embryonalen Zeitpunkten zum

Tragen kommt.

3.2.4.2 Untersuchung der Differenzierung sympathischer Neurone in SoxC-

defizienten Tieren

Neben einer reduzierten Gangliengröße in den Sox4-, Sox11- und doppelt-defizienten Mäusen

zu unterschiedlichen embryonalen Entwicklungszeitpunkten sollte nun im Folgenden die

Bedeutung von Sox4 und Sox11 bezüglich der Differenzierung sympathischer Neurone

genauer analysiert werden. Die Daten aus dem ersten Teil dieser Arbeit sowie frühere in vivo

bzw. in vitro Studien konnten zeigen, dass Sox4 und Sox11 sowohl neuronale als auch gliale

Differenzierungsprozesse im zentralen Nervensystem beeinflussen (Bergsland et al., 2006;

Hoser et al., 2007). Nina Tsarovina vom MPI in Frankfurt konnte nach Überexpression von

Sox4 und Sox11 in Primärkulturen von Spinalganglien fünf Tage alter Hühnchen-Embryonen

Hinweise auf eine vermehrte neuronale, nicht aber noradrenerge Zell-Differenzierung erhal-

ten. Mittels Immunhistochemie wurde für die mit den Sox4- und Sox11-Expressionsplasmi-

den transfizierten Zellen eine deutliche Zunahme in der Expression der pan-neuronalen

Marker Tuj1 und HuC/D im Vergleich zur GFP-Transfektionskontrolle detektiert. Diese

Ergebnisse konnten durch Quantifizierungen bestätigt werden, wobei die beiden Marker Tuj1

und HuC/D in 60-70% der Sox4- bzw. Sox11-transfizierten Zellen erhöht waren gegenüber

den GFP-transfizierten Zellen. Allerdings konnte keine erhöhte Expression des noradrenergen

Markers TH in den Sox4- oder Sox11-transfizierten Zellen dorsaler Wurzelganglien nach-

gewiesen werden. Demzufolge konnte für die beiden Sox-Proteine der Gruppe C kein Effekt

auf die Induktion der noradrenergen Differenzierung sympathischer Neurone erzielt werden,

wohl aber auf die Expression neuronaler Marker. Die Ergebnisse der in vitro Transfektions-

experimente von Nina Tsarovina wurden auch in vivo bestätigt. In Hühnchen-Embryonen

wurden Neuralleistenzellen kurz nach ihrer Auswanderung am Embryonaltag zwei (E2) auf

Schulter-Ebene mit RCAS-Viren, die entweder Sox4 oder Sox11 exprimierten, infiziert. Trotz

erfolgreicher Sox4- bzw. Sox11-Infektionsraten wurden jedoch in den neuen Untersuchungen

Page 63: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

53

nur wenige TH- oder SCG10-positive Zellen entlang des Brachialnervs detektiert. Dennoch

wurde weder in vitro noch in vivo eine vermehrte Induktion noradrenerger Differenzierungs-

marker durch die Überexpression von Sox4 oder Sox11 ausgelöst.

Zur Überprüfung dieser Ergebnisse wurde in der Maus zunächst die Expression verschiedener

Transkriptionsfaktoren, die nachweislich zum frühen regulatorischen Netzwerk der noradre-

nergen Differenzierung gehören (Goridis & Rohrer, 2002), in den sympathischen Ganglien

von SoxC doppelt-defizienten Tieren analysiert. An den Entwicklungsstadien 11,5 dpc und

14,5 dpc wurde mittels In situ Hybridisierungen sowie durch immunhistochemische

Färbungen die spezifische Expression von Mash1, Gata3, Hand2 und Insm1 in den

sympathischen Ganglien der Sox4∆/∆, Sox11lacZ/lacZ-Tiere nachgewiesen (Abb. 26). Insofern ist

die Expression wichtiger Regulatoren der noradrenergen Differenzierung in den sym-

pathischen Ganglien der doppelt-defizienten Tiere intakt.

Abb. 26: Expression noradrenerger Marker in den sympathischen Ganglien SoxC-defizienter Tiere. Auf transversalen Gefrierschnitten aus dem Herzbereich von Wildtyp (wt)- (A, C, E, G, I, K, M und O), und Sox4∆/∆, Sox11lacZ/lacZ (dko)-Embryonen (B, D, F, H, J, L, N und P) am Embryonal-tag 11,5 und 14,5 wurden sowohl In situ Hybridisierungen mit spezifischen DIG-markierten cRNA-Sonden gegen Mash1 (A-D), Gata3 (E-H) und Hand2 (I-L) als auch immunhistochemische Färbungen mit Antikörpern gegen Insm1 (M-P) durchgeführt. Die mit einem grau umrandeten Rechteck markierten Bereiche in A und B zeigen In situ Hybridisierungen mit spezifischen DIG-markierten cRNA-Sonden gegen Mash1 an 12,5 dpc.

Page 64: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

54

Im Folgenden sollte nun die Expression verschiedener Transkriptionsfaktoren, die in der

noradrenergen Differenzierung eine Rolle spielen, im Detail analysiert werden. Für die

Untersuchung wurden Sox4 sowie Sox11 einfach- und doppelt-defiziente Tiere an den

Entwicklungsstadien 11,5 dpc und 14,5 dpc verwendet (Abb. 27 und nicht gezeigte Daten).

Anhand immunhistochemischer Färbungen mit Antikörpern gegen Phox2b, Phox2a und TH

auf transversalen Gewebsschnitten aus dem Herzbereich von Tieren verschiedener Genotypen

konnte gezeigt werden, dass alle analysierten Marker in den sympathischen Ganglien SoxC-

defizienter Mäuse an beiden Zeitpunkten exprimiert wurden (Abb. 27A-L und nicht gezeigte

Daten). Dabei kennzeichnen Phox2b und Phox2a sympathoadrenale Vorläufer, wohingegen

der katecholaminerge Marker TH differenzierende, noradrenerge Neurone charakterisiert.

Ferner wurde auch der Faktor Tuj1, der panneuronale Differenzierung anzeigt, in den

Ganglien aller verwendeten Genotypen an 11,5 dpc und 14,5 dpc nachgewiesen (Abb. 27M-P

und nicht gezeigte Daten).

Im Vergleich zu den Wildtyp-Ganglien war die Anzahl der Phox2b-, Phox2a-, TH- und Tuj1-

exprimierenden Zellen in den sympathischen Ganglien der drei SoxC-defizienten Genotypen

an den analysierten Embryonaltagen 11,5 und 14,5 reduziert. Die Abnahme der noradrenergen

Marker schien sich proportional zur jeweiligen reduzierten Größe und Gesamtzellzahl der

Ganglien entsprechender mutanter Tiere zu verhalten (vergl. Abb. 27Q und R mit Abb. 25B).

In den sympathischen Ganglien der Sox4∆/∆, Sox11lacZ/lacZ-defizienten Mäuse wurde an den

Entwicklungsstadien 11,5 dpc, 14,5 dpc und 18,5 dpc im Verhältnis zu den Wildtyp-Ganglien

eine reduzierte Zahl der Phox2b- und TH-exprimierenden Zellen festgestellt. Dabei war die

Relation der TH- zu den Phox2b-positiven Zellen, mit Werten im Bereich von 0,8 bis 1,1 in

den doppelt-defizienten sympathischen Ganglien mit derjenigen in den Wildtyp-Ganglien

vergleichbar (Abb. 27Q und R).

Dagegen war die Situation in den sympathischen Ganglien der Sox4∆/∆-Embryonen weitaus

schwerer zu fassen. Am Embryonaltag 11,5 blieb das Verhältnis der TH- zu den Phox2b-

positiven Zellen in den mutanten Ganglien im Vergleich zu demjenigen in den Wildtyp-

Tieren nahezu unverändert. Im Gegensatz dazu waren am Entwicklungszeitpunkt 14,5 dpc die

TH-exprimierenden Zellen stark reduziert, so dass das Verhältnis zur Phox2b-Zellzahl einen

Wert von 0,6 ergab. Am letztmöglichen analysierbaren Embryonalstadium 18,5 dpc entsprach

die Relation der TH- zu den Phox2b-exprimierenden Zellen in den sympathischen Ganglien

der Sox4∆/∆-Embryonen wieder der Situation in den Wildtyp-Mäusen gleichen Alters (Abb.

27Q und R). Infolgedessen deuteten diese Ergebnisse darauf hin, dass der Faktor Sox4 einen

Page 65: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

55

potenziellen, aber transienten Einfluss auf die noradrenerge Differenzierung im Rahmen der

Entwicklung des sympathischen Nervensystems ausübt.

Daneben war in den Sox11lacZ/lacZ-Tieren am Embryonaltag 11,5 sowohl die Zahl der TH- als

auch der Phox2b-positiven Zellen in den sympathischen Ganglien im Vergleich zu den

Wildtyp-Tieren reduziert. Das Verhältnis von TH- zu Phox2b-exprimierenden Zellen ent-

sprach aber dem von den Wildtyp-Ganglien. Im weiteren Verlauf der Embryonalentwicklung

blieben die TH- und Phox2b-exprimierenden Zellen an 14,5 dpc in den Sox11-defizienten

sympathischen Ganglien reduziert. Im Vergleich zu der Situation in den Wildtyp-Ganglien

Abb. 27: Expression noradrenerger und neuronaler Marker in den sympathischen Ganglien SoxC-defizienter Tiere. (A-P) Immunhistochemische Färbungen mit Antikörpern gegen Phox2b (A-D), Phox2a (E-H), TH (I-L) und Tuj1 (M-P) auf transversalen Gefrierschnitten aus der Herzregion von Wildtyp (wt)- (A, E, I und M) , Sox4∆/∆- (B, F, J und N), Sox11lacZ/lacZ- (C, G, K und O) und Sox4∆/∆, Sox11lacZ/lacZ (dko)- (D, H, L und P) Tieren am Embryonaltag 14,5. (Q-S) Darstellung der absoluten Zahlen Phox2b- (Q), TH- (R) und Sox10- (S) positiver Zellen in den sympathischen Ganglien von Wildtyp (wt)-, Sox4∆/∆-, Sox11lacZ/lacZ- und Sox4∆/∆, Sox11lacZ/lacZ (dko)-Tieren an den Stadien 11,5 dpc (weiße Balken), 14,5 dpc (graue Balken) und 18,5 dpc (schwarze Balken). Dabei konnten mit dem Students t-Test statistisch signifikante Unterschiede für die reduzierte Zahl an Phox2b- und TH-positiven Zellen in den mutanten Ganglien relativ zu der Zellzahl in den gleichaltrigen Wildtyp-Ganglien ermittelt werden (p<0,001). Die Menge Sox10-positiver Zellen in den sympathischen Ganglien aller Genotypen war miteinander vergleichbar (S). Die Pfeilspitzen in (R) markieren signifikant abweichende Werte der TH- zu den Phox2b-positiven Zellen in den sympathischen Ganglien der mutanten Genotypen bezogen auf die Wildtyp-Werte. Die Daten in (Q-S) sind als Mittelwerte ± Standardfehler dargestellt.

Page 66: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

56

nahm am Embryonaltag 14,5 das Verhältnis der TH- zu Phox2b-exprimierenden Zellen in den

Ganglien der Sox11lacZ/lacZ-Tiere auf den Wert von 0,6 ab, bedingt durch die geringe Zahl TH-

positiver Zellen. Trotz der Zunahme an Phox2b-positiven Zellen am Embryonaltag 18,5 blieb

die Zahl der TH-exprimierenden Zellen sowie das Verhältnis der TH- zu den Phox2b-

positiven Zellen mit einem Wert von 0,5 signifikant kleiner als in den Wildtyp-Mäusen (Abb.

27Q und R). Die Quantifizierungen der Gesamtzellzahl (Abb. 25B), der TH-positiven Fläche

(Abb. 25A) und der Anzahl der Phox2b-exprimierenden Zellen (Abb. 27Q) in den sym-

pathischen Ganglien von Sox11lacZ/lacZ-Embryonen am Entwicklungszeitpunkt 18,5 dpc

zeigten eine Annäherung der Zellzahl sowie der Gangliengröße an die der Wildtyp-Tiere.

Dabei charakterisieren die Phox2b-positiven, aber TH-negativen Zellen in den sympathischen

Ganglien Sox11-defizienter Tiere Vorläuferzellen, die sich noch nicht im Reifungsprozess zu

sympathischen Neuronen befinden. Aufgrund der Überrepräsentation Phox2b-exprimierender

Zellen sowie der deutlich geringeren Anzahl TH-positiver Zellen in Sox4- und Sox11-Einzel-

mutanten an den Embryonalstadien 14,5 dpc und 18,5 dpc konnte eine vorübergehende

Verzögerung der Entwicklung des sympathischen Nervensystems beobachtet werden. Ferner

wurde in vorangegangenen Experimenten nachgewiesen, dass die Sox10-exprimierenden

Zellen in den sympathischen Ganglien weder für Sox4 noch für Sox11 positiv waren (siehe

Abb. 22). Somit wurden im Vergleich zu den Wildtyp-Tieren in den Ganglien der drei

mutanten Genotypen zu den analysierten Embryonalstadien 11,5 dpc, 14,5 dpc und 18,5 dpc

keine signifikanten Unterschiede in der Anzahl Sox10-exprimierender Zellen gemessen (Abb.

27S). Dies bestätigte die Annahme, dass die Entwicklung der Neuralleisten- und Gliazellen

des sympathischen Nervensystems beim Fehlen von Sox4 und Sox11 nicht gestört ist.

Die Daten der in Abb. 27 gezeigten immunhistochemischen Färbungen sowie die Ergebnisse

der in vitro bzw. in vivo Transfektionsstudien im Huhn zeigten, dass die SoxC-Proteine

Einfluss auf die Differenzierung der sympathoadrenalen Zellen zu sympathischen Neuronen

nehmen. Dennoch scheinen die beiden Faktoren Sox4 und Sox11 im sympathischen Nerven-

system nicht die gleichen Funktionen auszuüben wie in den sich differenzierenden Neuronen

und glialen Zellen des zentralen Nervensystems (Bergsland et al., 2006; Hoser et al., 2007;

Potzner et al., 2007).

Page 67: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

57

3.2.4.3 Untersuchung der Proliferation im sympathischen Nervensystem

SoxC-defizienter Tiere

Die reduzierte Gangliengröße in den einfach sowie doppelt SoxC-defizienten Tieren könnte

durch den Einfluss der Transkriptionsfaktoren Sox4 und Sox11 auf die Proliferation in den

sympathischen Ganglien erklärt werden. Daher sollte der Anteil an aktiv proliferierenden

Zellen über den Einbau des Thymidin-Analogons BrdU innerhalb eines Zeitraums von einer

Stunde in die DNA sich teilender Zellen bestimmt werden. Die folgende Analyse der sympa-

thischen Ganglien von Wildtyp- sowie SoxC-defizienten Mäusen wurde zu den embryonalen

Zeitpunkten 11,5 dpc bis 16,5 dpc durchgeführt. Entsprechend den Daten aus der Literatur

konnte nach Verabreichung des Nucleosid-Analogons eine deutliche Menge BrdU-markierter

Zellen in den Ganglien der Wildtyp-Tiere an den analysierten Embryonalstadien detektiert

werden mit einer maximalen Anzahl BrdU-positiver Zellen an 14,5 dpc (Abb. 28A-F und Abb.

29A). Als Folge davon nahm die Größe der Ganglien von 11,5 dpc bis 18,5 dpc zu (siehe Abb.

24A, E und I). Dennoch verringerte sich während dieser Entwicklungsphase die

Proliferationsrate, die durch die Anzahl BrdU-positiver Zellen in Relation zu der

Gesamtzellzahl in den sympathischen Ganglien der Wildtyp-Tiere bestimmt wird (Abb. 29B).

Abb. 28: Proliferation in den sympathischen Ganglien SoxC-defizienter Tiere. Immunhistochemische Färbungen mit Antikörpern gegen BrdU (A-L) (in grün), Sox10 (A, C, E, G, I und K) und TH (B, D, F, H, J und L) (beide in rot) auf transversalen Gefrierschnitten aus dem Herzbereich von Wildtyp (wt)- (A-F) und Sox4∆/∆, Sox11lacZ/lacZ (dko)- (G-L) Embryonen der Entwicklungsstadien 11,5 dpc (A, B, G und H), 12,5 dpc (C, D, I und J) sowie 14,5 dpc (E, F, K und L) . Die Ko-Expressionen von BrdU mit Sox10 oder TH sind als gelbes Signal dargestellt und die sympathischen Ganglien in A und K wurden mit einer weißen Linie umrandet.

Page 68: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

58

Ferner exprimierte die Mehrheit an BrdU-positiven Zellen den noradreneregen Marker TH

(Abb. 28B, D und F) und nur vereinzelte Sox10-exprimierende Zellen waren zusätzlich für

BrdU positiv (Abb. 28A, C und E). Diese Beobachtungen führten zu der Annahme, dass

während der Entwicklung des sympathischen Nervensystems der überwiegende Anteil

proliferierender Zellen in den Wildtyp-Ganglien unreife sympathische Neurone sind. Im

Vergleich zu den am Embryonaltag 11,5 zahlreich vorhandenen proliferierenden Zellen in den

sympathischen Ganglien der Wildtyp-Tiere konnte in den Ganglien der doppelt-defizienten

Mäuse nahezu keine proliferierende Zelle nachgewiesen werden (Abb. 28G, H und Abb. 29A).

Verglichen mit den Werten der Wildtyp-Ganglien waren zu diesem Zeitpunkt sowohl die

absoluten Zahlen BrdU-positiver Zellen als auch die relativen Proliferationsraten in den

Ganglien doppelt-defizienter Tiere stark reduziert (Abb. 29A und B). Erst am Entwicklungs-

stadium 12,5 dpc konnten die ersten proliferierenden Zellen in den sympathischen Ganglien

der Sox4∆/∆, Sox11lacZ/lacZ-defizienten Tiere beobachtet werden (Abb. 28I und J). Dagegen

näherten sich am Entwicklungsstadium 14,5 dpc die absoluten Zahlen BrdU-positiver Zellen

in den sympathischen Ganglien der doppelt-defizienten Tiere den Werten in den Wildtyp-

Tieren an (Abb. 28K, L zu E, F und Abb. 29A). Im Vergleich zu den Wildtyp-Ganglien wurde

daher an 14,5 dpc in den kleinen Ganglien der Sox4∆/∆, Sox11lacZ/lacZ-defizienten Tiere eine

erhöhte Proliferationsrate bestimmt (Abb. 29B). Auch am Embryonaltag 16,5 konnten mehr

proliferierende Zellen in den Ganglien doppelt-defizienter Tiere nachgewiesen werden als in

den Wildtyp-Tieren entsprechenden Alters (Abb. 29A und B).

Abb. 29: Bestimmung der Proliferation in den sympathischen Ganglien SoxC-defizienter Tiere. Darstellung der absoluten Zahlen BrdU-positiver Zellen (A) sowie Bestimmung der relativen prozentualen Proliferationsrate (B) bezogen auf die Gesamtzellzahl in den sympathischen Ganglien von Wildtyp (wt)-, Sox4∆/∆-, Sox11lacZ/lacZ- bzw. (Sox11-/-) und Sox4∆/∆, Sox11lacZ/lacZ (dko)-Embryonen an den Entwicklungsstadien 11,5 dpc (weiße Balken), 14,5 dpc (graue Balken) sowie 16,5 dpc (schwarze Balken). Für jeden Genotyp und für jedes Alter wurden mindestens 12 Schnitte ausgezählt.

Page 69: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

59

Wie bereits für die sympathischen Wildtyp-Ganglien gezeigt werden konnte (Abb. 28B, D und

F), sind auch die proliferierenden Zellen in den Ganglien der Sox4∆/∆, Sox11lacZ/lacZ-

defizienten Tiere vorwiegend TH positiv (Abb. 28G-L).

Neben den sympathischen Ganglien der SoxC doppelt-defizienten Tiere wurden auch

Proliferations-Analysen für Sox4 bzw. Sox11 einfach-defiziente Mäuse miteinbezogen. Dabei

waren in den sympathischen Ganglien der Sox4∆/∆-Tiere die Anzahl der BrdU-positiven

Zellen sowie die Bestimmungen ihrer relativen Proliferationsrate mit den Werten in den

Wildtyp-Ganglien vergleichbar (Abb. 29A und B). Demgegenüber wurde in den sym-

pathischen Ganglien der Sox11lacZ/lacZ-defizienten Embryonen, ähnlich wie in den SoxC-

doppelt-defizienten Tieren am Embryonaltag 11,5 nahezu keine BrdU-positive Zelle

detektiert (Abb. 29A). Entsprechend den Ergebnissen in den sympathischen Ganglien der

Sox4∆/∆, Sox11lacZ/lacZ-Tiere wurden auch in den Sox11-defizienten Ganglien verglichen mit

den Wildtyp-Ganglien an den beiden Stadien 14,5 dpc sowie 16,5 dpc hohe Proliferations-

raten nachgewiesen (Abb. 29B).

