Edition 3.0 2020-05 INTERNATIONAL STANDARD NORME …ed3.0}b.pdf · 2020. 5. 7. · IEC 61643-12...

30
IEC 61643-12 Edition 3.0 2020-05 INTERNATIONAL STANDARD NORME INTERNATIONALE Low-voltage surge protective devices – Part 12: Surge protective devices connected to low-voltage power systems – Selection and application principles Parafoudres à basse tension – Partie 12: Parafoudres connectés aux réseaux à basse tension – Principes de choix et de mise en œuvre INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE ICS 29.240.10 ISBN 978-2-8322-7914-4 ® Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale ® Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé. colour inside This is a preview - click here to buy the full publication

Transcript of Edition 3.0 2020-05 INTERNATIONAL STANDARD NORME …ed3.0}b.pdf · 2020. 5. 7. · IEC 61643-12...

  • IEC 61643-12 Edition 3.0 2020-05

    INTERNATIONAL STANDARD NORME INTERNATIONALE

    Low-voltage surge protective devices – Part 12: Surge protective devices connected to low-voltage power systems – Selection and application principles Parafoudres à basse tension – Partie 12: Parafoudres connectés aux réseaux à basse tension – Principes de choix et de mise en œuvre

    INTERNATIONAL ELECTROTECHNICAL COMMISSION

    COMMISSION ELECTROTECHNIQUE INTERNATIONALE ICS 29.240.10

    ISBN 978-2-8322-7914-4

    ® Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

    ®

    Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

    colourinside

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • – 2 – IEC 61643-12:2020 © IEC 2020

    CONTENTS

    FOREWORD ......................................................................................................................... 10 INTRODUCTION ................................................................................................................... 12

    0.1 General ................................................................................................................. 12 0.2 Keys to understanding the structure of this document ........................................... 12

    1 Scope ............................................................................................................................ 14 2 Normative references .................................................................................................... 14 3 Terms, definitions and abbreviated terms ...................................................................... 15

    3.1 Terms and definitions ............................................................................................ 15 3.2 List of abbreviated terms and acronyms used in this document ............................. 28

    4 Need for protection ........................................................................................................ 29 5 Low-voltage power systems and equipment to be protected ........................................... 30

    5.1 General ................................................................................................................. 30 5.2 Low-voltage power systems .................................................................................. 30

    5.2.1 General ......................................................................................................... 30 5.2.2 Lightning overvoltages and surge currents ..................................................... 30 5.2.3 Switching overvoltages .................................................................................. 31 5.2.4 Temporary overvoltages UTOV ...................................................................... 32

    5.3 Characteristics of the equipment to be protected................................................... 33 6 Surge protective devices ............................................................................................... 33

    6.1 Basic functions of SPDs ........................................................................................ 33 6.2 Additional requirements ........................................................................................ 34 6.3 Classification of SPDs ........................................................................................... 34

    6.3.1 SPD: classification ......................................................................................... 34 6.3.2 Typical design and topologies ........................................................................ 35

    6.4 Characteristics of SPDs ........................................................................................ 36 6.4.1 Service conditions as described in IEC 61643-11 .......................................... 36 6.4.2 List of parameters for SPD selection .............................................................. 37

    6.5 Additional information on characteristics of SPDs ................................................. 38 6.5.1 Information related to power-frequency voltages ............................................ 38 6.5.2 Information related to surge currents ............................................................. 39 6.5.3 Information related to voltage protection level provided by SPDs ................... 40 6.5.4 Information related to the SPD’s status at its end of life ................................. 42 6.5.5 ISCCR: Short-circuit current rating and Ifi: Follow current interrupt

    rating ............................................................................................................. 43 6.5.6 IL: Rated load current and ΔU: Voltage drop (for two-port SPDs or one-

    port SPDs with separate input and output terminals) ...................................... 43 6.5.7 Information related to change of characteristics of SPDs ............................... 44

    7 Application of SPDs in low-voltage power systems ........................................................ 44 7.1.1 General ......................................................................................................... 44 7.1.2 Consideration regarding location of the SPD depending on the classes

    of test ............................................................................................................ 46 7.1.3 SPD modes of protection and installation ....................................................... 46 7.1.4 Need for additional protection ........................................................................ 48

    7.2 Selection of SPD characteristics ........................................................................... 55 7.2.1 General ......................................................................................................... 55 7.2.2 Selection of Uc, UT, In, Iimp, Imax, ISCCR, Ifi and Uoc of the SPD ..................... 56

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • IEC 61643-12:2020 © IEC 2020 – 3 –

    7.2.3 Protective distance ........................................................................................ 62 7.2.4 Expected lifetime ........................................................................................... 62 7.2.5 Interaction between SPDs and other devices ................................................. 62 7.2.6 Choice of the voltage protection level Up ....................................................... 63 7.2.7 Coordination between the chosen SPD and other SPDs ................................ 63

    7.3 Characteristics of auxiliary devices ....................................................................... 66 7.3.1 Disconnecting devices ................................................................................... 66 7.3.2 Surge and event counters .............................................................................. 66 7.3.3 Status indicator ............................................................................................. 67

    Annex A (informative) Typical information required before selecting an SPD and explanation of testing procedures ......................................................................................... 68

    A.1 Typical Information required before selecting an SPD ........................................... 68 A.1.1 System data .................................................................................................. 68 A.1.2 SPD application considerations ..................................................................... 68 A.1.3 Characteristics of SPD ................................................................................... 69 A.1.4 Additional equipment and fittings ................................................................... 69

    A.2 Explanation of testing procedures used in IEC 61643-11 ....................................... 70 A.2.1 General Principles ......................................................................................... 70 A.2.2 Test sequences and tests description ............................................................ 70

    Annex B (informative) Examples of relationship between Uc and nominal system voltage and example of relationship between Up and Uc for Metal oxide varistors (MOV) .................. 78

    B.1 Relationship between Uc and the nominal voltage of the system ........................... 78 B.2 Relationship between Up and Uc for Metal oxide varistors (MOV) .......................... 78

    Annex C (informative) Environment – Surge voltages in LV systems .................................... 80 C.1 General ................................................................................................................. 80 C.2 Lightning overvoltages .......................................................................................... 80

    C.2.1 General ......................................................................................................... 80 C.2.2 Surges transferred from MV to the LV system ................................................ 81 C.2.3 Overvoltages caused by direct flashes to LV distribution systems .................. 81 C.2.4 Induced overvoltages in LV distribution systems ............................................ 82 C.2.5 Overvoltages caused by flashes to a Lightning Protection System or to

    a structure in close vicinity............................................................................. 82 C.3 Switching overvoltages ......................................................................................... 83

    C.3.1 General ......................................................................................................... 83 C.3.2 General description ....................................................................................... 84 C.3.3 Circuit-breaker and switch operations ............................................................ 84 C.3.4 Fuse operations (current-limiting fuses) ......................................................... 85

    Annex D (informative) Partial lightning current calculations .................................................. 87 Annex E (informative) TOV in the low-voltage system due to faults between high-voltage system and earth ...................................................................................................... 90

