EINFÜHRUNGSVERANSTALTUNG CSP 2018 QUEST ......2018/09/13  · Die folgenden Folien sind als...

43
EINFÜHRUNGSVERANSTALTUNG CSP 2018 QUEST-KRITERIEN Berliner Institut für Gesundheitsforschung 13. September 2018

Transcript of EINFÜHRUNGSVERANSTALTUNG CSP 2018 QUEST ......2018/09/13  · Die folgenden Folien sind als...

  • EINFÜHRUNGSVERANSTALTUNG CSP 2018 QUEST-KRITERIEN

    Berliner Institut für Gesundheitsforschung13. September 2018

  • Die folgenden Folien sind als Anregung zu verstehen,

    sie ersetzen nicht die AKTIVE Auseinandersetzung mit den

    QUEST-Kriterien im Hinblick auf Ihre spezifische

    Forschungsfrage.Bei Fragen wenden Sie sich gerne an Dr. Miriam Kip ([email protected] oder

    [email protected]).

    QUEST Tool box: (https://www.bihealth.org/en/quest-center/mission-approaches/englische-

    uebersetzung/the-quest-toolbox/)

    mailto:[email protected]

  • MERIT-Project

    Miriam Kip

    Axel Pries

    Development of attributes of a robust and innovative research/ Merkmale einer robusten und innovativenForschung (MERIT)

    QUEST-criteria:open questions:

    • priority setting• strategies of scientific rigor• transparency and dissemination or results• participation

    • intramural funding schemes, e.g. CSP, Validation fund• introduction to the doctoral/dissertation program at Charité

  • PRIORITY SETTINGS

  • Warum?

    • Vorhandene Evidenz darlegen• Wissenslücken identifizieren• Bisherige Studienqualität kritisch bewerten• Identifikation von Faktoren, die die Effektivität einer Maßnahme

    beeinflussen• Ableiten wichtiger Informationen hinsichtlich Design neuer

    Studien• “evidence-based trial design”

    - Reduce waste in future research- Reduce risk for humans and animals- Reduce risk of unnecessary enrollment of humans

  • Wie? (a very short introduction)

    • Clinical Interventions - PICOS• Population• Intervention• Control/Comparators• Outcome• Study design

    • preclinical• (a) treatment/intervention• (b) disease or condition of interest• (c) animal species/cell population studied• (d) outcome measures

    MeshtermsVolltextsuchegeneral expressions

    Boolsche Operanden

    Filter

  • Wo?

    • PubMed, Embase• Clinicaltrials.gov, Metaregister der WHO etc..• Eigene Vorstudien (dabei Daten nachvollziehbar darstellen)

  • • BMJ 2011;343:d5928 doi: 10.1136/bmj.d5928• Hooijmans et al. BMC Medical Research Methodology 2014, 14:43

    http://www.biomedcentral.com/1471-2288/14/43• http://syrf.org.uk/library/• https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf• https://www.cochrane.de/de/ressourcen• https://www.radboudumc.nl/en/research/radboud-technology-

    centers/animal-research-facility/systematic-review-center-for-laboratory-animal-experimentation

    • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265183/pdf/LA-11-087.pdf• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104815/pdf/LA-09-117.pdf

    Ressourcen (Auswahl)

    http://www.biomedcentral.com/1471-2288/14/43http://syrf.org.uk/library/https://www.york.ac.uk/media/crd/Systematic_Reviews.pdfhttps://www.cochrane.de/de/ressourcenhttps://www.radboudumc.nl/en/research/radboud-technology-centers/animal-research-facility/systematic-review-center-for-laboratory-animal-experimentationhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265183/pdf/LA-11-087.pdfhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104815/pdf/LA-09-117.pdf

  • STRATEGIES OF SCIENTIFIC RIGOR (I)

  • Highly effective treatmentsin animal stroke models

    PLoS Biol. 2010;8(3):e1000344.

    http://www.ncbi.nlm.nih.gov/pubmed/20361022

  • Phase III studiesshow no effect

    Minnerup et al.Exp.Transl.Stroke Med.2014;6:2

  • PossibleSolutions

    Reduce Bias!Use blinding, randomization,in/exclusion criteria.Report results according to guidelines (e.g. ARRIVE, CONSORT, PRISMA, etc.)Pre-register

    Use statistics sensibly!Go beyond the bar plot! Show individual data points and distributions.

    Think biological significance, think effect size.Consult a statistician.

