Diesel Tank Example

download Diesel Tank Example

of 22

Transcript of Diesel Tank Example

  • 7/27/2019 Diesel Tank Example

    1/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 2

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    ASME Horizontal Vessel Analysis: Stresses for the Left Saddle

    (per ASME Sec. VIII Div. 2 based on the Zick method.)

    Horizontal Vessel Stress Calculations : Operating Case

    Note: There are more than two saddles present in this model. The load on

    the saddle supports has been taken as the total weight divided by the

    number of saddles. Insure that this is an appropriate assumption for

    this vessel model.

    Input and Calculated Values:

    Vessel Mean Radius Rm 1504.80 mm

    Stiffened Vessel Length per 4.15.6 L 13610.00 mm

    Distance from Saddle to Vessel tangent a 96.00 mm

    Saddle Width b 350.00 mm

    Saddle Bearing Angle theta 120.00 degrees

    Wear Plate Width b1 464.00 mm

    Wear Plate Bearing Angle theta1 133.00 degrees

    Wear Plate Thickness tr 8.0 mm

    Wear Plate Allowable Stress Sr 114.46 N/mm

    Inside Depth of Head h2 751.60 mm

  • 7/27/2019 Diesel Tank Example

    2/22

    Shell Allowable Stress used in Calculation 114.46 N/mm

    Head Allowable Stress used in Calculation 114.46 N/mm

    Circumferential Efficiency in Plane of Saddle 0.80

    Circumferential Efficiency at Mid-Span 0.80

    Saddle Force Q, Operating Case 108788.17 N

    Horizontal Vessel Analysis Results: Actual Allowable

    -------------------------------------------------------------------

    Long. Stress at Top of Midspan 12.12 91.57 N/mm

    Long. Stress at Bottom of Midspan 27.09 91.57 N/mm

    Long. Stress at Top of Saddles 19.48 91.57 N/mm

    Long. Stress at Bottom of Saddles 19.72 91.57 N/mm

    Tangential Shear in Shell 9.94 91.57 N/mm

    Tangential Shear in Head 7.57 91.57 N/mm

    Circ. Stress at Horn of Saddle 20.24 143.07 N/mm

    Addl. Stress in Head as Stiffener 33.23 143.07 N/mm

    Circ. Compressive Stress in Shell 29.92 114.46 N/mm

    Intermediate Results: Saddle Reaction Q due to Wind or Seismic

    Saddle Reaction Force due to Wind Ft [Fwt]:

    = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E

    = 3.00 * ( 37111.3/4 + 0 ) * 1976.0001/2700.0000

    = 20370.0 N

  • 7/27/2019 Diesel Tank Example

    3/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 3

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    Saddle Reaction Force due to Wind Fl or Friction [Fwl]:

    = max( Fl, Friction Load, Sum of X Forces) * B / Ls

    = max( 8762.34 , 0.00 , 0 ) * 1976.0001/8670.0000

    = 1997.0 N

    Saddle Reaction Force due to Earthquake Fl or Friction [Fsl]:

    = max( Fl, Friction Force, Sum of X Forces ) * B / Ls

    = max( 76403.10 , 0.00 , 0 ) * 1976.0001/8670.0000

    = 17413.2 N

    Saddle Reaction Force due to Earthquake Ft [Fst]:

    = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E

    = 3.00 * ( 76403/4 + 0 ) * 1976.0001/2700.0000

    = 41936.8 N

    Load Combination Results for Q + Wind or Seismic [Q]:

    = Saddle Load + Max( Fwl, Fwt, Fsl, Fst )

    = 66851 + Max( 1997 , 20369 , 17413 , 41936 )

    = 108788.2 N

    Summary of Loads at the base of this Saddle:

    Vertical Load (including saddle weight) 115062.24 N

    Transverse Shear Load Saddle 19100.78 N

    Longitudinal Shear Load Saddle 76403.10 N

  • 7/27/2019 Diesel Tank Example

    4/22

    Formulas and Substitutions for Horizontal Vessel Analysis:

    Note: Wear Plate is not Welded to the Shell, k = 1.0

    The Computed K values from Table 4.15.1:

    K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011

    K5 = 0.7603 K6 = 0.0529 K7 = 0.0132 K8 = 0.3405

    K9 = 0.2711 K10 = 0.0581 K1* = 0.1923 K6p = 0.0427

    K7P = 0.0107

    The suffix 'p' denotes the values for a wear plate if it exists.