    E.1 General ................................................................................................................. 90 E.2 References ........................................................................................................... 91 E.3 Symbols ................................................................................................................ 91 E.4 Overvoltages in LV-systems during a high-voltage earth fault ............................... 91 E.5 Example of a TT-system – Calculation of the possible temporary

    overvoltages ......................................................................................................... 93 E.5.1 Possible stresses on equipment in low-voltage installations due to earth

    faults in a high-voltage system ....................................................................... 93 E.5.2 Characteristics of the high-voltage system ..................................................... 94

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • – 4 – IEC 61643-12:2020 © IEC 2020

    E.6 Temporary power-frequency overvoltages depending on different LV-systems and different kinds of earthing configurations .......................................... 94

    E.6.1 General ......................................................................................................... 94 E.6.2 Conclusion – Worst case SPDs stress current for SPDs HV-TOV

    behaviour. ..................................................................................................... 96 E.6.3 Conclusion – Worst case test source for SPDs HV-TOV behaviour, if the

    SPD is connected to ground between N-PE and / or L-PE: ............................. 96 E.6.4 Examples of different LV-systems and their possible earthing

    configurations ................................................................................................ 97 E.7 Values of the temporary overvoltages for the US TN C system............................ 101 E.8 Values of temporary overvoltages used in IEC 61643-11 with explanations ......... 103

    E.8.1 General ....................................................................................................... 103 E.8.2 Values of temporary overvoltages for US systems ....................................... 106 E.8.3 Values of temporary overvoltages for Japanese systems ............................. 109

    Annex F (informative) Coordination rules and principles ..................................................... 114 F.1 General ............................................................................................................... 114 F.2 Energy coordination ............................................................................................ 114

    F.2.1 General ....................................................................................................... 114 F.2.2 Analytical studies: simple case of the coordination of two metal oxide

    varistors (MOV) based SPDs ....................................................................... 114 F.2.3 Analytical study: case of coordination between a gap-based SPD and a

    Metal oxide varistors (MOV) based SPD ...................................................... 118 F.2.4 Analytical study: general coordination of two SPDs ...................................... 120 F.2.5 Let-through energy (LTE) method ................................................................ 121

    F.3 Coordination tests: energy and voltage protection coordination ........................... 123 F.3.1 Introduction ................................................................................................. 123 F.3.2 Coordination criteria .................................................................................... 124 F.3.3 Coordination techniques .............................................................................. 124 F.3.4 Test protocol ............................................................................................... 124

    Annex G (informative) Examples of application .................................................................. 128 G.1 Domestic application ........................................................................................... 128 G.2 Industrial application ........................................................................................... 130 G.3 Presence of a lightning protection system ........................................................... 134 G.4 Wind Turbines ..................................................................................................... 135

    G.4.1 General ....................................................................................................... 135 G.4.2 Transient overvoltages in the DFIG converter circuit .................................... 135 G.4.3 Transmission effect of the transient voltage due to a long cable .................. 136 G.4.4 Voltage coordination between SPD and equipment in wind turbine

    systems ....................................................................................................... 137 G.4.5 Possible solutions for the case described in CLC/TR 50539-22 .................... 139

    Annex H (informative) Risk assessment method and examples of application .................... 140 H.1 General ............................................................................................................... 140 H.2 Simplified method proposed for low voltage risk assessment as described in

    IEC 60364-4-44 .................................................................................................. 140 H.2.1 Overvoltage control ..................................................................................... 140 H.2.2 Simplified risk assessment method .............................................................. 140 H.2.3 Example 1 – Building in rural environment ................................................... 142 H.2.4 Example 2 – Building in rural environment powered by HV .......................... 142 H.2.5 Example 3 – Building in urban environment ................................................. 143 H.2.6 Example 4 – Building in urban environment powered by HV ......................... 143

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • IEC 61643-12:2020 © IEC 2020 – 5 –

    H.2.7 Example 5 – electric vehicle supply equipment ............................................ 143 H.2.8 Example 6 – Chemical facility ...................................................................... 144

    H.3 Factors to be considered during risk assessment ................................................ 146 H.3.1 Environmental ............................................................................................. 146 H.3.2 Equipment and facilities ............................................................................... 147 H.3.3 Economics and service interruption ............................................................. 148 H.3.4 Safety .......................................................................................................... 148 H.3.5 Cost of protection ........................................................................................ 149

    Annex I (informative) System stresses ............................................................................... 150 I.1 Lightning overvoltages and currents [5.2.2] ......................................................... 150

    I.1.1 Aspects of the power distribution system that affect the need for an SPD ............................................................................................................. 150

    I.1.2 Sharing of surge current within a structure ................................................... 150 I.2 Switching overvoltages [5.2.2] ............................................................................ 151 I.3 Temporary overvoltages UTOV [5.2.3] ................................................................ 151

    Annex J (informative) Application of SPDs ......................................................................... 153 J.1 Location and protection given by SPDs [7.1] ....................................................... 153

    J.1.1 Possible modes of protection and installation [7.1.3] .................................... 153 J.1.2 Influence of the oscillation phenomena on the protective distance [7.2.3] .... 161 J.1.3 Protection zone concept [7.2.3.5] ................................................................. 162

    J.2 Selection of SPDs ............................................................................................... 164 J.2.1 Selection of Uc [7.3.1] ................................................................................. 164 J.2.2 Coordination problems [7.3.6.2] ................................................................... 165 J.2.3 Practical cases [7.2.6.3] .............................................................................. 167

    J.3 Simple calculation of Iimp for a class I SPD in case of a building protected by a LPS ............................................................................................................. 167

    Annex K (informative) Immunity vs. rated impulse voltage withstand .................................. 172 Annex L (informative) Examples of SPD installation in power distribution boards in some countries ................................................................................................................... 178 Annex M (informative) Coordination when equipment has both signaling and power terminals ............................................................................................................................. 183 Annex N (informative) Short circuit backup protection and surge withstand ........................ 190

    N.1 General ............................................................................................................... 190 N.2 Information single shot 8/20 and 10/350 fuses withstand..................................... 190 N.3 Fuse Influencing factors (reduction) for preconditioning and operating duty

    test ..................................................................................................................... 191 N.4 Operating duty withstand of fuses based on experimental data and

    confirmed by calculations based on the parameters and limits specified by the IEC 60269 series .......................................................................................... 191

    N.5 Behaviour of external disconnector technologies ................................................. 193 N.6 Additional requirement and test values for SPD external disconnectors used

    in some countries ................................................................................................ 193 Annex O (informative) Practical methods for testing system level immunity under lightning discharge conditions ............................................................................................. 197

    O.1 General ............................................................................................................... 197 O.2 SPD discharge current test under normal service conditions ............................... 197 O.3 Induction test due to lightning currents ................................................................ 197 O.4 Recommended test classification of system level immunity test (following

    IEC 61000-4-5) ................................................................................................... 197 Annex P (informative) Guide for testing SPDs containing multiple components .................. 199

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • – 6 – IEC 61643-12:2020 © IEC 2020