  • Bias influences effect size

    Alzheimer's disease models models

    Blinded conduct of experiment

    Blinded assessment of outcome

    Blinded assessment of outcome

    Stroke models (NXY-095)

    Impr

    ovem

    ent i

    n be

    havi

    oura

    l out

    com

    e (S

    tand

    ardi

    sed

    Effe

    ct S

    ize)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Yes

    No

    Red

    uctio

    n in

    infa

    rct s

    ize

    Red

    uctio

    n in

    infa

    rct s

    ize

    > 30 studies > 500 animals

  • Toolsand Resources

    Statistical Consulting (CRU and Biostats)QUEST toolbox (includes tools for Figure creation)Experimental Design Assistant for animal experimentsCourses at the QUEST Center and Promotionskolleg

  • STRATEGIES OF SCIENTIFIC RIGOR (II)

  • U N I V E R S I T Ä T S M E D I Z I N B E R L I N

    Clinical Scientist

    Prof. Dr. Geraldine RauchDr. Jochen Kruppa

    Institute of Biometry and Clinical Epidemiology

    [email protected]

  • Auswahl von Endpunkten

    Endpunkte: Diejenigen Merkmale in klinischen Studien, anhand derer der Erfolg der Studie gemessen werden soll. Man unterscheidet dabei zwischen primären und sekundären Endpunkten.

    Primäre Endpunkt: Erfasst dabei das Hauptziel der Studie. Dieses wird am Ende der Studie mit einem statistischen Test überprüft.

    Sekundären Endpunkte: Erfassen dabei weitere Aspekte der Studie. Die Auswertung erfolgt rein deskriptiv.

    Bei der Auswahl von Endpunkten sollte Folgendes beachtet werden: Angemessen für die medizinische Fragestellung Möglichst objektiv erfassbar Möglichst hohes Skalenniveau (vgl. spätere Folien)

  • Begriffe Zielgröße / Endpunkt: das Merkmal, das als Ergebnis einer Untersuchung interessiert, z.B. eine unter dem Einfluss der Therapie sich verändernder Laborwert oder ein Krankheitssymptom

    Einflussgrößen: alle Merkmale die im funktionellen Zusammenhang zur Zielgröße stehen, z.B. bestimmte Behandlungsformen, Therapiemaßnahmen

    Störgrößen/Confounder: Einflussgrößen, deren Untersuchung nicht Ziel der Studie ist, z.B. die unerwünschte Abhängigkeit vom Alter oder Geschlecht. Störgrößen sollten entweder eliminiert oder in der Analyse der Zielgrößen berücksichtigt werden. Störgrößen sind jedoch nicht immer alle erfassbar.

  • Harte und weiche Endpunkte

    • Harte Endpunkte– lassen sich direkt erheben– Beispiele:

    • Überlebenszeit• Tumoransprechen

    • Weiche Endpunkte– lassen sich nur indirekt erheben– Beispiele:

    • Lebensqualität• Schmerzempfinden

  • Studiendesign

    nicht kontrolliert/einarmig

    kontrolliert/mehrarmig

    nicht randomisiert randomisiert

    offen verblindet

    monozentrisch multizentrisch

    einfach

    doppelt

    Nicht für jede Fragestellung ist jedes Design möglich!

    Goldstandard für Studien zum Wirksamkeitsnachweis

  • StudientypenEs gibt viele verschiedene StudientypenKlassifizierung nach unterschiedlichen Kriterien möglich:

    • Fragestellung (z.B. Therapiestudie, Diagnosestudie, Prognosestudie),

    • Blickrichtung (prospektiv, retrospektiv), • “Aktivität” des Forschers

    – Beobachtungsstudien (Querschnittsstudien, Kohortenstudien, Fall-Kontroll-Studien)

    – Interventionsstudien (nichtrandomisierte Studien, randomisierte Studie)

    • Bei Arzneimittelstudien: „Phase“ der Erprobung (Phase I, II, III, IV)• usw.

    Hier kein umfassender Überblick möglich!

  • Quelle: Dtsch Arztebl 2009; 106(15)

  • Literaturempfehlung

    • Schumacher M, Schulgen G (2008, 3. Auflage): Methodik klinischer Studien, Springer.

    • Sachs L (1993, 7. Auflage): Statistische Methoden: Planung und Auswertung, Springer.