Die Daten aus den Proliferationsstudien zeigten, dass das Fehlen des Transkriptionsfaktors

Sox11 an den früh-embryonalen Stadien negativ auf die Proliferationsfähigkeit sympatho-

adrenaler Zellen wirkt. Dadurch könnte die in der Entwicklung auftretende reduzierte

Gangliengröße der Sox11lacZ/lacZ- sowie der Sox4∆/∆, Sox11lacZ/lacZ-Tiere zu diesen frühen

Zeitpunkten erklärt werden. An den spät-embryonalen Stadien nahm dagegen die Pro-

liferation in den sympathischen Ganglien SoxC-defizienter Mäuse wieder zu.

3.2.4.4 Untersuchung der Apoptose im sympathischen Nervensystem SoxC-

defizienter Tiere

Trotz der zunehmenden Zahl an BrdU-positiven Zellen in den sympathischen Ganglien der

doppelt-defizienten Tiere an den spät-embryonalen Stadien (Abb. 29) blieben die Ganglien zu

diesen Entwicklungszeitpunkten auffallend klein (Abb. 24L und nicht gezeigte Daten). Um

eine Erklärung für diese Beobachtung zu finden, sollte im Folgenden nun die Zahl der

apoptotischen Zellen in diesem Gewebe genauer analysiert werden. In apoptotischen Zellen

spalten Endonukleasen die DNA in spezifische Fragmente, die mittels enzymatischer End-

markierung durch die terminale Desoxynucleotidyltransferase detektiert werden können.

Page 70: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

60

Die dabei verwendeten Nukleotide waren DIG markiert und konnten mit Hilfe eines anti-

DIG-Antikörpers nachgewiesen werden. Dieser sogenannte TUNEL-Assay wurde an den

Embryonaltagen 12,5, 14,5 und 16,5 auf transversalen Gefrierschnitten aus dem Herzbereich

SoxC-defizienter Tiere durchgeführt (Abb. 30 und nicht gezeigte Daten). An dem frühen

Embryonalstadium 12,5 dpc konnten sowohl in den Wildtyp-Ganglien als auch in den

Ganglien der doppelt-defizienten Tiere nur vereinzelte apoptotische Zellen detektiert werden

(nicht gezeigte Daten). Dagegen wurde vom Stadium 14,5 dpc an reproduzierbar eine

zunehmende Anzahl TUNEL-positiver Zellen in den SoxC-defizienten Ganglien detektiert

(Abb. 30). Die Quantifizierung apoptotischer Zellen in den sympathischen Ganglien

verschiedener Genotypen an den Entwicklungsstadien 14,5 dpc sowie 16,5 dpc zeigte eine

zwei bis vierfache Zunahme der Apoptoserate in den Sox4∆/∆- und den Sox4∆/∆, Sox11lacZ/lacZ-

Embryonen (Abb. 30). Demgegenüber war die Anzahl der TUNEL-positiven Zellen in den

Ganglien der Sox11lacZ/lacZ-Tiere mit derjenigen in den Wildtyp-Mäusen vergleichbar. Die

Apoptosestudien wiesen darauf hin, dass die Sox-Proteine der Gruppe C vom Entwicklungs-

zeitpunkt 14,5 dpc an auf die Überlebensrate sympathischer Neurone Einfluss nehmen

könnten. Ferner schien dieser Effekt hauptsächlich eine Funktion des Transkriptionsfaktors

Sox4 zu sein, der während der Entwicklung des sympathischen Nervensystems vorwiegend an

den spät-embryonalen Stadien in den Ganglien exprimiert wird (siehe Abb. 21).

Abb. 30: Bestimmung der Apoptose in sympathischen Ganglien SoxC-defizienter Tiere. Durch Quantifizierungen TUNEL-positiver Zellen wurde die relative prozentuale Apoptoserate, bezogen auf die Gesamtzellzahl in den sympathischen Ganglien von Wildtyp (wt)-, Sox4∆/∆-, Sox11lacZ/lacZ- bzw. (Sox11-/-) und Sox4∆/∆, Sox11lacZ/lacZ (dko)-Embryonen an den Entwicklungsstadien 14,5 dpc (graue Balken) und 16,5 dpc (schwarze Balken) bestimmt. Für jeden Genotyp sowie für jedes Alter wurden mindestens 12 Schnitte ausgezählt.

Page 71: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

61

3.2.5 Auswirkung der SoxC-Protein-Defizienz im sympathischen

Nervensystem adulter Tiere

Im Vergleich zu den Wildtyp-Tieren ist die Größe der sympathischen Ganglien in Sox4∆/∆,

Sox11lacZ/lacZ-Embryonen zu den unterschiedlichen Entwicklungszeitpunkten stark reduziert.

Die Gründe hierfür sind zum einen das verlangsamte Wachstum der Ganglien während der

frühen Entwicklungsphase und zum anderen die erhöhte Apoptose an den spät-embryonalen

Stadien (siehe Abb. 28-30). Dennoch waren selbst zum Zeitpunkt der Geburt in den doppelt-

defizienten Mäusen die sympathischen Ganglien noch vorhanden (nicht gezeigte Daten).

Diese Tiere sind jedoch perinatal letal und sterben an schwerwiegenden Herzdefekten, die

durch die homozygote Deletion des Sox11-Gens entstehen (Sock et al., 2004). Daher konnte

in den Sox4∆/∆, Sox11lacZ/lacZ-Mäusen nicht gezeigt werden, ob die auftretenden embryonalen

Defekte des sympathischen Nervensystems vorübergehend oder persistierend sind und somit

zu möglichen funktionellen Auswirkungen in adulten Tieren führen könnten.

Zur Klärung dieser Frage wurden Sox11loxP/loxP-Mäuse mit Sox4loxP/loxP, DBH::Cre-Mäusen

gekreuzt, um Sox4∆/∆, Sox11∆/∆-Tiere zu generieren. In diesen Tieren sind beide SoxC-Gene

spezifisch nur in den sympathoadrenalen Zellen deletiert (auch als cdko bezeichnet). Die

Sox4∆/∆, Sox11∆/∆-Tiere waren lebensfähig und zeigten bereits ab der dritten postnatalen

Woche offensichtliche phänotypische Auffälligkeiten, die darin bestanden, dass die mutanten

Mäuse ihre Augen nicht vollständig öffnen konnten (Blepharoptosis) (Abb. 31A und B).

Dieser beim Menschen als Ptosis bezeichnete Phänotyp wird durch die fehlende Innervierung

des Musculus tarsalis, der im oberen Augenlid sitzt, hervorgerufen. Weitere Defekte des

sympathischen Nervensystems, die das Auge betreffen, werden in der Humanmedizin unter

dem Begriff Horner-Syndrom zusammengefasst. Durch immunhistochemische Färbungen mit

Antikörpern gegen den noradrenergen Marker TH konnte auf sagittalen Augenschnitten der

drei Monate alten Sox4∆/∆, Sox11∆/∆-Tiere die fehlende Innervierung des Musculus tarsalis

nachgewiesen werden (Abb. 31E zu H). Im Gegensatz zu den Wildtyp-Mäusen wurden im

Augenlid der mutanten Tiere weder die Tarsal-Drüsen (Meibom-Drüsen) (Abb. 31F zu I)

noch die kleinen Blutgefäße (Arteriolen) innerviert (Abb. 31G zu J). Das vollständige Fehlen

TH-positiver Zellen spricht für den Verlust der sympathischen Innervierung dieser

Zielgewebe. Übereinstimmend mit den Resultaten der TH-Immunhistochemie auf sagittalen

Augenschnitten von Sox4∆/∆, Sox11∆/∆-Mäusen wurden in diesen Tieren lediglich verküm-

merte Rudimente der oberen Hals- und Brustbein-Ganglien aufgefunden (Abb. 31C zu D).

Page 72: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Ergebnisse

62

Die Ergebnisse des Phänotyps adulter Mäuse mit spezifischen Deletionen der beiden SoxC-

Transkriptionsfaktoren in den sympathoadrenalen Zellen konnten zeigen, dass Sox4 und

Sox11 maßgeblich für die Entwicklung eines funktionellen sympathischen Nervensystems

benötigt werden.

Abb. 31: Phänotyp adulter Mäuse mit spezifischen Sox4- und Sox11-Deletionen im sympa-thischen Nervensystem. (A, B) Im adulten Stadium (hier drei Monate) zeigten die Sox4∆/∆, Sox11∆/∆(cdko)-Mäuse (B), eine Blepharoptosis, die bei Wildtyp (wt)-Geschwistertieren (A) nicht auftrat. (C, D) Im Vergleich zu den Wildtyp (wt)-Tieren war die Größe der oberen zervikalen Ganglien (C) sowie der Brustbeinganglien (D) in den Sox4∆/∆, Sox11∆/∆ (cdko)-Tieren stark reduziert. (E-J) Die sympathische Innervierung des Musculus tarsalis (E und H), der Meibom-Drüsen (F und I) und der Arteriolen (G und J) konnte mittels immunhistochemischer Färbungen mit Antikörpern gegen den noradrenergen Marker TH auf sagittalen Augenschnitten der Wildtyp (wt)-Mäuse (E, F und G) gezeigt werden. Dagegen wurden in den Sox4∆/∆, Sox11∆/∆ (cdko)-Tieren keine TH-positiven Signale beobachtet (H, I und J).

Page 73: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

63

4 Diskussion

Die Entwicklung komplexer Organismen mit spezialisierten Organsystemen erfordert eine

kontrollierte sowie koordinierte Genexpression, um Genom-kodierte Informationen sowohl

zeitlich als auch räumlich genau geregelt abzurufen. An der Aktivierung bzw. Inaktivierung

ganzer Genombereiche sind sequenzspezifische Transkriptionsfaktoren beteiligt, die eine

wichtige Rolle bei der Spezifizierung und Differenzierung verschiedener Zelltypen über-

nehmen. Dazu gehört auch die Klasse der Sox-Proteine, von denen während der Embryonal-

entwicklung in nahezu jedem Gewebe mindestens ein Vertreter exprimiert wird (Wegner,

1999; Bowles et al., 2000; Lefebvre et al., 2007).

Die Sox-Proteine der Gruppe C, Sox4, Sox11 und Sox12, werden u.a. gemeinsam in verschie-

denen Zelltypen und Regionen des Säuger-Nervensystems exprimiert (Hoser et al., 2008).

Überexpressionsstudien deuten zudem darauf hin, dass sie wichtige transkriptionelle Regula-

toren neuronaler sowie glialer Entwicklungsprozesse sind (Bergsland et al., 2006; Hoser et al.,

2007). Dennoch konnten weder in Sox4- noch in Sox11-defizienten Mäusen Defekte im sich

entwickelnden Nervensystem nachgewiesen werden (Cheung et al., 2000; Sock et al., 2004).

Dies könnte für eine funktionelle Redundanz beider SoxC-Proteine sprechen. Daher wurde im

Rahmen dieser Arbeit die Bedeutung von Sox4 und Sox11 im sich entwickelnden Säuger-

Nervensystem mittels Überexpression und spezifischer Gendeletion analysiert.

4.1 Das MBP-Sox4-transgene Mausmodell

Im Hinblick auf die frühe Letalität der konstitutiven Sox4- bzw. Sox11-Einzelmutanten

(Schilham et al., 1996; Sock et al., 2004) kann die Funktion der SoxC-Proteine in neuralen

Geweben nur durch einen zeitgleichen sowie zelltyp- und gewebsspezifischen Verlust von

Sox4 und Sox11 aufgeklärt werden. Zu Beginn der Doktorarbeit standen jedoch konditionale

SoxC-Mausmutanten nicht zur Verfügung, die durch Expression der Cre-Rekombinase unter

spezifischen Promotoren die Deletion der SoxC-Gene im entstehenden Nervensystem

ermöglichen. Daher wurde zunächst der experimentelle Ansatz der Überexpression gewählt,

um die Bedeutung von Sox4 im zentralen Nervensystem zu untersuchen.

Page 74: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

64

Normalerweise wird der Transkriptionsfaktor Sox4 in spezifizierten unreifen glialen Vor-

läuferzellen exprimiert und während der Differenzierung zu reifen Gliazellen in den post-

mitotischen glialen Zellen herunterreguliert (Kuhlbrodt et al., 1998a). Um die Funktion von

Sox4 für die Differenzierung der Oligodendrozyten aufzuklären, wurde in dieser Arbeit die

Expression von Sox4 durch das MBP-Promotor-Fragment in den ausreifenden myelinisie-

renden Oligodendrozyten im transgenen Mausmodell verlängert.

4.1.1 Expression des Sox4-Transgens in terminal differenzieren-

den Oligodendrozyten

Die Expression des Sox4-Transgens wird durch das MBP-Promotor-Fragment selektiv in den

differenzierenden oligodendroglialen Zellen angeschaltet. Frühere Studien konnten zeigen,

dass die Expression des MBP-Gens in den Oligodendrozyten bzw. den Schwannzellen über

verschiedene regulatorische Elemente des MBP-Promotors, abhängig vom Gewebe und

Entwicklungszeitpunkt, kontrolliert wird (Farhadi et al., 2003). Um die Expression des Sox4-

Transgens ausschließlich in den terminal differenzierenden Oligodendrozyten zu gewähr-

leisten, wurde ein 3,1 kb langes Fragment des MBP-Promotors verwendet, das keine

regulatorischen Elemente für die Expression des Sox4-Transgens in den Schwannzellen des

peripheren Nervensystems enthält (Foran & Peterson, 1992; Denarier et al., 2005). Vielmehr

ist dieses Promotor-Fragment für die Induktion der MBP-Genexpression in den ersten drei

Wochen nach der Geburt, der Hauptphase der Myelinisierung in den differenzierenden

oligodendroglialen Zellen, verantwortlich (Foran & Peterson, 1992). Daher wurde zu keinem

der analysierten postnatalen Zeitpunkte in Ischiasnerven des peripheren Nervensystems

transgener Tiere eine nachweisbare Menge des MBP-Sox4-Transgens in den Schwannzellen

detektiert. Im weiteren Verlauf der Entwicklung wird der MBP-Promotor normalerweise

abgeschaltet. Folglich nimmt die endogene MBP-Expression ab und erreicht in den reifen

Oligodendrozyten einen niedrigen stabilen Expressionswert (Zeller et al., 1984).

Der MBP-Promotor enthält bestimmte DNA-Konsensussequenzen für die direkte Bindung

spezifischer Transkriptionsfaktoren. So bindet das HMG-Box-Protein Sox10 als Monomer

oder Dimer an regulatorische DNA-Elemente im MBP-Promotorbereich und induziert so die

Myelinbildung in den terminal differenzierenden Oligodendrozyten (Stolt et al., 2002).

Page 75: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

65

Mäuse, die für den Faktor Sox10 defizient waren, zeigten somit einen stark ausgeprägten

Differenzierungsdefekt oligodendroglialer Zellen. Im Vergleich zu den Wildtyp-Tieren wurde

in der weißen Substanz des spät-embryonalen Rückenmarks Sox10-defizienter Mäuse keine

Expression des MBP-Gens sowie weiterer spezifischer Myelingene nachgewiesen (Stolt et al.,

2002). Dies spricht für eine direkte Regulation der Myelingenexpression in den differen-

zierenden Oligodendrozyten durch den Faktor Sox10. Die Bedeutung des Transkriptions-

faktors Nkx2.2 für die Myelinisierung konnte mit Hilfe von Nkx2.2-defizienten Mäusen

gezeigt werden, die eine verzögerte Expression des MBP-Gens und in Folge dessen eine

reduzierte Menge MBP-positiver Zellen im sich entwickelnden Rückenmark aufweisen (Qi et

al., 2001). Diese beiden Faktoren, Sox10 und Nkx2.2, regulieren direkt die Aktivität des

MBP-Promotors durch ihre Bindung an spezifische Elemente im stromaufwärts gelegenen

Promotor-Bereich. Der MBP-Promotor besitzt aber auch DNA-Bindestellen für bHLH-Fakto-

ren der Klasse A, die mit den bHLH-Proteinen der Klasse B wie z.B. Olig1, Olig2 und Mash1

interagieren können. Die differenzielle Aktivierung des MBP-Promotors während der Oligo-

dendrozyten-Reifung und die damit verbundene Expression des MBP-Gens kann durch ein

koordiniertes, kombinatorisches Zusammenwirken in spezifischen transkriptionellen Protein-

Komplexen erreicht werden (Gokhan et al., 2005). Die verschiedenen Transkriptionsfaktoren

zeigen je nach Entwicklungsstadium voneinander differierende Expressionsprofile und be-

wirken somit die örtlich und zeitlich präzise Myelinisierung des zentralen Nervensystems.

Im Rückenmark sowie im Klein- und Vorderhirn MBP-Sox4-transgener Mäuse war die

Myelinisierung zu spät-postnatalen Entwicklungszeitpunkten unvollständig, obwohl die Ex-

pression des Sox4-Transgens bereits nach den ersten postnatalen Wochen abgeschaltet wurde.

Dies impliziert, dass die Aktivität der regulatorischen Elemente im MBP-Promotor-Fragment

nicht primär zellintrinsisch über den aktuellen Zustand der Myelinisierung reguliert wird,

sondern vielmehr durch die Veränderung extrinsischer Signale aus der Umgebung. So konnte

eine Studie über Kalzium-sensitive Rezeptoren in oligodendroglialen Zellen zeigen, dass in

prä-myelinisierenden Oligodendrozyten eine verstärkte Expression dieser Rezeptorgene statt-

findet, die in den reifen Oligodendrozyten stark reduziert ist (Chattopadhyay et al., 2008).

Dabei wird die Expression von MBP in prä-myelinisierenden Oligodendrozyten in

Abhängigkeit von der jeweils umgebenden Kalzium-Menge durch die Kalzium-sensitiven

Rezeptoren stimuliert, wodurch die terminale Differenzierung oligodendroglialer Zellen zu

myelinbildenden Oligodendrozyten begünstigt wird.

Page 76: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

66

4.1.2 Der MBP-Sox4-transgene Phänotyp im Vergleich zu Maus-

mutanten mit ähnlichem Erscheinungsbild

Anhand der EGFP-Autofluoreszenz konnte das Sox4-Transgen zu verschiedenen postnatalen

Zeitpunkten im Rückenmark sowie in den Fasertrakten des Vorder- und Kleinhirns transgener

Tiere detektiert werden. Die Ko-Expression von EGFP mit dem Oligodendrozyten-Marker

Sox10 sowie dem basischen Myelinprotein MBP an früh-postnatalen Stadien wies darauf hin,

dass das Sox4-Transgen selektiv in den differenzierenden Oligodendrozyten transgener Tiere

exprimiert wird. Die verlängerte Expression des Sox4-Transgens, weit nach dem Zeitpunkt

der Spezifizierung oligodendroglialer Zellen, hatte im zentralen Nervensystem transgener

Tiere eine schwere Hypomyelinisierung zur Folge. Dieser Phänotyp war verbunden mit einer

reduzierten Myelingenexpression, die zu einer deutlich dünner ausgeprägten Myelinschicht

um die Axone und zu Abnormalitäten in der Myelinstruktur führte. Unkontrollierte Zitter-

bewegungen und dyskinetische Verhaltensweisen der MBP-Sox4-transgenen Mäuse zu

Beginn der zweiten postnatalen Woche erinnerten stark an den in der Literatur beschriebenen

Phänotyp der shiverer-Maus (Shen et al., 1985). Diese MBP-Nullmutante weist schwer-

wiegende Myelin-Defekte im zentralen Nervensystem auf, die in letzter Konsequenz zum Tod

der MBP-defizienten Tiere führt. Dagegen erholten sich die MBP-Sox4-transgenen Mäuse im

weiteren Verlauf der Entwicklung sukzessiv von ihren Krankheitssymptomen und zeigten im

adulten Rückenmark und im Gehirn ein den Wildtyp-Tieren vergleichbares MBP-Protein-

Vorkommen. Der Grund ist die verminderte Aktivität des MBP-Promotors zu späteren Zeit-

punkten, die letztendlich die Abschaltung des MBP-Sox4-Transgens in den terminal differen-

zierten Oligodendrozyten bewirkt.

Schwere Dysmyelinisierungen des zentralen Nervensystems konnten auch in MRF/Gm98-

defizienten Tieren detektiert werden (Emery et al., 2009). Der Gen-Regulatorische-Faktor

MRF/Gm98 wird spezifisch in postmitotischen Oligodendrozyten exprimiert (Cahoy et al.,

2008) und durch den an der Regulation der Oligodendrozyten-Differenzierung beteiligten

Transkriptionsfaktor Ying Yang 1 (YY1) induziert (He et al., 2007). Die MRF/Gm98-

defizienten Mäuse zeigten schwere Defizite in der Expression spezifischer Myelingene und

wiesen eine stark erhöhte Apoptoserate prä-myelinisierender Oligodendrozyten auf. Folglich

ist MRF/Gm98 ein wichtiger transkriptioneller Regulator, der für die Expression spezifischer

Myelingene im zentralen Nervensystem verantwortlich ist und den Reifungsprozess der

Oligodendrozyten bedingt. Im Gegensatz dazu konnte in MBP-Sox4-transgenen Mäusen

Page 77: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

67

gezeigt werden, dass der Transkriptionsfaktor Sox4 in den terminal differenzierten oligo-

dendroglialen Zellen herunterreguliert werden muss, um die Reifung myelinbildender

Oligodendrozyten nicht zu stören. Dies deutet darauf hin, dass sowohl eine koordinierte als

auch zeitlich genau regulierte Genexpression für die Entwicklung der Oligodendrozyten

unverzichtbar ist.