    P.1 General ............................................................................................................... 199 P.2 Example of a multiple spark gaps in series with ohmic/capacitive trigger

    control ................................................................................................................ 199 P.3 Example of 2 spark gaps inserieswith capacitive trigger control and with a

    parallel connected series connection of GDT + MOV(s) ...................................... 200 P.4 Example of a 3-electrode GDT with parallel MOV bypass/trigger control ............. 200 P.5 Example of a 4-electrode gap with GDT + MOV trigger control ............................ 201 P.6 Example of a Spark Gap in parallel with a series-connected GDT and MOV ........ 202 P.7 Example of a 3-electrode gap with trigger transformer ........................................ 202

    Annex Q (informative) Exceptions in the USA related to Class I tested SPDs ..................... 204 Bibliography ........................................................................................................................ 205 Figure 1 – Examples of one-port SPDs ................................................................................. 19 Figure 2 – Examples of two-port SPDs .................................................................................. 20 Figure 3 – Output voltage response of one-port and two-port SPDs to a combination wave generator impulse ........................................................................................................ 21 Figure 4 – Examples of components and combinations of components ................................. 36 Figure 5 – Typical curve of Ures versus I for Metal oxide varistors (MOV)............................. 41 Figure 6 – Typical curve for a spark gap ............................................................................... 42 Figure 7 – Flowchart for SPD application .............................................................................. 45 Figure 8 – Example of connection Type 1 (CT1) .................................................................... 47 Figure 9 – Example of connection Type 2 (CT2) .................................................................... 47 Figure 10 – Influence of SPD connecting lead lengths .......................................................... 51 Figure 11 – Possible installation scheme with intermediate earth bar when lead length exceed 50 cm ....................................................................................................................... 52 Figure 12 – Example of the need for additional SPDs when connected leads are less than 50 cm long .................................................................................................................... 54 Figure 13 – Flow chart for the selection of an SPD................................................................ 55 Figure 14 – UT and UTOV .................................................................................................... 57 Figure 15 – SPD and external disconnector arrangement for continuity of supply .................. 60 Figure 16 – SPD and external disconnector arrangement for continuity of protection. ........... 60 Figure 17 – Selectivity between OCPD and disconnector in case of short-circuit ................... 61 Figure 18 – Typical use of two SPDs – Electrical drawing ..................................................... 64 Figure A.1 – Test set-up for operating duty test .................................................................... 71 Figure A.2 – Test timing diagram for first 15 impulses ........................................................... 72 Figure A.3 – Test timing diagram for additional 5 impulses ................................................... 72 Figure D.1 – Simple calculation of the sum of partial lightning currents into the power distribution system ................................................................................................................ 87 Figure E.1 – Representative schematic for possible connections to earth in substations and LV-installations and resulting overvoltages in case of faults ........................................... 92 Figure E.2 – Example of a TT-system with combined earthing of the transformer substation RE with LV –midpoint earthing (earthed neutral) RB ............................................. 93 Figure E.3 – TN system (IEC 60364-4-44:2007, Figure 44B) ................................................. 97 Figure E.4 – TT system (IEC 60364-4-44:2007, Figure 44C) ................................................. 98 Figure E.5 – IT system, example a (IEC 60364-4-44:2007, Figure 44D) ................................ 99 Figure E.6 – IT system, example b (IEC 60364-4-44:2007, Figure 44F) .............................. 100

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • IEC 61643-12:2020 © IEC 2020 – 7 –

    Figure E.7 – IT system, example c1 (IEC 60364-4-44:2007, Figure 44E) ............................. 101 Figure E.8 – Temporary overvoltage resulting from a fault in the primary (4 wires MV-system – direct earthing) of the distribution transformer in a TN-system according to North American practice ..................................................................................................... 102 Figure E.9 – Typical TOV max p.u. RMS-voltages (V) Table 2, IEEE 1159-2009 ................. 107 Figure E.10 – Example of share the ground of the single phase center-tap grounded 100 / 200 V system and three phase (Delta) corner grounded 200 V system ....................... 111 Figure E.11 – Typical power distribution networks of single phase center-tap grounded 100 / 200 V system in Japan ............................................................................................... 112 Figure E.12 – Typical power system configuration in Japan ................................................ 113 Figure E.13 – TOV characteristic by faults in the high-voltage system in Japan .................. 113 Figure F.1 – Two Metal oxide varistors (MOV) with the same nominal discharge current ..... 115 Figure F.2 – Two Metal oxide varistors (MOV) with different nominal discharge currents..... 117 Figure F.3 – Example of coordination of a gap-based SPD and a Metal oxide varistors (MOV) based SPD .............................................................................................................. 120 Figure F.4 – LTE – Coordination method with standard pulse parameters ........................... 121 Figure F.5 – SPDs arrangement for the coordination test .................................................... 126 Figure G.1 – Domestic installation ...................................................................................... 129 Figure G.2 – Industrial installation ...................................................................................... 132 Figure G.3 – Circuitry of industrial installation ..................................................................... 133 Figure G.4 – Example for a LPS .......................................................................................... 135 Figure G.5 – Configuration of a DFIG wind turbine .............................................................. 136 Figure G.6 – PWM voltage between the generator and the converter at the rotor circuit ...... 136 Figure G.7 – position of converter and generator ................................................................ 137 Figure G.8 – A converter tested in laboratory and its L-PE voltage waveform ...................... 138 Figure H.1 – Example of the individual sections of a power line ......................................... 142 Figure H.2 – Example of electric vehicle supply equipment ................................................. 144 Figure H.3 – Example of chemical facility ............................................................................ 145 Figure J.1 – Installation of surge protective devices in TN-systems ..................................... 154 Figure J.2 – Installation of surge protective devices in TT-systems (SPD downstream of the RCD) ........................................................................................................................ 156 Figure J.3 – Installation of surge protective devices in TT-systems (SPD upstream of the RCD) ............................................................................................................................ 157 Figure J.4 – Installation of surge protective devices in IT-systems without distributed neutral ................................................................................................................................ 158 Figure J.5 – Typical installation of SPD at the entrance of the installation in case of a TN C-S system ................................................................................................................... 159 Figure J.6 – General way of installing one-port SPDs ......................................................... 159 Figure J.7 – Examples of acceptable and unacceptable SPD installations regarding EMC aspects ...................................................................................................................... 160 Figure J.8 – Physical and electrical representations of a system where equipment being protected is separated from the SPD giving protection .............................................. 161 Figure J.9 – Possible oscillation between a Metal oxide varistors (MOV) SPD and the equipment to be protected .................................................................................................. 161 Figure J.10 – Example of voltage doubling .......................................................................... 162 Figure J.11 – Subdivision of a building into protection zones .............................................. 163 Figure J.12 – Coordination of two Metal oxide varistors (MOV) ........................................... 166

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • – 8 – IEC 61643-12:2020 © IEC 2020

