Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1,...

81
Functional and structural neuroimaging of facial emotion recognition in alexithymia Dissertation zur Erlangung des akademischen Grades Dr. rer. med. an der Medizinischen Fakultät der Universität Leipzig eingereicht von: Klas Ihme, M.Sc. geboren am 14. Oktober 1983 in Braunschweig angefertigt in der: Klinik für Psychosomatische Medizin und Psychotherapie Universität Leipzig Leitung: Prof. Dr. med. Anette Kersting Betreuer: Prof. Dr. med. Anette Kersting Beschluss über die Verleihung des Doktorgrades vom: 21.04.2015

Transcript of Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1,...

Page 1: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

 

 

Functional and structural neuroimaging of facial

emotion recognition in alexithymia

 

  

Dissertation 

zur Erlangung des akademischen Grades 

Dr. rer. med. 

an der Medizinischen Fakultät 

der Universität Leipzig 

  

 

  

eingereicht von:      Klas Ihme, M.Sc. 

        geboren am 14. Oktober 1983 in Braunschweig 

  

 

angefertigt in der:    Klinik für Psychosomatische Medizin und Psychotherapie 

        Universität Leipzig 

        Leitung: Prof. Dr. med. Anette Kersting 

   

 

Betreuer:      Prof. Dr. med. Anette Kersting 

 

 

 

Beschluss über die Verleihung des Doktorgrades vom: 21.04.2015 

 

 

 

Page 2: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

 

Bibliographische Beschreibung

  

Ihme, Klas  

   

Functional and structural neuroimaging of facial emotion recognition in alexithymia  

  

Universität Leipzig, Dissertation  

 

80 Seiten, 139 Literaturangaben1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen.  

  

 

 

 

 

 

Referat:  

Research  in  the  last  decades  has  shown  that  individuals  with  high  degrees  in  the  personality  trait  of 

alexithymia not only have difficulties  in  identifying and recognizing own feelings, but also show deficits  in 

reading emotions from facial expressions of other people. Therefore, the current dissertation  investigates 

the neural  correlates of  recognizing  emotional  facial  expressions  as  a  function of  alexithymia.  Initially,  a 

theoretical  introduction  is given and existing  findings  from behavioral as well as structural and  functional 

neuroimaging research are presented. Open questions are  identified and addressed  in one structural and 

two functional magnetic resonance imaging studies that were compiled into three original research articles. 

Study 1 examined the gray matter profile of high and  low alexithymic  individuals  in selected brain regions 

relevant  for processing emotional  faces.  In Study 2,  functional neuroimaging was used  to  investigate  the 

neural correlates of high alexithymic  individuals' difficulties  in  labeling briefly presented  (≤ 100 ms)  facial 

expressions  of  emotion.  Study  3  investigated  neural  activations  as  a  function  of  alexithymia  during  the 

labeling of emotional facial expressions when these are presented with  little temporal constraints (≥ 1 s). 

The results of these studies are summarized and integrated with the existing literature. Finally, open issues 

are discussed and ideas for further research are outlined.  

                                                            1 Dazu kommen 68 zusätzliche Referenzen in den angefügten Originalartikeln 

2 Dazu kommen 5 Abbildungen in den angefügten Originalartikeln 

3 Dazu kommen 12 Tabellen in den angefügten Originalartikeln 

Page 3: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

 

Table of content

List of Abbreviations ........................................................................................................................................... 3 

List of Figures ...................................................................................................................................................... 5 

List of Tables ....................................................................................................................................................... 6 

1  Introduction .............................................................................................................................................. 7 

1.1  Alexithymia .......................................................................................................................................... 7 

1.2  Emotions and expressions of emotions .............................................................................................. 9 

1.3  Recognizing facial expressions of emotion ......................................................................................... 9 

1.4  Alexithymia and the recognition of emotional facial expressions .................................................... 12 

1.4.1  Evidence from behavioral studies ............................................................................................. 12 

1.4.2  Evidence from structural neuroimaging studies ....................................................................... 13 

1.4.3  Evidence from functional neuroimaging studies ...................................................................... 14 

1.5  Integration of empirical evidence and hypotheses ........................................................................... 15 

2  Original research articles ........................................................................................................................ 17 

2.1  Study 1: Alexithymia is related to differences in gray matter volume (Ihme et al., 2013) ................ 18 

2.2  Study 2: Alexithymic features and the labeling of brief emotional facial expressions – an fMRI 

study (Ihme et al., 2014a) ............................................................................................................................ 27 

2.3  Study 3: Alexithymia and the labeling of facial emotions: response slowing and increased motor 

and somatosensory processing (Ihme et al., 2014b) ................................................................................... 39 

3  General discussion .................................................................................................................................. 50 

3.1  Summary of the original research articles ........................................................................................ 50 

3.2  Integration of findings ....................................................................................................................... 50 

3.3  Open issues and ideas for further research ...................................................................................... 53 

3.4  Conclusion ......................................................................................................................................... 55 

4  Zusammenfassung der Arbeit ................................................................................................................ 56 

5  References .............................................................................................................................................. 61 

6  Appendix ................................................................................................................................................ 70 

Lebenslauf ................................................................................................................................................... 71 

Publikationsverzeichnis ............................................................................................................................... 72 

Erklärung über die eigenständige Abfassung der Arbeit ............................................................................. 74 

Acknowledgement ....................................................................................................................................... 75 

Study 1: Specification of author contribution ............................................................................................. 76 

Study 2: Supplementary Materials .............................................................................................................. 77 

Study 3: Supplementary Materials .............................................................................................................. 79 

Page 4: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

 

List of Abbreviations

 

General text: 

ACC    anterior cingulate cortex 

AMG    amygdala 

BVAQ  Bermond‐Vorst Alexithymia  

Questionnaire 

DDF     difficulties describing feelings 

DIF    difficulties identifying feelings  

EOT    external oriented thinking 

FFG     fusiform gyrus 

fMRI  functional magnetic resonance 

imaging 

GM    gray matter  

HAI    high alexithymic individual 

HC    healthy control 

IFG    inferior frontal gyrus  

INS    insula  

LAI    low alexithymic individual 

MTG    middle temporal gyrus 

OFC    orbito‐frontal cortex 

PMC    pre‐motor cortex 

S1    primary somatosensory cortex 

SC     superior colliculi 

SFG    superior frontal gyrus 

SMA    supplementary motor area 

sMRI    structural magnetic resonance 

    imaging 

STR    striatum 

STG    superior temporal gyrus 

TAS‐20  20‐item version of the Toronto 

Alexithymia Scale 

 

 

TAS‐26  26‐item version of the Toronto 

Alexithymia Scale 

Th    thalamus 

TSIA  Toronto Structured Interview for 

Alexithymia 

VC    visual cortex 

vmPFC    ventro‐medial pre‐frontal cortex 

 

Additional abbreviations in Study 1: 

AAL    automated anatomic labeling 

BDI    Beck Depression Inventory  

DARTEL  Diffeomorphic Anatomical 

Registration Through 

Exponentiated Lie algebra 

FDR    false discovery rate 

FHWM    full width at half maximum 

HA    high alexithymic 

IAPS  international affective picture 

system 

k    cluster extent 

LA    low alexithymic 

LEAS   Levels of Emotional Awareness 

Scale 

MNI     Montreal Neurological Institute  

MRI    magnetic resonance imaging 

ROI    region of interest 

SPM    statististical parametric mapping 

VBM    voxel‐based morphometry 

WM    white matter 

 

 

Page 5: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

 

Additional abbreviations in Study 2: 

AN    angry  

EMG    Electromyography 

EPI     echo planar imaging 

FE    fearful  

fwe    family‐wise error 

HA    happy  

NE    neutral  

PANAS  Positive And Negative Affect 

Schedule 

RT     reaction time 

SD    standard deviation 

STAI    State‐Trait Anxiety Inventory 

SVC    small volume corrected 

 

Additional abbreviations in Study 3: 

ANOVA   analysis of variance 

BOLD    blood oxygen level dependent  

KDEF  Karolinska Directed Emotional 

Face database 

PANAS‐N  PANAS negative score 

PANAS‐P   PANAS positive score 

SCID‐I  Structured Clinical Interview for 

DSM‐IV Axis I disorders 

SEM    standard error of mean 

STAI‐T    trait version of the STAI 

 

Page 6: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

 

List of Figures

 

General text: 

Figure 1. Neural correlates of facial emotion processing. ............................................................................... 10 

Figure 2. Integration of functional and structural MRI studies on facial emotion processing in alexithymia.. 51 

 

Study 1: 

Study 1 ‐ Fig. 1. Sagittal(x), coronal(y) and axial(z) images of the significant clusters revealed in the contrast 

LA>HA in neurological view. ............................................................................................................................ 21 

 

Study 2: 

Study 2 ‐ Fig. 1. Sequence of events within a trial. ......................................................................................... 30 

Study 2 ‐ Fig. 2. Relationship between TAS‐20‐DDF and labeling performance. ............................................. 32 

Study 2 ‐ Fig. 3. Selection of clusters of brain activation negatively correlating with alexithymic features in 

the contrast angry > neutral presented in axial (A) and coronal (B) view. ...................................................... 34 

Study 2 ‐ Fig. 4. Selection of clusters of brain activation negatively correlating with alexithymic features in 

the contrast fearful > neutral presented in axial (A) and coronal (B) view. ..................................................... 34 

 

Study 3: 

Study 3 ‐ Figure 1. Activation in the right postcentral gyrus (A) and supplementary motor area (B) in 

response to angry (vs. neutral) faces (AN > NE) positively correlating with TSIA‐DDF. ................................... 45 

Study 3 ‐ Figure 2. Relationship (as calculated with Spearman’s rho) between measures of alexithymia and 

brain activations in regions‐ofinterest that are relevant for facial emotion processing. ................................ 46 

   

Page 7: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

 

List of Tables

 

Study 1: 

Study 1 ‐ Table 1. Significant results for the comparison LA>HA with age and gender as covariate. ............. 22 

Study 1 ‐ Table 2. Socio‐demographic description of the sample. .................................................................. 24 

 

Study 2: 

Study 2 ‐ Table 1. Means, standard deviations and ranges of the alexithymia measures (total scores, DDF 

and DIF subscale scores) and affectivity measures. ........................................................................................ 31 

Study 2 ‐ Table 2. Correlations between alexithymia scales and measures of affectivity. .............................. 31 

Study 2 ‐ Table 3. Correlations between alexithymia measures and labeling performance (sensitivity indices) 

for all facial expression conditions. ................................................................................................................. 32 

Study 2 ‐ Table 4. Brain activation due to facial emotion: main effect analyses (clusters are significant with 

fwe‐correction on cluster level): ...................................................................................................................... 32 

Study 2 ‐ Table 5. Correlations between brain response to emotional faces and TAS‐20 total score (clusters 

are significant with fwe‐correction on cluster level). ...................................................................................... 33 

Study 2 ‐ Table 6. Correlations between brain response to emotional faces and TAS‐20‐DDF (clusters are 

significant with fwe‐correction on cluster level). ............................................................................................ 33 

Study 2 ‐ Table 7. Correlations between brain response to emotional faces and TSIA‐DDF (clusters are 

significant with fwe‐correction on cluster level). ............................................................................................ 33 

 

Study 3: 

Study 3 ‐ Table 1. Correlations (Spearman’s Rho) between measures of alexithymia. ................................... 43 

Study 3 ‐ Table 2. Correlations (Spearman’s rho) between difficulties describing feelings (as assessed by TAS‐

20‐DDF and TSIA‐DDF) and reaction times in the four facial expression conditions. ...................................... 44 

Study 3 ‐ Table 3. Significant brain activations for all fMRI main contrasts. ................................................... 44 

 

Page 8: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

 

1 INTRODUCTION

Be it at work, when talking to your partner or during a poker game – in our daily life, we constantly interact 

with fellow human beings. The ability to read nonverbal cues of other people is a prerequisite for successful 

social  interaction.  Facial  expressions  can  provide  important  information  about  emotions,  beliefs  and 

intentions  and  a  reduced  ability  to  interpret  these manifold  behavioral  cues may  cause  interpersonal 

problems  (Erickson and Schulkin, 2003). Moreover,  facial expressions are  inherent parts of emotions and 

are  thought  be  integral  to  one’s  emotional  experience  (Ekman  and  Friesen,  1974;  Strack  et  al.,  1988). 

Interestingly,  individuals with high degrees of alexithymia are vulnerable  to  interpersonal problems. High 

alexithymic  individuals  (HAIs)  are  reported  to  have  less  social  skills  and  little  perceived  social  support 

(Lumley et al., 1996; Vanheule et al., 2007), so that Spitzer et al. (2005) hypothesized that HAIs' problems in 

social  interaction stem from their  inability to read emotional facial expressions. Although the construct of 

alexithymia refers to the inability to discriminate one’s own emotions, research in the last two decades has 

indeed  shown  that  HAIs  also  have  difficulties  interpreting  emotional  facial  expressions  of  others  (for  a 

recent  review,  see Grynberg et al., 2012).  Interestingly, overlapping neuronal  circuits are  involved  in  the 

production  and  experience  of  one’s  own  emotions  and  the  interpretation  of  emotions  of  other  people 

(shared  substrates  of  emotion,  see  Heberlein  and  Atkinson,  2009).  However,  surprisingly,  the  neural 

mechanisms underlying alexithymic individuals' problems in recognizing emotional facial expressions so far 

are still rather unknown. Thus, the aim of this dissertation is to shed light on the structural and functional 

neural correlates underlying  these difficulties of HAIs using  functional and structural magnetic  resonance 

imaging. 

 1.1  Alexithymia 

In  the  1970s,  Sifneos  described  a  phenomenon  often  present  in  psychosomatic  patients  that  involves  a 

lacking ability to identify and describe one’s own emotions accompanied by an externally oriented style of 

thinking and reduced  imaginal  life (Sifneos, 1973). Sifneos (1973) referred to this condition as alexithymia 

which  literally  translates  from  Greek  as  “no words  for  emotions”.  It  is  described  that  high  alexithymic 

individuals tend to react rather somatic  (Krystal, 1988). Moreover, when asked to say how they feel, they 

may report that they do not  feel anything at all or describe their conditions  in terms of actions or bodily 

states  (“I  feel  like kicking something”)  instead of emotional words such as angry (Lane et al., 1990, 1997; 

Primmer, 2013). Nowadays it is assumed that alexithymia is a dimensional construct relatively stable across 

lifespan that can be seen as a personality trait normally distributed among the general population (Franz et 

Page 9: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

 

al., 2008; Messina et al., 2014)4.  It has been argued  that alexithymic  features are  related  to  socialization 

factors  such  as  emotional  neglect  in  early  childhood  (Aust  et  al.,  2013),  but  there  is  also  evidence  for 

genetic dispositions (e.g., Kano et al., 2012), so that contributions from more than one factor is likely. With 

respect to the neurobiological mechanisms underlying alexithymia, several explanations exist. These include 

a deficit in right hemispheric processing (e.g., Jessimer and Markham, 1997), a callosal transfer deficit (e.g., 

Hoppe and Bogen, 1977, but see Grabe et al., 2004) or a dysfunction of the anterior cingulate cortex (Lane, 

2008; Lane et al., 1997; Wingbermühle et al., 2012). Recent research, however, proposes that alexithymia is 

related to a rather global deficit in the transmission of emotional information (Primmer, 2013; van der Velde 

et  al.,  2013).  The  clinical  significance  of  alexithymia  entails  that  it  comes  along  with  an  increased 

vulnerability  for  psychiatric  diseases  such  as  depression  (Honkalampi  et  al.,  2000,  2001),  but  also with 

cardiovascular  illnesses  like  hypertension  (Grabe  et  al.,  2010;  Jula  et  al.,  1999).  Moreover,  HAIs  are 

sometimes reported to have a worse prognosis for the outcome of psychotherapy (e.g., Ogrodniczuk et al., 

2011, but see Rufer et al., 2010).  

Alexithymia can be directly assessed using self‐report or observer‐based methods (see Lichev et al., 2014; 

Lumley  et  al.,  2005).  The  most  important  self‐report  measure  is  the  20‐item  version  of  the  Toronto 

Alexithymia Scale (TAS‐20, Bagby et al., 1994), which consists of the three subscales difficulties  identifying 

feelings  (DIF), difficulties describing  feelings  (DDF) and an externally‐oriented style of  thinking  (EOT). The 

TAS‐20 has good psychometric properties  (Parker et al., 2003), has been  translated  into many  languages 

(e.g. Bach et al., 1996; Joukamaa et al., 2001), and is useful in research and medical settings alike due to its 

easy  and  fast  application.  However,  self‐report measures may  be  biased  with  respect  to  the  fact  that 

individuals who are unable to differentiate between their emotions should evaluate this very ability (Bagby 

et  al.,  2006;  Gündel  et  al.,  2000;  Suslow  et  al.,  2001).  Therefore,  the  developers  of  the  TAS‐20  have 

advanced  the assessment of alexithymia  to a  structured observer‐based method,  the Toronto Structured 

Interview for Alexithymia (TSIA, Bagby et al., 2006). The TSIA covers the same subscales as the TAS‐20 (DIF, 

DDF,  and  EOT),  but  additionally  integrates  the  facet  imaginal  processes.  It  is  administrated  by  a  trained 

interviewer  and  thus  provides  a  more  objective  view  on  the  participant's  alexithymic  tendencies.  In 

addition,  it  is  thought  that  self‐report  and  observer‐rated methods  tap  slightly  different  aspects  of  the 

alexithymia  construct.  Thus, many  authors  propose  to  employ  a multi‐method  approach  for  assessing 

alexithymia (Lichev et al., 2014; Lumley et al., 2005). 

                                                            4  In addition, the classifications secondary alexithymia and organic alexithymia exist. While the former is thought of 

as an emotion regulation mechanism following a psychological trauma, the latter refers to alexithymic tendencies 

following  lesions or  strokes  to emotion‐relevant brain  regions  (Messina et al., 2014). Nonetheless  these are not 

further discussed here as this dissertation only investigates effects of the personality trait alexithymia.  