Die stark reduzierte Expression des Myelin-Proteins MBP im zentralen Nervensystem Sox4-

transgener Tiere führte zu der Vermutung, dass die Population der Oligodendrozyten verän-

dert sein könnte. Die Zahl der Sox10-positiven Zellen im postnatalen Rückenmark transgener

Tiere verschiedener Stadien stimmte jedoch im Wesentlichen mit derjenigen in den

entsprechenden Wildtyp-Tieren gleichen Alters überein. Auch der Anteil an proliferierenden

Oligodendrozytenvorläufern in den MBP-Sox4-transgenen Tieren war kaum erhöht und die

für die Proliferationsmarker PCNA und Ki67 positiven Oligodendrozyten wiesen keine

zusätzliche Expression des MBP-Sox4-Transgens auf. Somit konnte die verminderte MBP-

Expression nicht darauf zurückgeführt werden, dass ein Großteil der oligodendroglialen

Zellen im Stadium der Spezifizierung arretiert ist. Zusätzlich war die Apoptoserate in den

Fasertrakten des Kleinhirns transgener Tiere nur geringfügig erhöht, obwohl aktivierte mikro-

gliale Zellen, die mit EGFP-positiven Zellen assoziiert waren, in diesem Gewebe nach-

gewiesen wurden. Folglich sind Proliferations- bzw. Apoptoseraten sowie oligodendrogliale

Parameter in den entsprechenden analysierten neuralen Geweben postnataler transgener Tiere

nahezu unverändert. Diese Ergebnisse deuten darauf hin, dass das Sox4-Transgen nicht in

mitotischen sondern in postmitotischen oligodendroglialen Zellen exprimiert wird. Dadurch

werden die Oligodendrozyten bis zum Abschalten des Transgens in einem prä-myelini-

sierenden Zustand angehalten und demzufolge die terminale Differenzierung zu myelin-

bildenden Oligodendrozyten verzögert.

4.1.3 Bedeutung von Sox4 für die Reifung der Oligodendrozyten

Durch die verlängerte Expression von Sox4 in den differenzierenden oligodendroglialen

Zellen wurde der Reifungsprozess zu myelinbildenden Oligodendrozyten stark beeinträchtigt.

Dies lässt den Schluss zu, dass die SoxC-Proteine in oligodendroglialen Vorläuferzellen

exprimiert werden, um diese in einem undifferenzierten Zustand zu halten. Um jedoch eine

terminale Differenzierung dieser Zellen zu gewährleisten, muss die Expression der SoxC-

Page 78: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

68

Gene abgeschaltet werden (Uwanogho et al., 1995; Hargrave et al., 1997; Kuhlbrodt et al.,

1998a). Somit fungieren die Sox-Proteine der Gruppe C in den Pro-Oligodendrozyten als

Anti-Differenzierungsfaktoren und verhindern dadurch die vorzeitige terminale Differen-

zierung zu myelinisierenden Oligodendrozyten.

Eine ähnliche Funktion während der Entwicklung oligodendroglialer Zellen konnte für die

Mitglieder der Gruppe D, Sox5 und Sox6, aufgezeigt werden, deren Expression normaler-

weise in den terminal differenzierenden Oligodendrozyten ausgeschaltet wird (Stolt et al.,

2006). An spät-embryonalen Stadien wurde im Rückenmark Sox5- und Sox6-defizienter

Tiere eine frühzeitige sowie zunehmende Expression der beiden Myelingene MBP und PLP

nachgewiesen (Stolt et al., 2006). Dies deutet darauf hin, dass die Transkriptionsfaktoren

Sox5 und Sox6 in der Lage sind, oligodendrogliale Vorläuferzellen in einem undifferenzierten

Zustand zu halten, um einer verfrühten terminalen Differenzierung der Oligodendrozyten

entgegenzuwirken. Für beide Faktoren konnte mittels EMSA und Chromatin-Immunpräzi-

pitationen gezeigt werden, dass sie mit den Sox-Proteinen der Gruppe E, Sox8, Sox9 und

Sox10, um die Sox-Bindestellen in den Promotor-Regionen der Myelingene MBP und MPZ

(myelin protein zero) konkurrieren. Dadurch wird die direkte Bindung von Sox10 an die

entsprechenden Konsensussequenzen dieser Promotor-Regionen erschwert und damit die

Aktivierung der entsprechenden Myelingene durch Sox10 beeinträchtigt. Auch die Rekru-

tierung zelltypspezifischer Ko-Repressoren durch Sox5 bzw. Sox6 an regulatorische Elemente

der Myelingen-Promotor-Regionen kann die aktivierende Funktion der SoxE-Proteine auf die

MBP- bzw. MPZ-Expression unterdrücken. Im Gegensatz zu Sox5 und Sox6 wurde weder in

transienten Transfektionen ein störender Einfluss von Sox4 und Sox11 auf die Sox10-

abhängige Hochregulierung der MBP- und PLP-Expression gefunden, noch zeigten Reporter-

gen-Studien eine direkte Repression des MBP-Promotor-Fragments durch die Bindung der

SoxC-Proteine. Daher scheinen Sox4 bzw. Sox11 durch einen anderen Mechanismus die

vorzeitige Reifung der Oligodendrozyten zu verhindern als die Sox-Proteine der Gruppe D.

Die ausbleibende direkte Repression der stromaufwärts gelegenen regulatorischen Elemente

des MBP-Promotor-Fragments durch Sox4 würde zudem erklären, warum das MBP-Sox4-

Transgen in den sich differenzierenden Oligodendrozyten exprimiert werden kann und

gleichzeitig die endogene MBP-Expression inhibiert. Die reprimierende Wirkung des MBP-

Sox4-Transgens auf die endogene MBP-Expression scheint also eher indirekt zu sein und

nicht sequenzabgängig über den MBP-Promotor vermittelt zu werden.

Page 79: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

69

In einer weiteren Studie der Arbeitsgruppe konnte gezeigt werden, dass eine verlängerte

Expression von Sox4 in Radialgliazellen die vollständige Reifung dieser Zellen stört. Für

diese Analyse wurden GFAP-Sox4-transgene Mäuse generiert, in denen Sox4 unter dem

humanen GFAP-Promotor exprimiert wurde (Hoser et al., 2007). Dieser Promotor erlaubt die

Transkription des Sox4-Transgens in den Zellen der Ventrikulärzone mit Radialglia-

Charakter und in Astrozyten des zentralen Nervensystems (Brenner et al., 1994; Nolte et al.,

2001). Während Sox4 normalerweise in den differenzierenden Radialgliazellen herunter-

reguliert wird, blieb nun die Expression des GFAP-Sox4-Transgens angeschaltet. Diese

verlängerte Sox4-Protein-Produktion verursachte letztendlich schwere Ataxien und

Hydrocephalie, wodurch die GFAP-Sox4-transgenen Tiere am Ende der dritten postnatalen

Woche verstarben. Im postnatalen Kleinhirn GFAP-Sox4-transgener Tiere fehlten reife

Radialgliazellen, die nach ihrer Position und Morphologie als Bergmann-Glia bezeichnet

werden. Der Verlust der Bergmann-Glia, verursacht durch einen Reifungsdefekt der Radial-

gliazellen, führte zu sekundären neuronalen Migrationsdefekten, Entwicklungsstörungen des

Kleinhirns und einer stark veränderten cerebellären Architektur. Diese Studie zeigte, dass eine

fortwährende Expression von Sox4 in Radialgliazellen die Differenzierung zu Bergmann-

Glia, nach dem Austritt dieser Zellen aus dem Mitosezyklus, verhindert.

Einblicke hinsichtlich der Funktion der SoxC-Proteine während der Neurogenese konnten

durch Elektroporationsstudien in das frühe Neuralrohr des Huhn-Embryos gewonnen werden.

So wurde in unreifen neuronalen Vorläuferzellen durch Überexpression von Sox4 bzw. Sox11

eine frühzeitige Expression der pan-neuronalen Gene β-Tubulin III und MAP2 (microtubule

associated protein 2a/b) induziert (Bergsland et al., 2006). Dadurch konnte gezeigt werden,

dass die Induktion der SoxC-Proteine eine verfrühte Reifung zu differenzierten Neuronen

bewirkt. Daneben wird dem Faktor Sox11 auch eine regulative Rolle in der Differenzierung

neuronaler Zellen im adulten zentralen Nervensystem zugesprochen. Die Arbeitsgruppe um

Chichung Lie konnte nachweisen, dass Sox11 die Differenzierung neuraler Stammzellen zu

unreifen Neuronen forciert und sowohl in proliferierenden neuronalen Vorläufern als auch in

postmitotischen unreifen Neuronen während der adulten Neurogenese exprimiert wird

(Haslinger et al., 2009). Offensichtlich scheinen Sox4 und Sox11 antagonistisch auf die

Entwicklung neuronaler bzw. glialer Zellen zu wirken. Dabei fördern sie einerseits die

Differenzierung zu Neuronen und reprimieren, wie im Rahmen dieser Arbeit gezeigt, den

Reifungsprozess glialer Zellen.

Page 80: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

70

4.2 Deletion von Sox4 und Sox11 im sympathischen

Nervensystem

Aufgrund ihrer potenziellen Rolle als positive oder negative Differenzierungsfaktoren in

neuronalen bzw. glialen Zell-Populationen des zentralen Nervensystems (Bergsland et al.,

2006; Hoser et al., 2007; Potzner et al., 2007) wurden für die Sox-Proteine der Gruppe C

ähnliche Effekte auf die Differenzierung sympathischer Neurone erwartet. Durch eine

gemeinsame Deletion von Sox4 und Sox11 im sich entwickelnden sympathischen Nerven-

system doppelt-defizienter Mäuse sollten Kompensationseffekte zwischen den beiden SoxC-

Proteinen, bedingt durch ihr stark überlappendes Expressionsmuster (Hoser et al., 2008),

ausgeschlossen werden. Dies wurde mittels konstitutiver Deletion des Sox11-Gens im

gesamten Organismus und einer spezifischen Deletion von Sox4 in den sympathoadrenergen

Zellen erreicht. Durch die Kombination des Cre-loxP-Systems mit dem DBH::Cre-Transgen

(Parlato et al., 2007) konnte Sox4 spezifisch in den zukünftigen noradrenergen und

adrenergen Neuronen des sympathischen Nervensystems deletiert werden. Trotz der relativ

späten Deletion von Sox4 mit Hilfe des DBH::Cre-Transgens in bereits differenzierten

sympathischen Neuronen, war die Entwicklung der sympathoadrenalen Zellen in den

Ganglien Sox4-defizienter Tiere beeinträchtigt.

4.2.1 Regulation der Sox4- und Sox11-Expression in den

sympathischen Ganglien

Für die SoxC-Proteine konnte in den sich entwickelnden Ganglien des sympathischen

Nervensystems für die Organismen Huhn und Maus ein leicht unterschiedliches Expressions-

profil aufgezeigt werden. Während im Verlauf der Embryonalentwicklung die Expression von

Sox4 und Sox11 im aviären sympathischen Nervensystem miteinander vergleichbar ist, wie-

sen beide Faktoren in den murinen sympathischen Ganglien ein überlappendes, aber

bezüglich der Expressionsstärke differenzielles Muster auf. So wird der Faktor Sox11 zu früh-

embryonalen Zeitpunkten der Entwicklung in nahezu der Hälfte aller sympathoadrenalen

Zellen eines Ganglions exprimiert, während für Sox4 eine wesentlich schwächere Expression

in weitaus weniger Zellen detektiert wurde. Spät-embryonal veränderte sich das Verhältnis

Page 81: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

71

der Sox4- zu den Sox11-exprimierenden Zellen in den sympathischen Ganglien zu Gunsten

einer stärkeren und vermehrten Sox4-Expression im Vergleich zu derjenigen von Sox11.

Aufgrund des Expressionsmusters von Sox4 und Sox11 in den sich entwickelnden Ganglien

besteht die Möglichkeit einer gegenseitigen Regulation der Sox-Proteine der Gruppe C im

sympathischen Nervensystem. An früh-embryonalen Zeitpunkten scheint der Faktor Sox4 die

Expression von Sox11 nicht direkt zu beeinflussen, da im Vergleich zu den Wildtyp-Ganglien

keine erhöhte oder erniedrigte Anzahl Sox11-positiver Zellen in den Sox4-defizienten sympa-

thischen Ganglien aufgezeigt werden konnte. Dagegen wurde in den Sox11-defizienten

Ganglien an frühen Stadien zunächst keine nachweisbare Sox4-Expression detektiert. Zu

späteren Entwicklungszeitpunkten konnten jedoch am äußeren Rand der Ganglien Sox4-

positive Zellen identifiziert werden. Diese Beobachtung spricht für eine Induktion der Sox4-

Expression in den sympathischen Ganglien durch spezifische Signale aus der Umgebung.

Aufgrund des breit gefächerten Expressionsmusters von Sox11 in verschiedenen Geweben

während der Embryogenese (Hargrave et al., 1997; Kuhlbrodt et al., 1998a) und der konstitu-

tiven Sox11-Deletion in den analysierten Mutanten erschien es weiterhin denkbar, dass die

Entwicklungsdefekte sympathischer Neurone nicht nur zellintrinsischer Natur sind. Dies

würde bedeuten, dass die Sox4-Expression in den sympathischen Ganglien nicht direkt von

der Sox11-Expression in den Ganglien selbst abhängt. Im Gegensatz zur konstitutiven Sox11-

Deletion zeigten Mausmutanten mit spezifischem Verlust von Sox11 in den sympatho-

adrenalen Zellen eine den Wildtyp-Tieren ähnliche Sox4-Expression in den sympathischen

Ganglien. Dies deutet darauf hin, dass der Faktor Sox11 in der Umgebung des Ganglions

möglicherweise die Aktivierung von Signalmolekülen bewirkt, die letztendlich die Induktion

der früh-embryonalen Sox4-Expression in den Zellen sympathischer Ganglien verursacht.

Frühere Studien zeigten, dass extrinsische BMP-Signale für die Entwicklung sympathischer

Neurone und deren noradrenergen Phänotyp essentiell sind (Reissmann et al., 1996; Shah et

al., 1996; Howard et al., 2000). So konnte die Arbeitsgruppe um Hermann Rohrer nach-

weisen, dass im Huhn nach Inhibierung der BMP-Signaltransduktion durch den BMP-

Antagonisten Noggin die Expression der beiden Transkriptionsfaktoren Cash-1 (Ortholog von

Mash1 in der Maus) und Phox2b stark reduziert ist (Schneider et al., 1999). Infolgedessen

konnte weder die Expression charakteristischer noradrenerger Marker-Gene wie TH und DBH

noch die der pan-neuronalen Gene SCG10 und NF160 in den Zellen sympathischer Ganglien

detektiert werden. BMP-Signalmoleküle können durch Aktivierung der PKA (Protein Kinase

A) oder über Smad-Faktoren intrazelluläre Signalkaskaden stimulieren (Sarkar & Howard,

Page 82: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

72

2006), wodurch die Expression von Sox4 oder Sox11 in den sympathischen Ganglien

beeinflusst werden könnte. Diese Resultate führten zu der Annahme, dass der neuronale bzw.

noradrenerge Phänotyp sympathischer Neurone durch das Zusammenwirken induktiver

extrazellulärer Signalmoleküle einerseits und zelltypspezifischer Transkriptionsfaktoren

andererseits kontrolliert wird.

4.2.2 Verzögerte noradrenerge Differenzierung sympathischer

Vorläuferzellen in SoxC-defizienten Ganglien

In den letzten Jahren konnten verschiedene Transkriptionsfaktoren identifiziert werden, die

über ein regulatives und koordiniertes Netzwerk zusammenwirken und gemeinsam die pan-

neuronale bzw. noradrenerge Differenzierung sympathischer Neurone beeinflussen (Huber,

2006). Dazu gehören der bHLH-Faktor Mash1 sowie das HD-Protein Phox2b, die eine Reihe

weiterer Transkriptionsfaktoren wie Phox2a, Gata3, Hand2 und Insm1 aktivieren (Lim et al.,

2000; Tsarovina et al., 2004; Lucas et al., 2006; Wildner et al., 2008). Aufgrund einer

verspäteten Expression der Transkriptionsfaktoren Mash1, Phox2a und Gata3 war die

Differenzierung sympathoadrenaler Vorläuferzellen in Insm1-defizienten Mäusen stark

verzögert, was zu einer geringeren Anzahl TH- bzw. DBH-exprimierender Zellen in den

sympathischen Ganglien führte (Wildner et al., 2008). Ferner war zu verschiedenen

Entwicklungszeitpunkten die Gangliengröße Insm1-mutanter Tiere, verglichen mit derjenigen

in Wildtyp-Tieren entsprechender Stadien, auffallend reduziert. Ähnliche Phänotypen konnten

auch in Gata3- bzw. Hand2-defizienten Tieren beobachtet werden (Lim et al., 2000; Lucas et

al., 2006; Moriguchi et al., 2006; Hendershot et al., 2008).

Das Fehlen von Sox4 und Sox11 im sympathischen Nervensystem führte im Verlauf der

Embryonalentwicklung auch zu kleineren Ganglien sowie zu einer verzögerten Differenzie-

rung sympathoadrenaler Zellen zu noradrenergen Neuronen in diesem Gewebe. Trotz der

reduzierten Gangliengröße in den SoxC-doppelt-defizienten Mausmutanten wurde jedoch

kein verändertes Expressionsniveau regulatorischer Transkriptionsfaktoren noradrenerger

Differenzierung, wie Mash1, Hand2, Gata3 und Insm1, durch immunhistochemische

Färbungen und In situ Hybridisierungen nachgewiesen. Auch wurden signifikante Protein-

mengen des noradrenergen Markers TH in den Ganglien SoxC-defizienter Tiere detektiert.

Dennoch war die TH-Expression in den sympathischen Ganglien der Sox4- bzw. Sox11-

Page 83: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

73

defizienten Einzelmutanten verzögert. Diese Tiere zeigten an den embryonalen Zeitpunkten

14,5 dpc und 18,5 dpc eine relative Zunahme Phox2b-positiver Zellen gegenüber TH-expri-

mierenden Zellen in den Ganglien. Dabei kennzeichnen die Phox2b-positiven und zugleich

TH-negativen Zellen die sympathoadrenalen Vorläufer, die sich noch nicht im Reifungs-

prozess zu sympathischen Neuronen befinden. Die nachgewiesene, nur leicht verzögerte TH-

Expression in den SoxC-defizienten Ganglien demonstriert, dass Sox4 und Sox11 keinen

starken Einfluss auf die Differenzierung sympathischer Neurone ausüben. Übereinstimmend

mit diesen Ergebnissen zeigten Überexpressionsstudien von Sox4 und Sox11 in zwei Tage

alten Hühner-Embryonen nur einen schwachen Effekt auf die noradrenerge Differenzierung

sympathoadrenaler Zellen. Dies konnte auch in vitro durch Transfektionsexperimente mit

Sox4 und Sox11 in Primärzellen fünf Tage alter aviärer Spinalganglien bestätigt werden.

Somit nehmen die Sox-Proteine der Gruppe C im sympathischen Nervensystem, verglichen

mit ihrer Funktion in den sich differenzierenden Neuronen und glialen Zellen des zentralen

Nervensystems (Bergsland et al., 2006; Hoser et al., 2007; Potzner et al., 2007), eine eher

untergeordnete Rolle hinsichtlich der Differenzierung sympathoadrenaler Zellen ein.

4.2.3 Bedeutung von Sox4 und Sox11 für die Proliferation und

Apoptose sympathoadrenaler Zellen

Nachdem die verzögerte noradrenerge Differenzierung sympathischer Neurone nicht allein für

die reduzierte Gangliengröße SoxC-doppelt-defizienter Tiere verantwortlich zu sein scheint,

wurden Proliferation und Apoptose als mögliche Ursachen für die Größenreduktion sym-

pathischer Ganglien untersucht. Die Resultate wiesen darauf hin, dass die deutlich kleineren

Ganglien in den SoxC-doppelt-defizienten Tieren durch eine verringerte Proliferation an früh-

embryonalen Stadien (11,5 dpc – 12,5 dpc) sowie eine vermehrte Apoptoserate zu späten

Zeitpunkten (14,5 dpc -16,5 dpc) in den sich entwickelnden sympathischen Ganglien

verursacht wird.