    • Weiß C (2010, 5. Auflage): Basiswissen Medizinische Statistik, Springer.• Gonick L (1993): The Cartoon Guide to Statsitics, HarperCollins Publisher

  • STRATEGIES OF SCIENTIFIC RIGOR (III)

  • Tracey L. Weissgerber, PhDTwitter: @T_Weissgerber

    Reveal, Don’t Conceal: Transforming Data Visualization to Improve Transparency

  • Data presentation is the foundation of our collective scientific knowledge…

    Figures are especially important.They often show data for key findings.

  • Many different data distributions can lead to the same bar graph…

    Symmetric Outlier Bimodal Unequal n

    Test p valueT-test: equal var. 0.035 0.074 0.033 0.051T-test: Unequal var. 0.035 0.076 0.033 0.035Wilcoxon 0.056 0.10 0.173 0.067

    30

    20

    10

    0

    Weissgerber et al., PLOS Biology 2015

  • Why you shouldn’t use a bar graph even if your data are normally distributed

    Sedentary ExerciseTrained

    Sedentary ExerciseTrained

    Hea

    rt ra

    te (b

    eats

    /min

    )

    Bar graph(mean ± SE)

    Bar graphwith points

    Univariatescatterplot

    Range ofObserved

    Values

    Zone ofIrrelevance

    Zone of Invisibility

    0

    Bar graphs1. Don’t allow you to critically evaluate continuous data2. Arbitrarily assign importance to bar height, instead of showing

    how the difference between means compares to the variabilityWeissgerber et al., JBC 2017

  • Graphics for:- Cross sectional studies

    - Experimental studies with independent groups

    Dotplot Boxplot with points

    Boxplot Violin plot(with or withoutpoints)

    Bar graph

    Outcome variable

    Continuous Continuous Continuous Continuous Counts & proportions

    Sample size Small Medium Large Medium to Large

    Any

    Data distribution

    Any Any Do not use for bimodal data

    Any N/A

    Free violin plot tool: https://interactive-graphics.shinyapps.io/violin/

    https://interactive-graphics.shinyapps.io/violin/

  • Free Tools for Interactive Graphics

    Dot, box or violin plot: http://statistika.mfub.bg.ac.rs/interactive-dotplot/

    Interactive line graph:http://statistika.mfub.bg.ac.rs/interactive-graph/

    Additional resources: Twitter @T_Weissgerber

    Group 1

    Group 2

    Group 3

    Condition 1 Condition 2 Condition 30

    5

    10

    15

    20

    http://statistika.mfub.bg.ac.rs/interactive-dotplot/http://statistika.mfub.bg.ac.rs/interactive-graph/

  • Why we need to report more than “Data were analyzed by t-tests and ANOVA”

    • Meta-research studies show that statistical errors are common. These include:– Failing to specify what test was used – Using suboptimal or inappropriate tests– Incorrect p-values

    • T-tests and ANOVA are the most common analysis techniques in many basic biomedical science fields

  • Why we need to report more than “Data were analyzed by t-tests and ANOVA”

    Systematic review: Many physiology papers are missing information needed to determine what type

    of ANOVA was performed

    Essential Details Papers with Missing Information

    Number of factors 17%

    Names of factors 54%

    Post-hoc tests 27%

    Between vs. within-subjects factors for repeated measures ANOVA

    63%

  • Papers rarely contain information needed to verify the test result

    Essential Details Papers with Missing Information

    T-tests(n = 163)

    ANOVA(n = 225)

    Test statistic 96% 95%

    Degrees of freedom * 7% 97%

    Exact p-value 69% 78%

    * Exact sample size is also acceptable for t-tests

  • This information is essential to identify bias & correct errors

    1. Confirm that the correct test was used2. Confirm test results

    – Errors in reported p-value are common; may alter conclusions in 1/8 papers1

    3. Assess bias: Were observations excluded without explanation?– Among papers with animal models of cancer & stroke2

    • 7-8% excluded animals without explanation• 2/3 didn’t have enough information to assess

    1Nuitjen et al., Behav Res Methods 20152Holman et al., PLOS Biol 2016

  • Solutions• Report exactly what test you used

    Test ReportingT-tests Unpaired vs. paired, equal vs. unequal variance

    ANOVA Number & names of factors, between vs. within subjects factors, post-hoc tests, any interaction terms included in the ANOVA

    More complex tests Detail needed to reproduce analysis

  • These two tests…

    ANOVAwithout repeated measures

    Repeated MeasuresANOVA

    …see the data differently

    Compares3 independent groups

    (n = 30, 10/group)

    Compares10 pairs

    of related observations

    (n = 10)

    …test differenthypotheses

    Null hypothesis: Mean T1 = Mean T2 = Mean T3

    Null hypothesis: Mean T1 = Mean T2 = Mean T3

    when population means are related

    …use information differently

    More unexplained variability Less unexplained variability – we can account for the effect of “subject”.