Page 10: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

 

 1.2  Emotions and expressions of emotions  

Emotions are adaptive biological programs  that guide human decisions and behavior  in a wide  range of 

situations (Dolan, 2002). Emotions are elicited by certain  internal or external events or stimuli and can be 

divided  into emotional  state and  feeling. The  term emotional  state  includes behavioral and physiological 

tendencies  arising  through  the  triggering  event  as  well  as  the  cognitive  appraisal  of  the  stimulus.  In 

contrast,  the  term  feeling  refers  to  the  conscious  experience  of  the  emotional  state  comprising  the 

awareness of changes in bodily state, as well as the stimuli generating the emotion (Tsuchiya and Adolphs, 

2007). The physiological  changes elicited by an emotion  include  increases or decreases  in  cardiovascular 

activity  (e.g.  faster  heart  beats),  but  also modifications  in  the  configuration  of  the  facial muscles,  body 

posture and prosody of  the voice  (e.g. Scherer and Ellgring, 2007).  It has been argued  that certain basic 

emotions (e.g., anger, fear, happiness, disgust, sadness, surprise) exist which have particular eliciting events, 

likely  behavioral  dispositions,  patterns  of  physiological  reactions  and  appraisal  strategies  (Ekman,  1992; 

Izard,  1992).  These  emotions  and  especially  the  accompanying  facial  expressions  are  thought  to  be 

universal,  i.e.,  produced  and  recognized  independent  of  cultural  background  (e.g.  Ekman  et  al.,  1969). 

However, some authors counter that this universality of facial expressions is rather weak and bring forward 

the  argument  that  facial  expressions  are  not  always  tied  to  specific  emotions  but  also  serve  a 

communicative  role  (Russell  et  al.,  2003).  Still,  it  is  argued  that  recognition  of  facial  expressions  is  very 

valuable  to  infer emotions, beliefs  and  intentions of other people  and  thus one of  the prerequisites  for 

successful social interaction (Erickson and Schulkin, 2003). 

 1.3  Recognizing facial expressions of emotion 

Important insights into the neural processes underlying the recognition of emotions from faces come from 

the seminal work of Ralph Adolphs who investigated facial emotion processing in patients with brain lesions 

(especially amygdala) and healthy participants. He assumed that recognizing emotional facial expressions is 

achieved  through  a mix  of  parallel  and  sequential  cognitive  processes  recruiting  a multitude  of  visual, 

limbic,  somatosensory, motor  and  frontal  brain  areas  (see  Figure  1).  According  to  his model  (Adolphs, 

2002a),  initially after being confronted with an emotional  face,  the visual  information  is  transferred  from 

the superior colliculi and/or the thalamus to the amygdala, in which an initial evaluation of the significance 

of the stimulus takes place (~ 120 ms after presentation) (see also de Gelder et al., 2011; Haxby et al., 2000; 

Pessoa and Adolphs, 2010; Phillips et al., 2003). Meanwhile, the thalamus transmits the information to the 

visual cortex, where a detailed visual analysis is started (see Figure 1).  

Later (~170 ms post stimulus), information travels to areas specified in facial and motion processing in the 

temporal cortex (i.e., fusiform gyrus [FFG] and superior temporal gyrus [STG], respectively, see Haxby et al., 

2000; Kanwisher and Yovel, 2006; Kanwisher et al., 1997). In parallel, the amygdala sends the results of the 

Page 11: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

10 

 

significance evaluation  to  the basal ganglia  (especially  striatum) and hypothalamus as well as  to  ventro‐

medial  pre‐frontal  cortex  (vmPFC)  and  orbito‐frontal  cortex  (OFC),  thus  triggering  deeper  emotional 

processing and attention  shifts  towards  the perceived  stimulus. This elicits actual or  covert physiological 

reactions  via  connections  to  the  brain  stem.  Through  reciprocal  connections,  subcortical  structures 

(amygdala  and  basal  ganglia)  and OFC  transmit  affective  information  back  to  visual  and  temporal  areas 

(Adolphs,  2002a,  2002b)  for more  profound  analysis.  This  process  explains  that  emotional  compared  to 

neutral faces receive more detailed processing in visual cortices and fusiform gyrus (e.g. Dannlowski et al., 

2012; Pizzagalli et al., 2002; Vuilleumier and Pourtois, 2007).  

 

Figure 1. Neural correlates of facial emotion processing. Simplified depiction of the brain areas involved in the processing of facial expressions of emotion.  Initially  rough and automatic processing  takes place  in amygdala and visual  cortex. Thereafter, detailed visual processing of  the  facial  features  takes place  in visual and  temporal areas.  Increased processing of affective  information  is accomplished  in  subcortical  structures  and  frontal  cortex  triggering  also  physiological  reactions.  Finally,  a  detailed  holistic representation of the facial expression  is gained through concerted activation  in  limbic, frontal, sensorimotor and somatosensory areas as well as the mirror neuron system. Model is adopted from Adolphs (2002a, 2002b), but integrates, among others, also work by Haxby et al. (2000), Palermo and Rhodes (2007), van der Gaag et al. (2007) as well as Vuilleumier and Pourtois (2007). Picture of the facial expression has been taken from the Radboud face database (Langner et al., 2010). Abbreviations not mentioned  in the text so far: AMG = amygdala; Ins = Insula; SC = superior colliculi; STR = striatum; Th = Thalamus; VC = visual cortex. 

Page 12: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

11 

 

At  a  later  stage  (~300 ms  post  stimulus  presentation  and  later)  all  aspects  of  the  facial  expression  are 

processed  and  related  to  each  other.  In  particular,  frontal  regions  link  the  perceived  face  to  existing 

representations  of  emotions.  In  addition,  processing  of  the  physiological  responses  takes  place  in 

somatosensory cortex and the insula (e.g., Adolphs et al., 2000; Sel et al., 2014). Enhanced processing and 

cross‐talk between OFC, vmPFC, parts of  the anterior cingulate cortex  (ACC) and  the anterior  insula may 

ultimately create conceptual knowledge about  the  seen  face and  induce  the  same  feeling as  seen  in  the 

facial expression  (re‐feeling)  (see Heberlein and Adolphs, 2007). This  supports a precise  recognition and 

labeling  of  the  emotional  expression  (Adolphs,  2002b;  Palermo  and  Rhodes,  2007;  Phillips  et  al.,  2003; 

Tsuchiya and Adolphs, 2007; see Figure 1). Hence, an  integral of part of the recognition of the emotional 

face is overtly or covertly simulating the seen emotional expression to create an internal representation of 

the seen facial expression. This is also supported by the fact that partly overlapping brain areas are involved 

in  the  expression  of  one’s  own  emotions  and  recognizing  these  in  other  people  (shared  substrates  of 

emotion, cf. Heberlein and Atkinson, 2009).  Interestingly,  showing  facial expressions  to others also elicits 

similar muscle  reactions  in  the observer  (e.g., Dimberg et al., 2000), which may  in  turn  facilitate  internal 

simulation  of  the  seen  emotion.  This  idea  fits  nicely  to  research  on  the mirror  neuron  system. Mirror 

neurons are defined as having the properties to fire both, when accomplishing a goal‐directed movement 

and when one sees other people conducting the very same movement. This potentially allows imitation and 

learning  actions  from others  (see Rizzolatti  and Craighero, 2004; Rizzolatti, 2005,  for  reviews). Over  and 

above their function in motor actions, research in the last decade has proposed that structures with mirror‐

like properties  also play  an  important  role  in  creating  internal  representations of  facial expressions  thus 

alleviating their recognition (Carr et al., 2003; Iacoboni, 2009). Regions with mirror‐like properties  in facial 

emotion  recognition  include  pre‐motor  cortex  (PMC)  inferior  frontal  gyrus  (IFG),  STG,  insula,  middle 

temporal gyrus  (MTG),  inferior parietal  lobule as well as  superior  frontal gyrus  (SFG) and  supplementary 

motor area  (SMA)  (Iriki, 2006;  Likowski et al., 2012; van der Gaag et al., 2007). Most  importantly,  IFG  is 

thought to be a key structure in creating fast simulations of others' facial expressions in interplay with other 

areas such as the anterior insula (van der Gaag et al., 2007) (see Figure 1). From a functional point of view, 

this  proposes  recognition  from  analogy:  When  I  feel  a  certain  emotion,  this  leads  to  a  particular 

configuration of facial muscles. If I see somebody else displaying this configuration of muscles, then he must 

feel the same emotion (Iacoboni, 2009). The crucial point  is that creating an  internal representation from 

simulation speeds up this process allowing recognition with little effort (Iacoboni, 2009). A simulation of the 

seen  facial  expressions  is  necessary  to  create  a  holistic  internal  representation, which  ultimately  allows 

recognizing  the  expressed  emotion.  In  this  representation  affective,  somatosensory,  motor  and  visual 

aspects  are  integrated  through  the  concerted  activation of  limbic,  frontal,  somatosensory,  temporal  and 

occipital structures. 

Page 13: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

12 

 

Patient  and  lesion  studies  suggest  that  a  loss  of  or  less  elaborated  processing  in  one  of  the  implicated 

regions gives rise  to a  fragmented  internal representation and  thus  to deficient recognition performance. 

For example, it has been shown that lesions to or diseases affecting amygdala, ventral striatum in the basal 

ganglia  and  pre‐frontal  cortex  lead  to  a  significant  decline  in  recognizing  emotional  facial  expression 

(Adolphs et al., 2005; Calder et al., 2004, 2010; Heberlein et al., 2008; Schäfer et al., 2007; Trinkler et al., 

2013; Tsuchida and Fellows, 2012). As the system has many  interconnections and dependencies,  it hence 

seems that normal functioning in all regions is necessary for adequate performance (see also Delle‐Vigne et 

al., 2014). Significant changes in brain structure and function in the respective regions thus eventually lead 

to reductions in recognition performance of facial expressions of emotion.    

 1.4  Alexithymia and the recognition of emotional facial expressions 

As mentioned above,  it has been argued  that  the problems of HAIs  in  interpersonal problems may  stem 

from  their  reduced  ability  to  express  and  recognize  facial  expressions  (Spitzer  et  al.,  2005).  Indeed 

alexithymic tendencies are related to a decreased non‐verbal expressiveness and less automatic mimicry of 

emotional facial expressions (Sonnby‐Borgström, 2009; Troisi et al., 1996). With respect to the recognition 

of emotional facial expressions in alexithymia, many studies have been accomplished since the early 1990s. 

In  the  following  subsections,  I will  review  behavioral  as well  as  functional  and  structural  neuroimaging 

studies that are related to facial emotion  labeling  in alexithymia. Due to presumably complex  interactions 

between  (psychiatric)  diseases  and  alexithymia  only  research  studying  healthy  populations  or  reporting 

sufficient information about healthy controls (HCs) are reviewed. All studies presented employed either the 

TAS‐20, the 26‐item version of the Toronto Alexithymia Scale (TAS‐26, the precursor of the TAS‐20, Taylor et 

al., 1985) or the Bermond‐Vorst Alexithymia Questionnaire (BVAQ, Vorst and Bermond, 2001) as measure of 

alexithymia. To the best of my knowledge no study exists so far that employs the TSIA and satisfies to the 

other abovementioned criteria.  

 1.4.1  Evidence from behavioral studies 

In the last two decades, many behavioral studies on the relationship between alexithymic features and the 

ability  to  recognize  facial  expressions have been  accomplished  (for  a  recent  review,  see Grynberg et  al., 

2012).  In particular,  there  is  strong evidence  that HAIs have difficulties  in  recognizing  facial expressions, 

especially when these are presented with temporal (Parker et al., 2005; Prkachin et al., 2009; Swart et al., 

2009) and/or other perceptual constraints (Cook et al., 2013; Domes et al., 2011; Kätsyri et al., 2008). When 

the faces are presented for a  longer duration, generally no relationship between alexithymic features and 

facial emotion recognition  is found (Berenbaum and Prince, 1994; Mann et al., 1995; Mériau et al., 2006; 

Montebarocci et al., 2011; Pandey and Mandal, 1997; Parker et al., 2005). Still, it has to be mentioned that 

Page 14: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

13 

 

studying the association with large sample sizes (Lane et al., 1996, 2000) and/or including participants with 

extreme alexithymia scores (Jessimer and Markham, 1997; Mann et al., 1994; Parker et al., 1993) may even 

uncover a  relationship between alexithymia and  facial emotion  recognition at  long  stimulus presentation 

times. Based on  these  findings, Grynberg et al.  (2012) concluded  that HAIs have problems  labeling  facial 

expressions as  they cannot process  the perceptual  information  in a very short  time. The border at which 

difficulties  in  labeling occur  for HAIs has been assumed  to be  roughly between 300 ms  (Grynberg et al., 

2012) and 1 s (Parker et al., 2005).   

 1.4.2  Evidence from structural neuroimaging studies 

One reason for the difficulties of HAIs in reading emotional facial expressions may be due to morphological 

differences in brain areas of the network implicated in facial emotion recognition (see section 1.3 ). These 

alterations may reduce elaborated processing  in or  information transfer between regions of this network, 

which  in  turn  can  lead  to  severe problems when  recognizing emotions. For example, a  recent  study has 

shown  that  decreased  gray  matter  (GM)  in  amygdala,  temporal  and  frontal  cortex  predicted  worse 

performance in a facial emotion labeling task (Dean et al., 2013). This suggests that the GM profile of brain 

areas associated with the facial emotion recognition network relates to recognition performance. Increases 

in  GM  volume  reflect  an  increase  in  the  number  of  synapses,  and  not  necessarily  cell  bodies,  in  the 

respective  brain  regions  (Anderson,  2011;  Lövdén  et  al.,  2013).  Through  this,  the  generation  of  action 

potentials in the post‐synaptic cell may be facilitated. This interpretation is in keeping with studies showing 

that more GM volume comes along with better capabilities (e.g., Draganski et al., 2004; Garrido et al., 2009; 

Wenzel et al., 2014). Thus  less GM volume  in certain brain regions may be related  to a decreased neural 

information transfer within the respective structure and in interplay with other areas. If this occurs in one or 

more of the brain regions implicated in facial emotion recognition, performance probably declines.  

Up to now, five studies have investigated the morphological profile as a function of alexithymia5 in healthy 

populations (Borsci et al., 2009; Gündel et al., 2004; Heinzel et al., 2012) or reporting data of HCs (Kubota et 

al., 2011; Zhang et al., 2011). Borsci et al. (2009) found a negative association between alexithymia and GM 

                                                            5  There  are  two  further  studies on GM  volume  as  a  function of  alexithymia, however neither of  them  allows  an 

unbiased interpretation because they were not focused on alexithymia, but on the participants' age (Paradiso et al., 

2008) or the interaction between borderline personality and alexithymia (Bøen et al., 2014). Moreover, it has to be 

noted  that, by  the  time of  submission of  this dissertation, more  studies have been published  investigating  the 

relationship between alexithymia and brain morphology (Goerlich‐Dobre et al., 2014; Laricchiuta et al., 2014; van 

der Velde  et  al., 2014). However,  as  they have been published  after  the  structural neuroimaging  study  for  this 

dissertation  (Study 1,  see  section 2.1  ,  Ihme et al., 2013),  they are not presented  in  the  introduction, but  their 

results are integrated in the discussion (see section 3 ).  

Page 15: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

14 

 

volume in the ACC, MTG, STG, anterior insula and OFC. In a study comparing a schizophrenic sample with a 

healthy one, Kubota et al.  (2011)  revealed  that  the degree of alexithymia  (TAS‐20)  in  the HCs  correlated 

negatively with  the  GM  volume  in  the  bilateral  ventral  striatum.  These  findings  suggest  an  association 

between alexithymia and  reductions  in GM volume  in brain areas attributed  to  the  classical network  for 

recognizing  facial expressions  (ventral striatum, OFC, anterior  insula and ACC)  (Adolphs, 2002a; Phillips et 

al., 2003) and  temporal  regions  (MTG and STG). Decreases  in  synaptic  connectivity  in  these  regions may 

imply that crosstalk to, from and within the network can only take place to a  lesser degree or at a slower 

pace.  In  contrast,  two  other  studies  did  not  find  any  association  between  alexithymia  and GM  volume 

(Heinzel et al., 2012; Zhang et al., 2011). However, Heinzel et al. (2012) employed a correction for multiple 

testing (false discovery rate), which  is very strict on smoothed data (see Nichols and Hayasaka, 2003) and 

Zhang et al. (2011) studied a sample with TAS‐20 scores below the cut‐off for medium or high alexithymia 

(cf. Taylor et al., 1997). Therefore, these studies may have some peculiarities  in the methods, which could 

explain that no effects with respect to alexithymia were uncovered. On the contrary, the study by Gündel et 

al. (2004) investigated ACC size using a manual tracing procedure and revealed an increase in ACC size with 

increasing alexithymia. Nonetheless, manual procedures have been suspected to be susceptible to human 

errors introduced by misinterpretations of tissue boundaries (e.g., Dickstein et al., 2005; Eggert et al., 2012, 

but  see  Lövdén et  al., 2013).  Thus,  the  role of ACC  in  alexithymia  and  facial emotion  recognition  is  still 

unclear. Over and above this, another issue is striking: none of the studies revealed (or explicitly tested) any 

morphological differences in the amygdala and the FFG – two of the core structures of the model on facial 

emotion processing (Adolphs, 2002a, see also Figure 1). To sum up, structural magnetic resonance imaging 

(sMRI)  studies  so  far point  towards  reduced GM  volume  in brain  structures  implicated  in  facial emotion 

processing  (ventral  striatum,  insula, MTG, STG, OFC). Still, up  to now,  the  role of GM volume  changes  in 

several  regions,  especially  amygdala  and  FFG  (not  studied  so  far)  and  ACC  (inconsistent  results),  as  a 

function of alexithymia needs to be investigated in more detail.  