    Note: Dimension a is less than Rm/2.

    Moment per Equation 4.15.3 [M1]:

    = -Q*a [1 - (1- a/L + (R-h2)/(2a*L))/(1+(4h2)/3L)]

    = -108788*96.00[1-(1-96.00/13610.00+(1504.800-751.600)/

    (2*96.00*13610.00))/(1+(4*751.60)/(3*13610.00))]

    = 5543.9 N-m

    Moment per Equation 4.15.4 [M2]:

    = Q*L/4(1+2(R-h2)/(L))/(1+(4h2)/( 3L))-4a/L

    = 108788*13610/4(1+2(1504-751)/(13610))/(1+(4*751)/

    (3*13610))-4*95/13610

    = 340786.9 N-m

    Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]:

  • 7/27/2019 Diesel Tank Example

    5/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 4

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    = P * Rm/(2t) - M2/(pi*Rmt)

    = 166.733 * 1504.800/(2*6.400 ) - 340786.9/(pi*1504.8*6.400 )

    = 12.12 N/mm

    Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]:

    = P * Rm/(2t) + M2/(pi * Rm * t)

    = 166.733 * 1504.800/(2 * 6.400 ) + 340786.9/(pi * 1504.8 * 6.400 )

    = 27.09 N/mm

    Longitudinal Stress at Top of Shell at Support (4.15.8) [Sigma3]:

    = P * Rm/(2t) - M1/(pi * Rm * t)

    = 166.733 * 1504.800/(2 * 6.400 ) - 5543.9/(pi * 1504.8 * 6.400 )

    = 19.48 N/mm

    Longitudinal Stress at bottom of Shell at Support (4.15.9) [Sigma4]:

    = P * Rm/(2t) + M1/(pi*Rmt)

    = 166.733 * 1504.800/(2*6.400 ) + 5543.9/(pi*1504.8*6.400 )

    = 19.72 N/mm

    Maximum Shear Force in the Saddle (4.15.5) [T]:

    = Q(L-2a)/(L+(4*h2/3))

    = 108788 ( 13610.00 - 2 * 96.00 )/(13610.00 + ( 4 * 751.60/3))

    = 99897.8 N

    Shear Stress in the shell no rings, stiffened (4.15.15) [tau3]:

    = K3 * Q / ( Rm * t )

  • 7/27/2019 Diesel Tank Example

    6/22

    = 0.8799 * 108788/( 1504.7999 * 6.4000 )

    = 9.94 N/mm

    Shear Stress in the head, shell stiffened (4.15.16) [tau3*]:

    = K3 * Q / ( Rm * th )

    = 0.8799 * 108788/( 1504.7999 * 8.4000 )

    = 7.57 N/mm

    Membrane stress in the head as a stiffener (4.15.18) [sigma5]:

    = K4 * Q/(Rm*th) + ((P*Ri)/(2*th)) * (Ri/h2)

    = 0.4011 * 108788/(1504.80 * 8.400 ) +

    ((166.73 * 1501.60 )/(2 * 8.400 ))*(1501.60/751.60 )

    = 33.23 N/mm

    Decay Length (4.15.22) [x1,x2]:

    = 0.78 * sqrt( Rm * t )

    = 0.78 * sqrt( 1504.800 * 6.400 )

    = 76.546 mm

    Circumferential Stress in shell, no rings (4.15.23) [sigma6]:

    = -K5 * Q * k / ( t * ( b + X1 + X2 ) )

    = -0.7603 * 108788 * 1.0/( 6.400 * ( 350.00 + 76.55 + 76.55 ) )

    = -25.69 N/mm

    Effective reinforcing plate width (4.15.1) [B1]:

    = min( b + 1.56 * sqrt( Rm * t ), 2a )

    = min( 350.00 + 1.56 * sqrt( 1504.800 * 6.400 ), 2 * 96.000 )

  • 7/27/2019 Diesel Tank Example

    7/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 5

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    = 192.00 mm

    Wear Plate/Shell Stress ratio (4.15.29) [eta]:

    = min( Sr/S, 1 )

    = min( 114.457/114.457 , 1 )

    = 1.0000

    Circumferential Stress at wear plate (4.15.26) [sigma6,r]:

    = -K5 * Q * k / ( B1( t + eta * tr ) )