    Figure L.1 – A wiring diagram of an SPD connected on the load side of the main incoming isolator via a separate isolator (which could be included in the SPD enclosure) .................. 178 Figure L.2 – SPD connected to the nearest available outgoing MCB to the incoming supply (TNS installation typically seen in the UK) ............................................................... 179 Figure L.3 – A single line-wiring diagram of an SPD connected in shunt on the first outgoing way of the distribution panel via a fuse (or MCB) .................................................. 180 Figure L.4 – SPD connected to the nearest available circuit breaker on the incoming supply (US three phase 4W + G, TN-C-S installation) ......................................................... 181 Figure L.5 – SPD connected to the nearest available circuit breaker on the incoming supply (US single (split) phase 3W + G, 120/240 V system – typical for residential and small office applications) ..................................................................................................... 182 Figure M.1 – Example of a PC with modem in a US power and communication system ....... 184 Figure M.2 – Schematic of circuit of Figure M.1 used for experimental test ......................... 185 Figure M.3 – voltage recorded across reference points for the PC/modem during a surge in the example (voltage and current vs. time in µs) .................................................... 186 Figure M.4 – Typical TT system used for simulations .......................................................... 187 Figure M.5 – Voltage and current waveshapes measured during the application of a surge when a multi-service SPD was installed in the circuit of the structure shown in of Figure M.1 .......................................................................................................................... 189 Figure N.1 – Schematic diagram for coordination of SPD internal and external disconnectors with MOV ..................................................................................................... 195 Figure N.2 – Example of time-current characteristics of SPD disconnectors ........................ 196 Figure O.1 – Example of a circuit used to perform discharge current tests under normal service conditions ............................................................................................................... 198 Figure O.2 – Example circuit of an induction test due to lightning currents .......................... 198 Figure P.1 – Example of multiple spark gaps in series with ohmic/capacitive trigger control ................................................................................................................................ 199 Figure P.2 – 2 spark gaps in serieswith capacitive trigger control ....................................... 200 Figure P.3 – 3-electrode GDT with parallel MOV bypass/trigger control .............................. 201 Figure P.4 – 4-electrode spark gap with GDT + MOV trigger control ................................... 201 Figure P.5 – Spark Gap in parallel with series-connected GDT and MOV ............................ 202 Figure P.6 – 3-electrode spark gap with trigger transformer ................................................ 203 Table 1 – Maximum TOV values based on IEC 60364-4-44:2007 .......................................... 33 Table 2 – Preferred values of Iimp ........................................................................................ 40 Table 3 – modes of protection for various LV systems .......................................................... 48 Table 4 – Minimum recommended Uc of the SPD for various power systems ........................ 56 Table B.1 – Relationship between Uc and nominal system voltage........................................ 78 Table B.2 – Example of values of Up/Uc for Metal oxide varistors (MOV) .............................. 79 Table E.1 – Permissible power-frequency stress voltages according to IEC 60364-4-44 ....... 92 Table E.2 – Power-frequency stress voltages and power-frequency fault voltage in low- voltage-systems during a high-voltage earth fault ................................................................. 95 Table E.3 – TOV test values for systems complying with IEC 60364 series ......................... 103 Table E.4 – Reference test voltage values for systems complying with IEC 60364 series.................................................................................................................................. 105 Table E.5 – TOV parameters for US systems ...................................................................... 107 Table E.6 – UL TOV values used to test SPDs in US systems ............................................. 108

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • IEC 61643-12:2020 © IEC 2020 – 9 –

    Table E.7 – Nominal voltage and reference test voltage for Japanese system ..................... 109 Table E.8 – TOV test parameters for Japanese system ....................................................... 110 Table E.9 – The maximum value of TOV voltage at the difference earth fault points ............ 111 Table E.10 – Earth electrode class and maximum value of earth resistance ........................ 112 Table F.1 – ......................................................................................................................... 123 Table F.2 – ......................................................................................................................... 123 Table F.3 – ......................................................................................................................... 123 Table F.4 – Test procedure for coordination ........................................................................ 127 Table G.1 – Peak value of PWM voltage and du/dt at two terminals based on investigation in 2011 in China ............................................................................................. 137 Table G.2 – Example of characteristics of the generator alternator excitation circuit and associated SPD .................................................................................................................. 138 Table G.3 – Comparison between the wind turbine system and low-voltage distribution system ................................................................................................................................ 139 Table H.1 – Calculation of CRL ........................................................................................... 141 Table H.2 – Simplified method ............................................................................................ 145 Table H.3 – IEC 62305-2 method ........................................................................................ 146 Table J.1 – Determination of the value of Iimp .................................................................... 169 Table J.2 – Determination of the value of Iimp for additional systems used in Japan ........... 170 Table J.3 – number of conductors related to usual structure of power supply ...................... 171 Table J.4 – number of conductors related to additional systems used in Japan ................... 171 Table K.1 – Typical rated impulse voltages (derived from IEC 60664-1) .............................. 173 Table K.2 – Selection of immunity test levels depending on the installation conditions ....... 176 Table K.3 – Immunity level for AC input .............................................................................. 176 Table M.1 – Simulation results ............................................................................................ 187 Table N.1 – Examples of ratio between single shot withstand and full preconditioning/operating duty test ..................................................................................... 192 Table N.2 – Behaviour of external disconnector technologies .............................................. 193 Table N.3 – Examples of electrical ratings for SFD ............................................................. 194 Table N.4 – Examples of tripping current for SSD ............................................................... 194

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • – 10 – IEC 61643-12:2020 © IEC 2020

    INTERNATIONAL ELECTROTECHNICAL COMMISSION

    ____________

    LOW-VOLTAGE SURGE PROTECTIVE DEVICES –

    Part 12: Surge protective devices connected to low-voltage

    power systems – Selection and application principles

    FOREWORD 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

    all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

    2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

    3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

    4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

    5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

    6) All users should ensure that they have the latest edition of this publication.

    7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

    8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

    9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

    International Standard IEC 61643-12 has been prepared by subcommittee 37A: Low-voltage surge protective devices, of IEC technical committee 37: Surge arresters.

    This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision.

    NOTE The following differing practice of a less permanent nature exists in the USA: In the USA, SPDs tested to Class I tests are not required. This exception applies to the entire document.

    This edition includes the following significant technical changes with respect to the previous edition:

    a) Scope: Deleted reference to 1 500 V dc b) Added or revised some definitions c) Added new clause 4 on Need for protection

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • IEC 61643-12:2020 © IEC 2020 – 11 –

    d) Added new information on disconnecting devices e) Revised Characteristics of SPD f) Revised List of parameters for SPD selection g) Added new information on Measured Limiting Voltage h) Added or revised some Annexes

    The text of this International Standard is based on the following documents:

    FDIS Report on voting

    37A/341/FDIS 37A/347/RVD

    Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

    This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

    A list of all parts in the IEC 61643 series, published under the general title Low-voltage surge protective devices, can be found on the IEC website.

    The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

    • reconfirmed,

    • withdrawn,

    • replaced by a revised edition, or

    • amended.

    IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • – 12 – IEC 61643-12:2020 © IEC 2020

    INTRODUCTION

    0.1 General

    Surge protective devices (SPDs) are used to protect, under specified conditions, electrical systems and equipment against various overvoltages and impulse currents, such as lightning and switching surges.