 1.4.3  Evidence from functional neuroimaging studies  

Neuronal  activity  can be  indirectly measured using magnetic  resonance  imaging due  to  its  link with  the 

blood  oxygen  level  and  the  different magnetic  properties  of  oxygenated  and  de‐oxygenated  blood.  This 

method has been  termed  functional magnetic  resonance  imaging  (fMRI) and allows measuring neuronal 

activity with a  relatively high  resolution  (~5 mm)  (e.g, Logothetis et al., 2001; Ogawa et al., 1992). Thus, 

fMRI provides  researchers with  the ability  to measure brain activity  in cortical and  subcortical  structures 

during tasks, so that it is an ideal tool to study the neural basis of facial emotion recognition.   

Although the basic brain networks supporting  facial emotion recognition are relatively well known, so  far 

little  research  has  been  accomplished  examining  this  process  in  relation  to  the  degree  of  alexithymic 

Page 16: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

15 

 

features.  Some  studies  made  use  of  the  affective  priming  paradigm,  which  evaluates  early  automatic 

processing of  facial expressions  (Murphy and Zajonc, 1993; Suslow et al., 2013).  Interestingly, employing 

this paradigm,  it has been shown that alexithymic  individuals display  less activity  in amygdala, FFG,  insula 

and STG (Duan et al., 2010; Eichmann et al., 2008; Kugel et al., 2008; Reker et al., 2010). This suggests that 

there is a deficit in information processing already at the early steps of the facial emotion recognition model 

(see Figure 1), which is reflected in less amygdala activation. Thus, at later stages less information about the 

stimulus' significance may be available giving rise to less elaborated processing. However, to the best of my 

knowledge, only two studies exist that explicitly  investigated the recognition or  labeling of facial emotions 

as  a  function  of  alexithymia.  In  the  study  by Mériau  et  al.  (2006)  participants  had  to  decide whether 

presented  pictures  of  facial  affect were  fearful  or  angry.  The  study  could  neither  reveal  differences  in 

accuracy nor in brain activation with respect to the degree of alexithymia. Yet, the faces were presented for 

a rather  long time (3.75 s), so that the task may have been too easy (cf. Grynberg et al., 2012). Moreover, 

Mériau et al. (2006) employed a correlational approach with only 23 participants (e.g., Yarkoni and Braver, 

2010,  recommend  at  least  40)  who  had  very  low  levels  of  alexithymia.  These  factors  may  limit  the 

generalizability  of  the  results.  Another  study  by  Lee  et  al.  (2011)  investigated  the  recognition  of  facial 

expressions  as  a  function  of  alexithymia  in  the  fMRI  scanner.  The  authors  revealed  differences  in  brain 

activation  in the sense that high alexithymic  individuals show a decreased activation  in the right striatum 

when confronted with angry facial expressions. Lee et al. (2011) interpreted this reduction in striatal activity 

as  reduced processing already at  the  level of production of affective states. This  in  turn may  impede  the 

interpretation of others'  facial expressions as  the  striatum  is  involved  in both producing and  recognizing 

facial emotions (Trinkler et al., 2013). However, as no behavioral responses were collected in the study, it is 

not entirely clear what the participants actually did during the experiment. Thus, the two studies on facial 

emotion recognition and alexithymia delivered interesting results, but, due to methodological peculiarities, 

these should be interpreted with caution. In particular, it is still unknown which brain regions are implicated 

when  HAIs  show  decreases  in  performance,  i.e.,  when  expressions  are  presented  with  perceptual 

constraints. Moreover, it is still unclear how HAIs can reach a similar accuracy as low alexithymic individuals 

(LAIs) when the faces are presented for a longer time, so that sufficient information is present.  

 1.5  Integration of empirical evidence and hypotheses 

In  summary,  behavioral  evidence  suggests  that  high  alexithymic  individuals  have  problems  labeling 

emotional  faces,  especially when  these  are  presented  very  briefly  or with  other  perceptual  constraints. 

Nonetheless, with  little temporal constraints and enough processing  time recognition  is possible even  for 

HAIs. Up  to now,  the neural underpinnings of  these deficits are  relatively unexplored. On  the one hand, 

research  has  shown  that  HAIs  display  less  GM  volume  in  brain  areas  important  for  facial  emotion 

Page 17: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

16 

 

recognition and that activity  in the amygdala  is reduced. On the other hand, the morphological profile of 

HAIs in core structures such as amygdala, ACC and FFG as well as the functional activation of the emotional 

face network especially in later stages of processing is largely unknown. This latter point may be specifically 

relevant  for explaining why HAIs have difficulties  in  labeling under  temporal  constraints, but are able  to 

recognize  the  facial emotion when having enough  time  for detailed processing. Thus, one  structural and 

two  functional  MRI  studies  have  been  conducted  in  order  to  further  examine  the  underlying  neural 

correlates of HAIs' difficulties in recognizing facial expressions of emotion. In particular, Study 1 investigated 

the morphological profiles of HAIs versus LAIs in several brain areas relevant to facial emotion processing in 

a group design. In this first study, the following hypothesis was tested:  

H1.    High  compared  to  low  alexithymic  individuals  show  reduced  gray matter  volume  in  brain  areas 

crucially  involved  in  the  processing  and  labeling  of  emotional  facial  expressions,  especially 

amygdala, FFG, ACC, and anterior insula.  

Moreover, Study 1  included an exploratory whole brain analysis  in order  to  reveal additional regions  that 

show differential gray matter volume between high and low alexithymic individuals. 

Study 2 investigated the link between alexithymic features and behavior as well as neural activation during 

the labeling of briefly presented emotional faces in a correlational design with 50 individuals tested for their 

degree of alexithymia using TAS‐20 and TSIA. Here, the following hypotheses were tested: 

H2.1  Individuals with  high  levels  of  alexithymic  features  show  decreased  performance when  labeling 

briefly presented facial expressions.  

H2.2 When labeling briefly presented emotional facial expressions, the participants' degree of alexithymic 

features negatively  correlates with  activation  in brain  regions previously  linked  to  facial  emotion 

recognition  such as amygdala,  striatum, anterior  insula, ACC as well as  temporal  (STG, MTG) and 

frontal structures (OFC, IFG).  

Finally, Study 3 analyzed brain activation and behavior  in 48 volunteers during  labeling of emotional facial 

expressions presented with little temporal constraints. The following hypothesis was tested:  

H3.    When labeling emotional facial expressions presented with little temporal constraints, difficulties of 

HAIs are related to increased response times instead of decreased accuracy.  

Still, it was also aimed to examine whether activation in certain neural structures indicates how alexithymic 

individuals  are  capable  of  labeling  emotional  facial  expressions when  temporal  demands  are  low.  Thus, 

Study 3 additionally includes an exploratory fMRI analysis.    

Page 18: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

17 

 

2 ORIGINAL RESEARCH ARTICLES

The  dissertation  is  based  on  three  original  research  articles,  which  are  included  as  published  in  the 

remainder of this chapter. The references for the articles are as follows:  

 

Study 1:  

Ihme K*, Dannlowski U*, Lichev V, Stuhrmann A, Grotegerd D, Rosenberg N, Kugel H, Heindel W, Arolt V, Kersting A, and Suslow T. Alexithymia  is related to differences  in gray matter volume: a voxel‐based morphometry study. Brain Research, 1491: 60–7, 2013. (*equal contribution) 

 

Study 2: 

Ihme  K,  Sacher  J,  Lichev  V,  Rosenberg N,  Kugel H,  Rufer M, Grabe HJ,  Pampel A,  Lepsien  J,  Kersting  A, Villringer A,  Lane R,  and  Suslow T. Alexithymic  features  and  the  labeling of brief emotional  facial expressions – an fMRI study. Neuropsychologia, 64: 289‐299, 2014.  

 

Study 3: 

Ihme  K,  Sacher  J,  Lichev  V,  Rosenberg N,  Kugel H,  Rufer M, Grabe HJ,  Pampel A,  Lepsien  J,  Kersting  A, Villringer A,  and  Suslow T. Alexithymia  and  the  labeling of  facial emotions:  response  slowing  and increased motor and somatosensory processing. BMC Neuroscience, 15 (1): 40, 2014. 

 

Please note  that Study 3 has been published before Study 2, so  that Study 2 already cites and discusses 

Study 3.  

Page 19: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

18 

 

 2.1  Study 1: Alexithymia  is  related  to differences  in gray matter volume  (Ihme et al., 

2013) 

Study 1 was designed and conducted  in cooperation with Udo Dannlowski and his working groups at  the 

University of Marburg and the University of Münster. As Udo Dannlowski and  I equally contributed to the 

published article, a specification of the contribution of all authors can be found in the Appendix on page 76. 

Page 20: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Available online at www.sciencedirect.com

www.elsevier.com/locate/brainres

b r a i n r e s e a r c h 1 4 9 1 ( 2 0 1 3 ) 6 0 – 6 7

0006-8993/$ - see frohttp://dx.doi.org/10

nCorrespondence toLeipzig, Germany. F

E-mail address:1 These authors

Research Report

Alexithymia is related to differences in gray mattervolume: A voxel-based morphometry study

Klas Ihmea,n,1, Udo Dannlowskib,c,1, Vladimir Licheva, Anja Stuhrmannb,Dominik Grotegerdb, Nicole Rosenberga, Harald Kugeld, Walter Heindeld,Volker Aroltb, Anette Kerstinga, Thomas Suslowa

aDepartment of Psychosomatic Medicine and Psychotherapy, University of Leipzig, GermanybDepartment of Psychiatry and Psychotherapy, University of Munster, GermanycDepartment of Psychiatry, University of Marburg, GermanydDepartment of Clinical Radiology, University of Munster, Germany

a r t i c l e i n f o

Article history:

Accepted 24 October 2012

Objective: Alexithymia has been characterized as the inability to identify and describe feelings.

Functional imaging studies have revealed that alexithymia is linked to reactivity changes in

Available online 1 November 2012

Keywords:

Alexithymia

Amygdala

Anterior cingulate cortex

Anterior insula

Fusiform gyrus

Middle temporal gyrus

Voxel-based morphometry

nt matter & 2012 Elsevie.1016/j.brainres.2012.10.0

: Department of Psychosax: þ49 341 [email protected] equally to th

a b s t r a c t

emotion- and face-processing-relevant brain areas. In this respect, anterior cingulate cortex

(ACC), amygdala, anterior insula and fusiform gyrus (FFG) have been consistently reported.

However, it remains to be clarified whether alexithymia is also associated with structural

differences. Methods: Voxel-based morphometry on T1-weighted magnetic resonance images

was used to investigate gray matter volume in 17 high alexithymics (HA) and 17 gender-

matched low alexithymics (LA), which were selected from a sample of 161 healthy volunteers

on basis of the 20-item Toronto Alexithymia Scale. Data were analyzed as statistic parametric

maps for the comparisons LA4HA and HA4LA in a priori determined regions of interests

(ROIs), i.e., ACC, amygdala, anterior insula and FFG. Moreover, an exploratory whole brain

analysis was accomplished. Results: For the contrast LA4HA, significant clusters were detected

in the ACC, left amygdala and left anterior insula. Additionally, the whole brain analysis

revealed volume differences in the left middle temporal gyrus. No significant differences were

found for the comparison HA4LA. Conclusion: Our findings suggest that high compared to low

alexithymics show less gray matter volume in several emotion-relevant brain areas. These

structural differences might contribute to the functional alterations found in previous imaging

studies in alexithymia.

& 2012 Elsevier B.V. All rights reserved.

r B.V. All rights reserved.44

omatic Medicine and Psychotherapy, University of Leipzig, Semmelweisstrasse 10 04103

ig.de (K. Ihme).e work and should be both considered first author.

1. Introduction

The construct of alexithymia, which literally means ‘‘no

words for emotion’’, has been characterized as the inability

to identify and describe feelings. Moreover, alexithymics

show an externally oriented cognitive style and mundane

fantasies (Sifneos, 1973). In order to assess alexithymia,

most studies use a convenient self-report instrument, the

Page 21: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

b r a i n r e s e a r c h 1 4 9 1 ( 2 0 1 3 ) 6 0 – 6 7 61

20-item Toronto Alexithymia Scale (TAS-20, Bagby et al.,

1994).

Despite extensive research on the neural basis of emotion

processing deficits in alexithymia, no distinct neural circuit

causing these deficits could be identified. Some researchers

argue in favor of a reduced automatic processing of emo-

tional information in alexithymia. This is reflected in dimin-

ished activity in structures involved in these automatic

processes such as amygdala, insula or sensory areas (Duan

et al., 2010; Eichmann et al., 2008; Kugel et al., 2008; Pollatos

and Gramann, 2011; Reker et al., 2010). For example, the study

of Kugel et al. (2008) reports a negative correlation between

individual TAS-20 score and amygdala reactivity to masked

emotional faces. This finding was confirmed by Reker et al.

(2010) using the same paradigm. Moreover, the work of Reker

et al. (2010) revealed reduced automatic insula activation and

reactivity of the fusiform gyrus (FFG) as a function of

alexithymia. FFG is seen as a sensory area most relevant in

face processing (Kanwisher et al., 1997; McCarthy, et al., 1997)

whose early activity can be modulated by emotions

(Pizzagalli et al., 2002; see also Adolphs, 2002). Smaller FFG

reactivity in high alexithymia has been frequently reported

(Duan et al., 2010; Eichmann et al., 2008) and might play a role

in alexithymics’ deficits in reading emotions from faces

(Parker et al., 2005). Therefore, this diminished early activity

in amygdala, insula and fusiform gyrus may lead to reduced

development of emotions in alexithymics.

However, other theories suspect that alexithymics automati-

cally generate emotional reactions, but rather direct too little

attention to these. This causes a diminished conscious experi-

ence of emotions (Lane et al., 1997; Lane, 2008). Therefore, Lane

(2008) has argued that altered functioning of the dorsal ACC

would be crucial for the development of alexithymic features.

Still, the role of the ACC is not clear, yet: whereas a recent study

(Heinzel et al., 2010) reports an increase in ACC activation to

different emotional stimuli in a group of high alexithymics

compared to low ones, other studies (Kano et al., 2003; Lane

et al., 1998; McRae et al., 2008) report diminished activity in the

ACC with increasing alexithymia.

As the insula is thought to play an eminent role in the

development of conscious feelings and empathy (Singer et al.,

2009), alexithymia might also be related to its altered function-

ing. Recently, insula activity was found to be reduced in an

empathy-for-pain experiment in high alexithymics compared

to low ones (Bird et al., 2010). Similarly, Silani et al. (2008)

reported that reduced anterior insula activity is associated with

less emotional awareness in interoception. From these findings,

it can be concluded that alexithymic traits might be linked to

difficulties to engage (anterior) insula when focusing on emo-

tions and a failure to simulate forward representations of bodily

states within the insula (Silani et al., 2008; Singer et al., 2009).

In summary, it seems that altered processing of emotional

stimuli as found in alexithymia is primarily accompanied by

reduced brain reactivity in ACC, amygdala, anterior insula as

well as in the fusiform gyrus. From this, the question arises if

there are differences in gray matter volume that might

promote the functional and behavioral differences.

This question was first examined by Gundel et al. (2004) using

a region-of-interest-(ROI)-based approach with manual tracing

of sagittal magnetic resonance images (MRI). Their study

revealed that gray matter volume in the ACC is larger in high

alexithymics than in low ones. However, the administered

manual procedure is susceptible to variance induced by human

perception of tissue boundaries. With the emergence of voxel-

based morphometry (VBM), an automated approach to investi-

gate brain morphology based on T1-weighted images was

developed. In this process, gray and white matter are auto-

matically segmented, so that their volume can be compared

voxel-wise in different brains (Ashburner and Friston, 2000). In

contradiction to Gundel et al. (2004), Borsci et al. (2009) used

VBM and found that high female alexithymics compared to low

ones show smaller ACC gray matter volume. Yet, these results

could not be confirmed by a recent VBM study examining gray

and white matter volume in a whole brain approach and in the

ACC depending on alexithymia in healthy young men (Heinzel

et al., 2011): the authors could not reject the null hypothesis of

no differences between high and low alexithymics.

Taken together, studies on structural differences in alexithy-

mia so far yielded inconsistent findings. This could result from

the different volumetric procedures (manual vs. automatic) but

also from different thresholds for statistical significance. While

Borsci et al. (2009) used a very liberal uncorrected threshold

revealing a difference, Heinzel et al. (2011) administered a

conservative false-discovery-rate-(FDR)-correction, which tends

to reduce the significance threshold in smoothed data (Nichols

and Hayasaka, 2003). The current study aims at examining size

of brain structures of high compared to low alexithymics using

the method of clustering (Forman et al., 1995) to correct for

multiple testing. This approach uses Monte Carlo simulation to

generate a null distribution of voxel activations based on the

noise for a particular model in the current search volume. From

this distribution, the probability of occurrence of a certain

cluster size (i.e., the number of contiguous voxels k) in a data

set solely consisting of noise can be determined at a particular

preset t-threshold (e.g. t¼3.39 or p¼0.001). From that, one can

empirically identify which cluster extent k can be seen as

significantly different from noise, e.g. its occurrence by chance

is less probable than 0.05. With this procedure, the assumption

is taken into account that, in comparison to noise, structural

properties like gray matter volume in specific brain areas or

interesting areas of neural activity tend to extend more than

individual voxels (Forman et al., 1995).

As functional neuroimaging studies have revealed differences

in reactivity of several brain regions in high alexithymics

compared to low, we conducted a ROI-based analysis examin-

ing gray matter volume in the ACC, amygdala, anterior insula

and fusiform gyrus. Moreover, an exploratory whole brain

analysis was calculated. In our model, we included age and

gender as covariate of nuisance to control for age- and gender-

related influences on gray matter volume.

2. Results

2.1. ROI-based analysis

For the contrast low alexithymia versus high alexithymia

(LA4HA) a significant cluster in the ACC (bilateral, cluster

size: 3565 voxels, [x¼2, y¼44, z¼�3]) was revealed. The peak

of this cluster was in the area of the subgenual ACC

Page 22: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Fig. 1 – Sagittal (x), coronal (y) and axial (z) images of the significant clusters revealed in the contrast LA4HA in neurological

view. Supra-threshold t-values (color-coded) in the respective masks are overlaid on a single T1 image template of SPM8. The

voxel-wise activation threshold is set to p¼0.05 for A–C and to p¼0.001 for D. Slice coordinates are given in the upper left

corner of each individual view. (A). Significant cluster revealed in the mask for the anterior cingulate cortex at a cluster

threshold of k¼1191. (B). Significant cluster revealed in the mask for the amygdala at k¼48. (C). Significant cluster revealed in

the mask for the anterior insula at k¼182 and (D). Significant cluster revealed in the exploratory whole brain approach at

k¼568. The cluster is located in the middle temporal gyrus.

b r a i n r e s e a r c h 1 4 9 1 ( 2 0 1 3 ) 6 0 – 6 762

extending to pregenual and dorsal regions (see Fig. 1A).