    Sums of squaresConditions (between groups)

    Residual (within groups)

    Total

    240

    2604

    2844

    Sums of squaresConditions (between groups)

    Residual (within groups)SubjectsError

    Total

    240

    26042195

    409

    2844

    …give different results

    overall p = 0.304 overall p = 0.016

    Why does this matter? An example…

    ?

    0

    20

    40

    60

    0 1 2 3T1 T2 T30

    20

    40

    60

    T1 T2 T3

  • Solutions• Report exactly what test you used• Improve clarity by describing simple tests in

    figure & table legends• Report test statistic, degrees of freedom,

    exact p-value• Use Statcheck: http://statcheck.io• Deposit code: Make your analyses

    reproducibleClear reporting allows you to identify &

    correct errors prior to publication!

    http://statcheck.io

  • STAKEHOLDER ENGAGEMENT

  • Patient Engagement in biomedical research: From research subjects to partners in research

    Engaging patients as partners and not just subjects in research can improve research! They hold important experience-based expertise from living with diseases.

    Miravittles M et al. (2013), Respiratory Medicine 107, 1977-1985

  • Patient Engagementin biomedical research:Key areas for patient engagement

    Geissler J et al. (2017), Therapeutic Innovation & Regulatory Science 51(5), 612-619.

    Research phases

    Key areas

    Key areas

  • Patient Engagementin biomedical research:Important resources

    Best Practice Examples Possible gatekeeper to identify patients……although so far no

    institution appointed.

  • Other stakeholders whose involvement might benefit research:• Political actors involved in decision-making about medical

    products, e.g. G-BA, IQWiG, BfArM, PEI?• Industry actors from the pharmaceutical and biotech world?• Clinicians using the research outcomes?• Training institutions teaching the findings?• …

    Patient Engagementin biomedical research:Who else should be involved?

  • • Who should represent (and why) particular stakeholder groups?• Do representatives need particular training?• How should engagement activities be structured to ensure a level

    playing field?• What conflicts of interest exist and how can they be managed?• Is there a need for a coordinating institution for patient

    engagement?• …

    Patient Engagementin biomedical research:Further open questions

    EInführungsveranstaltung CSP 2018 �QUEST-KriterienDie folgenden Folien sind als Anregung zu verstehen,�sie ersetzen nicht die AKTIVE Auseinandersetzung mit den QUEST-Kriterien im Hinblick auf Ihre spezifische Forschungsfrage.�Bei Fragen wenden Sie sich gerne an Dr. Miriam Kip ([email protected] oder [email protected]).�QUEST Tool box: (https://www.bihealth.org/en/quest-center/mission-approaches/englische-uebersetzung/the-quest-toolbox/)��MERIT-Project�PRIORITY SETTINGSWarum?Wie? (a very short introduction) Wo?Ressourcen (Auswahl)�STRATEGIES OF SCIENTIFIC RIGOR (I)Highly effective treatments�in animal stroke modelsPhase III studies�show no effectPossible�SolutionsBias influences effect sizeTools�and Resources�STRATeGIES OF SCIENTIFIC RIGOR (II)Foliennummer 16Auswahl von EndpunktenBegriffe Harte und weiche EndpunkteStudiendesignStudientypenFoliennummer 22LiteraturempfehlungSTRATEGIES OF SCIENTIFIC RIGOR (III)��Foliennummer 25Data presentation is the foundation of our collective scientific knowledge…Many different data distributions can lead to the same bar graph…Why you shouldn’t use a bar graph even if your data are normally distributedGraphics for:�- Cross sectional studies �- Experimental studies with independent groupsFree Tools for Interactive GraphicsWhy we need to report more than “Data were analyzed by t-tests and ANOVA”Why we need to report more than “Data were analyzed by t-tests and ANOVA”Papers rarely contain information needed to verify the test resultThis information is essential to identify bias & correct errorsSolutionsWhy does this matter? An example…Solutions�STAKEHOLDER EngagementPatient Engagement �in biomedical research: �From research subjects to partners in researchPatient Engagement�in biomedical research:�Key areas for patient engagementPatient Engagement�in biomedical research:�Important resourcesPatient Engagement�in biomedical research:�Who else should be involved?Patient Engagement�in biomedical research:�Further open questions