    = -0.7603 * 108788 * 1.0/( 192.000 ( 6.400 + 1.000 * 8.000 ) )

    = -29.92 N/mm

    Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.27) [sigma7,r]:

    = -Q/(4(t+eta*tr)b1) - 3*K7*Q/(2(t+eta*tr))

    = -108788/(4(6.400 + 1.000 * 8.000 )192.000 ) -

    3 * 0.013 * 108788/(2(6.400 + 1.000 * 8.000 ))

    = -20.24 N/mm

    Results for Vessel Ribs, Web and Base:

    Baseplate Length Bplen 2700.0000 mm

    Baseplate Thickness Bpthk 24.0000 mm

    Baseplate Width Bpwid 400.0000 mm

    Number of Ribs ( inc. outside ribs ) Nribs 7

    Rib Thickness Ribtk 12.0000 mm

    Web Thickness Webtk 8.0000 mm

    Web Location Webloc Side

  • 7/27/2019 Diesel Tank Example

    8/22

    Moment of Inertia of Saddle - Lateral Direction

    Y A AY Io

    Shell 3. 3948. 12635. 53908.

    Wearplate 10. 3712. 38605. 421287.

    Web 235. 3533. 830915. 252841984.

    BasePlate 468. 9600. 4492800. 2103089280.

    Totals 717. 20793. 5374954. 2356406528.

    Value C1 = Sumof(Ay)/Sumof(A) = 258. mm

    Value I = Sumof(Io) - C1*Sumof(Ay) = 967001152. mm**4

    Value As = Sumof(A) - Ashell = 16845. mm

    K1 = (1+Cos(beta)-.5*Sin(beta) )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2035

    Fh = K1 * Q = 0.2035 * 108788.172 = 22140.7559 N

    Tension Stress, St = ( Fh/As ) = 1.3145 N/mm

    Allowed Stress, Sa = 0.6 * Yield Str = 148.9320 N/mm

    d = B - R*Sin(theta) / theta = 739.7867 mm

    Bending Moment, M = Fh * d = 16386.0762 N-m

    Bending Stress, Sb = ( M * C1 / I ) = 4.3789 N/mm

    Allowed Stress, Sa = 2/3 * Yield Str = 165.4800 N/mm

  • 7/27/2019 Diesel Tank Example

    9/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 6

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    Minimum Thickness of Baseplate per Moss :

    = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 2 * BasePlateLength *

    AllStress ))

    = ( 3 * (108788 + 6274 ) * 400.00/( 2 * 2700.000 * 165.480 ))

    = 12.431 mm

    Calculation of Axial Load, Intermediate Values and Compressive Stress

    Effective Baseplate Length [e]:

    = ( Bplen - Clearance ) / ( Nribs - 1)

    = ( 2700.0000 - 25.4 )/( 7 - 1 ) = 445.7667 mm

    Baseplate Pressure Area [Ap]:

    = e * Bpwid / 2

    = 445.7667 * 400.0000/2 = 89153.3359 mm

    Axial Load [P]:

    = Ap * Bp

    = 89153.3 * 0.10 = 8980.4 N

    Area of the Rib and Web [Ar]:

    = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk

    = ( 400.000 - 25.4 - 8.000 ) * 12.000 + 445.7667/2 * 8.000

    = 6182.267 mm

    Compressive Stress [Sc]:

  • 7/27/2019 Diesel Tank Example

    10/22

    = P/Ar

    = 8980.4/6182.2666 = 1.4527 N/mm

    Check of Outside Ribs:

    Inertia of Saddle, Outer Ribs - Longitudinal Direction

    Y A AY Ay Io

    Rib 191.3 4251.6 813331.1 13021346.0 47555920.0

    Web 4.0 1783.1 7132.3 31048530.0 19019.4

    Values 136.0 6034.7 820463.3 44069876.0 47574936.0

    Bending Moment [Rm]:

    = Fl /( 2 * Bplen ) * e * rl / 2

    = 76403.1/( 2 * 2700.00 ) * 445.767 * 1227.60/2

    = 3872.824 N-m

    KL/R < Cc ( 10.0827 < 126.0993 ) per AISC E2-1

    Sca = (1-(Klr)/(2*Cc))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr)/(8*Cc)

    Sca = ( 1-( 10.08 )/(2 * 126.10 )) * 248/

    ( 5/3+3*(10.08 )/(8* 126.10 )-( 10.08)/(8*126.10)