Additionally, a cluster in the left amygdala (57 voxels,

[x¼�30, y¼6, z¼�18]) and a cluster in the left anterior insula

(360 voxels, [x¼�35, y¼18, z¼6]) were detected (see Fig. 1B

and C). No significant clusters were revealed in the fusiform

gyrus. The contrast HA4LA did not expose significant differ-

ences in gray matter volume. For an overview of the results,

see Table 1.

2.2. Exploratory whole brain analysis

One cluster in the left middle temporal gyrus extending to the

occipital gyrus (1200 voxels, [x¼�48, y¼�75, z¼12]) exceeded

the significance threshold (see Table 1 and Fig. 1D) in the

contrast LA4HA. The analysis for the contrast HA4LA revealed

no significant cluster.

3. Discussion

The aim of the present study was to test whether there are

differences in gray matter volume between high and low

alexithymics in the brain. Several regions of interest deter-

mined a priori from recent neuroimaging studies, i.e., the

ACC, amygdala, anterior insula and fusiform gyrus were

investigated. In addition, an exploratory whole brain analysis

was conducted.

3.1. LA4HA: ROI-based analysis

The contrast LA4HA revealed significantly lesser gray matter

volume in high alexithymics compared to low in the ACC, the

amygdala and anterior insula. Considering the ACC, this is an

interesting finding as earlier studies examining ACC gray

matter volume in alexithymics so far yielded inconsistent

results. With our study, we support the result of Borsci et al.

(2009), who also reported a reduced GM volume in female

high alexithymics, and extend them to a mixed gender

sample. The discrepancy to the result of Heinzel et al.

(2011) could be explained by their alpha correction method:

an FDR-corrected significance level of 0.05 appears very

conservative when operating on smoothed data (Nichols

and Hayasaka, 2003). This threshold might thus have con-

cealed actual differences. The difference to Gundel et al.

Page 23: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Table 1 – Significant results for the comparisons LA4HA with age and gender as covariate.

Analysis Region Cluster level Peak level

k p Coordinates Z-score p

ROI-based ACC 3565 o.001 (2,44,�3) 3.57 o.001

Left amygdala 57 .044 (�30,6,�18) 2.8 .003

Left anterior Insula 360 .015 (�35,18,6) 2.54 .006

Whole brain left MTG 1200 .003 (�48,–75,12) 4.75 o.001

Note: ROI¼Region of interest; ACC¼anterior cingulate cortex; MTG¼middle temporal gyrus; at cluster level the cluster extent k and the

probability p of obtaining a cluster size with a voxel-wise threshold of p¼0.05 (ROI-based) or p¼0.001 (whole brain) respectively are given; at

peak level, coordinates (x,y,z) in MNI space, z-score and uncorrected p value are given for the maximum of the cluster. Only regions containing

significant clusters after correction with AlphaSim are reported. No significant clusters were revealed for the contrast HA4LA.

b r a i n r e s e a r c h 1 4 9 1 ( 2 0 1 3 ) 6 0 – 6 7 63

(2004) seems explainable by the procedures checking for

volume differences: in contrast to our automated VBM

approach, a manual procedure for tracing the ACC might

have been susceptible to variance induced by human percep-

tion of tissue boundaries (Dickstein et al., 2005). Less GM

volume in high alexithymics is consistent with many func-

tional studies investigating emotional processing in alexithy-

mia that report less ACC activity with increasing alexithymia

(e.g. Kano et al., 2003; Lane et al., 1998; McRae et al., 2008) and

support the theory of Lane et al. (1997) about a specific role of

the ACC in alexithymia. In a seminal paper on implicit and

explicit emotional processes, Lane (2008) states that the

dorsal regions of the ACC are most relevant for the manifes-

tation of alexithymic features. He supposes that alexithymia

is linked to problems in directing attention to emotions that

leads to a lack of conscious experience of emotions. Differ-

ences in GM in the dorsal region of the ACC could then be

related to attentional processes given that this dorsal part is

normally considered the cognitive or attention division of the

ACC (Bush et al., 2000). The current study underscores this

idea as the revealed cluster extends to dorsal regions. None-

theless, according to our results, also the subgenual, ventral

part of ACC shows reduced gray matter volume. It is not

surprising that this region is of relevance in alexithymia,

because it is traditionally seen to be the affective division of

the ACC (e.g Bush et al., 2000; Whalen et al., 1998). Moreover,

a lesion study by Schafer and colleagues (Schafer et al., 2007)

reports alexithymia-like syndromes in a female patient that

suffered from an infarct in the perigenual part of the ACC.

Her affected region spans a comparable area as the cluster

found in the current study. Thus, it seems that alexithymia is

related to reductions in GM across several parts of the ACC.

Studies combining functional and structural measures are

needed in order to clarify the exact involvement of the ACC

and its subdivisions.

High alexithymics compared to low show a lesser gray matter

volume in the left amygdala. The amygdala plays a significant

role during the early processing of facial emotions, especially

fear (Adolphs, 2002; Adolphs et al., 2005). Recent imaging

studies on automatic processing of facial emotions in alexithy-

mia have found a functional amygdala hyporesponsivity of high

alexithymic individuals (Kugel et al., 2008; Reker et al., 2010). In

this vein, the revealed reduced GM volume in high alexithymics

might promote the functional hyporesponsivity. However, the

amygdala is not a homogenous structure but consists of several

interconnected nuclei that also receive input from different

regions of the brain (e.g. Amunts et al., 2005; LeDoux, 2003).

Thus, it may be worthwhile to investigate the involvement of

the different nuclei in alexithymia in future studies. Addition-

ally, it could be the case that the connectivity of the amygdala

with other regions is altered as a function of alexithymia. This

could be explored using diffusion tensor imaging and (resting

state) functional connectivity as has been done in a recent work

by Baur et al. (2012) for anxiety.

The anterior insula is thought to play an eminent role in

feelings and empathy (Singer et al., 2009) and could therefore

be linked to alexithymia. Reduced (anterior) insula activity in

high alexithymics was revealed during empathy processing

(Bird et al., 2010), interoception (Silani et al., 2008) and during

automatic processing of emotional faces (Reker et al., 2010).

Moreover, the VBM study of Borsci and colleagues (2009)

reports GM volume reductions with high alexithymia, albeit

a small cluster at a fairly lenient threshold. Thus, diminished

activity of the anterior insula in high alexithymia in different

emotion processing paradigms might be due to the revealed

reduced gray matter volume in the anterior insula in high

alexithymics compared to low. Our results support this

notion by revealing decreased GM volume in high alexithy-

mics in the left anterior insula. Still, studies have to be

accomplished that compare insula activation during auto-

matic and controlled processing of emotions as a function of

alexithymia and gray matter volume to clarify the exact

involvement of the anterior insula.

Despite functional studies reporting less activation of the

fusiform gyrus in high alexithymics (Duan et al., 2010;

Eichmann et al., 2008; Reker et al., 2010), the current study did

not expose differences in gray matter between high and low

alexithymics. So it seems that this reduced activation is not

related to gray matter differences in the FFG. The FFG is a

sensory region which can be modulated by emotions (Pizzagalli

et al., 2002), but it is traditionally not seen as a part of the limbic

system. Therefore, it may be so, that reduced activation of the

FFG in high alexithymia during emotion processing is not related

to a reduced gray matter volume. It can be so, that the FFG gets

less input from limbic areas such as the amygdala, which leads

to that reduced activation. However, it may also be so, that the

mask for the FFG taken from automated anatomical labeling

(AAL) toolbox (Tzourio-Mazoyer et al., 2002) is defined too broad

to localize the regions of the FFG that play the most important

role in face processing in alexithymia. Future studies combining

functional and structural methods should investigate the invol-

vement of the FFG in alexithymia.

Page 24: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

b r a i n r e s e a r c h 1 4 9 1 ( 2 0 1 3 ) 6 0 – 6 764

3.2. LA4HA: exploratory whole brain analysis

The whole brain approach provided one significant cluster in

the left middle temporal gyrus (MTG) indicating less gray

matter (GM) volume in high alexithymics compared to low.

One earlier work reports less GM volume in the MTG with high

alexithymia (Borsci et al., 2009). Moreover, in the functional

neuroimaging study by Kano et al. (2003), activity in the left

MTG negatively correlated with the individual TAS-20 score

when viewing facial expression. In contrast, Berthoz et al.

(2002) reported increased activation in the middle temporal

gyrus in high alexithymics in a passive viewing task with

positive and negative picture of the International Affective

Picture System (IAPS; Lang et al., 1997). Although the results of

the functional studies are equivocal, they point to an involve-

ment of the middle temporal gyrus in alexithymia. This

involvement may be linked to the reduced GM volume revealed

in our study. However, the exact influence of the MTG on

emotion processing in alexithymia needs to be clarified.

3.3. HA4LA: null findings

According to our analyses (ROI-based approach and whole

brain) high alexithymics compared to low do not show larger

gray matter volume in any part of the brain. Alexithymia is

considered a deficit in emotion processing with high alex-

ithymics showing difficulties in correctly identifying and

labeling facial expression (e.g. Parker et al., 2005; Prkachin

et al., 2009). A recent VBM study has shown that the speed of

facial affect ratings is linked to GM variations in visual and

limbic areas, such as the amygdala: healthy people with less

GM volume needed more time to label the facial expression

(Dean et al., 2012). In this vein, it seems likely that higher

alexithymia is rather related to less gray matter volume in

emotion-relevant areas.

3.4. Possible biological significance of gray matterreductions

Important questions that remain to be answered about gray

matter volume reductions include their cellular basis and func-

tional implications. It has been argued that increases in gray

matter volume could reflect growth and branching of dendritic

trees and an increment in the number of synapses rather than

an increment in the number of cell bodies (Anderson, 2011). The

increased number of synapses may ease the generation of action

potentials in the post-synaptic cell. Accordingly, recent studies

on motor learning show increased gray matter volume after

acquisition of new skills (e.g., Bezzola et al., 2011). Against this

background, reduced gray matter volume in the amygdala in

high alexithymic individuals could be related to less automatic

transfer of emotional information from the amygdalae to other

brain areas as suggested by functional imaging studies (Kugel

et al., 2008; Reker et al., 2010). Less volume in ACC and anterior

insula in alexithymia may contribute by lowered cell connectiv-

ity to less emotional experience as suggested by Lane et al.

(1998), Lane (2008) and others (Silani et al., 2008; Singer et al.,

2009). However, since our understanding of the basic biology

behind gray matter volume reductions is still very limited the

abovementioned assumptions are clearly speculative. Future

research using, for example, animal models has to be accom-

plished to further clarify the relationship between gray matter

volume as revealed by MRI and cellular properties in the brain

(Anderson, 2011).

3.5. Gender differences and alexithymia

Since there seem to be gender differences in emotional

processing (see, e.g., Donges et al., 2012), it may be so, that

differences in morphology of emotion-relevant brain regions

are due to gender. We controlled for this by (1) examining

gender-matched groups and (2) entering gender as a covariate

in our analysis. Interestingly, findings from a recent study

(Campanella et al., 2012) indicate that sex differences in

emotional processing can be predicted by the level of alex-

ithymia (and depression). Therefore, it seems likely that the

revealed reductions in gray matter in our study are really

related to alexithymia, not to gender. Our sample size did not

allow us to stratify between gender and alexithymia (the

group sizes would drop to eight and nine subjects which is

substantially below the recommended group size of 16–32

individuals in neuroimaging studies; see Friston (2012)).

3.6. Limitations

As a limitation, it shall be mentioned that there have been

concerns whether a self-descriptive questionnaire, such as

the TAS-20, is able to tap people’s difficulties in describing

and identifying feelings (Gundel et al., 2000; Suslow et al.,

2001). Performance- and observer-based procedures such as

the Levels of Emotional Awareness Scale (LEAS, Lane et al.,

1990) and the Toronto Structured Interview for Alexithymia

(TSIA, Bagby et al., 2006) have to be administered in future

studies to reach more definite conclusions about the relation-

ship between alexithymia and brain morphology.

As alexithymia is a personality trait normally distributed

among the population (Franz et al., 2008), it may be interesting

to examine brain morphology as a function of alexithymia

based on a correlational design which requires large samples.

In our study, we chose an extreme group comparison in order

to be more sensitive to the effects of alexithymia because our

participant pool included mostly individuals with TAS-20

scores in the range of low alexithymia. In the future, studying

larger samples with a significant number of individuals

characterized by high alexithymia in correlational designs

could add valuable insights about the effects of alexithymia

on brain morphology. As a side effect, large study samples

would also resolve problems with nuisance variables in SPM

correlation analyses which emerge in small samples.

4. Conclusion

To conclude, alexithymia is associated with smaller gray

matter volume in ACC, amygdala and anterior insula as well

as in the left MTG. Since all these regions have previously

been shown to be engaged in different stages of emotional

processing, alexithymics’ alterations in emotion processing

may—to some extent—be promoted by these structural

reductions.

Page 25: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Table 2 – Socio-demographic description of the sample.

HA LA T-statistics

t (d.f.) p

N (females) 17 (8 f.) 17 (8 f.)

Age 36 (11) 40 (12) t(32)¼1.1 .26

TAS 54.4 (5.9) 26.6 (2.0) t(19.6)¼�18.5 o.001n

BDI 1.4 (1.9) 1.5 (1.6) t(32) ¼ .1 .9

Note: N¼Sample size; HA¼High alexithymics; LA¼Low alexithymics; Age¼Age in years; TAS¼Score on 20-item Toronto Alexithymia Scale;

BDI¼Score on Beck Depression Inventory. For Age, TAS and BDI mean (and standard deviation) is given. Significant differences are marked

with an asterisk.

All participants were right-handed and had a BDI o11.

b r a i n r e s e a r c h 1 4 9 1 ( 2 0 1 3 ) 6 0 – 6 7 65

5. Experimental procedure

5.1. Participants

161 healthy volunteers completed a battery of psychological

instruments including the TAS-20 (Bach et al., 1996) and the

Beck Depression Inventory (BDI, Hautzinger et al., 1995).

Seven individuals had to be excluded due to missing data.

Of the remaining 154, 17 (eight female) participants had a

TAS-20 score greater or equal to 50 and were classified as high

alexithymic (HA). A gender-matched group (n¼17) of low

alexithymics (LA) was selected from the individuals showing

lowest TAS-20 values in the sample. Both groups differed

significantly in terms of their TAS-20 score but not in terms of

their age or BDI score. None of the selected participants had a

BDI 411 and any history of psychiatric, neurological and

severe medical illness or abuse of psychoactive substances.

See Table 2 for an overview of the socio-demographic char-

acteristics of study participants.

The study was conducted in accordance with the Declara-

tion of Helsinki. It was approved by the Ethics Committee of

the University of Muenster and written informed consent was

obtained from all participants prior to the commencement of

the study.

5.2. Data acquisition

Participants were scanned at a 3 T scanner (Gyroscan Intera

3T, Philips Medical Systems, Best, The Netherlands). T1-

weighted high resolution anatomical images were acquired

with a 3D fast gradient echo sequence (‘Turbo Field Echo’,

TFE), TR¼7.4 ms, TE 3.4 ms, FA¼91, 2 signal averages, contrast

augmented by an inversion prepulse every 814.5 ms, acquired

over a field of view of 256 mm (FH)�204 mm (AP)�160 mm

(RL), phase encoding in AP and RL direction, acquired voxel

size 1.0 m�1.0 mm�1.0 mm, reconstructed by zero padding

(spectral interpolation) to cubic voxels of 0.5 mm edge length.

5.3. Preprocessing

The VBM8-toolbox (version 419; http://dbm.neuro.uni-jena.

de/vbm) was used for preprocessing the structural images

with default parameters. Images were bias-corrected, tissue

classified (Ashburner and Friston, 2005) including high-

dimensional Diffeomorphic Anatomical Registration Through

Exponentiated Lie algebra (DARTEL) normalization. As the

DARTEL template is in MNI space, data was transformed into

MNI space in this step. Gray and white matter (WM) segments

were modulated only by the non-linear components in order

to preserve actual GM and WM values locally (modulated GM

and WM volumes). The modulated GM images are corrected

for individual brain size when using the default parameters

of VBM8. The gray matter images were smoothed with a

Gaussian kernel of 8 mm FWHM. Homogeneity of gray matter

images was checked using the covariance structure of each

image with all other images, as implemented in the check

data quality function. None of the participants showed any

anatomical abnormalities or artifacts in the images.

5.4. Data analysis

All statistical models and tests were analyzed using Statis-

tical Parametric Mapping 8 (SPM8; http://www.fil.ion.ucl.ac.

uk/spm/software/spm8/). The masks for the ACC, the amyg

dala and the fusiform gyrus were defined according to the

automated anatomical labeling (AAL) toolbox (Tzourio-

Mazoyer et al., 2002) as implemented in the WFU Pick Atlas

(Maldjian et al., 2003) using SPM8. As the ROI for the insula in

the AAL is not subdivided into an anterior and a posterior

part and the anterior insula is thought to be most important

for alexithymia, we decided to define a ROI based on the

results of the study of Silani et al. (2008). A sphere with a

radius of 10 mm was drawn around the MNI coordinates of

their revealed maximum of activation in the left anterior

insula (center: [x¼�32, y¼30, z¼2]) and analog for the right

anterior insula (center: [x¼32, y¼20, z¼2]). Utilizing t-con

trasts, gray matter was compared between HA and LA. In

order to control for gray matter volume changes related to

age and gender, these factors were included as nuisance

covariate in the model. Given our a-priory hypotheses, a

ROI-based analysis was accomplished on the ACC, the amyg

dala, the fusiform gyrus and the anterior insula. Monte Carlo

simulations (AlphaSim, Ward, 2000; as implemented in the

Resting-State fMRI Data Analysis Toolkit REST V1.6, http://

restfmri.net/) were used to determine a cluster size threshold

(k) in order to maintain a cluster corrected significance level

of po0.05, given a voxel-wise threshold of po0.05 (uncor

Page 26: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

b r a i n r e s e a r c h 1 4 9 1 ( 2 0 1 3 ) 6 0 – 6 766

rected) for each bilateral ROI. Two supra-threshold voxels are

declared to belong to one cluster if they are no more than 2.