    SPDs shall be selected according to their environmental conditions and the acceptable failure rate of the equipment and the SPDs.

    This document provides information to the user about characteristics useful for the selection of an SPD.

    This document provides information to evaluate the need for using SPDs in low-voltage systems, with reference to IEC 62305, Parts 1 to 4 and the IEC 60364 series. It also provides information on selection and coordination of SPDs, while taking into account the entire environment in which they are applied. Examples include: equipment to be protected and system characteristics, insulation levels, overvoltages, method of installation, location of SPDs, coordination of SPDs, end of life behaviour of SPDs and equipment failure consequences.

    IEC 62305-2 provides a general method for evaluating the risk due to surges and lightning. IEC 60364-4-44 provides a simplified way of evaluating the risk posed to electrical installations.

    Guidance on requirements for product insulation coordination is provided by IEC 60664 series. Requirements for safety (fire, overcurrent and electric shock) and installation are provided by IEC 60364 series.

    The IEC 60364 series provide direct information for contractors on the installation of SPDs. IEC TR 62066 contains more information on the scientific background of surge protection.

    0.2 Keys to understanding the structure of this document

    The list below summarizes the structure of this document and provides a summary of the information covered in each clause and annex. The main clauses provide basic information on the factors used for SPD selection. Readers who wish to obtain more detail on the information provided in Clauses 4 to 7 should refer to the relevant annexes.

    Clause 1 describes the scope of this document.

    Clause 2 lists the normative references where additional information may be found.

    Clause 3 provides definitions useful for the understanding of this document.

    Clause 4 is an introduction to the risk of surges (considerations of when the use of SPDs is beneficial).

    Clause 5 addresses the parameters of systems and equipment important for SPD selection. In addition to the stresses created by lightning, those created by the network itself are described, namely temporary overvoltages and switching surges.

    Clause 6 lists the electrical parameters for the selection of an SPD and provides explanations regarding these parameters. These are related to those given in IEC 61643-11.

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • IEC 61643-12:2020 © IEC 2020 – 13 –

    Clause 7 is the core of this document. It relates the stresses coming from the network (as discussed in Clause 5) to the characteristics of the SPD (as discussed in Clause 6). It also outlines how the protection by SPDs may be affected by its installation. The different steps for the selection of an SPD are presented, including coordination when more than one SPD is used in an installation (details about SPD coordination may be found in Annex F).

    Annex A deals with information given with inquiries and explains the testing procedures used in IEC 61643-11.

    Annex B provides examples of the relationship between two important parameters of SPDs, Uc and Up, in the specific case of Metal Oxide Varistors (MOV) and also examples of the relationship between Uc and the nominal voltage of the network.

    Annex C supplements the information given in Clause 5 on surge voltages in low-voltage systems.

    Annex D deals with the sharing of lightning current between different earthing systems used to determine the SPD rating in case of direct lightning current.

    Annex E deals with temporary overvoltages due to faults in the high-voltage system.

    Annex F supplements the information given in Clause 7 on coordination rules when more than one SPD is used in a system.

    Annex G provides specific examples on the use of this document.

    Annex H provides specific examples of the use of the risk analysis given in Clause 4.

    Annex I supplements the information given in Clause 5 about system stresses.

    Annex J supplements the information given in Clause 7 on the application of SPDs in various low-voltage systems criteria for selection of SPDs.

    Annex K discusses differences between immunity level and insulation withstand of electrical equipment.

    Annex L provides practical examples of SPD installation as used in some countries.

    Annex M discusses problems of coordination with equipment having both signaling and power terminals.

    Annex N provides information on withstand of fuses in surge conditions.

    Annex O provides practical methods for testing system level immunity.

    Annex P provides test application to SPDs with multiple components.

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • – 14 – IEC 61643-12:2020 © IEC 2020

    LOW-VOLTAGE SURGE PROTECTIVE DEVICES –

    Part 12: Surge protective devices connected to low-voltage power systems – Selection and application principles

    1 Scope

    This part of IEC 61643 describes the principles for the selection, operation, location and coordination of SPDs to be connected to 50/60 Hz AC power circuits, and equipment rated up to 1 000 V RMS.

    These devices contain at least one non-linear component and are intended to limit surge voltages and divert surge currents.

    NOTE 1 Additional requirements for special applications are also applicable, If required.

    NOTE 2 IEC 60364 and IEC 62305-4 are also applicable.

    NOTE 3 This document deal only with SPDs and not with surge protection components (SPC) integrated inside equipment.

    2 Normative references

    The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

    IEC 60364-4-44:2007, Low-voltage electrical installations – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances

    IEC 60364-5-53, Low-voltage electrical installations – Part 5-53: Selection and erection of electrical equipment – Devices for protection for safety, isolation, switching, control and monitoring

    IEC 60529, Degrees of protection provided by enclosures (IP Code)

    IEC 60664-1:2007, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests

    IEC 61000-4-5, Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test

    IEC 61643-32, Low-voltage surge protective devices – Part 32: Surge protective devices connected to the d.c. side of photovoltaic installations – Selection and application principles

    IEC 61643-11:2011, Low-voltage surge protective devices – Part 11: Surge protective devices connected to low-voltage power systems – Requirements and test methods

    IEC 62305-1:2010, Protection against lightning – Part 1: General principles

    IEC 62305-2, Protection against lightning – Part 2: Risk management

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • IEC 61643-12:2020 © IEC 2020 – 15 –

    IEC 62305-4, Protection against lightning – Part 4: Electrical and electronic systems within structures

    IEC 62475:2010, High-current test techniques – Definitions and requirements for test currents and measuring systems

    3 Terms, definitions and abbreviated terms

    3.1 Terms and definitions

    For the purposes of this document, the following terms and definitions apply.

    ISO and IEC maintain terminological databases for use in standardization at the following addresses:

    • IEC Electropedia: available at http://www.electropedia.org/

    • ISO Online browsing platform: available at http://www.iso.org/obp

    3.1.1 surge protective device SPD device that contains at least one nonlinear component that is intended to limit surge voltages and divert surge currents

    Note 1 to entry: An SPD is a complete assembly, having appropriate connecting means.

    [SOURCE: IEC 61643-11:2011, 3.1.1]

    3.1.2 continuous operating current Ic current flowing through each mode of protection of the SPD when energized at the maximum continuous operating voltage (Uc) for each mode

    3.1.3 maximum continuous operating voltage Uc Maximum RMS voltage which may be continuously applied to the SPD’s mode of protection

    Note 1 to entry The Uc value covered by this document may exceed 1 000 V.

    [SOURCE: IEC 61643-11:2011, 3.1.11]

    3.1.4 voltage protection level Up maximum voltage to be expected at the SPD terminals due to an impulse stress with defined voltage steepness and an impulse stress with a discharge current with given amplitude and waveshape

    Note 1 to entry: The voltage protection level is given by the manufacturer and is equal or exceed by:

    • the measured limiting voltage, determined for front-of-wave sparkover (if applicable) and the measured limiting voltage, determined from the residual voltage measurements at amplitudes up to In and/or I imp for test Classes II and/or I, respectively;

    • the measured limiting voltage up to UOC determined for the combination wave generator for test Class III.