Der frühe Effekt auf die Proliferation wurde in den sympathischen Ganglien doppelt-

defizienter sowie Sox11-defizienter Tiere nachgewiesen. Daher scheint der Verlust von

Sox11 in diesem Gewebe für eine signifikant geringere Proliferationsrate verantwortlich zu

sein. Ferner konnte in den Wildtyp-Ganglien gezeigt werden, dass die Mehrheit der BrdU-

positiven Zellen zusätzlich den noradrenergen Marker TH exprimiert. Dies weist darauf hin,

Page 84: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

74

dass die proliferierenden Zellen in den Ganglien der Wildtyp-Tiere größtenteils unreife

sympathische Neurone sind.

Für die spät-embryonale Überlebensrate sympathischer Zellen ist der limitierende Faktor

Sox4 verantwortlich. So konnte an 14,5 dpc eine zunehmende Anzahl apoptotischer Zellen in

den doppelt- und Sox4-defizienten Ganglien nachgewiesen werden, wohingegen die Apoptos-

erate in den Ganglien Sox11-defizienter Mäuse mit derjenigen in den Wildtyp-Tieren ver-

gleichbar war. Somit ist der Faktor Sox4 für das Überleben sympathischer Neurone in den

sich entwickelnden Ganglien an spät-embryonalen Zeitpunkten wichtig. Die funktionelle

Rolle der SoxC-Proteine hinsichtlich Proliferation und Apoptose geht mit dem differenziellen

Expressionsmuster von Sox4 und Sox11 in diesem Gewebe einher. Demzufolge ist die

Sox11-Expression in den sympathischen Ganglien wesentlich stärker in frühen Entwicklungs-

phasen, wohingegen die Expression von Sox4 an spät-embryonalen Stadien vorherrscht.

Aufgrund dieses zeitlich versetzten Expressionsprofils der SoxC-Proteine in den Ganglien

kann der Verlust von Sox4 durch Sox11 und umgekehrt zu bestimmten Stadien nicht aus-

reichend kompensiert werden. Somit ist eine vollständige funktionelle Redundanz zwischen

Sox4 und Sox11 in den sympathischen Ganglien nicht gegeben.

4.2.3.1 Sox11 beeinflusst früh-embryonal die Proliferation sympathischer

Vorläuferzellen

Die meisten Transkriptionsfaktoren, die in den sympathoadrenalen Zellen identifiziert

wurden, beeinflussen vorwiegend die Differenzierung unreifer sympathischer Neurone (siehe

4.2.2). Dagegen wurden in den sympathischen Ganglien der Sox11-Einzelmutanten und der

für Sox4- und Sox11-doppelt-defizienten Mäuse früh-embryonale Proliferationsdefekte

detektiert, die bisher nur in Insm1-, Mash1/Ascl1- oder Hand2-defizienten Tieren beobachtet

werden konnten (Hendershot et al., 2008; Wildner et al., 2008; Morikawa et al., 2009;

Schmidt et al., 2009). Sox4- und Sox11-doppelt- sowie Insm1-defiziente Mäuse weisen zu

den Zeitpunkten 11,5 dpc und 12,5 dpc stark reduzierte Proliferationsraten in den sich

entwickelnden sympathischen Ganglien auf. Am Embryonaltag 14,5 hingegen normalisierten

sich die Proliferationswerte in den mutanten Tieren und waren mit denen in den Wildtyp-

Page 85: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

75

Ganglien vergleichbar. Dies könnte darauf hindeuten, dass Sox11 und Insm1 in die gleichen

Signalwege involviert sind, die die Proliferation in den sympathischen Ganglien regulieren.

Die Arbeitsgruppe um Peter Cserjesi konnte vor kurzem zeigen, dass der proneuronale bHLH

Transkriptionsfaktor Mash1/Ascl1 u.a. an der Regulation der Proliferation sympathischer

Neuroblasten beteiligt ist. Spezifische Deletionen von Mash1 in den Zellen der Neuralleiste

führten zu einer stark reduzierten Proliferationsrate sympathischer Vorläufer an früh-

embryonalen Stadien, nicht aber zu einer erhöhten Apoptose in den sich entwickelnden

sympathischen Ganglien (Morikawa et al., 2009). Ferner wiesen frühere Studien darauf hin,

dass Mash1 die Expression des Transkriptionsfaktors Insm1 bedingt (Wildner et al., 2008).

Daher könnte Mash1 gemeinsam mit Insm1 oder durch die Aktivierung der Insm1-Expression

die Proliferation sympathischer Neuroblasten beeinflussen. Aufgrund des unveränderten

Expressionsniveaus von Mash1 bzw. Insm1 in den sympathischen Ganglien SoxC-doppelt-

defizienter Tiere an früh-embryonalen Stadien könnten zuerst Mash1 bzw. Insm1 und infolge-

dessen Sox11 in den sympathoadrenalen Vorläufern exprimiert werden. Weiterhin wäre es

denkbar, dass die drei Faktoren Insm1, Mash1 und Sox11 miteinander interagieren, um früh-

embryonal die Proliferation in den sympathischen Ganglien zu kontrollieren.

Im Gegensatz zu dem transienten Einfluss von Mash1, Insm1 und Sox11 auf proliferierende

sympathoadrenale Vorläufer an früh-embryonalen Entwicklungsstadien ist der bHLH-Faktor

Hand2 für die Proliferation sympathischer Vorläufer und unreifer Neurone bis zum Zeitpunkt

14,5 dpc essentiell. Zelltypspezifische Deletionen von Hand2 in den Neuralleistenzellen

(Hendershot et al., 2008) bzw. den sich differenzierenden Neuronen sympathischer Ganglien

(Schmidt et al., 2009) führten zu einer stark reduzierten Zahl sympathoadrenaler Vorläufer

sowie unreifer Neurone. Beide Arbeitsgruppen konnten zeigen, dass Hand2 in den sym-

pathischen Ganglien neben seiner Funktion als transkriptioneller Regulator der TH- und

DBH-Expression für die Erhaltung proliferierender Vorläuferzellen sowie noradrenerger und

neuronaler Zellen von Bedeutung ist.

4.2.3.2 Sox4 bedingt spät-embryonal das Überleben sympathischer Neurone

Nachdem gezeigt werden konnte, dass der Faktor Sox11 für die Proliferation sympatho-

adrenaler Zellen eine wichtige Rolle spielt, wurde im Folgenden die Bedeutung von Sox4 in

der Apoptose näher betrachtet. Die spät-embryonale Zunahme apoptotischer Zellen in den

Page 86: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

76

sympathischen Ganglien der Sox4-einfach- sowie Sox4/Sox11-doppelt-defizienten Mäuse

deutet darauf hin, dass Sox4 eine wichtige Funktion für das Überleben sympathischer

Neurone spielen könnte. Bisher wurde hauptsächlich in Neurotrophin 3 (NT-3)-defizienten

Mäusen (Farinas et al., 1994; Wyatt et al., 1997; Francis et al., 1999) sowie in Tieren mit

Mutationen im Tyrosinkinase-Rezeptor A (TrkA) (Fagan et al., 1996) eine erhöhte Apoptose

und eine damit verbundene geringere Überlebensrate sympathischer Neurone nachgewiesen.

Der Tyrosinkinase-Rezeptor A erkennt vor allem den zur Klasse der Neurotrophine gehören-

den Wachstumsfaktor NGF (nerve growth factor). Die kritische Rolle des NGF-TrkA-Signal-

systems für die spät-embryonale Entwicklung des sympathischen Nervensystems konnte

durch spezifische Deletionen von NGF (Crowley et al., 1994) oder seinem Rezeptor TrkA

(Smeyne et al., 1994) aufgezeigt werden. Beide Mutationen führten zu einem vollständigen

Verlust der sympathischen Neurone in den postnatalen oberen Halsganglien. Als eine Folge

des Nervenzellverlusts zeigten die NGF- bzw. TrkA-defizienten Tiere eine Blepharoptosis als

klassisches okuläres Zeichen sympathischer Dysfunktion. Dieser Augen-Phänotyp konnte

auch in den Sox4∆/∆, Sox11∆/∆-Tieren ab der dritten postnatalen Woche beobachtet werden.

Übereinstimmend mit einer vollständig fehlenden sympathischen Innervierung der im

Augenlid sitzenden Meibom-Drüsen, des Musculus trasalis sowie der Arteriolen wurden in

den adulten SoxC-defizienten Mäusen lediglich Rudimente der oberen Hals- und Brustbein-

ganglien aufgefunden. NGF-Signale scheinen essentiell für die Regulation neuronaler

Funktionen zu sein, wie beispielsweise für die richtige Projektion sympathischer Nerven-

fasern in die entsprechenden Zielgewebe. Somit kann über die spezifische Bindung der NGF-

Moleküle an die TrkA-Rezeptoren das Überleben sympathischer Neurone während der späten

Embryonalentwicklung gesichert werden (Fagan et al., 1996).

Ähnlich dem Wachstumsfaktor NGF übernimmt NT-3 eine bedeutende Funktion bei der

Erhaltung unreifer sympathischer Neurone. So zeigten NT-3-defiziente Mäuse ebenfalls eine

stark erhöhte Apoptoserate sympathischer Neurone während der spät-embryonalen Ent-

wicklungsphase (Farinas et al., 1994). Der Faktor NT-3 wird von den innervierten Ziel-

geweben sowie von Blutgefäßen, entlang derer viele sympathische Axone wachsen,

exprimiert. Dabei wirken die NT-3 Moleküle entweder direkt über die TrkA-Rezeptoren oder

indirekt, indem sie das Auswachsen der Neurite in die entsprechenden Gewebe stimulieren

(Francis et al., 1999). Die Analyse neugeborener NT-3-defizienter Mäuse zeigte eine 50%-ige

Reduktion sympathischer Neurone in den oberen Halsganglien (Ernfors et al., 1994; Farinas

et al., 1994). Diese Beobachtungen signalisieren, dass beide Wachstumsfaktoren für das

Page 87: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Diskussion

77

Überleben der Neurone in den sympathischen Ganglien benötigt werden. Für den Fall, dass

die Apoptoserate in den sympathischen Ganglien SoxC-defizienter Tiere mit derjenigen in

den NGF-, TrkA- oder NT-3-defizienten Mäusen überlappen würde, könnte Sox4 in das

NGF-TrkA-Signalsystem involviert sein. Aufgrund des SoxC-Expressionsprofils in den

Ganglien wird jedoch die Überlebensrate sympathischer Neurone längerfristig durch NGF als

durch die Expression von Sox4 beeinflusst (Glebova & Ginty, 2005).

Frühere Studien und die Ergebnisse dieser Arbeit zeigen, dass die Funktion der SoxC-Pro-

teine in einzelnen neuronalen Zell-Populationen und an verschiedenen Entwicklungsstadien

stark variiert. So kann die Überexpression von Sox4 bzw. Sox11 im zentralen Nervensystem

eine frühzeitige Differenzierung neuronaler Vorläuferzellen auslösen (Bergsland et al., 2006),

wohingegen die spezifische Deletion der SoxC-Gene im sympathischen Nervensystem einen

eher geringen Effekt auf diesen Zellprozess aufwies. Hingegen war in den Ganglien die

Proliferationsrate sympathoadrenaler Zellen stark reduziert und die Apoptose sympathischer

Neurone erhöht. Diese Ergebnisse sprechen für eine Kontext-abhängige Funktion der SoxC-

Proteine, die durch Interaktionen mit bestimmten Partner-Proteinen (Wegner, 2005) oder

mittels differenzieller posttranskriptionaler Modifikation gewährleistet werden könnte.

Zusammenfassend wurden in dieser Arbeit wichtige Funktionen der SoxC-Proteine im sich

entwickelnden zentralen und sympathischen Säuger-Nervensystem aufgezeigt. So sind Sox4

und möglicherweise Sox11 entscheidend an der Aufrechterhaltung des undifferenzierten

Zustands oligodendroglialer Vorläuferzellen beteiligt und ermöglichen erst nach Abschalten

ihrer Genexpression die terminale Differenzierung dieser Zellen zu reifen myelinbildenden

Oligodendrozyten. Zudem konnte der Beweis erbracht werden, dass die gemeinsame Deletion

von Sox4 und Sox11 zu neuralen Entwicklungsdefekten führt. Im sympathischen Nerven-

system konnte der sequenzielle Bedarf der SoxC-Proteine in den sich entwickelnden Ganglien

aufgezeigt, sowie ihre Funktion für die Proliferation sympathoadrenaler Vorläuferzellen und

das Überleben sympathischer Neurone nachgewiesen werden.

Page 88: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Material

78

5 Material

5.1 Mausstämme

In dieser Arbeit wurden folgende genetisch veränderte Mauslinien eingesetzt:

• DBH::Cre (Parlato et al., 2007) über G. Schütz, DKFZ Heidelberg

• Sox11lacZ/lacZ (Sock et al., 2004) generiert von E. Sock in der Arbeitsgruppe

• Sox11loxP/loxP (V. Lefebvre, noch nicht veröffentlicht)

• Sox4loxP/loxP (Penzo-Mendez et al., 2007) über V. Lefebvre, Cleveland

• Sox4+/- (Schilham et al., 1996) über H. Clevers, Utrecht

Für die Zucht der genetisch veränderten Mauslinien wurden folgende Wildtyp-Inzucht-

Mausstämme eingesetzt:

• C57BL/6J, bezogen von Charles River Deutschland, Sulzfeld

• 129/SvJ, bezogen von Charles River Deutschland, Sulzfeld

• NMRI bezogen von Harlan Winkelmann, Borchen

5.2 Chemikalien und allgemeine Reagenzien

Alle in dieser Arbeit verwendeten Salze, Lösungsmittel, Chemikalien und allgemeine

Reagenzien wurden, soweit nicht anders vermerkt, von den Firmen Carl Roth (Karlsruhe),

Merck (Darmstadt) und Sigma (München) bezogen. Sämtliche Enzyme stammten von

Gibco/BRL (Eggenstein), MBI Fermentas (St. Leon-Roth), New England Biolabs (Frankfurt)

oder Roche Diagnostics (Mannheim). Die Radiochemikalien wurden von der Firma

Amersham (Braunschweig) bezogen.

Page 89: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Material

79

5.3 Zusammensetzung der Puffer und Lösungen

Für die Herstellung aller Lösungen, Puffer und Verdünnungen wurde ausschließlich

autoklaviertes Reinstwasser aus einer Deionisationsanlage MilliQ der Firma Millipore

(Eschborn) mit einem spezifischen Widerstand von 18,2 MΩ/cm3 verwendet.

Puffer/Lösungen Zusammensetzung

AP-Puffer

100 mM Tris, pH 9,5; 50 mM MgCl2; 100 mM NaCl;

steril filtrieren; vor Gebrauch 5 µl 20% Tween-20 und

1 µl 1 M Levamisol pro ml Puffer zugeben

Citratpuffer 9 ml Stammlösung A; 41 ml Stammlösung B; 450 ml H2O

Citrat-Stammlösung A 100 mM Citronensäure (21,01 g/l)

Citrat-Stammlösung B 100 mM Natriumcitrat (29,41 g/l)

Denhardt (50x) 1% BSA; 1% Ficoll 400; 1% Polyvinylpyrrolidon

10x DNA Probenpuffer 50% TE; 50% Glycerin; 0,02% Xylencyanol;

0,02% Bromphenolblau

EDTA 0,5 M Ethylendiamintetraacetat, pH 8,0

Färbelösung (In situ) pro 1 ml AP-Puffer 4,5 µl NBT und 3,5 µl BCIP lösen

Hybridisierungspuffer

(In situ)

1 ml 10x Salz; 5 ml Formamid; 2 ml 50% Dextransulfat;

1 ml Yeast-RNA (10 mg/ml); 100 µl Denhardt-Reagenz;

900 µl H2O

MABT-Puffer 100 mM Maleinsäure, pH 7,5; 150 mM NaCl;

Lösung autoklavieren; vor Gebrauch 0,1% Tween-20 zugeben

Mowiol

6,0 g Glyzerin und 2,4 g Mowiol 488 in 6,0 ml H2O geben;

2 h bei RT inkubieren; 12 ml 0,2 mM Tris, pH 8,5 zugeben;

24 h bei 53°C rotieren; bei 4000 Upm zentrifugieren und

aliquotieren

Page 90: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Material

80

Puffer/Lösungen Zusammensetzung

Narkotikum

(Ketamin/Rompun)

1,2 ml Ketamin (10%); 0,8 ml Rompun (2%); 8 ml isotone

NaCl-Lösung; 10 µl pro g Gewicht der Maus einsetzten

PBS (1x) 140 mM NaCl; 2,7 mM KCl, 10 mM Na2HPO4 x 2 H2O;

1,8 mM KH2PO4; pH 7,4

PBS-T PBS mit 0,1% Tween-20; pH 7,4

PFA (4%)

20 g Paraformaldehyd (PFA) in 300 ml H2O (65°C) lösen;

2 Tropfen 10 M NaOH, 50 ml 10x PBS; ad 500 ml H2O;

pH 7,4; steril filtrieren und aliquotieren

Prähybridisierungspuffer

(In situ) Hybridisierungspuffer ohne Dextransulfat und Yeast-RNA

10x Salz 126 mM Tris, pH 7,5; 1,85 M NaCl; 100 mM NaH2PO4 x H2O;

50 mM EDTA

SSC (20x) 3 M NaCl; 0,3 M Natriumcitrat; pH 7,0

TAE (1x) 40 mM Tris-Acetat; 1 mM EDTA, pH 8,0

Tail-Lysispuffer 50 mM Tris, pH 8,0; 100 mM EDTA, pH 8,0; 0,5% SDS

TBE (1x) 90 mM Tris; 90 mM Borsäure; 2,5 mM EDTA; pH 8,3

TE-Puffer 10 mM Tris; 0,1 mM EDTA; pH 8,0

Waschpuffer

(In situ) 1x SSC ; 50% Formamid; 0,1% Tween-20

Tab. 5.1: Zusammensetzung gebräuchlicher Puffer und Lösungen.

Page 91: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Material

81

5.4 Oligonukleotide

Die folgenden Oligonukleotide wurden von der Firma Invitrogen (Karlsruhe) synthetisiert,

anschließend in sterilem Wasser gelöst und in Verdünnungen von 40 pmol/µl als Primer zur

Genotypisierung genetisch veränderter Mauslinien und für quantitative RT-PCR eingesetzt.

Name Sequenz (5`-3`) Pr. Position Genbank-Ref.

Anwendung

Actin-1 CCT GGG CAT GGA

GTC CTG

5` ------- -------

Actin-2 GGA GCA ATG ATC

TTG ATC TTC

3` ------- -------

für quantitative und

Standard-RT-PCR

EiCre-1 GAC AGG CAG

GCC TTC TCT GAA

5` 134-154 AY056050

EiCre-2 CTT CTC CAC ACC

AGC TGT GGA

3` 670-650 AY056050

Genotypisierung

der DBH::Cre

transgenen Mäuse

MBP-tg1 CCC TCT AGG CCT

CGT ACA GG

5` 2887-2906 -------

rnSox4-tg1 GAA AGC GAC

ATC GTC TCT AGC

5` 254-234 -------

Genotypisierung

der MBP-Sox4

transgenen Mäuse

Sox4-23

mm/rat

TCG TGA ACT

GCA ATC GAC TG

5` 321-340 XM_344594

Sox4-24

mm/rat

CGC GTT GTT GGT

CTG TTG TA

3` 677-658 XM_344594

quant. RT-PCR;

zur Detektion des

Sox4-Gens und des

Sox4-Transgens

FP-Sox4

wt/fl+

GAA GGA GGC GGA

GAG TAG ACG G

5` ------- -------

RP-Sox4 CAT AGC TCA ACA

CAA ATG CCA ACG C

3` ------- -------

Genotypisierung

des Sox4+- und

Sox4fl-Allels

LacZ ko5n TAA AAA TGC GCT

CAG GTC AA

3` 494-513 -------

Sox11-23 GCC CGC GCA GGA

GAC CGA GC

5` 21-40 -------

Sox11-24 CTT GTA GTC GGG

GTA GTC AGC C

3` 329-350 -------

Genotypisierung

des Sox11+- und

Sox11lacZ-Allels

Page 92: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Material

82

Name Sequenz (5`-3`) Pr. Position Genbank-Ref.

Anwendung

Sox11 fl/+ TTC GTG ATT GCA

ACA AAG GCG GAG

5` ------- -------

Sox11 fl/+ GCT CCC TGC AGT

TTA AGA AAT CGG

3` ------- -------

Genotypisierung

konditionaler

Sox11 Mäuse

Tab. 5.2: Übersicht der verwendeten Oligonukleotide.

5.5 In situ Sonden

Durch In situ Hybridisierung wurden folgende Gene mit DIG-markierter antisense-cRNA

untersucht. Im Anschluss an die Linearisierung des cDNA-enthaltenen Plasmids erfolgte nach

Herstellerangaben (Roche Diagnostics, Mannheim) (siehe 6.3.6) die DIG-Markierung durch

in vitro Transkription mit der angegebenen RNA-Polymerase.