2 mm away from each other. The inherent smoothness of the

individual ROIs was calculated on the model residuals using the

Matlab function y_Smoothest, which is provided by the REST

developers on their website (http://pub.restfmri.net/index.

php?dir=&file=Programs_YAN.zip). Based on these parameters,

significant cluster sizes were as follows: k¼1191 for the ACC,

k¼48 for the amygdala, k¼182 for the anterior insula, and

k¼671 for fusiform gyrus. Additionally an exploratory whole

brain analysis was accomplished. For this po0.001 was chosen

in order to preserve local specificity in the clusters. Using

AlphaSim, the empirically determined cluster threshold was

k¼568 voxels.

As sub-clinical depression is strongly associated with the

TAS-20 score (Honkalampi et al., 2000) and thus may influence

the results, we also calculated a model with BDI as additional

nuisance covariate. This did not change the findings substan-

tially, so that results are not presented and discussed.

Acknowledgment

The authors thank Dr. Bertram Walter from the Bender Institute

for Neuroimaging, Gießen, Germany, for some helpful advice on

the statistical methods employed. We thank Mrs. Nina Nagel-

mann for her skillful technical support during the MRI data

acquisition. This work was supported by a grant from the

German Research Foundation [SU 222/6-1] to Thomas Suslow

and Harald Kugel and a grant from fund Innovative Medical

Research of the University of Munster Medical School [IMF

DA211012; DA120903; DA111107] to Udo Dannlowski.

r e f e r e n c e s

Adolphs, R., 2002. Neural systems for recognizing emotion. Curr.Opin. Neurobiol. 12, 169–177.

Adolphs, R., Gosselin, F., Buchanan, T.W., Tranel, D., Schyns, P.,Damasio, A.R., 2005. A mechanism for impaired fear recogni-tion after amygdala damage. Lett. Nat. 433, 68–72.

Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H.,Shah, N.J., Habel, U., et al., 2005. Cytoarchitectonic mappingof the human amygdala, hippocampal region and entorhinalcortex: intersubject variability and probability maps. Anat.Embryol. 210 (5–6), 343–352.

Anderson, B.J., 2011. Plasticity of gray matter volume: the cellularand synaptic plasticity that underlies volumetric change. Dev.Psychobiol. 53 (5), 456–465, http://dx.doi.org/10.1002/dev.20563.

Ashburner, J., Friston, K.J., 2000. Voxel-based morphometry—themethods. NeuroImage 11 (6), 805–821.

Ashburner, J., Friston, K.J., 2005. Unified segmentation. Neuro-Image 26 (3), 839–851.

Bach, M., Bach, D., de Zwaan, M., Serim, J., Bohmer, J., 1996.Validierung der deutschen Version der 20-item Toronto Alex-ithymie Skala bei Normalprobanden und psychiatrischenpatienten. Psychother. Psychosom. Med. Psychol. 46, 23–28.

Bagby, R.M., Parker, J.D.A., Taylor, G.J., 1994. The twenty-itemToronto alexithymia scale-I. Item selection and cross-validation of the factor structure. J. Psychosom. Res. 38 (1),23–32.

Bagby, R.M., Taylor, G.J., Parker, J.D.A., Dickens, S.E., 2006. Thedevelopment of the Toronto structured interview for

alexithymia: item selection, factor structure, reliability and

concurrent validity. Psychother. Psychosom. 75 (1), 25–39.

Baur, V., Hanggi, J., Langer, N., Jancke, L., 2012. Resting-statefunctional and structural connectivity within an insula-

amygdala route specifically index state and trait anxiety. Biol.

Psychiat..Berthoz, S., Artiges, E., van de Moortele, P.-F., Poline, J.-B., Rouquette,

S., Consoli, S.M., Martinot, J.-L., 2002. Effect of impaired recogni-

tion and expression of emotions on frontocingulate cortices: anfMRI study on men with alexithymia. Am. J. Psychiat. 159,

961–967.Bezzola, L., Merillat, S., Gaser, C., Jancke, L., 2011. Training-induced

neural plasticity in golf novices. J. Neurosci. 31 (35), 12444–12448,

http://dx.doi.org/10.1523/JNEUROSCI.1996-11.2011.Bird, G., Silani, G., Brindley, R., White, S., Frith, U., Singer, T., 2010.

Empathic brain responses in insula are modulated by levels of

alexithymia but not autism. Brain 133 (5), 1515–1525.Borsci, G., Boccardi, M., Rossi, R., Rossi, G., Perez, J., Bonetti, M.,

Frisoni, G.B., 2009. Alexithymia in healthy women: a brain

morphology study. J. Affect. Disord. 114 (1–3), 208–215.Bush, G., Luu, P., Posner, M.I., 2000. Cognitive and emotional

influences in anterior cingulate cortex. Trends Cogn. Sci. 4 (6),

215–222.Campanella, S., Falbo, L., Rossignol, M., Grynberg, D., Balconi, M.,

Verbanck, P., Maurage, P., 2012. Sex differences on emotional

processing are modulated by subclinical levels of alexithymiaand depression: a preliminary assessment using event-related

potentials. Psychiat. Res. 197 (1–2), 145–153, http://dx.doi.org/

10.1016/j.psychres.2011.12.026.Dean, A.M., Goodby, E., Ooi, C., Nathan, P.J., Lennox, B.R., Scoriels, L.,

Shabbir, S., et al., 2012. Speed of facial affect intensity recognition

as an endophenotype of first-episode psychosis and associatedlimbic-cortical grey matter systems, 1–12, http://dx.doi.org/

10.1017/S0033291712001341Psychol. Med., 1–12, http://dx.doi.org/

10.1017/S0033291712001341.Dickstein, D.P., Milham, M.P., Nugent, A.C., Drevets, W.C., Charney,

D.S., Pine, D.S., Leibenluft, E., 2005. Frontotemporal alterations in

pediatric bipolar disorder: results of a voxel-based morphometrystudy. Arch. Gen. Psychiatry 62 (7), 734–741.

Donges, U.-S., Kersting, A., Suslow, T., 2012. Women’s greater abilityto perceive happy facial emotion automatically: gender differ-

ences in affective priming. PloS one 7 (7), e41745, http://dx.doi.org/

10.1371/journal.pone.0041745.Duan, X., Dai, Q., Gong, Q., Chen, H., 2010. Neural mechanism of

unconscious perception of surprised facial expression. Neuro-

Image 52 (1), 401–407.Eichmann, M., Kugel, H., Suslow, T., 2008. Difficulty identifying

feelings and automatic activation in the fusiform gyrus in

response to facial emotion. Percept. Mot. Skills 107 (3), 915–922.Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A.,

Noll, D.C., 1995. Improved assessment of significant activation

in functional magnetic resonance imaging (fMRI): use of acluster-size threshold. Magnet. Reson. Med. 33 (5), 636–647.

Franz, M., Popp, K., Schaefer, R., Sitte, W., Schneider, C., Hardt, J.,

Decker, O., et al., 2008. Alexithymia in the German generalpopulation. Soc. Psych. Psych. Epid. 43 (1), 54–62.

Friston, K., 2012. Ten ironic rules for non-statistical reviewers.

NeuroImage 61 (4), 1300–1310, http://dx.doi.org/10.1016/j.neuro-image.2012.04.018.

Gundel, H., Ceballos-Baumann, A.O., von Rad, M., 2000. Aktuelle

Perspektiven der Alexithymie. Nervenarzt 71 (3), 151–163.Gundel, H., Lopez-Sala, A., Ceballos-Baumann, A.O., Deus, J.,

Cardoner, N., Marten-Mittag, B., Soriano-Mas, C., et al., 2004.

Alexithymia correlates with the size of the right anteriorcingulate. Psychosom. Med. 66 (1), 132–140.

Hautzinger, M., Bailer, M., Worall, H., Keller, F., 1995. Beck-

Depressions-Inventar (BDI). Hans Huber, Bern.

Page 27: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

b r a i n r e s e a r c h 1 4 9 1 ( 2 0 1 3 ) 6 0 – 6 7 67

Heinzel, A., Minnerop, M., Schafer, R., Muller, H.-W., Franz, M.,Hautzel, H., 2011. Alexithymia in healthy young men: a voxel-based morphometric study. J. Affect. Disord. 136 (3),1252–1256.

Heinzel, A., Schafer, R., Muller, H.-W., Schieffer, A., Ingenhag, A.,Northoff, G., Franz, M., et al., 2010. Differential modulation ofvalence and arousal in high-alexithymic and low-alexithymicindividuals. Neuroreport 21 (15), 998–1002.

Honkalampi, K., Hintikka, J., Tanskanen, A., Lehtonen, J., Viinamaki,H., 2000. Depression is strongly associated with alexithymia inthe general population. J. Psychosom. Res. 48 (1), 99–104.

Kano, M., Fukudo, S., Gyoba, J., Kamachi, M., Tagawa, M., Mochizuki,H., Itoh, M., et al., 2003. Specific brain processing of facialexpressions in people with alexithymia: an H215O-PET study.Brain 126 (6), 1474–1484.

Kanwisher, N., McDermott, J., Chun, M.M., 1997. The fusiformface area: a module in human extrastriate cortex specializedfor face perception. J. Neurosci. 17 (11), 4302–4311.

Kugel, H., Eichmann, M., Dannlowski, U., Ohrmann, P., Bauer, J.,Arolt, V., Heindel, W., et al., 2008. Alexithymic features andautomatic amygdala reactivity to facial emotion. Neurosci.Let. 435 (1), 40–44.

Lane, R.D., Ahern, G.L., Schwartz, G.E., Kaszniak, A.W., 1997. Isalexithymia the emotional equivalent of blindsight?. Biol.Psychiat. 42 (9), 834–844.

Lane, R.D., Quinlan, D., Schwartz, G., Walker, P., Zeitlin, S., 1990.The levels of emotional awareness scale: a cognitive-developmental measure of emotion. J. Pers. Assess. 55 (1),124–134.

Lane, R.D., Reiman, E.M., Axelrod, B., Yun, L.-S., Holmes, A.,Schwartz, G.E., 1998. Neural correlates of levels of emotionalawareness: evidence of an interaction between emotion andattention in the anterior cingulate cortex. J. Cogn. Neurosci. 10(4), 525–535.

Lane, R., 2008. Neural substrates of implicit and explicit emo-tional processes: a unifying framework for psychosomaticmedicine. Psychosom. Med. 70 (2), 214–231, http://dx.doi.org/10.1097/PSY.0b013e3181647e4.

Lang, P.J., Bradley, M.M., Cuthbert, B.N., 1997. In: InternationalAffective Picture System (IAPS): Technical Manual and Affec-tive Ratings. University of Florida, Center for Research inPsychophysiology, Gainsville.

LeDoux, J.E., 2003. The emotional brain, fear, and the amygdala.Cell. Mol. Neurobiol. 23 (4), 727–738.

Maldjian, J.A., Laurienti, P.J., Kraft, R.A., Burdette, J.H., 2003. Anautomated method for neuroanatomic and cytoarchitectonicatlas-based interrogation of fMRI data sets. NeuroImage 19 (3),1233–1239.

McCarthy, G., Puce, A., Gore, J.C., Allison, T., 1997. Face-specificprocessing in the human fusiform gyrus. J. Cogn. Neurosci 9(5), 605–610.

McRae, K., Reiman, E.M., Fort, C.L., Chen, K., Lane, R.D., 2008.Association between trait emotional awareness and dorsal

anterior cingulate activity during emotion is arousal-dependent. NeuroImage 41 (2), 648–655.

Nichols, T., Hayasaka, S., 2003. Controlling the familywise errorrate in functional neuroimaging: a comparative review. Stat.Methods Med. Res. 12 (5), 419–446.

Parker, P.D., Prkachin, K.M., Prkachin, G.C., 2005. Processing offacial expressions of negative emotion in alexithymia: theinfluence of temporal constraint. J. Pers. 73 (4), 1087–1107.

Pizzagalli, D.A., Lehmann, D., Hendrick, A.M., Regard, M., Pascual-Marqui, R.D., Davidson, R.J., 2002. Affective judgments of facesmodulate early activity (o160 ms) within the fusiform gyri.NeuroImage 16 (3), 663–677.

Pollatos, O., Gramann, K., 2011. Electrophysiological evidence ofearly processing deficits in alexithymia. Biol. Psychol. 87 (1),113–121.

Prkachin, G.C., Casey, C., Prkachin, K.M., 2009. Alexithymia andperception of facial expressions of emotion. Pers. Indiv. Differ.46 (4), 412–417, http://dx.doi.org/10.1016/j.paid.2008.11.010.

Reker, M., Ohrmann, P., Rauch, A.V., Kugel, H., Bauer, J., Dann-lowski, U., Arolt, V., et al., 2010. Individual differences inalexithymia and brain response to masked emotion faces.Cortex 46, 658–667.

Schafer, R., Popp, K., Jorgens, S., Lindenberg, R., Franz, M., Seitz,R.J., 2007. Alexithymia-like disorder in right anterior cingulateinfarction. Neurocase 13 (3), 201–208, http://dx.doi.org/10.1080/13554790701494964.

Sifneos, P.E., 1973. The prevalence of alexithymic characteristicsin psychosomatic patients. Psychother. Psychosom. 22 (2-6),255–262.

Silani, G., Bird, G., Brindley, R., Singer, T., Frith, C., Frith, U., 2008.Levels of emotional awareness and autism: an fMRI study.Soc. Neurosci. 3 (2), 97–112.

Singer, T., Critchley, H.D., Preuschoff, K., 2009. A common role ofinsula in feelings, empathy and uncertainty. Trends. Cogn. Sci.13 (8), 334–340.

Suslow, T., Kersting, A., Ohrmann, P., Arolt, V., 2001. [A critique ofthe construct ‘‘alexithymia’’ and its measurement—the weak-ness of self-report and the opportunities of an objective assess-ment approach]. Z. Psychosom. Med. Psychother. 47 (2), 153–166.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F.,Etard, O., Delcroix, N., Mazoyer, B., et al., 2002. Automatedanatomical labeling of activations in SPM using a macroscopicanatomical parcellation of the MNI MRI single-subject brain.NeuroImage 15 (1), 273–289, http://dx.doi.org/10.1006/nimg.2001.0978.

Ward, B.D., 2000. Simultaneous Inference for FMRI Data, retrievedon Nov, 23, 2011 from /http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdfS.

Whalen, P.J., Bush, G., McNally, R.J., Wilhelm, S., McInerney, S.C.,Jenike, M.A., Rauch, S.L., 1998. The emotional counting Stroopparadigm: a functional magnetic resonance imaging probe ofthe anterior cingulate affective division. Biol. Psychiat. 44 (12),1219–1228.

Page 28: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

27 

 

 2.2  Study 2: Alexithymic features and the labeling of brief emotional facial expressions 

– an fMRI study (Ihme et al., 2014a) 

Study  2  was  designed  and  conducted  within  a  research  project  supported  by  a  grant  of  the  German 

research  foundation  (Deutsche  Forschungsgemeinschaft)  to  Thomas  Suslow  and  Harald  Kugel  (grant 

number SU 222/6‐1). The supplementary materials of Study 2 can be found in the Appendix on page 77.  

   

Page 29: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Alexithymic features and the labeling of brief emotional facialexpressions – An fMRI study

Klas Ihme a, Julia Sacher b,c, Vladimir Lichev a, Nicole Rosenberg a, Harald Kugel d,Michael Rufer e, Hans-Jörgen Grabe f,g, André Pampel h, Jöran Lepsien h, Anette Kersting a,Arno Villringer b,c, Richard D. Lane i, Thomas Suslow a,j,n

a Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Semmelweisstr. 10, 04103 Leipzig, Germanyb Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germanyc Clinic of Cognitive Neurology, University of Leipzig, Liebigstraße 16, 04103 Leipzig, Germanyd Department of Clinical Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germanye Department of Psychiatry and Psychotherapy, University Hospital Zurich, Culmannstr. 8, 8091 Zurich, Switzerlandf Department of Psychiatry, University of Greifswald, Ellernholzstr. 1-2, 17475 Greifswald, Germanyg Department of Psychiatry, HELIOS Hospital Stralsund, Rostocker Chaussee 70, 18437 Stralsund, Germanyh Nuclear Magnetic Resonance Unit, Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germanyi Department of Psychiatry, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USAj Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster, Germany

a r t i c l e i n f o

Article history:Received 26 May 2014Received in revised form18 August 2014Accepted 24 September 2014Available online 2 October 2014

Keywords:AlexithymiaEmotional facial expressionsStriatumToronto Alexithymia ScaleToronto Structured Interview forAlexithymia

a b s t r a c t

The ability to recognize subtle facial expressions can be valuable in social interaction to infer emotionsand intentions of others. Research has shown that the personality trait of alexithymia is linked todifficulties labeling facial expressions especially when these are presented with temporal constraints.The present study investigates the neural mechanisms underlying this deficit. 50 young healthyvolunteers had to label briefly presented (r100 ms) emotional (happy, angry, fearful) facial expressionsmasked by a neutral expression while undergoing functional magnetic resonance imaging (fMRI). Amulti-method approach (20-Item Toronto Alexithymia Scale and Toronto Structured Interview forAlexithymia) was administered to assess alexithymic tendencies. Behavioral results point to a globaldeficit of alexithymic individuals in labeling brief facial expressions. Alexithymia was related todecreased response of the ventral striatum to negative facial expressions. Moreover, alexithymia wasassociated with lowered activation in frontal, temporal and occipital cortices. Our data suggest thatalexithymic individuals have difficulties in creating appropriate representations of the emotional state ofother persons under temporal constraints. These deficiencies could lead to problems in labeling otherpeople's facial emotions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Being able to recognize non-verbal cues and especially emo-tional facial expressions of others is very important to understandintentions, emotions and beliefs of fellow human beings andtherefore a prerequisite for the ability to interact socially(Erickson and Schulkin, 2003). Research in the last decades hasshown that processing facial expressions requires the recruitmentof several cortical and subcortical structures. In addition to areasimplicated in vision and processing of visual information from theface (e.g., occipital areas, superior temporal, and fusiform gyrus),

brain regions involved in experiencing and feeling emotions are alsothought to be crucial when processing facial expressions of others(Adolphs, 2002a; Heberlein and Adolphs, 2007; Heberlein andAtkinson, 2009). Specifically, these include motor areas which arerelated to the simulation of changes in the configuration of facialmuscles and parts of the somatosensory network (e.g., primarysomatosensory cortex, posterior insula) for simulation of proprio-ceptive feedback related to the seen emotion (Adolphs et al., 2000,2002a; Sel et al., 2014). Frontal and limbic areas play an important role in reenacting and feeling the according emotion(e.g., amygdala, striatum, frontal areas, anterior insula) (Adolphs,2002a; Heberlein and Adolphs, 2007; Trinkler et al., 2013). Inaddition, structures like the inferior frontal gyrus, insula, middleand superior temporal gyrus as well superior frontal and pre-motorareas are thought to be involved in the production and feeling ofemotions, but also in recognizing these in others (Iriki, 2006;

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neuropsychologia

Neuropsychologia

http://dx.doi.org/10.1016/j.neuropsychologia.2014.09.0440028-3932/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author at: Department of Psychosomatic Medicine andPsychotherapy, University of Leipzig, Semmelweisstr. 10, 04103 Leipzig, Germany.Tel.: þ49 341 9718891; fax: þ49 341 9718849.