    [SOURCE: IEC 61643-11:2011, 3.1.14, modified note to entry]

    This is a preview - click here to buy the full publication

    http://www.iso.org/obphttps://webstore.iec.ch/publication/32531&preview

  • – 208 – IEC 61643-12:2020 © IEC 2020

    SOMMAIRE

    AVANT-PROPOS ................................................................................................................ 217 INTRODUCTION ................................................................................................................. 219

    0.1 Généralités ......................................................................................................... 219 0.2 Clés pour comprendre la structure du présent document ..................................... 219

    1 Domaine d'application ................................................................................................. 221 2 Références normatives ................................................................................................ 221 3 Termes, définitions et abréviations .............................................................................. 222

    3.1 Termes et définitions .......................................................................................... 222 3.2 Liste des abréviations et des acronymes utilisés du présent document ............... 235

    4 Nécessité de protection ............................................................................................... 237 5 Réseaux à basse tension et matériel à protéger .......................................................... 237

    5.1 Généralités ......................................................................................................... 237 5.2 Réseaux à basse tension .................................................................................... 237

    5.2.1 Généralités .................................................................................................. 237 5.2.2 Surtensions de foudre et courants de choc .................................................. 237 5.2.3 Surtensions de manœuvre ........................................................................... 239 5.2.4 Surtensions temporaires UTOV.................................................................... 239

    5.3 Caractéristiques des matériels à protéger ........................................................... 241 6 Parafoudres ................................................................................................................. 241

    6.1 Fonctions de base des parafoudres .................................................................... 241 6.2 Exigences supplémentaires ................................................................................ 242 6.3 Classification des parafoudres ............................................................................ 242

    6.3.1 Parafoudres: classification ........................................................................... 242 6.3.2 Conception et topologies courantes ............................................................. 243

    6.4 Caractéristiques des parafoudres ........................................................................ 244 6.4.1 Conditions de service décrites dans l'IEC 61643-11 ..................................... 244 6.4.2 Liste des paramètres pour le choix des parafoudres .................................... 245

    6.5 Informations supplémentaires sur les caractéristiques des parafoudres .............. 246 6.5.1 Informations relatives aux tensions du réseau ............................................. 246 6.5.2 Informations relatives aux courants de choc ................................................ 247 6.5.3 Informations relatives au niveau de protection en tension fourni par les

    parafoudres ................................................................................................. 249 6.5.4 Informations relatives à l'état du parafoudre en fin de vie ............................ 250 6.5.5 ISCCR: courant de court-circuit assigné et Ifi: valeur assignée

    d’interruption d'un courant de suite .............................................................. 251 6.5.6 IL: courant de charge assigné et ΔU: Chute de tension (pour les

    parafoudres à deux ports ou à un port avec bornes d'entrée et de sortie séparées) .................................................................................................... 251

    6.5.7 Informations relatives aux variations des caractéristiques des parafoudres ................................................................................................. 252

    7 Mise en œuvre des parafoudres dans les réseaux à basse tension .............................. 252 7.1 Généralités ......................................................................................................... 252 7.2 Considération concernant l'emplacement du parafoudre en fonction des

    classes d'essai.................................................................................................... 254 7.3 Modes de protection et installation d'un parafoudre ............................................ 254 7.4 Nécessité d'une protection supplémentaire ......................................................... 256

    7.4.1 Généralités .................................................................................................. 256

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • IEC 61643-12:2020 © IEC 2020 – 209 –

    7.4.2 Influence des phénomènes d'oscillation sur la distance de protection .......... 257 7.4.3 Tension induite dans l'installation ................................................................ 257 7.4.4 Influence de la longueur des câbles de raccordement .................................. 258 7.4.5 Influence du niveau de protection en tension ............................................... 262 7.4.6 Concept de Zone de protection contre la foudre (LPZ) ................................. 264

    7.5 Choix des caractéristiques du parafoudre ........................................................... 266 7.5.1 Généralités .................................................................................................. 266 7.5.2 Choix de Uc, UT, In, Iimp, Imax, ISCCR, Ifi et Uoc du parafoudre ............... 266 7.5.3 Distance de protection ................................................................................. 273 7.5.4 Durée de vie prévue .................................................................................... 274 7.5.5 Interaction entre les parafoudres et d'autres dispositifs ............................... 274 7.5.6 Choix du niveau de protection en tension Up ............................................... 275 7.5.7 Coordination entre le parafoudre choisi et les autres parafoudres ................ 276

    7.6 Caractéristiques des dispositifs auxiliaires .......................................................... 279 7.6.1 Dispositifs de déconnexion .......................................................................... 279 7.6.2 Compteurs de chocs et d'événements .......................................................... 279 7.6.3 Indicateur d'état ........................................................................................... 280

    Annexe A (informative) Informations types exigées avant de choisir un parafoudre et explication des procédures d'essai .............................................................................. 281

    A.1 Informations types exigées avant de choisir un parafoudre ................................. 281 A.1.1 Données système ........................................................................................ 281 A.1.2 Considérations sur le fonctionnement du parafoudre ................................... 281 A.1.3 Caractéristiques du parafoudre .................................................................... 281 A.1.4 Matériels supplémentaires et fixations ......................................................... 282

    A.2 Explication des procédures d'essai utilisées dans l'IEC 61643-11 ....................... 283 A.2.1 Principes généraux ...................................................................................... 283 A.2.2 Séquences d'essais et description des essais .............................................. 283

    Annexe B (informative) Exemples de relations entre Uc et la tension nominale du réseau et exemple de relation entre Up et Uc pour les varistances à oxyde métallique (MOV) ......................................................................................................... 291

    B.1 Relation entre Uc et la tension nominale du réseau ............................................ 291 B.2 Relation entre Up et Uc pour les varistances à oxyde métallique (MOV) ............. 291

    Annexe C (informative) Environnement – Tensions de chocs dans les réseaux BT ............ 293 C.1 Généralités ......................................................................................................... 293 C.2 Surtensions de foudre ......................................................................................... 293

    C.2.1 Généralités .................................................................................................. 293 C.2.2 Surtensions transmises du réseau MT au réseau BT ................................... 294 C.2.3 Surtensions dues à des impacts directs sur les réseaux de

    distribution BT ............................................................................................. 295 C.2.4 Surtensions induites dans les réseaux de distribution BT ............................. 295 C.2.5 Surtensions causées par des impacts sur un système de protection

    contre la foudre ou sur une structure à proximité immédiate ........................ 296 C.3 Surtensions de manœuvre .................................................................................. 297

    C.3.1 Généralités .................................................................................................. 297 C.3.2 Description générale .................................................................................... 297 C.3.3 Manœuvres de disjoncteurs et d'interrupteurs .............................................. 297 C.3.4 Fonctionnements des fusibles (fusibles limiteurs de courant) ....................... 299