Gen Plasmid Linearisierung für antisense

RNA-Pol.

Genbank-Ref.

Position kloniert von:

Gata3 pGEM Teasy

XbaI SP6 ------- ------- C. Goridis

Hand2 pGEM Teasy

SpeI T7 NM_010402 925-1578 N. Tsarovina

Mash1 pGEM7 Zf

XbaI SP6 ------- ------- F. Guillemot

rnMBP pZL1-MBP

Asp718 SP6 K00512 252-1930 B. Herbarth

mmPLP pBKS-PLP

BamHI T3 NM_011123 1-1448 C. Stolt

mSox4 pZL1-Sox4

BglII SP6 XM_344594 2015-3142 E. Sock

mSox11 pZL1-Sox11

BglII SP6 NM_053349 543-2035 E. Sock

Tab. 5.3: Übersicht der verwendeten c-RNA-Sonden.

Page 93: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Material

83

5.6 Antikörper

Die im Folgenden genannten Primär- und Sekundärantikörper wurden für Immunhistochemie

und In situ Hybridisierung verwendet.

5.6.1 Primärantikörper

Antigen Bez. Spezies Anw. Verd. erhalten von:

α-BrdU

Alexa488

PRB-1,

A-21303

Maus, monoklonal IHC 1:20 Molecular Probes,

Göttingen

α-β-Gal. 55976 Kaninchen,

Antiserum

IHC 1:500 Cappel/ICN

α-DIG-AP-

konj.

1093 274 Schaf Fab-

Fragmente

In situ 1:3000 Roche

Diagnostics,

Mannheim

α-DIG-

Rhodamin

S7165 ApopTagRed Kit TUNEL ------- Serologicals/QBio-

gene, Heidelberg

α-GFAP RB087A Kaninchen,

Antiserum

IHC 1:300 Neomarkers,

Fremont CA, USA

α-GFP 1814 460 Maus, monoklonal IHC 1:100 Roche Diagnostics,

Mannheim

α-GFP A11122 Kaninchen,

Antiserum

IHC 1:500 Molecular Probes,

Göttingen

α-Iba1 CDQ5232 Kaninchen,

Antiserum

IHC 1:250 Wako Chemicals,

Neuss

α-Insm1 ------- Meerschweinchen,

Antiserum

IHC 1:5000 C. Birchmeier,

MDC, Berlin

Page 94: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Material

84

Antigen Bez. Spezies Anw. Verd. erhalten von:

α-Ki67 RM-9106 Kaninchen,

monoklonal

IHC 1:500 Neomarkers/

medac, Hamburg

α-MBP 1118 099 Maus, monoklonal IHC 1:500 Chemicon,

Hofheim

α-MBP RB1460-A0 Kaninchen,

Antiserum

IHC 1:200 Neomarkers,

medac, Hamburg

α-NeuN MAB377 Maus, monoklonal IHC 1:500 Chemicon,

Hofheim

α-Olig2 DF308 Kaninchen,

Antiserum

IHC 1:5000 D. Rowitch,

UCSF

α-PCNA 1170 406 Maus, monoklonal IHC 1:100 Roche

Biochemicals

α-Phox2a ------- Kaninchen,

Antiserum

IHC 1:500 C. Goridis,

ENS, Paris

α-Phox2b ------- Kaninchen,

Antiserum

IHC 1:500 C. Goridis,

ENS, Paris

α-TH ------- Kaninchen,

Antiserum

IHC 1:1000 Biomol, Hamburg

α-Tuj1 MMS-435P Maus, monoklonal IHC 1:5000 Covance, Denver,

PA

α-Sox4 α-Sox4

gp2 8°

Meerschweinchen,

Antiserum

IHC 1:1500 M. Hoser,

Pineda

α-Sox11 α-Sox11

gp2 3°

Meerschweinchen,

Antiserum

IHC 1:1000 M. Hoser,

Pineda

α-Sox10 α-Sox10-1

gp

Meerschweinchen,

Antiserum

IHC 1:1000 E. Sock,

Pineda

α-Sox10 X10-4 rb5° Kaninchen,

Antiserum

IHC 1:104 E. Sock,

Pineda

Tab. 5.4: Übersicht der verwendeten Primärantikörper.

Page 95: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Material

85

5.6.2 Sekundärantikörper

Antigen Konjugat Spezies Anw. Verd. erhalten von:

α-Maus Ziege Cy2

Cy3

IHC 1:100

1:200

Dianova,

Hamburg

α-Maus Esel Cy5 IHC 1:200 Dianova,

Hamburg

α-Maus IgM Ziege Alexa Fluor

546

IHC 1:500 Molecular Probes,

Göttingen

α-Meerschweinchen Ziege Cy2

Cy3

IHC 1:100

1:200

Dianova,

Hamburg

α-Kaninchen Ziege Cy2

Cy3

Alexa 488

IHC 1:100

1:200

1:500

Dianova,

Hamburg

Tab. 5.5: Übersicht der verwendeten Sekundärantikörper.

Page 96: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

86

6 Methoden

6.1 Tierhaltung

Die im Rahmen dieser Arbeit verwendeten Mauslinien wurden artgerecht gemäß dem

Tierschutzgesetz (TSchG) unter standardisierten Bedingungen in den Tierställen des Instituts

für Biochemie gehalten. Dabei wurden die genetisch veränderten Mäuse mit Wildtyptieren

rückgekreuzt (siehe 5.1) um einen auf C57BL/6J bzw. 129/SvJ und NMRI basierenden

genetischen Hintergrund zu erhalten. Die Analyse der MBP-Sox4 transgenen Tiere wurde in

dieser Arbeit mit den Nachkommen der zweiten Generation (F2) durchgeführt.

Zur Generierung der Sox4-konditionalen, Sox11-defizienten oder Sox4/Sox11-doppelt-

defizienten Tiere wurden Sox4loxP/loxP, Sox11+/lacZ-Weibchen mit Sox4loxP/loxP, Sox11+/lacZ,

DBH::Cre-Männchen verpaart. Anhand verschiedener Embryonalstadien wurden die Phäno-

typen der Sox4- und Sox11-einfach bzw. doppelt-defizienten Tiere untersucht.

6.2 Standardmethoden

Standardmethoden wie die Isolierung von Plasmid-DNA in analytischem und präparativem

Maßstab, Reinigung von Nukleinsäuren durch Phenolextraktion und Ethanolfällung,

Konzentrationsbestimmungen von Nukleinsäuren, Gelelektrophorese von Nukleinsäuren und

die Spaltung von DNA mit Restriktionsendonukleasen wurden allgemeinen Methoden-

sammlungen entnommen (Sambrook et al., 2001; Ausubel et al., 2002).

Page 97: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

87

6.3 Isolierung und Analytik von Nukleinsäuren

6.3.1 Isolierung von genomischer DNA aus Schwanz- oder

Choriongewebe

Zur Genotypisierung der verschiedenen Nachzuchten entsprechender Mauslinien wurde den

3-6 Wochen alten Mäusen ein ca. 3 mm langes Schwanzstück abgenommen. Bei der

Präparation von Embryonen wurde eine Gewebebiopsie in Form eines Teils des Dottersacks

oder ein kleines Stück Schwanz aufbewahrt. Das biopsierte Gewebe wurde mit 250 µl Tail-

Lysispuffer und 10 µl Proteinase K (20 µg/µl; Roth, Karlsruhe) versetzt und für 1-2 h bei

55°C unter ständigem Schütteln lysiert. Anschließend wurde die DNA des vollständig lysier-

ten Gewebes durch Zugabe von 200 µl Isopropanol gefällt und für 10 min bei 13200 Upm in

der Tischzentrifuge (Zentrifuge 5415D; Eppendorf, Hamburg) abzentrifugiert. Der Überstand

wurde verworfen und das DNA-Pellet mit 500 µl 70% Ethanol bei 13200 Upm für 5 min

gewaschen. Anschließend wurde die DNA bei RT für 5-10 min getrocknet, je nach Pellet-

größe in 100-500 µl H2O aufgenommen und bei 55°C auf dem Thermomixer gelöst. Von

dieser genomischen DNA-Lösung wurden 0,5-1 µl für verschiedene PCR-Reaktionen mit

spezifischen Primern zur Genotypisierung der Tiere eingesetzt.

6.3.2 Präparation von Gesamt-RNA

Aus Gehirn und Rückenmark von Mäusen unterschiedlicher postnataler Entwicklungsstadien

wurde Gesamt-RNA isoliert. Die Gewebe wurden unverzüglich herauspräpariert und sofort in

Trizol (1 ml Trizol pro 50-100 mg Gewebe; Invitrogen, Karlsruhe) überführt und mit einem

Polytron PT1200C-Homogenisator (Kinamatica AG; Littau, Schweiz) homogenisiert. Nach

einer Inkubationszeit von 5 min wurden die Gewebeproben mit 0,2 ml Chloroform pro ml

Trizol versetzt, anschließend 15 s kräftig geschüttelt und wiederum für 3 min bei RT

inkubiert. Danach wurde die Probe für 15 min bei 4°C und 11000 Upm in einer Heraeus

Sepatech Biofuge B Zentrifuge (Heraeus, Hanau) zentrifugiert. Die obere wässrige Phase

wurde in ein frisches Polypropylen-Röhrchen (Greiner, Solingen) überführt und pro

Page 98: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

88

eingesetztem ml Trizol wurden 0,5 ml Isopropanol zugegeben. Die dabei entstehenden Phasen

wurden gut gemischt, für 10 min bei RT inkubiert und erneut 10 min zentrifugiert.

Der Überstand wurde verworfen, das RNA-Pellet bei RT getrocknet und in RNase-freiem

Wasser (Roth, Karlsruhe) gelöst. Die Konzentration der RNA-Lösung wurde letztendlich

photometrisch mit Hilfe eines UltroSpec 3000 UV-Photometers (Pharmacia Biotech,

Freiburg) bestimmt.

6.3.3 Polymerase-Kettenreaktion (PCR) zur Amplifikation von

DNA-Fragmenten

Mittels Polymerase-Kettenreaktion (PCR) konnte eine bestimmte DNA-Sequenz mit zwei

spezifischen Oligonukleotid-Primern aus einem Gemisch von linearen Nukleinsäuren selektiv

vermehrt werden. Hierfür wurde folgender Standardansatz verwendet:

Matrizen-DNA 10 ng 10x Reaktionspuffer (NH4)2SO4 (MBI Fermentas, St. Leon-Roth) 2 µl MgCl2 (25 mM) 1,2 µl dNTP-Mix (je 2,5 mM) 1 µl DMSO 1 µl forward Primer (40 pmol/µl) 0,4 µl reverse Primer (40 pmol/µl) 0,4 µl Taq-DNA-Polymerase (2,5 U/µl) (MBI Fermentas, St. Leon-Roth) 0,4 µl ddH2O ad 20 µl

Die Proben wurden in einem sterilen 0,2 ml PCR-Reaktionsgefäß zusammenpipettiert und

durchliefen in einem T3-Thermocycler (Biometra, Göttingen) folgendes Standardprogramm:

Initiale Denaturierung 1 min, 94°C Denaturierung 30 s, 94°C Annealing 30 s, den Primern angepasste Temperatur Elongation 1 min/kb Fragmentlänge, 72°C Finale Elongation 1 min, 72°C Kühlung 2 min, 4°C

Insgesamt wurden 30-40 Reaktionszyklen durchgeführt und die Amplifizierung der DNA-

Fragmente wurde durch eine anschließende gelelektrophoretische Auftrennung analysiert.

Page 99: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

89

6.3.4 Genotypisierungs-PCR

Für die verschiedenen Genotypisierungen genetisch veränderter Mäuse wurde der unter 6.3.3

gezeigte Standard-Reaktionsansatz verwendet. In der folgenden Tabelle sind Primer, PCR-

Programme und Fragmentgrößen zusammengefasst:

Allel Primer PCR- Programm

PCR-Fragment

MBP-Sox4 MBP-tg1 (5`)

rnSox4-tg1 (3`)

1 min, 94°C (1x)

30 s, 94°C; 30 s, 60°C; 30 s, 72°C

(35x)

2 min, 4°C

MBP-Sox4:

566 bp

Sox4 FP-Sox4 wt/fl+ (5`)

RP-Sox4 (3`)

1 min, 94°C (1x)

30 s, 94°C; 30 s, 58°C; 30 s, 72°C

(35x)

1 min, 72°C (1x)

Sox4 wt:

450 bp

Sox4fl:

520 bp

Sox11 koSox11-23 (5`)

koSox11-24 (3`)

lacZko-5 (3`)

1 min, 94°C (1x)

30 s, 94°C; 30 s, 58°C; 30 s, 72°C

(35x)

1 min, 72°C (1x)

Sox11 wt:

390 bp

Sox11lacZ:

555 bp

kond. Sox11 FP2-Sox11 fl/+ (5`)

RP4-Sox11 fl/+ (3`)

1 min, 94°C (1x)

30 s, 94°C; 30 s, 58°C; 30 s, 72°C

(35x)

1 min, 72°C (1x)

Sox11 wt :

319 bp

Sox11fl :

467 bp

Ei-Cre-tg

(DBH::Cre)

Ei-Cre-1 (5`)

Ei-Cre-2 (3`)

1 min, 94°C (1x)

30 s, 94°C; 30 s, 58°C; 30 s, 72°C

(35x)

1 min, 72°C (1x)

Ei-Cre-tg :

536 bp

Tab. 6.1: Übersicht der Genotypisierungs-PCR-Bedingungen.

Page 100: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

90

6.3.5 Reverse-Transkription und RT-PCR-Analyse

Die RT-PCR ist ein halbquantitatives Verfahren, um die Transkriptionsstärke verschiedener

Gene zu bestimmen. Zuerst wurde mit dem Enzym Reverse Transkriptase (RNA-abhängige

DNA-Polymerase) eine komplementäre cDNA synthetisiert. Dafür wurde zunächst die RNA

in 14 µl RNase-freiem Wasser (Roth, Karlsruhe) verdünnt. Nach Zugabe von 1 µl Oligo-(dT)-

Primer (100 pmol/µl) wurde der Ansatz für 10 min bei 70°C inkubiert und anschließend 5 min

auf Eis abgekühlt. Danach wurden 2,5 µl 10x reverser Transkriptase-Puffer (New England

Biolabs, Frankfurt), 2 µl dNTP-Mix (je 2,5 mM), 4,5 µl RNase-freies Wasser (Roth,

Karlsruhe) und 1 µl M-MuLV Reverse-Transkriptase (200 U/µl; New England Biolabs,

Frankfurt) zugegeben. Der Reaktionsansatz wurde 1 h bei 37°C inkubiert und abschließend

bei 70°C für 5 min inaktiviert. Um mehrere Proben miteinander vergleichen zu können,

wurde von jeder Probe exakt die gleiche Menge Gesamt-RNA (2 µg) in cDNA um-

geschrieben (RT-Reaktion). Die so gewonnene cDNA wurde bei -80°C aufbewahrt. Für die

RT-PCR wurde folgender Reaktionsansatz in sterilen Glaskapillaren pipettiert:

cDNA 2,5 µl Primer 1 (10 pmol/µl) 0,5 µl Primer 2 (10 pmol/µl) 0,5 µl DMSO 1 µl Fast Start DNA Master SYBR Green I-Mix 2 µl ddH2O ad 10 µl

Dabei bindet in jedem Zyklus der DNA-Synthese ein Farbstoff an das amplifizierte PCR-

Produkt, das somit aufgrund seiner Fluoreszenz detektiert werden kann. Der Fast Start DNA

Master SYBR Green I-Mix (Roche Diagnostics, Mannheim) enthält den Farbstoff und die

Taq-DNA-Polymerase. Die Proben wurden durch eine Rapid Cycle Real-Time PCR analysiert

und durchliefen in einem LightCycler (Roche Diagnostics, Mannheim) folgendes Standard-

programm:

Denaturierung 8 min, 95°C Amplifikation 0 s, 95°C; 7 s, 56-60°C; 20 s, 72°C Schmelzkurve 0 s, 95°C; 10 s, 66 °C; 5 min ansteigend bis 95°C bei 0,1°C/s Kühlung 5 s, 40°C

Page 101: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

91

Insgesamt wurden 45 Reaktionszyklen durchgeführt und die Ergebnisse anhand der

LightCycler Software (Version 3.5) ausgewertet. Als Kontrolle wurde dabei auf das ubiquitär

exprimierte Gen β-Aktin normalisiert.

6.3.6 Herstellung von DIG-markierten cRNA-Sonden mittels

in vitro Transkription

Durch In situ Hybridisierungen kann eine bestimmte mRNA mittels einer komplementären

RNA-Sonde detektiert werden. Dazu liegt die cDNA-Sequenz der zu detektierenden mRNA

in einem Plasmid vor, dessen multiple Klonierungsstelle von Promotoren einer RNA-

Polymerase (T3, T7 oder SP6) flankiert ist. Für die Transkription einer komplementären

RNA-Sonde wurden 10 µg Plasmid-DNA stromaufwärts der cDNA-Sequenz mit einem

geeigneten Restriktionsenzym geschnitten. Dabei sollte das Enzym an der Schnittstelle am

besten einen 5`-Überhang hinterlassen, um eine mögliche Transkription der Plasmid-DNA zu

verhindern. Die linearisierte DNA wurde durch das High Pure PCR Product Purification Kit

(Roche Diagnostics, Mannheim) nach Hersteller-Protokoll aufgereinigt und die DNA-

Konzentration auf 1 µg/µl eingestellt.

Für die in vitro Transkription mit den Reagenzien des DIG RNA Labeling Kits (Roche

Diagnostics, Mannheim) wurde 1 µg linearisierte DNA eingesetzt. Nach den Angaben des

Herstellers wurde folgender Reaktionsansatz pipettiert:

cDNA 1 µg/µl 10x Transkriptionspuffer 2 µl DIG RNA Labeling Mix 2 µl RNase Inhibitor (40 U/µl) 0,5 µl RNA-Polymerase (T3, T7 oder SP6) 2 µl

Die Reaktion wurde für 2,5 h bei 37°C inkubiert und mit 2 µl 0,2 M EDTA pH 8,0 ab-

gestoppt. Die DIG-markierte cRNA wurde über mini Quick Spin Säulen (Roche Diagnostics,

Mannheim) nach dem Protokoll des Herstellers aufgereinigt, mit RNase-freiem Wasser (Roth,

Karlsruhe) auf ein Volumen von 50 µl aufgefüllt und mit 50 µl Formamid versetzt.

Anschließend wurden die RNA-Sonden aliquotiert und bis zu ihrer Verwendung bei -80°C

gelagert. Zur Überprüfung ihrer Qualität wurden Agarose-Gelelektrophoresen durchgeführt.

Page 102: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

92

6.4 Histologische Methoden

6.4.1 Präparation embryonaler und postnataler Gewebe

Durch zervikale Dislokation wurden schwangere Weibchen am entsprechenden Embryonaltag

getötet, die Embryonen per Kaiserschnitt aus dem Bauchraum der Mutter entnommen und auf

Eis in PBS präpariert. Die Präparation der Embryonen wurde unter einem Stereomikroskop

(Leica Microsystems, Wetzlar) durchgeführt. Für die Genotypisierungen der Embryonen der

Entwicklungsstadien 11,5 dpc und 12,5 dpc wurde die äußere Fruchtblase verwendet. Den

Embryonen der Stadien 14,5 dpc, 16,5 dpc und 18,5 dpc wurde für die Typisierung ein Stück

Schwanz abgeschnitten. Je nach Entwicklungsalter wurden die Embryonen 2-4 h oder über

Nacht bei 4°C in 4% PFA in PBS fixiert. Für eine bessere Penetration des Fixativs wurden

den älteren Embryonen (14,5 dpc, 16,5 dpc und 18,5 dpc) zusätzlich der Kopf und die

Extremitäten abgetrennt sowie die Bauchdecke geöffnet bzw. die Haut entfernt.

Mäuse im postnatalen Entwicklungsstadium, deren Gewebe für PPD-Färbungen und

elektronenmikroskopische Untersuchungen bestimmt war, wurden vor der Präparation mit

300 µl 0,02%-igem Ketaminol und 0,08%-igem Rompun pro 20 g Körpergewicht betäubt.

Um die Tiere über ihren Blutkreislauf zu perfundieren, wurde zunächst der Brustkorb

geöffnet, das Herz freigelegt und die Vena cava durchtrennt. Somit konnten Blut und

Lösungen aus dem Körperkreislauf wieder abfließen. Nach Einführung der Kanüle in die

linke Herzkammer wurden die Tiere zuerst mit 15 ml 0,9%-iger NaCl-Lösung gespült und

anschließend mit 15 ml 1%-igem Glutaraldehyd mit 2,5% PFA in 0,1 M Cacodylatpuffer

pH 7,5 fixiert. Das zu untersuchende Gewebe wurde sofort herauspräpariert und über Nacht

entweder bei 4°C in 4% PFA (für Immunhistochemie und In situ Hybridisierung) oder in

25% PFA und 25% Glutaraldehyd in Cacodylatpuffer (für PPD-Färbung und Elektronen-

mikroskopie) nachfixiert.