E-mail address: [email protected] (T. Suslow).

Neuropsychologia 64 (2014) 289–299

Page 30: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Van der Gaag et al., 2007). In sum, the concerted activation of theaforementioned brain areas creates a holistic representation of theemotional expression of the other person based on affective, motorand sensory processing and simulation (Van der Gaag et al., 2007).Given that the same regions are involved in recognizing one’s ownemotions and those of others (Heberlein and Adolphs, 2007;Heberlein and Atkinson, 2009), it is well possible that individualswho have difficulties in recognizing and describing own feelingsalso have problem to label facials expressions of others.

Alexithymia, which literally translates to “no words for emo-tions”, is a personality trait that has been characterized as theinability to identify and describe feelings. Moreover, alexithymicindividuals show an externally oriented cognitive style accompa-nied by a reduced imaginary life (Sifneos, 1973; Taylor, 2000). Ithas been found that alexithymic features are linked to interperso-nal problems (Spitzer et al., 2005) as well as poorer social skillsand little perceived social support (Lumley et al., 1996). Given theimportance of non-verbal cues, such as facial expressions, in socialinteraction, Spitzer et al. (2005) proposed that difficulties ininterpersonal relationships of alexithymic individuals may resultfrom problems to express own emotions and reliably label facialexpressions of others. Indeed, recent studies have shown thatalexithymia is related to poor non-verbal expressiveness (Troisiet al., 1996) and less automatic mimicry of facial expressions(Sonnby-Borgström, 2009). Concerning the labeling of facial emo-tions, it has been reported that alexithymic tendencies are asso-ciated with decreased performance in terms of labeling accuracy,especially when the faces are presented under temporal (Cooket al., 2013; Parker et al., 2005; Swart et al., 2009) or otherperceptual (Kätsyri et al., 2008) constraints. Under conditionswith little or no constraints some studies have reported a relation-ship between recognition accuracy and alexithymia (e.g., Laneet al., 1996, 2000; Mann et al., 1994; Parker et al., 1993), whileothers did not reveal such correlations (e.g., Mann et al., 1995;Pandey and Mandal, 1997). Indeed, the duration of face presenta-tion at which labeling performance of alexithymic individualsdeclines has been determined to be between 300 ms (Grynberget al., 2012) and 1 s (Parker et al., 2005). Taken together, alex-ithymic individuals show decreased recognition accuracy underconditions of perceptual or temporal constraints and little or noaccuracy abnormalities when emotional facial expressions areclearly visible and presented for long durations.

Two previous studies have investigated the neural underpin-nings of the difficulties of alexithymic individuals in recognizingfacial expressions, however only with relatively long stimuluspresentation times of 3.73 s (Mériau et al., 2006) and 1 or 3 s(Ihme et al., 2014). Importantly, neither of the studies found arelationship between alexithymia and labeling accuracy. In addi-tion, Mériau et al. (2006) did not reveal neural activity related tothe degree of alexithymia which could be due to a relatively lownumber of 23 participants in a correlational design (Yarkoni andBraver, 2010, recommend at least 40 participants). Furthermore,alexithymic tendencies were only assessed using self-report,although measuring alexithymia with a multi-method approachis desirable (Lichev et al., 2014; Lumley et al., 2005; Taylor andBagby, 2004). Interestingly, using a multi-method approach toassess alexithymia, we recently revealed that response latencieswhen labeling facial expressions are increased in alexithymia(Ihme et al., 2014). Moreover, alexithymic features correlated withincreased activation in brain areas related to somatosensory andmotor processing during the labeling of facial emotions. Thisindicates that alexithymic individuals rely on information relatedto the bodily configuration of the facial expression rather thanaffective cues when inferring others' emotions (Ihme et al., 2014,see also Laricchiuta et al., in press; Moriguchi and Komaki, 2013).This mechanism presumably enables alexithymic individuals to

correctly label facial expressions presented with little temporalconstraints. However, when temporal constraints increase andfaces are presented for less than 1 s (Grynberg et al., 2012;Parker et al., 2005), performance decreases suggests that theincreased processing of bodily features does not work anymore,as alexithymic individuals may need more perceptual informationto process emotional facial expressions (Grynberg et al., 2012).Interestingly, to the best of our knowledge, no studies exist thatinvestigate the neural mechanisms of labeling brief facial expres-sions as a function of alexithymic features. In some studies facialexpressions were presented only for 33 ms and masked by neutralexpressions and brain response to these very brief facial expres-sions was examined as a function of self-reported alexithymia(Duan et al., 2010; Eichmann et al., 2008; Kugel et al., 2008; Rekeret al., 2010). It was observed that alexithymia is related todecreased activation in the amygdala, insula, fusiform gyrus andsuperior temporal gyrus. These findings suggest that alexithymicindividuals encode affective information to a lesser degree at avery early stage of processing. Still, these latter studies investi-gated automatic or non-conscious processing of affective informa-tion using affective priming paradigms (see Murphy and Zajonc,1993; Suslow et al., 2013) and were not interested in processesrelated to labeling facial expressions.

The aim of the present functional magnetic resonance imaging(fMRI) study was to elucidate the neural processes involved in thedifficulties of alexithymic individuals to explicitly label facialemotions (as opposed to the neural processes related to automaticaffective reactions as assessed in the studies of Duan et al., 2010,Eichmann et al., 2008, Kugel et al., 2008, and Reker et al., 2010).Different from prior neuroimaging studies (Ihme et al., 2014;Mériau et al., 2006), we presented facial expressions only brieflyfor 66 and 100 ms which are presentation durations for which analexithymia-related accuracy deterioration in labeling perfor-mance is highly likely (cf. Grynberg et al., 2012). We hypothesizedthat alexithymic features are negatively related to labeling accu-racy and activation in brain areas that are implicated in creating arepresentation of the emotional state of other persons.

2. Methods

2.1. Participants

Fifty-two healthy young German native speakers (26 women, aged between 18and 29 years) participated in the study. All of them were right-handed and hadnormal or corrected-to-normal visual acuity. None of the participants had anyhistory of neurological (according to self-report) or psychiatric illnesses (StructuredClinical Interview for DSM-IV Axis I disorders [SCID-I]; Wittchen et al., 1997) orcontraindications for magnetic resonance imaging. The procedure of the study wasexplained to participants before the experiment. All participants gave writtenconsent to participate and were financially compensated upon completion of thestudy. The study's procedure was approved by the ethics committee of theUniversity of Leipzig, Medical School, and in accordance with the Declaration ofHelsinki.

2.2. Assessment of alexithymia

A multi-method approach was administered in order to assess alexithymictendencies. Participants completed the 20-item-version of the Toronto AlexithymiaScale (TAS-20, Bagby et al., 1994, German version: Bach et al., 1996) and weresubsequently observer-rated using the Toronto Structured Interview for Alexithy-mia (TSIA, Bagby et al., 2006, German version: Grabe et al., 2009, 2014). Thecomplete TSIA was administered by one trained interviewer and rated during theinterview according to the manual. Before the study, the interviewer was trained toconduct and score the TSIA by the translators of the German version of the TSIA(coauthors MR and HJG). This included becoming familiar with the alexithymiaconstruct, the manual outlining administration and the scoring procedures for theTSIA, as well as discussion of the guidelines, the scoring of the items and the correctuse of the prompts and probes. Moreover, test interviews were supervised until theinterviewer was secure in the administration and scoring of the interview. The TAS-20 includes three subscales, namely difficulties describing feelings (DDF),

K. Ihme et al. / Neuropsychologia 64 (2014) 289–299290

Page 31: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

difficulties identifying feelings (DIF) and externally-oriented thinking. Besidesthese three subscales, the TSIA also includes the measurement of imaginalprocesses. We focused our analysis on the TAS-20 and TSIA total scores and thesubscales DDF and DIF as these two facets of the construct have been linked tolabeling and processing of facial expressions of emotion (Grynberg et al., 2012).

2.3. Assessment of depressive symptoms and trait affectivity

Participants completed the Beck Depression Inventory (BDI, German version:Hautzinger et al., 2006), the trait version of the State-Trait-Anxiety-Inventory(STAI-T, German version: Laux et al., 1981) and the trait version of the Positive andNegative Affect Schedule (PANAS, German version: Krohne et al., 1996). Thesequestionnaires were administered to control for participants' (negative) affectivitywhich could be linked to alexithymia (e.g., Honkalampi et al., 2000).

2.4. Experimental task

Participants' task was to label the facial emotion of a briefly presented target facemasked by a neutral face of the same identity. The facial stimuli were colorphotographs taken from the Karolinska Directed Emotional Face database (KDEF,Lundqvist et al., 1998) depicting four different emotions (happy – HA, angry – AN,fearful – FE, and neutral). As the neutral face was used only as a mask, a verticallymirrored version of the neutral mask face was utilized as neutral target (NE). Picturesof ten different individuals (five females) were shown and each person was showntwice in each of the four emotion conditions, so that the experiment consisted of 80trials (2�10 persons�4 emotions). Each trial lasted 9 s and started with thepresentation of a fixation cross in the center of the screen for 800 ms. Then a briefemotional facial expression was shown (66 ms or 100 ms) which was masked by aneutral facial expression (434 ms or 400 ms respectively). The presentation times forthe target andmask were determined in a pilot study with nine participants, for whichidentification performance was on average about .75 (as measured with the sensitivityindex by Aaronson and Watts (1987)). After presentation of the mask, participants hadto label the facial emotions by button presses in a forced choice manner within max.7700 ms (for a detailed overview, see Fig. 1). Participants were provided with oneresponse pad per hand with two buttons each and responded with the index andmiddle fingers. Each emotionwas assigned to one button during the entire experimentin a counterbalanced design. Participants were instructed to respond as correct asaccurate as possible within the given time frame. Trials were shown in two fixedrandom sequences with the constraints that no two subsequent trials depict the sameperson, not more than two subsequent trials show the same emotion and that nopicture (i.e., same target emotion and same person) was shown twice per half.

For the later analysis, we pooled across both target expression presentationtimes (66 ms and 100 ms) in order to increase the number of trials per condition.Originally, we aimed at differentiating between both presentation times. However,there were no significant differences between both presentation times regardingthe correlations of labeling performance with alexithymic features (TAS-20 total,TAS-20-DDF, TAS-20-DIF, TSIA total, TSIA-DDF and TSIA-DIF) as assessed withSteiger's Z (Steiger, 1980) (all ps4 .05) (calculated using formulas implemented inLee and Preacher (2013)). These findings are in line with a recent review (whichwas published after data collection for this study has started) concluding that highalexithymic individuals have problems labeling facial expressions when these arepresented below 300 ms (Grynberg et al., 2012). Both presentation times adminis-tered in the current study were clearly below this time value, so that the poolingseems also justified based on the literature. Please refer to Supplementarymaterials for details of the Steiger's Z statistics.

2.5. fMRI scanning protocol

Structural and functional MR imaging was performed on a 3T scanner(Magnetom Verio, Siemens, Erlangen, Germany) using a standard 12-channel headcoil. For each participant, structural images were acquired with a T1-weighted 3DMP-RAGE (Mugler and Brookeman, 1990). Magnetization preparation consisted of a

non-selective inversion pulse. The imaging parameters were TI¼650 ms, TR¼1300 ms, TE¼3.5 ms, flip angle 101, isotropic spatial resolution of 1 mm3, twoaverages. Blood oxygen level dependent (BOLD) contrast sensitive images werecollected using a T2n-weighted echo-planar imaging (EPI) sequence (matrix 642;resolution 3 mm�3 mm�4 mm; gap .8 mm; TR¼2 s; TE¼30 ms; flip angle 901;interleaved slice acquisition; 385 images). Slices were oriented parallel to a linethrough the posterior and anterior commissures.

2.6. Data analysis

2.6.1. Measures of alexithymia and affectivityThe TSIA was rated by a trained interviewer according to the manual. To test

our hypotheses, TAS-20 and TSIA total scores as well as the respective DDF and DIFsubscales scores were taken into account for statistical analysis. To control forrelationships of alexithymia with (negative) affectivity correlations were calculatedbetween measures of alexithymia and BDI, STAI-T, and PANAS.

2.6.2. Behavioral dataFor each trial of the experiment, responses were extracted and classified as true

positives (e.g., angry face correctly labeled as angry) or false positives (e.g., non-angry face incorrectly labeled as angry). From these values a sensitivity score wascalculated for each of the emotions using the procedure described by Aaronson andWatts (1987). This index varies between 0 and 1, with 1 denoting perfectperformance and .5 referring to performance at chance level as it controls formore than one choice alternative. As proposed by Yarkoni and Braver (2010), wecalculated the reliability of our performance measure using Cronbach’s alpha.Performance data were analyzed for significant differences between the conditionswith an analysis of variance (ANOVA). Product–moment correlations were calcu-lated between the alexithymia measures and performance for each facial expres-sion condition using SPSS 20.0. In case of deviation from normal distribution,correlation coefficients were estimated using rank correlations (Spearman's rho).

2.6.3. fMRI preprocessing and data analysisMRI data were preprocessed and analyzed using SPM8 (http://www.fil.ion.ucl.

ac.uk/spm/). The initial five functional volumes were discarded in order to allowlongitudinal magnetization to reach equilibrium. Functional volumes were slicetime-corrected (temporal middle slice as reference), realigned to the temporallyfirst image and corrected for movement-induced image distortions (6-parameterrigid body affine realignment). Functional and anatomical images were co-registered. Anatomical images were then segmented, including normalization toa standard stereotaxic space using the T1 template by the Montreal NeurologicalInstitute (MNI) delivered with SPM. The normalization parameters were thenapplied to the functional EPI series. On the functional data, spatial smoothing wasperformed using a three-dimensional Gaussian filter of 6 mm full-width at half-maximum (FWHM). We chose this rather small smoothing kernel such that thepotential activation in subcortical areas involved in facial emotion processing wasstill detectable and not washed out.

Data were analyzed using event-related models which means that the onset ofthe targets was modeled using a stick function and convolved with the hemody-namic response function (default in SPM) for the different expression conditions.We sought to use the neutral faces as baseline for the emotional face condition toisolate the effects of emotional content of target stimuli from other aspects of thestimuli. Given that there was a relationship between some of the alexithymiameasures and performance for neutral faces, we wanted to ensure that neuralprocessing to neutral faces was relatively independent of alexithymic features.Thus, we calculated first-level t-contrasts for the neutral condition alone and usedthese as input for six second-level regression models with one alexithymiameasure (TAS-20 total, TAS-20-DDF, TAS-20-DIF, TSIA total, TSIA-DDF, or TSIA-DIF) as input variable. None of these models revealed a significant relationshipbetween alexithymic features and activation for neutral faces administering afamily-wise-error-(fwe)-corrected significance threshold on cluster level of p¼ .05at an individual voxel threshold of t¼3.27 (p¼ .001). Against this background, theuse of the neutral face baseline appeared justified.

First level t-contrasts were calculated by contrasting each emotional condition tothe neutral one (i.e., HA4NE, AN4NE, FE4NE). The contrast images of the first levelcontrasts were then transferred to the second level into regression models for each ofthe main contrasts. These three models were analyzed as a manipulation check. Inorder to estimate the influence of alexithymic features, we calculated second levelmodels using the TAS-20 and TSIA total scores as well as the DIF and DDF subscalescores of TAS-20 and TSIA as regressors of interest. In this way, 18 different secondlevel models were calculated with respect to alexithymic features (6 measures ofalexithymic features�3 conditions). Significance was tested at cluster level against anfwe-corrected significance threshold of p¼ .05 at an individual voxel threshold oft¼3.27 (p¼ .001). Because there were modest negative correlations between somemeasures of alexithymia (TAS-20 total, TAS-20-DDF, TSIA total and TSIA-DDF) andpositive affectivity (see Section 3.1), we calculated additional regression analyses forthese variables taking into consideration PANAS-P as nuisance covariate. Similarly, asthe TAS-20-DIF score was significantly related to STAI and PANAS-N (see Section 3.1),these were entered as nuisance covariates into the additional regression analyses.

Fig. 1. Sequence of events within a trial. In the example a fearful face is masked byneutral facial expression.