    Annexe D (informative) Calculs de courants de foudre partiels .......................................... 300 Annexe E (informative) Surtension temporaire dans le réseau à basse tension due à

    des défauts entre le réseau à haute tension et la terre ................................................ 303

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • – 210 – IEC 61643-12:2020 © IEC 2020

    E.1 Généralités ......................................................................................................... 303 E.2 Références ......................................................................................................... 304 E.3 Symboles ............................................................................................................ 304 E.4 Surtensions dans les réseaux BT pendant un défaut à la terre à haute

    tension ................................................................................................................ 305 E.5 Exemple d'un schéma TT – Calcul de surtensions temporaires possibles ............ 307

    E.5.1 Contraintes possibles sur des matériels dans des installations à basse tension dues à des défauts à la terre dans le réseau à haute tension .......... 307

    E.5.2 Caractéristiques du réseau à haute tension ................................................. 307 E.6 Surtensions à fréquence industrielle temporaires en fonction des réseaux BT

    et des différents types de configurations de mise à la terre ................................. 308 E.6.1 Généralités .................................................................................................. 308 E.6.2 Conclusion – Courant de contrainte des parafoudres le plus défavorable

    pour le comportement HT-TOV des parafoudres .......................................... 310 E.6.3 Conclusion – Source d'essai du cas le plus défavorable pour le

    comportement HT-TOV des parafoudres, si le parafoudre est relié à la terre entre N-PE et/ou L-PE: ........................................................................ 310

    E.6.4 Exemples de différents réseaux BT et de leurs possibles configurations de mise à la terre ......................................................................................... 312

    E.7 Valeurs des surtensions temporaires pour le schéma TN C des USA .................. 316 E.8 Valeurs des surtensions temporaires utilisées dans l'IEC 61643-11 avec des

    explications ......................................................................................................... 318 E.8.1 Généralités .................................................................................................. 318 E.8.2 Valeurs des surtensions temporaires pour les réseaux américains ............... 321 E.8.3 Valeurs des surtensions temporaires pour les réseaux japonais .................. 324

    Annexe F (informative) Règles et principes de coordination ............................................... 329 F.1 Généralités ......................................................................................................... 329 F.2 Coordination de l'énergie .................................................................................... 329

    F.2.1 Généralités .................................................................................................. 329 F.2.2 Études analytiques: cas simple de la coordination de deux parafoudres

    à varistances à oxyde métallique (MOV) ...................................................... 330 F.2.3 Étude analytique: cas de la coordination entre un parafoudre à éclateur

    et un parafoudre à varistance à oxyde métallique (MOV) ............................. 333 F.2.4 Étude analytique: coordination générale de deux parafoudres ..................... 335 F.2.5 Méthode d'énergie traversante (LTE) ........................................................... 336

    F.3 Essais de coordination: coordination de l'énergie ainsi que la protection en tension ................................................................................................................ 339

    F.3.1 Introduction ................................................................................................. 339 F.3.2 Critères de coordination............................................................................... 340 F.3.3 Techniques de coordination ......................................................................... 340 F.3.4 Protocole d'essai ......................................................................................... 341

    Annexe G (informative) Exemples d'utilisation ................................................................... 345 G.1 Utilisation domestique ......................................................................................... 345 G.2 Utilisation industrielle .......................................................................................... 348 G.3 Présence d'un système de protection contre la foudre ........................................ 353 G.4 Éoliennes ............................................................................................................ 354

    G.4.1 Généralités .................................................................................................. 354 G.4.2 Surtensions transitoires dans le circuit de convertisseur DFIG ..................... 355 G.4.3 Effet de transmission de la tension transitoire en raison de la longueur

    de câble ...................................................................................................... 356

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • IEC 61643-12:2020 © IEC 2020 – 211 –

    G.4.4 Coordination de tension entre le parafoudre et le matériel dans les parcs éoliens ............................................................................................... 357

    G.4.5 Solutions possibles pour le cas décrit dans le CLC/TR 50539-22 ................. 359 Annexe H (informative) Méthode d’appréciation du risque et exemples d'application .......... 361

    H.1 Généralités ......................................................................................................... 361 H.2 Méthode simplifiée proposée pour l’appréciation du risque à basse tension

    décrite dans l'IEC 60364-4-44 ............................................................................. 361 H.2.1 Maîtrise des surtensions .............................................................................. 361 H.2.2 Méthode simplifiée d’appréciation du risque ................................................ 361 H.2.3 Exemple 1 – Bâtiment en environnement rural ............................................. 363 H.2.4 Exemple 2 – Bâtiment en environnement rural alimenté en HT .................... 363 H.2.5 Exemple 3 – Bâtiment en environnement urbain .......................................... 364 H.2.6 Exemple 4 – Bâtiment en environnement urbain alimenté en HT .................. 364 H.2.7 Exemple 5 – Système d’alimentation pour véhicule électrique ..................... 364 H.2.8 Exemple 6 – Usine de produits chimiques .................................................... 365

    H.3 Facteurs à prendre en considération lors de l’appréciation du risque .................. 368 H.3.1 Facteurs environnementaux ......................................................................... 368 H.3.2 Matériel et installations ................................................................................ 369 H.3.3 Aspects économiques et interruption de service .......................................... 370 H.3.4 Sécurité ....................................................................................................... 370 H.3.5 Dépenses relatives à la protection ............................................................... 371

    Annexe I (informative) Contraintes dues aux réseaux ........................................................ 372 I.1 Courants et surtensions de foudre [5.2.2] ............................................................ 372

    I.1.1 Aspects des réseaux de distribution ayant un effet sur la nécessité d’un parafoudre ................................................................................................... 372

    I.1.2 Répartition du courant de choc dans une structure ...................................... 372 I.2 Surtensions de manœuvre [5.2.3] ....................................................................... 373 I.3 Surtensions temporaires UTOV [5.2.4] ................................................................ 373

    Annexe J (informative) Utilisation des parafoudres ............................................................ 375 J.1 Emplacement et protection apportée par les parafoudres [7.1] ............................ 375

    J.1.1 Modes possibles de protection et d'installation [7.1.3].................................. 375 J.1.2 Influence des phénomènes d'oscillation sur la distance de protection

    [7.1.4.2] ....................................................................................................... 384 J.1.3 Concept de la zone de protection [7.1.4.6] ................................................... 385

    J.2 Choix des parafoudres ........................................................................................ 387 J.2.1 Choix de Uc [7.2.2.1] ................................................................................... 387 J.2.2 Problèmes de coordination [7.3.7.2] ............................................................. 388 J.2.3 Cas pratiques [7.2.7.2] ................................................................................ 390

    J.3 Calcul simple de Iimp pour un parafoudre de classe I dans le cas d'un bâtiment protégé par un système de protection contre la foudre.......................... 390

    Annexe K (informative) Immunité par rapport à la tension assignée de tenue aux chocs ........................................................................................................................... 395

    Annexe L (informative) Exemples d’installation de parafoudres dans les tableaux de distribution de certains pays ........................................................................................ 402