    Sca = 145.84 N/mm

    AISC Unity Check on Outside Ribs ( must be

  • 7/27/2019 Diesel Tank Example

    11/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 7

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    Check of Inside Ribs

    Inertia of Saddle, Inner Ribs - Axial Direction

    Y A AY Ay Io

    Rib 191.3 4399.2 841566.9 30933996.0 52565752.0

    Web 4.0 3566.1 14264.5 38160340.0 19019.4

    Values 107.4 7965.3 855831.4 69094336.0 52584772.0

    KL/R < Cc ( 6.1123 < 126.0993 ) per AISC E2-1

    Sca = (1-(Klr)/(2*Cc))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr)/(8*Cc)

    Sca = ( 1-( 6.11 )/(2 * 126.10 )) * 248/

    ( 5/3+3*(6.11 )/(8* 126.10 )-( 6.11)/(8*126.10)

    Sca = 147.15 N/mm

    AISC Unity Check on Inside Ribs ( must be

  • 7/27/2019 Diesel Tank Example

    12/22

    Distance from Saddle to Vessel tangent a 230.00 mm

    Saddle Width b 350.00 mm

    Saddle Bearing Angle theta 120.00 degrees

    Wear Plate Width b1 464.00 mm

    Wear Plate Bearing Angle theta1 133.00 degrees

    Wear Plate Thickness tr 8.0 mm

    Wear Plate Allowable Stress Sr 114.46 N/mm

    Inside Depth of Head h2 751.60 mm

    Shell Allowable Stress used in Calculation 114.46 N/mm

    Head Allowable Stress used in Calculation 114.46 N/mm

    Circumferential Efficiency in Plane of Saddle 0.80

    Circumferential Efficiency at Mid-Span 0.80

    Saddle Force Q, Operating Case 108788.17 N

    Horizontal Vessel Analysis Results: Actual Allowable

    -------------------------------------------------------------------

    Long. Stress at Top of Midspan 10.71 91.57 N/mm

    Long. Stress at Bottom of Midspan 25.04 91.57 N/mm

    Long. Stress at Top of Saddles 17.78 91.57 N/mm

    Long. Stress at Bottom of Saddles 17.97 91.57 N/mm

    Tangential Shear in Shell 11.90 91.57 N/mm

  • 7/27/2019 Diesel Tank Example

    13/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 8

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    Circ. Compressive Stress in Shell 2.57 114.46 N/mm

    Stiffener Circ. Stress at Shell 25.71 143.07 N/mm

    Stiffener Circ. Stress at Tip 66.63 143.07 N/mm

    Intermediate Results: Saddle Reaction Q due to Wind or Seismic

    Saddle Reaction Force due to Wind Ft [Fwt]:

    = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E

    = 3.00 * ( 37111.3/4 + 0 ) * 1976.0001/2700.0000

    = 20370.0 N

    Saddle Reaction Force due to Wind Fl or Friction [Fwl]:

    = max( Fl, Friction Load, Sum of X Forces) * B / Ls

    = max( 8762.34 , 20055.41 , 0 ) * 1976.0001/8670.0000

    = 4570.9 N

    Saddle Reaction Force due to Earthquake Fl or Friction [Fsl]:

    = max( Fl, Friction Force, Sum of X Forces ) * B / Ls

    = max( 76403.10 , 20055.41 , 0 ) * 1976.0001/8670.0000

    = 17413.2 N

    Saddle Reaction Force due to Earthquake Ft [Fst]:

    = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E

    = 3.00 * ( 76403/4 + 0 ) * 1976.0001/2700.0000

    = 41936.8 N

  • 7/27/2019 Diesel Tank Example

    14/22

    Load Combination Results for Q + Wind or Seismic [Q]:

    = Saddle Load + Max( Fwl, Fwt, Fsl, Fst )

    = 66851 + Max( 4570 , 20369 , 17413 , 41936 )

    = 108788.2 N

    Summary of Loads at the base of this Saddle:

    Vertical Load (including saddle weight) 115062.24 N

    Transverse Shear Load Saddle 19100.78 N

    Longitudinal Shear Load Saddle 76403.10 N

    Formulas and Substitutions for Horizontal Vessel Analysis:

    Note: Wear Plate is Welded to the Shell, k = 0.1

    The Computed K values from Table 4.15.1:

    K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011

    K5 = 0.7603 K6 = 0.0529 K7 = 0.0132 K8 = 0.3405

    K9 = 0.2711 K10 = 0.0581 K1* = 0.1923 K6p = 0.0427

    K7P = 0.0107

    The suffix 'p' denotes the values for a wear plate if it exists.