K. Ihme et al. / Neuropsychologia 64 (2014) 289–299 291

Page 32: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

3. Results

3.1. Sample and questionnaires

One participant had to be excluded due to an elevated BDIscore (414) at the time of the MRI session. Furthermore, onesubject was excluded because of excessive head motion (43 mmtranslation) during scanning, which could not be corrected for bythe applied motion correction algorithm. Thus, 50 participants (24women) with a mean age of 23 years (standard deviation 3 years)were included in the analysis. All remaining participants had aBDIr14. Mean values, standard deviations and ranges of thealexithymia measures (TAS-20, TSIA) and affectivity measures(BDI, STAI-T, and PANAS) are given in Table 1. TAS-20 and TSIAscales had satisfactory internal consistencies as determined byCronbach's alpha (TAS-20 total scale: α¼ .86, TAS-20-DDF: α¼ .86,TAS-20-DIF: α¼ .81, TSIA total scale: α¼ .93, TSIA-DDF ¼ .89, TSIA-DIF: α¼ .83). Kolmogorov–Smirnov tests indicated that the dis-tribution of TAS-20-DIF (Kolmogorov–Smirnov Z¼1.5, po .05),TSIA-DDF (Kolmogorov–Smirnov Z¼1.9, po .01) and TSIA-DIF(Kolmogorov–Smirnov Z¼1.9, po .01) scores significantly deviatedfrom normal distribution. No significant deviations from normaldistribution were revealed for the remaining three measures ofalexithymia (all ps4 .05) and the measures of affectivity (BDI,STAI-T, PANAS-N, and PANAS-P; all ps4 .05).

As could be expected, the measures of alexithymia werecorrelated with each other. From the alexithymia measures, onlyTAS-20-DIF correlated with negative affectivity (i.e., STAI andPANAS-N). None of the alexithymia scores was related to the BDIscore. However, PANAS-P was negatively correlated with TSIA totaland TSIA-DDF and tended to correlate with TAS-20 total and TAS-20-DDF (see Table 2).

3.2. Labeling performance and correlations with alexithymia

The performance measures for each individual condition hadan adequate reliability (all Cronbach's αs4 .85). Only the distribu-tion of the sensitivity scores in the happy condition containedoutliers and differed significantly from normal distribution (Kol-mogorov–Smirnov Z¼1.6, po .01; NE, AN, FE: all ps4 .05). Themean sensitivity indices for the four facial expression conditionswere as follows: HA: .86 (standard error of the mean, SEM¼ .02),NE:.83 (.02), AN:.83 (.02), and FE:.79 (.02). The ANOVA revealed asignificant effect of facial expression (F(3,147)¼6.7, po .001), withperformance for fearful faces being significantly lower comparedto the other expression conditions (HA vs. FE: po .01; NE vs. FE:po .05; AN vs. FE: po .05) and better performance for happy thanangry faces (po .05; all other ps4 .05).

Results from the correlation analysis indicate that the TAS-20total score was negatively correlated with performance for angryfaces and marginally correlated with performance for happy andfearful faces. Negative correlations were also revealed betweenTAS-20-DDF and performance for all facial expression conditions.Controlling for PANAS-P affected these results only in one case: thecorrelation between TAS-20 total score and performance forneutral faces became significant (po .05). TAS-20-DIF showed anegative correlation with performance for angry faces. TSIA total,TSIA-DDF, and TSIA-DIF did not correlate with labeling perfor-mance (see Table 3 for details; Fig. 2 shows the correlationsbetween TAS-20-DDF and labeling performance for angry andfearful faces)

3.3. Brain activation: main effects of facial emotions

For the contrast HA4NE, a significant cluster was revealedincluding parts of the ventro-medial frontal cortex and perigenualanterior cingulate cortex. Angry versus neutral faces (AN4NE)elicited significant activation in the left inferior frontal gyrus.Fearful versus neutral faces (FE4NE) activated the left inferiorfrontal gyrus extending to the insular gyrus, the left superiormedial gyrus including the supplementary motor area, the

Table 1Means, standard deviations and ranges of the alexithymia measures (total scores,DDF and DIF subscale scores) and affectivity measures.

Psychometric measures Mean SD Range

TAS-20 total 43.5 10.8 22–71TAS-20-DDF 12.5 4.6 5–24TAS-20-DIF 12.7 4.5 7–25

TSIA total 16.8 9.8 2–37TSIA-DDF 2.8 3.4 0–11TSIA-DIF 1.4 2.1 0–8

BDI 2.9 3.2 1–14STAI-T 33.9 8.3 20–50PANAS positive 36.1 5.3 22–49PANAS negative 15.0 3.5 10–24

Note: TAS-20¼20-Item Toronto Alexithymia Scale, DDF¼Difficulties DescribingFeelings, DIF¼Difficulties Identifying Feelings, TSIA¼Toronto Structured Interviewfor Alexithymia, BDI¼Beck Depression Inventory, STAI-T¼State-Trait AnxietyInventory trait version, PANAS¼Positive and Negative Affect Schedule, SD¼stan-dard deviation.

Table 2Correlations between alexithymia scales and measures of affectivity.

TAS-20-DDF TAS-20-DIF TSIA TSIA-DDF TSIA-DIF BDI STAI PANAS-P PANAS-N

TAS-20 total .84nn .72nn .45nn .55nn .32n .10 .16 � .25þ � .00TAS-20-DDF .60nn .39nn .54nn .24þ .15 .18 � .22þ � .02TAS-20-DIF .10 .29n .23þ .02 .31n � .17 .25þ

TSIA total .80nn .71nn � .02 � .04 � .32n � .20TSIA-DDF .72nn .12 � .11 � .32n � .14TSIA-DIF .10 � .02 � .17 � .23BDI .44nn � .24þ .32n

STAI � .48nn .40nn

PANAS-P � .08

Note: Significant correlations are marked (nn: po .01, n: po .05, þ: po .1, two-tailed).The coefficients were calculated using Pearson’s product-moment correlation if both measures were normally distributed; for the TAS-20-DIF, TSIA-DDF and TSIA-DIF scoresSpearman’s rho rank correlation was employed. TAS-20¼20-Item Toronto Alexithymia Scale, TSIA¼Toronto Structured Interview for Alexithymia, DDF¼DifficultiesDescribing Feelings, DIF¼Difficulties Identifying Feelings, BDI¼Beck Depression Inventory, STAI-T¼State-Trait Anxiety Inventory trait version, PANAS¼Positive AndNegative Affect Schedule.

K. Ihme et al. / Neuropsychologia 64 (2014) 289–299292

Page 33: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

striatum (caudate nucleus) bilaterally and right cerebellar regions.An overview of the above-mentioned effects is presented inTable 4.

3.4. Brain activation: relationships with alexithymic features

In the following, the results of the regression models withalexithymic features as regressor are presented. For the modelsincluding alexithymia measures which show correlations withpositive affectivity (TAS-20 total, TAS-20-DDF, TSIA total, TSIA-DDF), information is presented on whether the significance ofresults changes when entering PANAS-P as nuisance covariate intothe regression models (see Tables 5–7). Information on significantclusters related to TAS-20-DIF and TSIA-DIF are mentioned in thetext. No significant correlations were found between brainresponse to emotional faces and TSIA total score.

HA4NE. No suprathreshold clusters correlating with alexithy-mic features were revealed for the contrast HA4NE.

AN4NE. There was a negative correlation between TAS-20-total score and activations in the right fusiform gyrus, right middleoccipital gyrus extending to middle temporal gyrus, right striatum(putamen, caudate) and left superior temporal gyrus extending tosupramarginal gyrus (see Table 5). The TAS-20-DDF score corre-lated negatively with clusters in the right fusiform gyrus and rightstriatum extending to rectal gyrus (see Table 6). With respect toTSIA-DDF, significant clusters were revealed in right supplemen-tary motor area, left superior frontal gyrus, right middle frontalgyrus extending to inferior frontal gyrus, left middle orbito-frontal

Fig. 2. Relationship between TAS-20-DDF and labeling performance. Scatterplots between TAS-20-DDF (x-axis) and sensitivity indices (y-axis) for angry (A) and fearful(B) faces are displayed.

Table 4Brain activation due to facial emotions: main effect analyses (clusters are significant with fwe-correction on cluster level).

Contrasts cluster peak localization

k pfwe x y z Z hem. region

HA4NE 128 o .01 �9 41 1 4.48 left ventro-medial prefrontal cortex, perigenual ACCAN4NE 115 o .01 �51 29 10 4.62 left inferior frontal gyrusFE4NE 1157 o .001 �45 35 2 8.52 left inferior frontal gyrus, insular gyrus

201 o .001 �15 2 �8 5.23 left striatum (caudate) extending to thalamus

138 o .01 12 �79 �38 5.23 right cerebellum, lobus crus

161 o .001 �9 20 43 4.90 left superior medial gyrus, supplementary motor area

71 o .05 9 5 4 5.03 right striatum (caudate)

Note: HA4NE¼contrast happy4neutral; AN4NE¼contrast angry4neutral; FE4NE¼contrast fearful4neutral; k¼cluster extent; pfwe¼ family-wise-error-corrected p-value; xyz¼peak coordinates in MNI space; hem.¼hemisphere; ACC¼anterior cingulate cortex.

Table 3Correlations between alexithymia measures and labeling performance (sensitivityindices) for all facial expression conditions.

Happy Neutral Angry Fearful

TAS-20 total � .20þ � .21þ � .33n � .22þ

TAS-20-DDF � .26n � .31n � .37nn � .32n

TAS-20-DIF � .18 � .17 � .25n � .05TSIA total � .05 � .10 .01 .06TSIA-DDF � .11 .08 � .05 � .10TSIA-DIF � .08 .16 .06 � .02

Note: Significant correlations are marked (nn: po .01, n: po .05, þ: po .1, two-tailed).The coefficients were calculated using Pearson's product-moment correlation if bothmeasures were normally distributed; for the TAS-20-DIF, TSIA-DDF, and TSIA-DIFscores as well as labeling performance for happy faces Spearman's rho rank correlationwas employed. Labeling performance (index of sensitivity) was calculated from truepositives and false positives as suggested by Aaronson and Watts (1987). TAS-20¼20-Item Toronto Alexithymia Scale, TSIA¼Toronto Structured Interview for Alexithymia,DDF¼Difficulties Describing Feelings, DIF¼Difficulties Identifying Feelings.

K. Ihme et al. / Neuropsychologia 64 (2014) 289–299 293

Page 34: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

gyrus, and left striatum (all correlations were negative, seeTable 7). In addition, activation in a right occipital cluster (cuneus,middle occipital gyrus) correlated negatively with TAS-20-DIF(cluster extent k¼98, pfwe-clustero .01, x, y, z¼[15, �94, 16],Zpeak¼5.05, cluster drops below threshold when controlling forSTAI and PANAS-N) (see Fig. 3 for an overview).

FE4NE. For this contrast, a negative correlation with the TAS-20 total score was revealed in the right striatum (putamen,caudate) (see Table 5). Moreover, TSIA-DDF showed a negativecorrelation with a cluster in the left middle temporal gyrusextending to inferior temporal gyrus (Table 7). Finally, there wasa negative correlation between TSIA-DIF and brain activation to

fearful faces in the right supplementary motor area (cluster extentk¼81, pfwe-clustero .05, coordinates in MNI space x, y, z¼[12, 8, 61],Zpeak¼4.65). An overview of these results is presented in Fig. 4.

4. Discussion

The present study is the first one that investigates the neuralcorrelates of labeling briefly presented emotional facial expres-sions as a function of alexithymic features. We revealed thatalexithymic features are negatively related to labeling perfor-mance for happy, angry, and fearful expressions. With respect to

Table 5Correlations between brain response to emotional faces and TAS-20 total score (clusters are significant with fwe-correction on cluster level). All clusters show negativecorrelations with the TAS-20 total score.

Contrasts cluster peak localization PANAS

k pfwe x y z Z pfwe hem. region

HA4NE no suprathreshold clusters.AN4NE 139 o .01 33 �67 1 4.30 .18 right fusiform gyrus fwe

104 o .01 30 �85 13 3.88 .59 right middle occipital gyrus extending to middle temporal gyrus lenient101 o .01 24 14 �5 4.66 o .05 right ventral striatum (Putamen, caudate, Pallidum) fwe72 o .05 �51 �40 13 4.20 .24 left superior temporal gyrus extending to supermarginal gyrus lenient

FE4NE 91 o .05 12 8 �2 4.29 .52 right ventral striatum (Putamen caudate) extending to Insula lenient

Note: The last column (PANAS) indicates which threshold this cluster exceeds when correcting for PANAS-P (fwe¼significant on cluster level, marginal¼marginallysignificant on cluster level, lenient¼survives p¼ .001, kZ10). HA4NE¼contrast happy4neutral; AN4NE¼contrast angry4neutral; FE4NE¼contrast fearful4neutral;k¼cluster extent; pfwe¼ family-wise-error-corrected p-value; xyz¼peak coordinates in MNI space; hem.¼hemisphere.

Table 6Correlations between brain response to emotional faces and TAS-20-DDF (clusters are significant with fwe-correction on cluster level). All clusters show negative correlationswith the TAS-20-DDF.

Contrasts cluster peak localization PANAS

k pfwe x y z Z hem. region

HA4NE No suprathreshold clustersAN4NE 129 o .01 24 14 �5 4.36 right ventral striatum (putamen, caudatum) extending to rectal gyrus fwe

63 o .05 33 �70 1 4.69 right fusiform gyrus lenientFE4NE No suprathreshold clusters

Note: The last column (PANAS) indicates which threshold this cluster exceeds when correcting for PANAS-P (fwe¼significant on cluster level, marginal¼marginallysignificant on cluster level, lenient¼survives p¼ .001, kZ10). HA4NE¼contrast happy4neutral; AN4NE¼contrast angry4neutral; FE4NE¼contrast fearful4neutral;k¼cluster extent; pfwe¼ family-wise-error-corrected p-value; xyz¼peak coordinates in MNI space; hem.¼hemisphere.

Table 7Correlations between brain response to emotional faces and TSIA-DDF (clusters are significant with fwe-correction on cluster level). All clusters show negative correlationswith TSIA-DDF.

Contrasts cluster peak localization PANAS

k pfwe x y z Z hem. region

HA4NE no suprathreshold clusterAN4NE 104 o .01 �15 11 49 4.20 left superior frontal gyrus fwe

65 o .05 �9 8 �5 3.68 left ventral striatum (putamen, caudate) marginal64 o .05 30 47 �5 4.01 right middle orbitofrontal gyrus lenient63 o .05 12 8 67 4.48 right SMA fwe62 o .05 33 35 19 3.80 right middle frontal gyrus extending to inferior frontal gyrus fwe

FE4NE 86 o .05 �48 �46 �8 4.15 left middle temporal gyrus extending to inferior temporal gyrus fwe

Note: The last column (PANAS) indicates which threshold this cluster exceeds when correcting for PANAS-P (fwe¼significant on cluster level, marginal¼marginallysignificant on cluster level, lenient¼survives p¼ .001, kZ10). HA4NE¼contrast happy4neutral; AN4NE¼contrast angry4neutral; FE4NE¼contrast fearful4neutral;k¼cluster extent; pfwe¼ family-wise-error-corrected p-value; xyz¼peak coordinates in MNI space; hem.¼hemisphere; SMA¼supplementary motor area.

K. Ihme et al. / Neuropsychologia 64 (2014) 289–299294

Page 35: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

the neural underpinnings, activation in the striatum was found tobe negatively correlated with alexithymic features – primarilywhen participants were confronted with negative or threateningemotional faces. Moreover, alexithymic individuals showed lessactivation in several other brain areas crucially involved in theprocessing of facial emotional expressions, such as the inferior andsuperior frontal gyrus, the superior and middle temporal gyrus,supplementary motor area as well as the orbito-frontal gyrus,fusiform gyrus and middle occipital gyrus. Our measures ofalexithymia showed correlations with positive affectivity(PANAS-P), but the performance and fMRI results remained largelystable when controlling for positive affectivity. The subscale DIF ofthe TAS-20 correlated with negative affectivity. When controllingnegative affectivity in the regression model, a significant cluster in

the middle occipital cortex dropped below threshold. However,this seems to be the only cluster revealed in this study, which isstrongly related to affectivity instead of alexithymia. In thefollowing our results are discussed against the background of theexisting literature.

4.1. Main effects of emotional faces: labeling performance and brainactivation

Concerning the performance in our facial emotion labeling task(as assessed by the sensitivity index), it can be concluded thatparticipants were on average near .8, which is well above chancelevel but still below perfect recognition. Thus, it appears that ourtask was difficult enough to avoid ceiling effects. On the otherhand, the average performance well above chance level suggeststhat the task was not too difficult. In the fMRI main contrasts, wefound increased activations in the ventro-medial frontal cortex (inthe happy face condition), the inferior frontal cortex (in the angryand fearful face conditions), the inferior frontal cortex, insula andstriatum, superior medial gyrus and cerebellar regions (in thefearful face condition). All of these brain regions are known to beimplicated in the processing and labeling of facial emotions(Adolphs et al., 2000; Adolphs, 2002a, 2002b; Fusar-Poli et al.,2009; Ihme et al., 2014; Iriki, 2006; Tsuchida and Fellows, 2012). Insum, it appears that our paradigm was suitable for studying facialemotion labeling as a function of alexithymic features.

4.2. Relationships between alexithymic features and labelingperformance

Our results suggest that alexithymic features as assessed byself-report (TAS-20) show a negative relationship with perfor-mance when labeling emotional facial expressions presented for100 ms or below. This is in line with previous literature reportingthat alexithymic individuals display difficulties in labeling facialexpressions when these are presented with temporal or otherperceptual constraints (see Grynberg et al., 2012). When the facesare presented with little temporal constraints, in several studiesno associations between alexithymia and labeling accuracy havebeen observed (e.g., Ihme et al., 2014; Parker et al., 2005). Thus,the current study supports the assumption of Grynberg et al.(2012) that alexithymic individuals can not sufficiently process theperceptual information of emotional faces in such a short timewindow. Our study also revealed that the subscale DDF of the TAS-20 showed a (descriptively) stronger correlation with labelingperformance than the TAS-20 total score and the TAS-20-DIF score.Indeed, research has shown that DDF is most predictive forlabeling performance (Ihme et al., 2014; Parker et al., 2005), whileDIF rather seems to be related to automatic processing of affectiveinformation (Kugel et al., 2008; Reker et al., 2010). This isconsistent with the conclusions of Grynberg et al. (2012) whoargued that describing feelings unlike identifying feelings or anexternally oriented thinking style implies semantic processing ofemotional information. This semantic processing also occurs whenattributing a verbal emotional label to a facial expression in alabeling task.