    Annexe M (informative) Coordination dans le cas d'un matériel présentant à la fois des bornes de télécommunication et de puissance ...................................................... 407

    Annexe N (informative) Dispositif de protection contre les surintensités de courts-circuits et tenue aux chocs .......................................................................................... 414

    N.1 Généralités ......................................................................................................... 414

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • – 212 – IEC 61643-12:2020 © IEC 2020

    N.2 Informations relatives à la tenue des fusibles à une onde de choc 8/20 et 10/350 ............................................................................................ 414

    N.3 Facteurs influençant les fusibles (réduction) pour l’essai de préconditionnement et l’essai de fonctionnement en service ............................... 415

    N.4 Tenue des fusibles selon les données expérimentales et confirmée par calculs en fonction des paramètres et des limites spécifiés dans la série IEC 60269 ........................................................................................................... 416

    N.5 Comportement des déconnecteurs externes en fonction des technologies .......... 417 N.6 Exigences et valeurs d'essai supplémentaires pour les déconnecteurs

    externes de parafoudres utilisés dans certains pays ........................................... 418 Annexe O (informative) Méthodes pratiques d'essai du niveau d'immunité du réseau

    dans les conditions de décharge de foudre .................................................................. 422 O.1 Généralités ......................................................................................................... 422 O.2 Essai de courant de décharge du parafoudre dans les conditions normales

    de service ........................................................................................................... 422 O.3 Essai d'induction due aux courants de foudre ..................................................... 422 O.4 Classification d'essai recommandée du niveau d'immunité du système

    (IEC 61000-4-5 suivante) .................................................................................... 422 Annexe P (informative) Guide d'essai des parafoudres contenant plusieurs

    composants ................................................................................................................. 425 P.1 Généralités ......................................................................................................... 425 P.2 Exemple d'éclateurs multiples en série avec commande de déclenchement

    ohmique/capacitif ................................................................................................ 425 P.3 Exemple de 2 éclateurs en série avec commande de déclenchement

    capacitif et montage en série raccordé en parallèle de GDT + MOV .................... 426 P.4 Exemple de GDT à 3 électrodes avec commande de

    dérivation/déclenchement parallèle avec MOV .................................................... 426 P.5 Exemple d'éclateur à 4 électrodes avec commande de déclenchement

    GDT + MOV ........................................................................................................ 427 P.6 Exemple d'éclateur en parallèle avec un GDT et MOV connectés en série .......... 428 P.7 Exemple d'éclateur à 3 électrodes avec transformateur de déclenchement ......... 429

    Annexe Q (informative) Exceptions aux États-Unis en matière de parafoudres soumis aux essais de Classe I ................................................................................................. 430

    Bibliographie ....................................................................................................................... 431 Figure 1 – Exemples de parafoudres à un port .................................................................... 226 Figure 2 – Exemples de parafoudres à deux ports .............................................................. 227 Figure 3 – Réponse en tension de sortie de parafoudres à un port et à deux ports à un choc de générateur d’ondes combinées .............................................................................. 228 Figure 4 – Exemples de composants et de combinaisons de composants ........................... 244 Figure 5 – Courbe typique de Ures en fonction de I pour les varistances à oxyde métallique (MOV) ................................................................................................................ 249 Figure 6 – Courbe typique d'un éclateur .............................................................................. 250 Figure 7 – Organigramme d'utilisation des parafoudres ....................................................... 253 Figure 8 – Exemple de connexion de Type 1 (CT1) ............................................................. 255 Figure 9 – Connexion de Type 2 (CT2) ............................................................................... 255 Figure 10 – Influence des longueurs des câbles de raccordement des parafoudres ............ 260 Figure 11 – Schéma d'installation possible avec une barre de mise à la terre intermédiaire lorsque la longueur de câble dépasse 50 cm ................................................. 262

    This is a preview - click here to buy the full publication

    https://webstore.iec.ch/publication/32531&preview

  • IEC 61643-12:2020 © IEC 2020 – 213 –

    Figure 12 – Exemple de la nécessité de parafoudres supplémentaires lorsque la longueur des câbles raccordés est inférieure à 50 cm ......................................................... 264 Figure 13 – Organigramme pour le choix d'un parafoudre ................................................... 266 Figure 14 – UT et UTOV ..................................................................................................... 268 Figure 15 – Disposition d'un parafoudre et d'un déconnecteur externe pour la continuité de l'alimentation .................................................................................................. 271 Figure 16 – Disposition d'un parafoudre et d'un déconnecteur externe pour la continuité de la protection ................................................................................................... 272 Figure 17 – Sélectivité entre l'OCPD et le déconnecteur en cas de court-circuit .................. 273 Figure 18 – Utilisation type de deux parafoudres – Schéma électrique ................................ 277 Figure A.1 – Montage d'essai pour essai de fonctionnement en service .............................. 284 Figure A.2 – Chronogramme d'essai de fonctionnement pour les 15 premiers chocs ........... 285 Figure A.3 – Chronogramme d'essai de fonctionnement pour 5 chocs supplémentaires ...... 285 Figure D.1 – Calcul simple de la somme des courants de foudre partiels dans un réseau de distribution ......................................................................................................... 300 Figure E.1 – Schéma représentatif des connexions possibles à la terre dans les postes et dans les installations BT, et surtensions apparaissant en cas de défauts ........................ 306 Figure E.2 – Exemple de schéma TT avec mise à la terre combinée du poste de transformation RE avec mise à la terre de point milieu BT (neutre mis à la terre) RB ........... 307 Figure E.3 – Schéma TN (Figure 44B de l'IEC 60364-4-44:2007) ........................................ 312 Figure E.4 – Schéma TT (Figure 44C de l'IEC 60364-4-44:2007) ........................................ 313 Figure E.5 – Schéma IT, exemple a (Figure 44D de l'IEC 60364-4-44:2007) ....................... 314 Figure E.6 – Schéma IT, exemple b (Figure 44F de l'IEC 60364-4-44:2007) ....................... 315 Figure E.7 – Schéma IT, exemple c1 (Figure 44E de l'IEC 60364-4-44:2007)...................... 316 Figure E.8 – Surtension temporaire résultant d'un défaut dans le primaire (réseau MT à 4 fils – mise à la terre directe) du transformateur de distribution dans un schéma TN conformément à la pratique en vigueur en Amérique du Nord ............................................. 317 Figure E.9 – Tensions efficaces p.u. maximales de TOV classiques (V) (Tableau 2 de l'IEEE 1159-2009) ............................................................................................................... 322 Figure E.10 – Exemple de partage de la terre d'un réseau 100 V/200 V mis à la terre à prise médiane monophasé et d'un réseau 200 V à une borne (Triangle) triphasé mis à la terre ................................................................................................................................ 326 Figure E.11 – Réseaux de distribution classiques d'un réseau 100 V/200 V mis à la terre à prise médiane monophasé au Japon ........................................................................ 327 Figure E.12 – Configuration de réseau classique au Japon ................................................. 328 Figure E.13 – Caractéristiques TOV par des défauts dans le réseau à haute tension au Japon ..............................................