Für immunhistochemische Färbungen und In situ Hybridisierungen, wurden die Embryonen

bzw. das postnatale Gewebe nach ihrer Fixierung gründlich in 1x PBS sechsmal 10 min bzw.

sechsmal 30 min auf Eis gewaschen. Für Gefrierschnitte wurde das Gewebe in 30%-iger

Sucroselösung in 1x PBS über Nacht bei 4°C inkubiert, bevor es in Gefriermedium (Jung

HistoService, Nussloch) eingebettet, auf Trockeneis eingefroren und bei -80°C gelagert

wurde. Mit dem Cryostat CM 3050 S (Leica Microsystems, Nussloch) wurden 10-14 µm

dünne Gefrierschnitte hergestellt, auf HistoBond-Adhäsions-Objektträger (Jung HistoService,

Page 103: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

93

Nussloch) aufgeschmolzen und für 2-3 h bei RT getrocknet. Anschließend wurden die

Objektträger in Gefrierboxen bei -80°C gelagert.

Für die PPD-Färbung und Elektronenmikroskopie wurde mit dem Institut für Anatomie der

Universität Erlangen-Nürnberg zusammengearbeitet. Dabei wurde das Fixanz mit 0,1 M

Cacodylatpuffer pH 7,3 ausgewaschen und danach für zwei Stunden mit 1% Osmiumtetroxid

in Cacodylatpuffer behandelt. Anschließend wurde überschüssiges Osmiumtetroxid über

Nacht mit Cacodylatpuffer ausgewaschen und das Gewebe über eine zunehmende Alkohol-

reihe dehydriert. Zum Schluß wurde das Gewebe zunächst für 30 min mit 100%-igem Aceton,

dann zwei Stunden in 60% Aceton/40% Epon sowie für weitere zwei Stunden in 40%

Aceton/60% Epon und letztendlich über Nacht in 100%-igem Epon infiltriert. Danach wurde

das Gewebe mit Epon und Beschleuniger eingebettet und bis zum Schneiden bei RT gelagert.

6.4.2 PPD-Färbungen und Elektronenmikroskopie

Für die PPD-Färbungen wurden 1 µm dünne Schnitte angefertigt und auf HistoBond-

Adhäsions-Objektträger (Jung HistoService, Nussloch) aufgeschmolzen. Die Schnitte wurden

über Nacht bei 60°C im Hybridisierungsofen gebacken. Die Färbeküvette und ca. 100 ml

bidestilliertes Wasser wurden ebenfalls auf 60°C erwärmt. Anschließend wurde 1 g PPD

(para-Phenylendiamin) in dem vorgewärmten H2O gelöst, die 1%-ige PPD-Lösung direkt auf

die Schnitte filtriert und für 2 min bei 60°C gefärbt (Estable-Puig et al., 1965). Danach wurde

die überschüssige Farbe für 2 min in bidestilliertem Wasser abgewaschen.

Die Dehydrierung der Schnitte erfolgte über eine aufsteigende Alkoholreihe:

50% Ethanol 2 min 80% Ethanol 2 min 96% Ethanol 2 x 2 min 100% Ethanol 2 x 3 min

Anschließend wurden die Schnitte 1 h bei 37°C getrocknet und mit Entellan (50 µl)

eingedeckt. Die Auswertung und Dokumentation wurde unter einem Leica Mikroskop

durchgeführt. Für die elektronenmikroskopischen Aufnahmen wurden 50 nm dünne Schnitte

angefertigt, mit Uranyl-Acetat und Blei-Citrat gefärbt und mit einem Zeiss EM902

Elektronenmikroskop analysiert.

Page 104: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

94

6.4.3 In situ Hybridisierung

Die In situ Hybridisierung wurde auf 14 µm dünnen Gefrierschnitten (siehe 6.4.1) durch-

geführt. Die Schnitte wurden in der Gefrierbox aufgetaut und für 2 h getrocknet. Die DIG-

markierten cRNA-Sonden wurden für 5 min bei 95°C denaturiert und danach sofort auf Eis

abgekühlt. Anschließend wurden die Sonden in Hybridisierungspuffer verdünnt (1:100),

nochmals für 10 min bei 70°C denaturiert und wiederum auf Eis gelagert. Während der

Denaturierungsphase wurden die Objektträger in eine mit 50 ml Waschpuffer befeuchtete

Kammer gelegt und jeweils mit ca. 1 ml Hybridisierungspuffer ohne Dextransulfat und Yeast-

RNA überschichtet. Dieser Prä-Hybridisierungspuffer wurde von den Objektträgern wieder

entfernt, bevor 120 µl denaturierte Sonde auf die Schnitte gegeben wurde. Die Träger wurden

mit einem Deckglas bedeckt. Die Hybridisierung erfolgte bei 68°C über Nacht.

Am zweiten Tag erfolgte die Post-Hybridisierung. Dafür wurden zunächst die Objektträger in

eine mit Waschpuffer vorgewärmte Küvette gestellt und die Deckgläser von den Schnitten

vorsichtig abgelöst. Danach wurden die Objektträger in einer jeweils frisch autoklavierten

Küvette je zweimal für 30 min mit vorgewärmtem Waschpuffer bei 68°C und anschließend

zweimal für je 30 min in MABT-Puffer bei RT inkubiert. Daraufhin wurden die Objektträger

in eine mit H2O befeuchtete Kammer gelegt und mit 350 µl MABT-Puffer überschichtet.

Nach 1 h Inkubationszeit bei RT wurde der MABT-Puffer entfernt und die Schnitte zum

Blockieren mit 350 µl 20% FKS in MABT (Blockierlösung) für 1 h bei RT in der feuchten

Kammer inkubiert. Währenddessen wurde der DIG-markierte- und AP-konjugierte-Anti-

körper (Roche Diagnostics, Mannheim) in der Blockierlösung verdünnt (1:3000) und 1 h auf

Eis gestellt. Nach Entfernen der Blockierlösung von den Objektträgern wurden 120 µl der

Antikörperlösung auf die Schnitte pipettiert, die abschließend mit einem Deckglas bedeckt

und über Nacht bei RT inkubiert wurden.

Am dritten Tag fand die Färbereaktion statt. Dafür wurden zunächst die Deckgläser von den

Objektträgern entfernt, bevor diese in eine Küvette mit MABT-Puffer überführt werden

konnten. Nach 1 h Inkuba-tionszeit bei RT wurden die Schnitte in eine mit H2O befeuchtete

Kammer gelegt und zweimal mit je 350 µl AP-Puffer bei RT gewaschen. Anschließend

wurden 120 µl Färbelösung (4,5 µl NBT und 3,5 µl BCIP pro ml AP-Puffer) auf die Schnitte

gegeben und mit einem Deckglas abgedeckt. Dadurch sollte die Bildung unspezifischer

Präzipitate durch Luftkontakt verhindert werden. Die Farbreaktion erfolgte je nach RNA-

Sonde über mehrere Stunden bei RT im Dunkeln. Durch das Überführen der Objektträger in

Page 105: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

95

eine Küvette mit 1x PBS wurde die Färbung abgestoppt. Nach zweimaligem Waschen der

Schnitte für jeweils 5 min in 1x PBS erfolgte eine Refixierung mit ca. 1 ml 4%-igen PFA bei

4°C in einer feuchten Kammer über Nacht. Abschließend wurden die Schnitte mit Glycerol-

Gelatine (GG-1; Sigma, München) eingedeckt.

6.4.4 Immunhistochemie auf Gefrierschnitten

Für die Immunhistochemie wurden die Objektträger mit den 10 µm Gefrierschnitten (siehe

6.4.1) nach dem Auftauen und Trocknen mit einem PAP-Stift (PAP penDako, Hamburg)

umrandet und anschließend zweimal für 5 min mit 1x PBS gewaschen. Für die Verwendung

muriner monoklonaler Primärantikörper wurden die Schnitte in 10 mM Citratpuffer (pH 6,0)

für 3 min bei 300 Watt in einer Mikrowelle gekocht, auf Eis abgekühlt, mit H2O gespült und

danach zweimal für 5 min in 1x PBS gewaschen. Daraufhin wurde sowohl das gekochte als

auch das unbehandelte Gewebe zur Permeabilisierung für 10 min in PBS mit 0,1%

Triton-X100 bei RT inkubiert und erneut einmal für 5 min mit 1x PBS gewaschen. Zum

Blockieren wurden die Objektträger in einer feuchten Kammer für 1-2 h bei RT mit

10% FKS/1% BSA in 1x PBS inkubiert. Der Primärantikörper wurde in 10% FKS/1% BSA in

1x PBS verdünnt und die Schnitte mit 200 µl Antikörperlösung überschichtet. Die Inkubation

erfolgte über Nacht bei 4°C in einer feuchten Kammer. Am nächsten Tag wurde der

überschüssige Primärantikörper durch gründliches sechsmaliges Waschen mit 1x PBS für 10

min entfernt. Anschließend wurden 200 µl einer Verdünnung des jeweiligen Sekundär-

antikörpers mit 10% FKS/1% BSA in 1x PBS auf die Schnitte gegeben und bei RT in einer

feuchten Kammer für 2 h inkubiert. Die Sekundärantikörper waren zur Signaldetektion mit

einem Cy2-, Cy3- (Dianova, Hamburg) oder Alexa-Fluoreszenzfarbstoff (Molecular Probes,

Göttingen) konjugiert. Durch sechsmaliges Waschen mit 1x PBS für 10 min wurde über-

schüssiger Sekundärantikörper entfernt. Abschließend wurde eine Kernfärbung durch

Inkubation für 1-2 min mit DAPI (4`, 6-Diamidino-2`-Phenylindol, 1:1000 in 1x PBS; Sigma,

München) durchgeführt. Nach kurzem Waschen mit 1x PBS für 5 min wurde das Gewebe mit

Mowiol (Calbiochem/Merck Biosciences, Bad Soden) eingedeckt. Nach Aushärten wurden

die Proben mit einem inversen Fluoreszenz-Mikroskop DM-IRB (Leica Microsystems,

Bensheim) und einer gekühlten SPOT-CCD-Kamera (Diagnostic Instruments, Michigan,

USA) dokumentiert.

Page 106: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

96

6.4.5 BrdU-Färbung

Für eine BrdU-Färbung wurde den schwangeren Weibchen 1 h vor ihrer Präparation der Zell-

proliferationsmarker BrdU (100 µg/g Körpergewicht; Sigma, München) intraperitoneal

injiziert. Die Embryonen wurden präpariert und für die BrdU-Färbung wurden 10 µm Gefrier-

schnitte angefertigt (siehe 6.4.1). Bei Doppelfärbungen mit einem zweiten Primärantikörper

wurde zunächst eine Immunhistochemie wie unter 6.4.4 beschrieben durchgeführt. Nach der

Inkubation mit dem Sekundärantikörper wurden die Schnitte 3x für 5 min mit 1x PBS

gewaschen, anschließend 30 min mit 2% PFA fixiert und im Folgenden wiederum dreimal für

5 min gewaschen. Nach einer Inkubation in 70% Ethanol für 5 min bei RT wurden die

Objektträger mit 2,4 M HCL überschichtet und für 10 min bei 37°C inkubiert. Bei diesem

Schritt wurde die DNA denaturiert und das in die DNA eingebaute BrdU-Nukleotid für den

Antikörper zugänglich gemacht. Anschließend wurde das Gewebe kurz mit H2O und 3x für

5 min mit 1x PBS gewaschen und durch 30 s Inkubation mit 40 µg/ml Proteinase K (1:1000

in 1x PBS; Roche Diagnostics, Mannheim) permeabilisiert. Nach erneutem dreimaligem

Waschen für 5 min in 1x PBS wurden die Schnitte gemäß dem in 6.4.4 beschriebenen

Protokoll für 10 min in PBS mit 0,1% Triton-X100 permeabilisiert und danach für 2 h bei RT

mit 10% FKS/1% BSA in 1x PBS blockiert. Die Inkubation mit dem anti-BrdU-Antikörper,

der direkt mit einem Alexa-488 Immunfluoreszenzfarbstoff (1:20; Molecular Probes,

Göttingen) konjugiert ist, erfolgte über Nacht in einer feuchten Kammer bei 4°C. Am

folgenden Tag wurden die Schnitte sechsmal 5 min in 1x PBS gewaschen und die Zellkerne

durch Inkubation mit DAPI (1:1000 in 1x PBS; Sigma, München) für 1-2 min gefärbt. Zum

Schluss wurde das Gewebe mit 2% PFA für 30 min in einer feuchten Kammer refixiert und

nach wiederholtem dreimaligem Waschen in 1x PBS mit Mowiol (Calbiochem/Merck

Biosciences, Bad Soden) eingedeckt und dokumentiert.

6.4.6 TUNEL-Färbung

Zur Detektion apoptotischer Zellen wurde eine TUNEL (terminal dUTP nick end labeling)-

Färbung mit dem ApopTagRed In situ Apoptosis Detection Kit (#S7165; Chemicon,

Hofheim) auf 10 µm dünnen Gefrierschnitten (siehe 6.4.1) durchgeführt. Nachdem das

Gewebe aufgetaut, getrocknet und die Schnitte mit einem PAP-Stift (PAP pen; Dako,

Page 107: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Methoden

97

Hamburg) umrandet waren, wurde das Gewebe für 5 min in 1x PBS gewaschen und für

10 min bei RT in PBS/0,5% Triton-X100 permeabilisiert. Nach kurzem Spülen mit 1x PBS

wurden die Objektträger in eine gekühlte Mischung aus Ethanol/Eisessig (2:1) gegeben und

für 5 min bei -20°C inkubiert. Anschließend wurde das Gewebe zweimal für 5 min in 1x PBS

gewaschen und pro Objektträger wurden 75 µl Equlibrationspuffer aufgetragen, die Schnitte

mit einem Parafilm abgedeckt und für 10 min bei RT inkubiert. Danach wurde diese Lösung

entfernt, das Gewebe mit 55 µl verdünnter TdT (terminale Desoxynukleotidyltransferase)-

Enzymlösung überschichtet und mit einem Parafilmstreifen bedeckt. Dadurch sollte eine

gleichmäßige Verteilung der Lösung erreicht und ein Austrocknen der Schnitte verhindert

werden. Die TdT-Reaktion wurde für 1 h bei 37°C in einer feuchten Kammer durchgeführt.

Zum Abstoppen der Reaktion wurden die Objektträger in 17,5 ml Stopp/Waschpuffer für 15 s

geschwenkt und für weitere 10 min bei RT inkubiert. Nach dreimaligem Waschen in 1x PBS

wurden 65 µl einer anti-DIG-Antikörperverdünnung auf die Schnitte gegeben und diese mit

Parafilm abgedeckt. Der Antikörper war direkt mit dem Fluoreszenzfarbstoff Rhodamin

konjugiert. Die Antikörper-Inkubation erfolgte für 2 h bei RT in einer feuchten Kammer.

Abschließend wurden die Objektträger viermal für 5 min in 1x PBS gewaschen, das Gewebe

kurz mit DAPI (1:1000 in 1x PBS; Sigma, München) gegengefärbt und die Schnitte mit

Mowiol (Calbiochem/Merck Biosciences, Bad Soden) eingedeckt.

Page 108: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Abkürzungsverzeichnis

98

7 Abkürzungsverzeichnis

α Anti

Abb. Abbildung

AP alkalische Phosphatase

AS Aminosäuren

BCIP 5-Bromo-4-chloro-3-indolyl-phosphat-p-Toluidinsalz

β-Gal β-Galactosidase

bHLH basisches Helix-Loop-Helix-Protein

BMP bone morphogenetic protein

bp Basenpaare

BrdU 5-Brom-2-desoxyuridin

BSA Rinderserumalbumin

bzw. beziehungsweise

°C Grad Celsius

cDNA komplementäre DNA

CREB CRE binding protein

cRNA komplementäre RNA

d Tag(e)

DAPI 4`, 6`-Diamin-2`-phenylindol-dihydrochlorid

DIG Digoxygenin

Dko doppelt defiziente Tiere (Sox4∆/∆/Sox11∆/∆-Embryonen)

DMSO Dimethyl-sulfoxid

DNA Desoxyribonukleinsäure

DNase Desoxyribonuklease

dNTP Desoxyribonukleosid-5`-triphosphat

dpc Tag post coitum der embryonalen Entwicklung

DRG dorsal root ganglion (dorsales Wurzelganglion)

DTT Dithiothreitol

EDTA Ethylendiamintetraacetat

EMT epitheliale mesenchymale Transition

EtOH Ethanol

FGF Fibroblast growth factor

FKS Fötales Kälberserum

fl von loxP-Stellen flankiertes Allel

FP Bodenplatte

g Gramm

GalC Galactosylcerebrosid

GFAP glial fibrillary acid protein (saures Gliafaserprotein)

Page 109: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Abkürzungsverzeichnis

99

GFP Green fluorescent protein

h Stunde

HD Homeodomäne

HMG-Box high-mobility-group-DNA-Bindedomäne

HRP horseradish peroxidase (Meerrettichperoxidase)

IgG, IgM Immunglobuline der Subklasse G oder M

IHC Immunhistochemie

IRES Internal ribosome entry site

ISH in situ Hybridisierung

kb Kilobasenpaare

ko knock-out

l Liter

LacZ β-Galactosidase-Gen aus E. coli

LIF leukemia inhibitory factor

mg, µg Milligram, Mikrogramm

ml, µl Milliliter, Mikroliter

M, mM, µM molar, millimolar, mikromolar

mm, µm Millimeter, Mikrometer

MABT Maleic acid buffer tris

MAG Myelin-assoziiertes Glycoprotein

MBP Basisches Myelin-Protein

min Minute

mRNA messenger-RNA (Boten-Ribonukleinsäure)

NBT Nitro Tetrazolium Blue Chloride

NeuN neuronal nuclei Antigen

Nkx2.2 NK2 homeobox transcription factor related, locus 2

Nkx6.2 NK6 homeobox transcription factor related, locus 2

nm Nanometer

Olig1/2 oligodendrocyte transcription factor 1/2

ORF open reading frame (offenes Leseraster)

p0, p1, p2, p3-Domäne neuronale progenitor-Domänen der ventralen VZ

Pax paired-box homeotic gene

PBS Phosphat-gepufferte Salzlösung

PCNA proliferating cell nuclear antigen

PCR Polymerase chain reacion (Polymerase Kettenreaktion)

PDGF-Rα platelet-derived growth factor – receptor alpha

PFA Paraformaldehyd

pH negativer dekadischer Logarithmus der Protonenkonz.

PLP Proteolipid-Protein

pMN-Domäne motoneuron-progenitor-Domäne

PNS peripheres Nervensystem

Page 110: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Abkürzungsverzeichnis

100

Pol. Polymerase

Ref. Referenz

RNA Ribonukleinsäure

RNase Ribonuklease

RP Deckplatte

Pr. Primer

RT Raumtemperatur; Reverse Transkription

RT-PCR Reverse Transkriptase-Polymerase Kettenreaktion

s Sekunde

Shh Sonic Hedgehog

SOX SRY-like box protein

SRY sex determining region on Y chromosome

SSC sodium salt citrate (Natriumsalz-Citrat-Puffer)

SVZ Subventrikulärzone

TA Transaktivierungsdomäne

Taq Thermophilus aquaticus

TAE Tris/ Essigsäure/ EDTA

TBE Tris/ Borsäure/ EDTA

TBS Tris-gepufferte Salzlösung

TdT Terminale Desoxynukleotid-Transferase

TE Tris-Puffer mit EDTA

tg Transgen

TGF-β transforming growth factor β

Tm Hybridisierungstemperatur

Tris Tris-hydroxylmethyl-aminomethan

TUNEL terminal dUTP nick end labeling

Tween-20 Polyoxyethylen-sorbitanmonolaureat

TSChG Tierschutzgesetz

u.a. unter anderem U Enzymeinheit (unit)

UTR untranslatierte Region

Upm Umdrehungen pro Minute

V0, V1, V2, V3-Interneuronen ventraler neuronaler Subtyp

VZ Ventrikulärzone

wt Wildtyp

ZNS zentrales Nervensystem

Page 111: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

101

8 Literaturverzeichnis

Adachi, M., Browne, D. & Lewis, E. J. (2000). Paired-like homeodomain proteins Phox2a/Arix and Phox2b/NBPhox have similar genetic organization and independently regulate dopamine beta-hydroxylase gene transcription. DNA Cell Biol 19, 539-54.

Ahn, S. G., Kim, H. S., Jeong, S. W., Kim, B. E., Rhim, H., Shim, J. Y., Kim, J. W., Lee, J. H. & Kim, I. K. (2002). Sox-4 is a positive regulator of Hep3B and HepG2 cells' apoptosis induced by prostaglandin (PG)A(2) and delta(12)-PGJ(2). Exp Mol Med 34, 243-9.