    Note: Dimension a is less than Rm/2.

    Moment per Equation 4.15.3 [M1]:

    = -Q*a [1 - (1- a/L + (R-h2)/(2a*L))/(1+(4h2)/3L)]

  • 7/27/2019 Diesel Tank Example

    15/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 9

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    = -108788*230.00[1-(1-230.00/13610.00+(1504.800-751.600)/

    (2*230.00*13610.00))/(1+(4*751.60)/(3*13610.00))]

    = 4218.4 N-m

    Moment per Equation 4.15.4 [M2]:

    = Q*L/4(1+2(R-h2)/(L))/(1+(4h2)/( 3L))-4a/L

    = 108788*13610/4(1+2(1504-751)/(13610))/(1+(4*751)/

    (3*13610))-4*230/13610

    = 326203.3 N-m

    Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]:

    = P * Rm/(2t) - M2/(pi*Rmt)

    = 152.030 * 1504.800/(2*6.400 ) - 326203.3/(pi*1504.8*6.400 )

    = 10.71 N/mm

    Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]:

    = P * Rm/(2t) + M2/(pi * Rm * t)

    = 152.030 * 1504.800/(2 * 6.400 ) + 326203.3/(pi * 1504.8 * 6.400 )

    = 25.04 N/mm

    Longitudinal Stress at Top of Shell at Support (4.15.8) [Sigma3]:

    = P * Rm/(2t) - M1/(pi * Rm * t)

    = 152.030 * 1504.800/(2 * 6.400 ) - 4218.4/(pi * 1504.8 * 6.400 )

    = 17.78 N/mm

    Longitudinal Stress at bottom of Shell at Support (4.15.9) [Sigma4]:

  • 7/27/2019 Diesel Tank Example

    16/22

    = P * Rm/(2t) + M1/(pi*Rmt)

    = 152.030 * 1504.800/(2*6.400 ) + 4218.4/(pi*1504.8*6.400 )

    = 17.97 N/mm

    Maximum Shear Force in the Saddle (4.15.5) [T]:

    = Q(L-2a)/(L+(4*h2/3))

    = 108788 ( 13610.00 - 2 * 230.00 )/(13610.00 + ( 4 * 751.60/3))

    = 97902.5 N

    Shear Stress in the shell with double rings (4.15.14) [tau2]:

    = K2 * T / ( Rm * t )

    = 1.1707 * 97902.52/( 1504.7999 * 6.4000 )

    = 11.90 N/mm

    Decay Length (4.15.22) [x1,x2]:

    = 0.78 * sqrt( Rm * t )

    = 0.78 * sqrt( 1504.800 * 6.400 )

    = 76.546 mm

    Circ. Stress in shell w/rings adjacent to Saddle (4.15.37) [sigma6]:

    = -K5 * Q * k/(t(b + 2 * x2))

    = -0.760 * 108788 * 0.1/(6.400 (350.000 + 2 * 76.546 ))

    = -2.57 N/mm

    Note: Double Rings adjacent to Saddle Inside the Shell.

    Circ. + Bending Stress in shell, rings adjacent to Saddle (4.15.38) [sigma10]

  • 7/27/2019 Diesel Tank Example

    17/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 10

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    = -K9 * Q/A + K10 * Q * Rm * c1/I

    = -0.2711*108788/5283.58+0.0581*108788*1504.80*44.53/13533118

    = 25.71 N/mm

    Circ. + Bending Stress in ring, rings adjacent to Saddle (4.15.39) [sigma11]:

    = -K9 * Q/A - K10 * Q * Rm * c2/I

    = -0.2711*108788/5283.58-0.0581*108788*1504.80*86.87/26397912

    = -66.63 N/mm

    Results for Vessel Ribs, Web and Base

    Baseplate Length Bplen 2700.0000 mm

    Baseplate Thickness Bpthk 24.0000 mm

    Baseplate Width Bpwid 400.0000 mm

    Number of Ribs ( inc. outside ribs ) Nribs 7

    Rib Thickness Ribtk 12.0000 mm

    Web Thickness Webtk 8.0000 mm

    Web Location Webloc Side

    Moment of Inertia of Saddle - Lateral Direction

    Y A AY Io

    Shell 3. 3948. 12635. 53908.