Ambrosetti, D. C., Basilico, C. & Dailey, L. (1997). Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol 17, 6321-9.

Anderson, D. J. (1997). Cellular and molecular biology of neural crest cell lineage determination. Trends Genet 13, 276-80.

Anderson, D. J. (2001). Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30, 19-35.

Anderson, D. J., Carnahan, J. F., Michelsohn, A. & Patterson, P. H. (1991). Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J Neurosci 11, 3507-19.

Arkell, R. & Beddington, R. S. (1997). BMP-7 influences pattern and growth of the developing hindbrain of mouse embryos. Development 124, 1-12.

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (2002). Short Protocols in Molecular Biology. New York: John Wiley & Sons.

Bansal, R. & Pfeiffer, S. E. (1992). Novel stage in the oligodendrocyte lineage defined by reactivity of progenitors with R-mAb prior to O1 anti-galactocerebroside. J Neurosci Res 32, 309-16.

Barres, B. A., Raff, M. C., Gaese, F., Bartke, I., Dechant, G. & Barde, Y. A. (1994). A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367, 371-5.

Barron, K. D. (2003). Microglia: history, cytology, and reactions. J Neurol Sci 207, 98.

Battiste, J., Helms, A. W., Kim, E. J., Savage, T. K., Lagace, D. C., Mandyam, C. D., Eisch, A. J., Miyoshi, G. & Johnson, J. E. (2007). Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development 134, 285-93.

Baumann, N. & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81, 871-927.

Page 112: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

102

Bergsland, M., Werme, M., Malewicz, M., Perlmann, T. & Muhr, J. (2006). The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 20, 3475-86.

Bignami, A., Eng, L. F., Dahl, D. & Uyeda, C. T. (1972). Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43, 429-35.

Bowles, J., Schepers, G. & Koopman, P. (2000). Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227, 239-55.

Brenner, M., Kisseberth, W. C., Su, Y., Besnard, F. & Messing, A. (1994). GFAP promoter directs astrocyte-specific expression in transgenic mice. J Neurosci 14, 1030-7.

Briscoe, J. & Ericson, J. (2001). Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11, 43-9.

Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. (2000). A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435-45.

Britsch, S., Goerich, D. E., Riethmacher, D., Peirano, R. I., Rossner, M., Nave, K. A., Birchmeier, C. & Wegner, M. (2001). The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15, 66-78.

Britsch, S., Li, L., Kirchhoff, S., Theuring, F., Brinkmann, V., Birchmeier, C. & Riethmacher, D. (1998). The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 12, 1825-36.

Bylund, M., Andersson, E., Novitch, B. G. & Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 6, 1162-8.

Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A. et al. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28, 264-78.

Cai, J., Qi, Y., Hu, X., Tan, M., Liu, Z., Zhang, J., Li, Q., Sander, M. & Qiu, M. (2005). Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45, 41-53.

Canoll, P. D., Musacchio, J. M., Hardy, R., Reynolds, R., Marchionni, M. A. & Salzer, J. L. (1996). GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17, 229-43.

Caspary, T. & Anderson, K. V. (2003). Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat Rev Neurosci 4, 289-97.

Page 113: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

103

Chattopadhyay, N., Espinosa-Jeffrey, A., Tfelt-Hansen, J., Yano, S., Bandyopadhyay, S., Brown, E. M. & de Vellis, J. (2008). Calcium receptor expression and function in oligodendrocyte commitment and lineage progression: potential impact on reduced myelin basic protein in CaR-null mice. J Neurosci Res 86, 2159-67.

Cheung, M., Abu-Elmagd, M., Clevers, H. & Scotting, P. J. (2000). Roles of Sox4 in central nervous system development. Brain Res Mol Brain Res 79, 180-91.

Cheung, M., Chaboissier, M. C., Mynett, A., Hirst, E., Schedl, A. & Briscoe, J. (2005). The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 8, 179-92.

Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H. & Beachy, P. A. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407-13.

Colas, J. F. & Schoenwolf, G. C. (2001). Towards a cellular and molecular understanding of neurulation. Dev Dyn 221, 117-45.

Connor, F., Cary, P. D., Read, C. M., Preston, N. S., Driscoll, P. C., Denny, P., Crane-Robinson, C. & Ashworth, A. (1994). DNA binding and bending properties of the post-meiotically expressed Sry-related protein Sox-5. Nucleic Acids Res 22, 3339-46.

Copp, A. J., Greene, N. D. & Murdoch, J. N. (2003). The genetic basis of mammalian neurulation. Nat Rev Genet 4, 784-93.

Cremazy, F., Berta, P. & Girard, F. (2001). Genome-wide analysis of Sox genes in Drosophila melanogaster. Mech Dev 109, 371-5.

Crowley, C., Spencer, S. D., Nishimura, M. C., Chen, K. S., Pitts-Meek, S., Armanini, M. P., Ling, L. H., McMahon, S. B., Shelton, D. L., Levinson, A. D. et al. (1994). Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76, 1001-11.

Denarier, E., Forghani, R., Farhadi, H. F., Dib, S., Dionne, N., Friedman, H. C., Lepage, P., Hudson, T. J., Drouin, R. & Peterson, A. (2005). Functional organization of a Schwann cell enhancer. J Neurosci 25, 11210-7.

Dy, P., Penzo-Mendez, A., Wang, H., Pedraza, C. E., Macklin, W. B. & Lefebvre, V. (2008). The three SoxC proteins--Sox4, Sox11 and Sox12--exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res 36, 3101-17.

Emery, B., Agalliu, D., Cahoy, J. D., Watkins, T. A., Dugas, J. C., Mulinyawe, S. B., Ibrahim, A., Ligon, K. L., Rowitch, D. H. & Barres, B. A. (2009). Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138, 172-85.

Eng, L. F., Vanderhaeghen, J. J., Bignami, A. & Gerstl, B. (1971). An acidic protein isolated from fibrous astrocytes. Brain Res 28, 351-4.

Page 114: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

104

Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T. M. (1996). Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661-73.

Ericson, J., Rashbass, P., Schedl, A., Brenner-Morton, S., Kawakami, A., van Heyningen, V., Jessell, T. M. & Briscoe, J. (1997). Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169-80.

Ernfors, P., Lee, K. F., Kucera, J. & Jaenisch, R. (1994). Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77, 503-12.

Ernsberger, U., Patzke, H., Tissier-Seta, J. P., Reh, T., Goridis, C. & Rohrer, H. (1995). The expression of tyrosine hydroxylase and the transcription factors cPhox-2 and Cash-1: evidence for distinct inductive steps in the differentiation of chick sympathetic precursor cells. Mech Dev 52, 125-36.

Estable-Puig, J. F., Bauer, W. C. & Blumberg, J. M. (1965). Paraphenylenediamine Staining of Osmium-Fixed, Plastic-Embedded Tissue for Light and Phase Microscopy. J Neuropathol Exp Neurol 24, 531-534.

Fagan, A. M., Zhang, H., Landis, S., Smeyne, R. J., Silos-Santiago, I. & Barbacid, M. (1996). TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J Neurosci 16, 6208-18.

Farhadi, H. F., Lepage, P., Forghani, R., Friedman, H. C., Orfali, W., Jasmin, L., Miller, W., Hudson, T. J. & Peterson, A. C. (2003). A combinatorial network of evolutionarily conserved myelin basic protein regulatory sequences confers distinct glial-specific phenotypes. J Neurosci 23, 10214-23.

Farinas, I., Jones, K. R., Backus, C., Wang, X. Y. & Reichardt, L. F. (1994). Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369, 658-61.

Ferrari, S., Harley, V. R., Pontiggia, A., Goodfellow, P. N., Lovell-Badge, R. & Bianchi, M. E. (1992). SRY, like HMG1, recognizes sharp angles in DNA. Embo J 11, 4497-506.

Foran, D. R. & Peterson, A. C. (1992). Myelin acquisition in the central nervous system of the mouse revealed by an MBP-Lac Z transgene. J Neurosci 12, 4890-7.

Francis, N., Farinas, I., Brennan, C., Rivas-Plata, K., Backus, C., Reichardt, L. & Landis, S. (1999). NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. Dev Biol 210, 411-27.

Frank, M., Schaeren-Wiemers, N., Schneider, R. & Schwab, M. E. (1999). Developmental expression pattern of the myelin proteolipid MAL indicates different functions of MAL for immature Schwann cells and in a late step of CNS myelinogenesis. J Neurochem 73, 587-97.

Fu, H., Qi, Y., Tan, M., Cai, J., Takebayashi, H., Nakafuku, M., Richardson, W. & Qiu, M. (2002). Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129, 681-93.

Page 115: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

105

Garcia-Castro, M. & Bronner-Fraser, M. (1999). Induction and differentiation of the neural crest. Curr Opin Cell Biol 11, 695-8.

Garcia-Castro, M. I., Marcelle, C. & Bronner-Fraser, M. (2002). Ectodermal Wnt function as a neural crest inducer. Science 297, 848-51.

Glebova, N. O. & Ginty, D. D. (2005). Growth and survival signals controlling sympathetic nervous system development. Annu Rev Neurosci 28, 191-222.

Gokhan, S., Marin-Husstege, M., Yung, S. Y., Fontanez, D., Casaccia-Bonnefil, P. & Mehler, M. F. (2005). Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. J Neurosci 25, 8311-21.

Goridis, C. & Rohrer, H. (2002). Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci 3, 531-41.

Graham, A. (1997). The origin of dorsoventral patterning of the vertebrate nervous system. Trends Genet 13, 463-5.

Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., Vivian, N., Goodfellow, P. & Lovell-Badge, R. (1990). A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245-50.

Guillemot, F. & Joyner, A. L. (1993). Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech Dev 42, 171-85.

Guillemot, F., Lo, L. C., Johnson, J. E., Auerbach, A., Anderson, D. J. & Joyner, A. L. (1993). Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463-76.

Guth, S. I. & Wegner, M. (2008). Having it both ways: Sox protein function between conservation and innovation. Cell Mol Life Sci 65, 3000-18.

Hargrave, M., Wright, E., Kun, J., Emery, J., Cooper, L. & Koopman, P. (1997). Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev Dyn 210, 79-86.

Harley, V. R., Lovell-Badge, R. & Goodfellow, P. N. (1994). Definition of a consensus DNA binding site for SRY. Nucleic Acids Res 22, 1500-1.

Haslinger, A., Schwarz, T. J., Covic, M. & Chichung Lie, D. (2009). Expression of Sox11 in adult neurogenic niches suggests a stage-specific role in adult neurogenesis. Eur J Neurosci 29, 2103-14.

He, Y., Dupree, J., Wang, J., Sandoval, J., Li, J., Liu, H., Shi, Y., Nave, K. A. & Casaccia-Bonnefil, P. (2007). The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55, 217-30.

Page 116: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

106

Hendershot, T. J., Liu, H., Clouthier, D. E., Shepherd, I. T., Coppola, E., Studer, M., Firulli, A. B., Pittman, D. L. & Howard, M. J. (2008). Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 319, 179-91.

Hirsch, M. R., Tiveron, M. C., Guillemot, F., Brunet, J. F. & Goridis, C. (1998). Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125, 599-608.

Hong, S. J., Chae, H., Lardaro, T., Hong, S. & Kim, K. S. (2008a). Trim11 increases expression of dopamine beta-hydroxylase gene by interacting with Phox2b. Biochem Biophys Res Commun 368, 650-5.

Hong, S. J., Lardaro, T., Oh, M. S., Huh, Y., Ding, Y., Kang, U. J., Kirfel, J., Buettner, R. & Kim, K. S. (2008b). Regulation of the noradrenaline neurotransmitter phenotype by the transcription factor AP-2beta. J Biol Chem 283, 16860-7.

Hoser, M., Baader, S. L., Bösl, M. R., Ihmer, A., Wegner, M. & Sock, E. (2007). Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. J Neurosci 27, 5495-505.

Hoser, M., Potzner, M. R., Koch, J. M., Bösl, M. R., Wegner, M. & Sock, E. (2008). Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and Sox11 transcription factors. Mol Cell Biol 28, 4675-87.

Hosking, B. M., Wang, S. C., Chen, S. L., Penning, S., Koopman, P. & Muscat, G. E. (2001). SOX18 directly interacts with MEF2C in endothelial cells. Biochem Biophys Res Commun 287, 493-500.

Howard, M., Foster, D. N. & Cserjesi, P. (1999). Expression of HAND gene products may be sufficient for the differentiation of avian neural crest-derived cells into catecholaminergic neurons in culture. Dev Biol 215, 62-77.

Howard, M. J., Stanke, M., Schneider, C., Wu, X. & Rohrer, H. (2000). The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development 127, 4073-81.

Huber, K. (2006). The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 298, 335-43.

Huber, K., Bruhl, B., Guillemot, F., Olson, E. N., Ernsberger, U. & Unsicker, K. (2002). Development of chromaffin cells depends on MASH1 function. Development 129, 4729-38.

Hur, E. H., Hur, W., Choi, J. Y., Kim, I. K., Kim, H. Y., Yoon, S. K. & Rhim, H. (2004). Functional identification of the pro-apoptotic effector domain in human Sox4. Biochem Biophys Res Commun 325, 59-67.

Hyodo-Miura, J., Urushiyama, S., Nagai, S., Nishita, M., Ueno, N. & Shibuya, H. (2002). Involvement of NLK and Sox11 in neural induction in Xenopus development. Genes Cells 7, 487-96.

Page 117: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

107

Jay, P., Goze, C., Marsollier, C., Taviaux, S., Hardelin, J. P., Koopman, P. & Berta, P. (1995). The human SOX11 gene: cloning, chromosomal assignment and tissue expression. Genomics 29, 541-5.

Jay, P., Sahly, I., Goze, C., Taviaux, S., Poulat, F., Couly, G., Abitbol, M. & Berta, P. (1997). SOX22 is a new member of the SOX gene family, mainly expressed in human nervous tissue. Hum Mol Genet 6, 1069-77.

Jessell, T. M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1, 20-9.

Jessen, K. R. (2004). Glial cells. Int J Biochem Cell Biol 36, 1861-7.

Jew, J. Y. (1985). Histofluorescence and ultrastructural observations of small intensely fluorescent (SIF) cells in the superior sympathetic ganglion of the guinea pig. Cell Tissue Res 241, 529-38.

Kaufman, M. H. & Bard, J. B. L. (1999). The Anatomical Basis of Mouse Development. London: Academic Press.

Kelly, O. G. & Melton, D. A. (1995). Induction and patterning of the vertebrate nervous system. Trends Genet 11, 273-8.

Kim, H. S., Seo, H., Yang, C., Brunet, J. F. & Kim, K. S. (1998). Noradrenergic-specific transcription of the dopamine beta-hydroxylase gene requires synergy of multiple cis-acting elements including at least two Phox2a-binding sites. J Neurosci 18, 8247-60.

Kim, J., Lo, L., Dormand, E. & Anderson, D. J. (2003). SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17-31.

Kos, R., Reedy, M. V., Johnson, R. L. & Erickson, C. A. (2001). The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128, 1467-79.

Krull, C. E. (2001). Segmental organization of neural crest migration. Mech Dev 105, 37-45.

Kuhlbrodt, K., Herbarth, B., Sock, E., Enderich, J., Hermans-Borgmeyer, I. & Wegner, M. (1998a). Cooperative function of POU proteins and SOX proteins in glial cells. J Biol Chem 273, 16050-7.

Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I. & Wegner, M. (1998b). Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18, 237-50.

LaBonne, C. & Bronner-Fraser, M. (1998). Induction and patterning of the neural crest, a stem cell-like precursor population. J Neurobiol 36, 175-89.

LaBonne, C. & Bronner-Fraser, M. (1999). Molecular mechanisms of neural crest formation. Annu Rev Cell Dev Biol 15, 81-112.

Le Douarin, N. M., Creuzet, S., Couly, G. & Dupin, E. (2004). Neural crest cell plasticity and its limits. Development 131, 4637-50.

Page 118: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

108

Lee, C. J., Appleby, V. J., Orme, A. T., Chan, W. I. & Scotting, P. J. (2002). Differential expression of SOX4 and SOX11 in medulloblastoma. J Neurooncol 57, 201-14.

Lee, K. J. & Jessell, T. M. (1999). The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22, 261-94.

Lefebvre, V., Dumitriu, B., Penzo-Mendez, A., Han, Y. & Pallavi, B. (2007). Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 39, 2195-214.

Li, H., Lu, Y., Smith, H. K. & Richardson, W. D. (2007). Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci 27, 14375-82.

Lim, K. C., Lakshmanan, G., Crawford, S. E., Gu, Y., Grosveld, F. & Engel, J. D. (2000). Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 25, 209-12.

Lioubinski, O., Muller, M., Wegner, M. & Sander, M. (2003). Expression of Sox transcription factors in the developing mouse pancreas. Dev Dyn 227, 402-8.

Liu, P., Ramachandran, S., Ali Seyed, M., Scharer, C. D., Laycock, N., Dalton, W. B., Williams, H., Karanam, S., Datta, M. W., Jaye, D. L. et al. (2006). Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 66, 4011-9.

Liu, R., Cai, J., Hu, X., Tan, M., Qi, Y., German, M., Rubenstein, J., Sander, M. & Qiu, M. (2003). Region-specific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development 130, 6221-31.

Liu, Z., Hu, X., Cai, J., Liu, B., Peng, X., Wegner, M. & Qiu, M. (2007). Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Dev Biol 302, 683-93.

Lo, L., Morin, X., Brunet, J. F. & Anderson, D. J. (1999). Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron 22, 693-705.

Lo, L., Tiveron, M. C. & Anderson, D. J. (1998). MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125, 609-20.

Lo, L. C., Johnson, J. E., Wuenschell, C. W., Saito, T. & Anderson, D. J. (1991). Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5, 1524-37.

Loring, J. F. & Erickson, C. A. (1987). Neural crest cell migratory pathways in the trunk of the chick embryo. Dev Biol 121, 220-36.

Lu, Q. R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C. D. & Rowitch, D. H. (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75-86.

Page 119: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

109

Lu, Q. R., Yuk, D., Alberta, J. A., Zhu, Z., Pawlitzky, I., Chan, J., McMahon, A. P., Stiles, C. D. & Rowitch, D. H. (2000). Sonic hedgehog--regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317-29.

Lucas, M. E., Muller, F., Rudiger, R., Henion, P. D. & Rohrer, H. (2006). The bHLH transcription factor hand2 is essential for noradrenergic differentiation of sympathetic neurons. Development 133, 4015-24.

Ma, Q., Sommer, L., Cserjesi, P. & Anderson, D. J. (1997). Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing notch ligands. J Neurosci 17, 3644-52.

Mao, Z. & Nadal-Ginard, B. (1996). Functional and physical interactions between mammalian achaete-scute homolog 1 and myocyte enhancer factor 2A. J Biol Chem 271, 14371-5.

Marti, E., Takada, R., Bumcrot, D. A., Sasaki, H. & McMahon, A. P. (1995). Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121, 2537-47.

Maschhoff, K. L., Anziano, P. Q., Ward, P. & Baldwin, H. S. (2003). Conservation of Sox4 gene structure and expression during chicken embryogenesis. Gene 320, 23-30.

Matthews, M. R. (1989). Small, intensely fluorescent cells and the paraneuron concept. J Electron Microsc Tech 12, 408-16.

Mavropoulos, A., Devos, N., Biemar, F., Zecchin, E., Argenton, F., Edlund, H., Motte, P., Martial, J. A. & Peers, B. (2005). sox4b is a key player of pancreatic alpha cell differentiation in zebrafish. Dev Biol 285, 211-23.

McPherson, C. E., Varley, J. E. & Maxwell, G. D. (2000). Expression and regulation of type I BMP receptors during early avian sympathetic ganglion development. Dev Biol 221, 220-32.

Mekki-Dauriac, S., Agius, E., Kan, P. & Cochard, P. (2002). Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129, 5117-30.

Miller, R. H. (2002). Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67, 451-67.

Molineaux, S. M., Engh, H., de Ferra, F., Hudson, L. & Lazzarini, R. A. (1986). Recombination within the myelin basic protein gene created the dysmyelinating shiverer mouse mutation. Proc Natl Acad Sci U S A 83, 7542-6.

Moriguchi, T., Takako, N., Hamada, M., Maeda, A., Fujioka, Y., Kuroha, T., Huber, R. E., Hasegawa, S. L., Rao, A., Yamamoto, M. et al. (2006). Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 133, 3871-81.

Page 120: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

110

Morikawa, Y., D'Autreaux, F., Gershon, M. D. & Cserjesi, P. (2007). Hand2 determines the noradrenergic phenotype in the mouse sympathetic nervous system. Dev Biol 307, 114-26.

Morikawa, Y., Dai, Y. S., Hao, J., Bonin, C., Hwang, S. & Cserjesi, P. (2005). The basic helix-loop-helix factor Hand 2 regulates autonomic nervous system development. Dev Dyn 234, 613-21.

Morikawa, Y., Zehir, A., Maska, E., Deng, C., Schneider, M. D., Mishina, Y. & Cserjesi, P. (2009). BMP signaling regulates sympathetic nervous system development through Smad4-dependent and -independent pathways. Development 136, 3575-84.

Morin, X., Cremer, H., Hirsch, M. R., Kapur, R. P., Goridis, C. & Brunet, J. F. (1997). Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18, 411-23.

Muhr, J., Andersson, E., Persson, M., Jessell, T. M. & Ericson, J. (2001). Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 104, 861-73.

Müller, F. & Rohrer, H. (2002). Molecular control of ciliary neuron development: BMPs and downstream transcriptional control in the parasympathetic lineage. Development 129, 5707-17.

Muroyama, Y., Fujihara, M., Ikeya, M., Kondoh, H. & Takada, S. (2002). Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord. Genes Dev 16, 548-53.

Nieto, M. A., Sargent, M. G., Wilkinson, D. G. & Cooke, J. (1994). Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264, 835-9.

Nishiyama, A., Lin, X. H., Giese, N., Heldin, C. H. & Stallcup, W. B. (1996). Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res 43, 299-314.

Nissen-Meyer, L. S., Jemtland, R., Gautvik, V. T., Pedersen, M. E., Paro, R., Fortunati, D., Pierroz, D. D., Stadelmann, V. A., Reppe, S., Reinholt, F. P. et al. (2007). Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. J Cell Sci 120, 2785-95.

Nolte, C., Matyash, M., Pivneva, T., Schipke, C. G., Ohlemeyer, C., Hanisch, U. K., Kirchhoff, F. & Kettenmann, H. (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72-86.

Norton, W. T. (1984). Recent advances in myelin biochemistry. Ann N Y Acad Sci 436, 5-10.

Novitch, B. G., Chen, A. I. & Jessell, T. M. (2001). Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773-89.

Page 121: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

111

Ono, K., Bansal, R., Payne, J., Rutishauser, U. & Miller, R. H. (1995). Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development 121, 1743-54.

Pandolfi, P. P., Roth, M. E., Karis, A., Leonard, M. W., Dzierzak, E., Grosveld, F. G., Engel, J. D. & Lindenbaum, M. H. (1995). Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11, 40-4.

Parlato, R., Otto, C., Begus, Y., Stotz, S. & Schutz, G. (2007). Specific ablation of the transcription factor CREB in sympathetic neurons surprisingly protects against developmentally regulated apoptosis. Development 134, 1663-70.

Parras, C. M., Galli, R., Britz, O., Soares, S., Galichet, C., Battiste, J., Johnson, J. E., Nakafuku, M., Vescovi, A. & Guillemot, F. (2004). Mash1 specifies neurons and oligodendrocytes in the postnatal brain. Embo J 23, 4495-505.

Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Br unet, J. F. (1997). Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124, 4065-75.

Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Br unet, J. F. (1999). The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366-70.

Penzo-Mendez, A., Dy, P., Pallavi, B. & Lefebvre, V. (2007). Generation of mice harboring a Sox4 conditional null allele. Genesis 45, 776-80.

Perris, R. & Perissinotto, D. (2000). Role of the extracellular matrix during neural crest cell migration. Mech Dev 95, 3-21.

Pevny, L. & Placzek, M. (2005). SOX genes and neural progenitor identity. Curr Opin Neurobiol 15, 7-13.

Pevny, L. H. & Lovell-Badge, R. (1997). Sox genes find their feet. Curr Opin Genet Dev 7, 338-44.

Pfeiffer, S. E., Warrington, A. E. & Bansal, R. (1993). The oligodendrocyte and its many cellular processes. Trends Cell Biol 3, 191-7.

Pla, P., Moore, R., Morali, O. G., Grille, S., Martinozzi, S., Delmas, V. & Larue, L. (2001). Cadherins in neural crest cell development and transformation. J Cell Physiol 189, 121-32.

Placzek, M., Yamada, T., Tessier-Lavigne, M., Jessell, T. & Dodd, J. (1991). Control of dorsoventral pattern in vertebrate neural development: induction and polarizing properties of the floor plate. Development Suppl 2, 105-22.

Potzner, M. R., Griffel, C., Lütjen-Drecoll, E., Bösl, M. R., Wegner, M. & Sock, E. (2007). Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system. Mol Cell Biol 27, 5316-26.

Page 122: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

112

Pramoonjago, P., Baras, A. S. & Moskaluk, C. A. (2006). Knockdown of Sox4 expression by RNAi induces apoptosis in ACC3 cells. Oncogene 25, 5626-39.

Pringle, N. P. & Richardson, W. D. (1993). A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117, 525-33.

Pringle, N. P., Yu, W. P., Guthrie, S., Roelink, H., Lumsden, A., Peterson, A. C. & Richardson, W. D. (1996). Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev Biol 177, 30-42.

Qi, Y., Cai, J., Wu, Y., Wu, R., Lee, J., Fu, H., Rao, M., Sussel, L., Rubenstein, J. & Qiu, M. (2001). Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128, 2723-33.

Reiprich, S., Stolt, C. C., Schreiner, S., Parlato, R. & Wegner, M. (2008). SoxE proteins are differentially required in mouse adrenal gland development. Mol Biol Cell 19, 1575-86.

Reissmann, E., Ernsberger, U., Francis-West, P. H., Rueger, D., Brickell, P. M. & Rohrer, H. (1996). Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122, 2079-88.

Reppe, S., Rian, E., Jemtland, R., Olstad, O. K., Gautvik, V. T. & Gautvik, K. M. (2000). Sox-4 messenger RNA is expressed in the embryonic growth plate and regulated via the parathyroid hormone/parathyroid hormone-related protein receptor in osteoblast-like cells. J Bone Miner Res 15, 2402-12.

Richardson, W. D., Kessaris, N. & Pringle, N. (2006). Oligodendrocyte wars. Nat Rev Neurosci 7, 11-8.

Roach, A., Boylan, K., Horvath, S., Prusiner, S. B. & Hood, L. E. (1983). Characterization of cloned cDNA representing rat myelin basic protein: absence of expression in brain of shiverer mutant mice. Cell 34, 799-806.

Roach, A., Takahashi, N., Pravtcheva, D., Ruddle, F. & Hood, L. (1985). Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42, 149-55.

Roelink, H., Porter, J. A., Chiang, C., Tanabe, Y., Chang, D. T., Beachy, P. A. & Jessell, T. M. (1995). Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445-55.

Rosenbluth, J. (1980). Central myelin in the mouse mutant shiverer. J Comp Neurol 194, 639-48.

Rowitch, D. H. (2004). Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5, 409-19.

Page 123: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

113

Rychlik, J. L., Gerbasi, V. & Lewis, E. J. (2003). The interaction between dHAND and Arix at the dopamine beta-hydroxylase promoter region is independent of direct dHAND binding to DNA. J Biol Chem 278, 49652-60.

Salzer, J. L. (2003). Polarized domains of myelinated axons. Neuron 40, 297-318.

Sambrook, J., Fritsch, E. F. & Maniatis, T. (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Press.

Sandberg, M., Kallstrom, M. & Muhr, J. (2005). Sox21 promotes the progression of vertebrate neurogenesis. Nat Neurosci 8, 995-1001.

Sarkar, A. A. & Howard, M. J. (2006). Perspectives on integration of cell extrinsic and cell intrinsic pathways of signaling required for differentiation of noradrenergic sympathetic ganglion neurons. Auton Neurosci 126-127, 225-31.

Schepers, G. E., Teasdale, R. D. & Koopman, P. (2002). Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 3, 167-70.

Schilham, M. W., Oosterwegel, M. A., Moerer, P., Ya, J., de Boer, P. A., van de Wetering, M., Verbeek, S., Lamers, W. H., Kruisbeek, A. M., Cumano, A. et al. (1996). Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 380, 711-4.

Schilham, M. W., van Eijk, M., van de Wetering, M. & Clevers, H. C. (1993). The murine Sox-4 protein is encoded on a single exon. Nucleic Acids Res 21, 2009.

Schmidt, M., Lin, S., Pape, M., Ernsberger, U., Stanke, M., Kobayashi, K., Howard, M. J. & Rohrer, H. (2009). The bHLH transcription factor Hand2 is essential for the maintenance of noradrenergic properties in differentiated sympathetic neurons. Dev Biol 329, 191-200.

Schneider, C., Wicht, H., Enderich, J., Wegner, M. & Rohrer, H. (1999). Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24, 861-70.

Sekiya, I., Vuoristo, J. T., Larson, B. L. & Prockop, D. J. (2002). In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 99, 4397-402.

Shah, N. M., Groves, A. K. & Anderson, D. J. (1996). Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85, 331-43.

Shen, X. Y., Billings-Gagliardi, S., Sidman, R. L. & Wolf, M. K. (1985). Myelin deficient (shimld) mutant allele: morphological comparison with shiverer (shi) allele on a B6C3 mouse stock. Brain Res 360, 235-47.

Page 124: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

114

Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. M., Lovell-Badge, R. & Goodfellow, P. N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240-4.

Smeyne, R. J., Klein, R., Schnapp, A., Long, L. K., Bryant, S., Lewin, A., Lira, S. A. & Barbacid, M. (1994). Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368, 246-9.

Smith, J. L. & Schoenwolf, G. C. (1997). Neurulation: coming to closure. Trends Neurosci 20, 510-7.

Sock, E., Rettig, S. D., Enderich, J., Bösl, M. R., Tamm, E. R. & Wegner, M. (2004). Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol 24, 6635-44.

Sommer, L., Shah, N., Rao, M. & Anderson, D. J. (1995). The cellular function of MASH1 in autonomic neurogenesis. Neuron 15, 1245-58.

Stanke, M., Junghans, D., Geissen, M., Goridis, C., Ernsberger, U. & Rohrer, H. (1999). The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development 126, 4087-94.

Stolt, C. C., Lommes, P., Friedrich, R. P. & Wegner, M. (2004). Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development 131, 2349-58.

Stolt, C. C., Lommes, P., Sock, E., Chaboissier, M. C., Schedl, A. & Wegner, M. (2003). The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17, 1677-89.

Stolt, C. C., Rehberg, S., Ader, M., Lommes, P., Riethmacher, D., Schachner, M., Bartsch, U. & Wegner, M. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16, 165-70.

Stolt, C. C., Schlierf, A., Lommes, P., Hillgartner, S., Werner, T., Kosian, T., Sock, E., Kessaris, N., Richardson, W. D., Lefebvre, V. et al. (2006). SoxD Proteins Influence Multiple Stages of Oligodendrocyte Development and Modulate SoxE Protein Function. Dev Cell 11, 697-709.

Stolt, C. C., Schmitt, S., Lommes, P., Sock, E. & Wegner, M. (2005). Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord. Dev Biol 281, 309-17.

Stolt, C. C. & Wegner, M. (2009). SoxE function in vertebrate nervous system development. Int J Biochem Cell Biol.

Sugimori, M., Nagao, M., Bertrand, N., Parras, C. M., Guillemot, F. & Nakafuku, M. (2007). Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development 134, 1617-29.

Page 125: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

115

Sugimori, M., Nagao, M., Parras, C. M., Nakatani, H., Lebel, M., Guillemot, F. & Nakafuku, M. (2008). Ascl1 is required for oligodendrocyte development in the spinal cord. Development 135, 1271-81.

Sun, T., Dong, H., Wu, L., Kane, M., Rowitch, D. H. & Stiles, C. D. (2003). Cross-repressive interaction of the Olig2 and Nkx2.2 transcription factors in developing neural tube associated with formation of a specific physical complex. J Neurosci 23, 9547-56.

Takebayashi, H., Nabeshima, Y., Yoshida, S., Chisaka, O. & Ikenaka, K. (2002). The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12, 1157-63.

Tanabe, Y. & Jessell, T. M. (1996). Diversity and pattern in the developing spinal cord. Science 274, 1115-23.

Tanaka, K. & Chiba, T. (1996). Microvascular organization of sympathetic ganglia, with special reference to small intensely-fluorescent cells. Microsc Res Tech 35, 137-45.

Teillet, M. A., Kalcheim, C. & Le Douarin, N. M. (1987). Formation of the dorsal root ganglia in the avian embryo: segmental origin and migratory behavior of neural crest progenitor cells. Dev Biol 120, 329-47.

Thomsen, G. H. (1997). Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. Trends Genet 13, 209-11.

Tsai, H. H., Macklin, W. B. & Miller, R. H. (2006). Netrin-1 is required for the normal development of spinal cord oligodendrocytes. J Neurosci 26, 1913-22.

Tsarovina, K., Pattyn, A., Stubbusch, J., Muller, F., van der Wees, J., Schneider, C., Brunet, J. F. & Rohrer, H. (2004). Essential role of Gata transcription factors in sympathetic neuron development. Development 131, 4775-86.

Uwanogho, D., Rex, M., Cartwright, E. J., Pearl, G., Healy, C., Scotting, P. J. & Sharpe, P. T. (1995). Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev 49, 23-36.

Valarche, I., Tissier-Seta, J. P., Hirsch, M. R., Martinez, S., Goridis, C. & Brunet, J. F. (1993). The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development 119, 881-96.

Vallstedt, A., Klos, J. M. & Ericson, J. (2005). Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55-67.

van de Wetering, M., Oosterwegel, M., van Norren, K. & Clevers, H. (1993). Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. Embo J 12, 3847-54.

Volterra, A. & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6, 626-40.

Page 126: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

116

Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 27, 1409-20.

Wegner, M. (2005). Secrets to a healthy Sox life: lessons for melanocytes. Pigment Cell Res 18, 74-85.

Wegner, M. & Stolt, C. C. (2005). From stem cells to neurons and glia: a Soxist's view of neural development. Trends Neurosci 28, 583-8.

Weiss, M. A. (2001). Floppy SOX: mutual induced fit in hmg (high-mobility group) box-DNA recognition. Mol Endocrinol 15, 353-62.

Werner, M. H., Huth, J. R., Gronenborn, A. M. & Clore, G. M. (1995). Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81, 705-14.

Wildner, H., Gierl, M. S., Strehle, M., Pla, P. & Birchmeier, C. (2008). Insm1 (IA-1) is a crucial component of the transcriptional network that controls differentiation of the sympatho-adrenal lineage. Development 135, 473-81.

Wilson, M. E., Yang, K. Y., Kalousova, A., Lau, J., Kosaka, Y., Lynn, F. C., Wang, J., Mrejen, C., Episkopou, V., Clevers, H. C. et al. (2005). The HMG box transcription factor Sox4 contributes to the development of the endocrine pancreas. Diabetes 54, 3402-9.

Wissmuller, S., Kosian, T., Wolf, M., Finzsch, M. & Wegner, M. (2006). The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucleic Acids Res 34, 1735-44.

Woodruff, R. H., Tekki-Kessaris, N., Stiles, C. D., Rowitch, D. H. & Richardson, W. D. (2001). Oligodendrocyte development in the spinal cord and telencephalon: common themes and new perspectives. Int J Dev Neurosci 19, 379-85.

Wyatt, S., Pinon, L. G., Ernfors, P. & Davies, A. M. (1997). Sympathetic neuron survival and TrkA expression in NT3-deficient mouse embryos. Embo J 16, 3115-23.

Xin, M., Yue, T., Ma, Z., Wu, F. F., Gow, A. & Lu, Q. R. (2005). Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 25, 1354-65.

Xu, H., Firulli, A. B., Zhang, X. & Howard, M. J. (2003). HAND2 synergistically enhances transcription of dopamine-beta-hydroxylase in the presence of Phox2a. Dev Biol 262, 183-93.

Ya, J., Schilham, M. W., de Boer, P. A., Moorman, A. F., Clevers, H. & Lamers, W. H. (1998). Sox4-deficiency syndrome in mice is an animal model for common trunk. Circ Res 83, 986-94.

Yamada, T., Placzek, M., Tanaka, H., Dodd, J. & Jessell, T. M. (1991). Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635-47.

Page 127: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Literaturverzeichnis

117

Zeller, N. K., Hunkeler, M. J., Campagnoni, A. T., Sprague, J. & Lazzarini, R. A. (1984). Characterization of mouse myelin basic protein messenger RNAs with a myelin basic protein cDNA clone. Proc Natl Acad Sci U S A 81, 18-22.

Zhou, Q. & Anderson, D. J. (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61-73.

Zhou, Q., Wang, S. & Anderson, D. J. (2000). Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25, 331-43.

Page 128: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Publikationen

118

Publikationen

Potzner, M. R., Griffel, C., Lütjen-Drecoll, E., Bösl, M.R., Wegner, M. und Sock, E. (2007).

Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the

central nervous system. Mol Cell Biol 27, 5316-26.

Hoser, M., Potzner, M. R., Koch, J. M. C., Bösl, M. R., Wegner, M. & Sock, E. (2008)

Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and

Sox11 transcription factors. Mol Cell Biol 28, 4675-87.

Potzner, M. R., Tsarovina, K., Binder, E., Penzo-Mendez, A., Lefebvre, V., Rohrer, H.,

Wegner, M. & Sock, E. (2009). Sequential requirement of Sox4 and Sox11 during

development of the sympathetic nervous system. Development (revised version submitted).

Präsentationen

Potzner, M. R., Griffel, C., Lütjen-Drecoll, E., Bösl, M.R., Wegner, M. und Sock, E. (2007).

Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the

central nervous system. 7th Göttingen Meeting of the German Neuroscience Society,

Göttingen (Poster).

Potzner, M. R., Griffel, C., Lütjen-Drecoll, E., Bösl, M.R., Wegner, M. und Sock, E. (2007).

Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the

central nervous system. 8th Meeting of the UK Glial Club, London (Poster).

Page 129: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Lebenslauf

119

Lebenslauf

Persönliche Daten

Name: Michaela Potzner

Geburtsdatum und Ort: 18.02.1977 in Forchheim

Staatsangehörigkeit: deutsch

Familienstand ledig

Schulbildung

1983-1987: Grundschule Forchheim

1987-1996: Ehrenbürg-Gymnasium Forchheim

1996: Erwerb der Allgemeinen Hochschulreife

Studium

1997-1999: Studium der Haushalt und Ernährungswirtschaft,

Fachhochschule Fulda

1999-2005: Studium der Biologie, FAU Erlangen-Nürnberg

2002: Diplom-Vorprüfung

2004: Diplom-Hauptprüfung

2004-2005: Diplomarbeit am Institut für Molekulare Immunologie

Isolierung zirkulärer DNA als Hinweis auf somatische

Rekombination in neuronalen Zellen

2005: Diplom in Biologie

Promotion

2006-2009: Dissertation durchgeführt am Institut für Biochemie der FAU

Erlangen-Nürnberg unter Prof. Dr. Michael Wegner

Die Rolle der SoxC-Proteine im sich entwickelnden zentralen

und sympathischen Säuger-Nervensystem

Page 130: Die Rolle der SoxC-Proteine im sich entwickelnden ... fileDie Rolle der SoxC-Proteine im sich entwickelnden zentralen und sympathischen Säuger-Nervensystem Den Naturwissenschaftlichen

Danksagung

120

Danksagung

Herrn Prof. Dr. Michael Wegner danke ich für die Überlassung des interessanten Themas, für

seine stets hervorragende Betreuung, sein beständiges Interesse am Fortschritt der Arbeit und

nicht zuletzt für die Durchsicht der Arbeit und die Übernahme der Erstberichterstattung.

Herrn Prof. Dr. Andreas Burkovski danke ich herzlich für die freundliche und bereitwillige

Übernahme der Zweitberichterstattung von Seiten der Naturwissenschaftlichen Fakultät II der

Friedrich-Alexander-Universität Erlangen-Nürnberg.

Ein großes Dankeschön geht an Frau PD. Dr. Elisabeth Sock und PD. Dr. Claus Stolt für ihre

unermüdliche hilfsbereite Unterstützung bei allen Fragen und Problemen bezüglich Theorie

und Praxis sowie für das gründliche Korrekturlesen der Arbeit.

Herrn Prof. Dr. Hermann Rohrer und Dr. Nina Tsarovina danke ich für die großartige

Zusammenarbeit bei der Analyse des sympathischen Nervensystems der Sox4/Sox11-doppelt-

defizienten Mäuse.

Simone Reiprich, Petra Lommes und Mandy Wahlbuhl-Becker danke ich ganz herzlich für

das gewissenhafte Korrekturlesen und die kritischen Anmerkungen zur Arbeit.

Frau Dr. Melanie Hoser und Simone Hillgärtner danke ich ganz besonders, für ihre

hilfsbereite Unterstützung im Laboralltag und für ihre Freundschaft, die sich während der Zeit

im Labor entwickelt hat.

Allen aktuellen und ehemaligen Kollegen der Arbeitsgruppe danke ich für die sehr gute

Zusammenarbeit, das hervorragende Arbeitsklima und für die Hilfsbereitschaft bei Fragen

aller Art.

Und zum Schluss…Danke ich meinen Eltern von ganzem Herzen für ihre unermüdliche

Unterstützung in allen Lebenslagen und dafür, dass sie mir so Vieles ermöglicht haben.