    Wearplate 10. 3712. 38605. 421287.

    Web 235. 3533. 830915. 252841984.

    BasePlate 468. 9600. 4492800. 2103089280.

  • 7/27/2019 Diesel Tank Example

    18/22

    Totals 717. 20793. 5374954. 2356406528.

    Value C1 = Sumof(Ay)/Sumof(A) = 258. mm

    Value I = Sumof(Io) - C1*Sumof(Ay) = 967001152. mm**4

    Value As = Sumof(A) - Ashell = 16845. mm

    K1 = (1+Cos(beta)-.5*Sin(beta) )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2035

    Fh = K1 * Q = 0.2035 * 108788.172 = 22140.7559 N

    Tension Stress, St = ( Fh/As ) = 1.3145 N/mm

    Allowed Stress, Sa = 0.6 * Yield Str = 148.9320 N/mm

    d = B - R*Sin(theta) / theta = 739.7867 mm

    Bending Moment, M = Fh * d = 16386.0762 N-m

    Bending Stress, Sb = ( M * C1 / I ) = 4.3789 N/mm

    Allowed Stress, Sa = 2/3 * Yield Str = 165.4800 N/mm

    Minimum Thickness of Baseplate per Moss :

    = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 2 * BasePlateLength *

    AllStress ))

    = ( 3 * (108788 + 6274 ) * 400.00/( 2 * 2700.000 * 165.480 ))

    = 12.431 mm

    Calculation of Axial Load, Intermediate Values and Compressive Stress

  • 7/27/2019 Diesel Tank Example

    19/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 11

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    Effective Baseplate Length [e]:

    = ( Bplen - Clearance ) / ( Nribs - 1)

    = ( 2700.0000 - 25.4 )/( 7 - 1 ) = 445.7667 mm

    Baseplate Pressure Area [Ap]:

    = e * Bpwid / 2

    = 445.7667 * 400.0000/2 = 89153.3359 mm

    Axial Load [P]:

    = Ap * Bp

    = 89153.3 * 0.10 = 8980.4 N

    Area of the Rib and Web [Ar]:

    = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk

    = ( 400.000 - 25.4 - 8.000 ) * 12.000 + 445.7667/2 * 8.000

    = 6182.267 mm

    Compressive Stress [Sc]:

    = P/Ar

    = 8980.4/6182.2666 = 1.4527 N/mm

    Check of Outside Ribs:

    Inertia of Saddle, Outer Ribs - Longitudinal Direction

    Y A AY Ay Io

    Rib 191.3 4251.6 813331.1 13021346.0 47555920.0

    Web 4.0 1783.1 7132.3 31048530.0 19019.4

  • 7/27/2019 Diesel Tank Example

    20/22

    Values 136.0 6034.7 820463.3 44069876.0 47574936.0

    Bending Moment [Rm]:

    = Fl /( 2 * Bplen ) * e * rl / 2

    = 76403.1/( 2 * 2700.00 ) * 445.767 * 1227.60/2

    = 3872.824 N-m

    KL/R < Cc ( 10.0827 < 126.0993 ) per AISC E2-1

    Sca = (1-(Klr)/(2*Cc))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr)/(8*Cc)

    Sca = ( 1-( 10.08 )/(2 * 126.10 )) * 248/

    ( 5/3+3*(10.08 )/(8* 126.10 )-( 10.08)/(8*126.10)

    Sca = 145.84 N/mm

    AISC Unity Check on Outside Ribs ( must be

  • 7/27/2019 Diesel Tank Example

    21/22

    PV Elite 2013 SP2 Licensee: ZISHAN ENGINEERS (PVT.) LTD.

    FileName : Diesel_tank_Example --------------------------- Page 12

    Horizontal Vessel Analysis (Ope.) : Step: 10 11:44p Sep 8,2013

    Sca = (1-(Klr)/(2*Cc))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr)/(8*Cc)

    Sca = ( 1-( 6.11 )/(2 * 126.10 )) * 248/

    ( 5/3+3*(6.11 )/(8* 126.10 )-( 6.11)/(8*126.10)

    Sca = 147.15 N/mm

    AISC Unity Check on Inside Ribs ( must be

  • 7/27/2019 Diesel Tank Example

    22/22