4.3. Relationships between alexithymic features and brain activation

It has been assumed that a holistic internal representation ofthe facial expression is created by concerted processing in motor,affective and somatosensory brain regions, which then facilitatesthe interpretation of other persons' emotional state (Jabbi andKeysers, 2008). A less complete representation could lead toproblems in labeling facial expressions (e.g., Delle-Vigne et al.,2014). The results of our study suggest that high alexithymic

Fig. 3. Selection of clusters of brain activation negatively correlating with alex-ithymic features in the contrast angry4neutral presented in axial (A) and coronal(B) view. Red¼negative correlation with TAS-20 total score, blue¼negativecorrelation with TAS-20-DDF score, green¼negative correlation with TSIA-DDFscore; fwe-corrected significance level of p¼ .05 on cluster level; the pictures on theright display the locations of the slices; coordinates are in MNI space. (Forinterpretation of the references to color in this figure legend, the reader is referredto the web version of this article.)

Fig. 4. Selection of clusters of brain activation negatively correlating with alex-ithymic features in the contrast fearful4neutral presented in axial (A) and coronal(B) view. Red¼negative correlation with TAS-20 total score, green¼negativecorrelation with TSIA-DDF score, yellow¼negative correlation with TSIA-DIF score;fwe-corrected significance level of p¼ .05 on cluster level; the pictures on the rightdisplay the locations of the slices; coordinates are in MNI space. (For interpretationof the references to color in this figure legend, the reader is referred to the webversion of this article.)

K. Ihme et al. / Neuropsychologia 64 (2014) 289–299 295

Page 36: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

individuals show decreased processing in several brain areasinvolved in creating the holistic representation of a seen face.

First of all, analysis of brain activation revealed several regionsnegatively correlating with alexithymic features. Most strikingly, wefound decreased activations in the ventral striatum (putamen,pallidum, and caudate). These activations survived fwe-correctionon cluster level related to TAS-20-DDF, TAS-20 total score and TSIA-DDF during labeling of negative or threatening (i.e. angry and/orfearful) expressions. This suggests that striatal activation plays animportant role in the difficulties of alexithymic individuals regard-ing the labeling of negative facial emotions. The ventral part of thestriatum shows strong connections to areas related to emotionalprocessing such as the amygdala, orbito-frontal cortex, inferiorfrontal areas, anterior cingulate cortex, and insula (Cohen et al.,2009; Di Martino et al., 2008). Decreased activity in the ventralstriatum may be linked to decreased transfer of emotional informa-tion within the limbic system. It has been proposed that the basalganglia are specifically involved in the processing of disgust (Gorno-Tempini et al., 2001; Sprengelmeyer et al., 1998). However, recentlesion studies (Calder et al., 2004) and research on patients withHuntington’s disease (Calder et al., 2010; Trinkler et al., 2013) – aneurodegenerative disease that primarily affects striatal areas atfirst – have shown deficits in the labeling of facial emotions otherthan disgust, especially anger and fear. According to Heberlein andAdolphs (2007), the basal ganglia are, in interplay with otherstructures, involved in linking the perceived stimulus to represen-tations of emotional reactions (including expressions). Interestingly,there is evidence from other neuroimaging studies that alexithymicfeatures could be related to an altered function or structure of thestriatum. Lee et al. (2011) found that TAS-20-DDF predicteddecreased striatum response when viewing pictures of facial emo-tions. In a structural MRI study, Kubota et al. (2011) reported thatalexithymic individuals showed decreased gray matter volume inthe ventral striatum, which is assumed to be related to reductionsin the number of synapses, thus promoting a slowed or reducedinformation transfer (Anderson, 2011). In our view, low activation inthe ventral striatum could be associated with a decreased ability toform internal representations of others' facial expressions inalexithymia.

In addition to reduced activity in striatal areas, less neuronalactivation to negative faces with increasing alexithymic featureswas found in frontal regions such as orbito-frontal as well asinferior and superior frontal gyrus. Inferior frontal gyrus (inconjunction with insula and operculum) appears to be involvedin fast and covert simulations of others' facial expressions (Iriki,2006; Van der Gaag et al., 2007). Moreover, it has been argued thatactivity in orbito-frontal areas creates the same emotional experi-ence as seen in the face of the other through afferent and efferentconnections with the amygdala (Adolphs, 2002b). This “recreatingof feelings” within oneself facilitates the interpretation of theemotional expression of the other. Thus, a decreased activation inthese frontal areas may indicate less affective simulation and lessemotional experience with increasing alexithymia, so that readingout the emotion based on internal representations becomes harderfor high alexithymic individuals. Moreover, high alexithymicindividuals show decreased brain activation in the supplementarymotor area (SMA). SMA plays an important role in interpretingfacial expressions (Rochas et al., 2012) by being involved insimulating motor components (Van der Gaag et al., 2007). There-fore, processing in the SMA could contribute to the holisticrepresentation of the seen stimulus. Thus, reduced activation inthe SMA appears to be another contributing factor for a lessdetailed representation of the seen facial expressions (see alsoVan der Velde et al., 2013), which impedes attributing an emo-tional label to it for high alexithymic individuals. Interestingly,when faces are presented for a sufficiently long time, alexithymic

individuals rely rather on bodily features of the facial expressionsby showing increased neural processing in the SMA (and somato-sensory areas) when labeling negative facial expressions (Ihmeet al., 2014). However, this mechanism of overamplifying sensor-imotor and motor aspects of the facial expression (cf. Moriguchiand Komaki, 2013) apparently does not work when the faces arepresented for a very short time leading to a decline in performanceof high alexithymic individuals.

In addition, decreased brain activation with increasing alex-ithymia was revealed in middle and superior temporal gyrus aswell as middle occipital and fusiform gyrus when labeling negativefaces. According to Adolphs' model of facial emotion processing,these areas implicated in detailed visual analysis of the face(Haxby et al., 2000; Kanwisher et al., 1997; Kanwisher and Yovel,2006) receive information about the emotional significance of theseen faces through reciprocal connections with basic limbic areas(amygdalae and basal ganglia) (Adolphs, 2002a, 2002b). This earlyemotional processing seems to be disrupted in alexithymia asshown by reduced activation and gray matter volume in thestriatum (see above, Kubota et al., 2011; Lee et al., 2011) and theamygdala (Ihme et al., 2013; Kugel et al., 2008; Reker et al., 2010).In sum, these findings could indicate that alexithymic individualsexhibit less visual processing when confronted with briefly pre-sented negative faces and therefore need more time to fullyanalyze the seen face (cf. Grynberg et al., 2012).

The conclusion that we can draw from our findings is thatalexithymic individuals have difficulties to construct a holisticrepresentations of facial expressions when these are only brieflypresented. This is related to a decreased processing of affective,motor and sensory features of the facial expressions and leads toreduced performance. However, when the faces are displayed forseveral seconds (Ihme et al., 2014), alexithymic individuals seem tobe able to create representations of facial expressions mainlybased on motor and somatosensory (instead of affective) informa-tion. Under these circumstances they are able to correctly decodeand name emotional facial expressions.

4.4. Emotion specificity

The present behavioral results point towards a global deficit infacial emotion recognition in alexithymia. This is line with thefindings of a recent review (Grynberg et al., 2012) that suggest ageneral deficit of alexithymic individuals in identifying facialemotions. With respect to the neural correlates, evidence fordecreased brain activity in several regions was revealed fornegative (i.e., angry and fearful) facial expressions. Interestingly,we recently also found relations between alexithymic features andbrain activation only for angry and fearful, but not for happy faces(Ihme et al., 2014). There is evidence that the recognition of happyfaces is easier than that of angry or fearful faces (Calvo andLundqvist, 2008; see also the labeling performance in the presentstudy). An easier task might require less mental processing andrecruit less neural resources, so that it could be more difficult todetect associations between brain activation and alexithymicfeatures. However, in our study alexithymia was found to benegatively correlated with labeling performance of happy faces.Thus, future work is needed to investigate whether alexithymicindividuals have global deficits in labeling emotions or whetherthey have specific problems with the perception and interpreta-tion of negative or threatening emotions.

4.5. Assessment of alexithymia

To our knowledge this is one of the first neuroimaging studiesassessing alexithymia not only with a self-report measure, butalso with the observer-rated Toronto Structured Interview

K. Ihme et al. / Neuropsychologia 64 (2014) 289–299296

Page 37: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

for Alexithymia. The correlation of r¼ .45 between self-report(TAS-20) and observer-rated (TSIA) measure of alexithymia inthe current study is comparable with correlations found in otherstudies in which TAS-20 and TSIA have been administered. Bagbyet al. (2006), for example, reported a correlation of r¼ .36 innormal participants, whereas correlation coefficients of r¼ .34(Inslegers et al., 2013), r¼ .49 (Grabe et al., 2009), or r¼47(Meganck et al., 2011) have been observed in patient samples.Caretti et al. (2011) reported a correlation of r¼ .44 in a mixedsample of patients and healthy controls. Against this background,the correlation of r¼ .45 revealed in our study is not exceptionallylow. According to Bagby et al. (2006) it is not unusual for differentmethods of assessment to attenuate validity coefficients betweenmeasures of the same construct. Another reason for the relativelylow convergence of TSIA and TAS-20 may be that the TSIA containsa subscale for the facet imaginal processes, which is not includedin the TAS-20.

In our study, no relationship between alexithymic features asmeasured with the observer-based method (TSIA) and perfor-mance was revealed. This is somewhat surprising as a recentstudy from our laboratory (Ihme et al., 2014) could reveal acorrelation between alexithymia and behavioral effects (i.e.,response latency) during the labeling of facial stimuli presentedfor a long time only for the DDF scale of the TSIA but not for theDDF scale of the TAS-20. According to the present results itappears that young and well educated individuals are able toreliably judge their own difficulties in recognizing and verbalizingemotions in a self-report questionnaire (see also Parker et al.,2005). It can be speculated that completing a questionnaire (theTAS-20) in a rather short period of 5 min relates more to fastlabeling judgments while deliberate answers in an interviewwhich takes up to 90 min are more linked to processing of picturespresented for a longer time. Another reason for the higherpredictive power of the TAS-20 compared to the TSIA in thepresent study may be the fact that most of our participants hadrelatively low scores of alexithymia. The TSIA could be worse indifferentiating between subjects with low levels of alexithymiadue to a less fine-grained scale (3-point-Likert-scale compared tothe 5-point scale of the TAS-20). The TSIA values are relatively low(especially for the facets DDF and DIF) and standard deviations aresomewhat lower for TSIA-DDF and TSIA-DIF compared to TAS-20DDF and TAS-20 DIF. In our opinion, the TSIA and its subscalescould be a better predictor in samples including highly alexithymicindividuals compared to the TAS-20 as these persons are possiblyless able to correctly assess their own difficulties in describing anddifferentiating feelings.

As a limitation, it has to be mentioned that the TAS-20 and theTSIA are thought to measure solely cognitive alexithymia, whileneglecting affective aspects of the alexithymia construct (Bermondet al., 2007, but see Bagby et al., 2009). In future studies theBermond–Vorst–Alexithymia Questionnaire could be administeredto assess the affective components of alexithymia (Vorst andBermond, 2001). However, the results of a recent study suggestthat the cognitive dimension of the alexithymia construct is abetter predictor for brain activation related to the perception ofemotional signals (Van der Velde et al., 2014).

5. Conclusions

To sum up, alexithymic tendencies are related to deficits inlabeling briefly presented facial expressions. These performancedeficits are accompanied by less neural activation in the ventralstriatum, frontal cortex, and supplementary motor areas as well asoccipital and temporal regions. All of these brain areas seem to beimplicated in forming a holistic representation of other persons'

emotional state by combining affective, sensory and motor proces-sing. Our results suggest that alexithymic individuals may be lessable to create an adequate representation of the emotional state ofother persons under temporal constraints, which hampers a fastinterpretation and labeling of the facial expressions.

Funding

This work was supported by grants from the German ResearchFoundation DFG to Thomas Suslow and Harald Kugel (SU 222/6-1).

Acknowledgments

We thank Sophie-Luise Lenk and Marc Rupietta for their help indata collection. The authors of the present manuscript declare thatthey have no competing (financial or non-financial) interests.

Appendix A. Supporting information

Supplementary data associated with this article can be found inthe online version at http://dx.doi.org/10.1016/j.neuropsychologia.2014.09.044.

References

Aaronson, D., Watts, B., 1987. Extensions of Grier's computational formulas for A0

and B0 to below-chance performance. Psychol. Bull. 102 (3), 439–442.Adolphs, R., 2002a. Neural systems for recognizing emotion. Curr. Opin. Neurobiol.

12 (2), 169–177.Adolphs, R., 2002b. Recognizing emotion from facial expressions: psychological and

neurological mechanisms. Behav. Cognit. Neurosci. Rev. 1 (1), 21–62.Adolphs, R., Damasio, H., Tranel, D., Cooper, G., Damasio, A.R., 2000. A role for

somatosensory cortices in the visual recognition of emotion as revealed bythree-dimensional lesion mapping. J. Neurosci. 20 (7), 2683–2690.

Anderson, B.J., 2011. Plasticity of gray matter volume: the cellular and synapticplasticity that underlies volumetric change. Dev. Psychobiol. 53 (5), 456–465.

Bach, M., Bach, D., de Zwaan, M., Serim, J., Böhmer, J., 1996. Validierung derdeutschen Version der 20-Item Toronto Alxithymie Skala bei Normalpersonenund psychiatrischen Patienten. Psychother. Psychosom. Med. Psychol. 46 (1),23–28.

Bagby, R.M., Parker, J.D.A., Taylor, G.J., 1994. The twenty-item Toronto Alexithymiascale—I. Item selection and cross-validation of the factor structure. J. Psycho-som. Res. 38 (1), 23–32.

Bagby, R.M., Quilty, L.C., Taylor, G.J., Grabe, H.J., Luminet, O., Verissimo, R., Vanheule,S., 2009. Are there subtypes of alexithymia? Personal. Individ. Differ. 47 (5),413–418.

Bagby, R.M., Taylor, G.J., Parker, J.D.A., Dickens, S.E., 2006. The development of theToronto Structured Interview for Alexithymia: item selection, factor structure,reliability and concurrent validity. Psychother. Psychosom. 75 (1), 25–39.

Bermond, B., Clayton, K., Liberova, A., Luminet, O., Maruszewski, T., Ricci Bitti, P.E.,Wicherts, J., 2007. A cognitive and an affective dimension of alexithymia in sixlanguages and seven populations. Cogn. Emot. 21 (5), 1125–1136.

Calder, A.J., Keane, J., Lawrence, A.D., Manes, F., 2004. Impaired recognition of angerfollowing damage to the ventral striatum. Brain 127 (9), 1958–1969.

Calder, A.J., Keane, J., Young, A.W., Lawrence, A.D., Mason, S., Barker, R.a., 2010. Therelation between anger and different forms of disgust: implications for emotionrecognition impairments in Huntington's disease. Neuropsychologia 48 (9),2719–2729.

Calvo, M.G., Lundqvist, D., 2008. Facial expressions of emotion (KDEF): identifica-tion under different display-duration conditions. Behav. Res. Methods 40 (1),109–115.

Caretti, V., Porcelli, P., Solano, L., Schimmenti, A., Bagby, R.M., Taylor, G.J., 2011.Reliability and validity of the Toronto Structured Interview for Alexithymia in amixed clinical and nonclinical sample from Italy. Psychiatry Res. 187 (3),432–436.

Cohen, M.X., Schoene-Bake, J.-C., Elger, C.E., Weber, B., 2009. Connectivity-basedsegregation of the human striatum predicts personality characteristics. Nat.Neurosci. 12 (1), 32–34.

Cook, R., Brewer, R., Shah, P., Bird, G., 2013. Alexithymia, not autism, predicts poorrecognition of emotional facial expressions. Psychol. Sci. 24 (5), 723–732.

Delle-Vigne, D., Wang, W., Kornreich, C., Verbanck, P., Campanella, S., 2014.Emotional facial expression processing in depression: data from behavioraland event-related potential studies. Clin. Neurophysiol., 1–19.

K. Ihme et al. / Neuropsychologia 64 (2014) 289–299 297

Page 38: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Di Martino, A., Scheres, A., Margulies, D.S., Kelly, A.M.C., Uddin, L.Q., Shezdad, Z.,Milham, M.P., 2008. Functional connectivity of human striatum: a resting statefMRI study. Cereb. Cortex 18, 2735–2747.

Duan, X., Dai, Q., Gong, Q., Chen, H., 2010. Neural mechanism of unconsciousperception of surprised facial expression. NeuroImage 52 (1), 401–407.

Eichmann, M., Kugel, H., Suslow, T., 2008. Difficulty identifying feelings andautomatic activation in the fusiform gyrus in response to facial emotion.Percept. Mot. Skills 107 (3), 915–922.

Erickson, K., Schulkin, J., 2003. Facial expressions of emotion: a cognitive neu-roscience perspective. Brain Cogn. 52 (1), 52–60.

Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., Politi, P.,2009. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J. PsychiatryNeurosci. 34 (6), 418–432.

Gorno-Tempini, M.L., Pradelli, S., Serafini, M., Pagnoni, G., Baraldi, P., Porro, C.,Nichelli, P., 2001. Explicit and incidental facial expression processing: an fMRIstudy. NeuroImage 14 (2), 465–473.

Grabe, H.J., Löbel, S., Dittrich, D., Bagby, R.M., Taylor, G.J., Quilty, L.C., Rufer, M.,2009. The German version of the Toronto Structured Interview for Alexithymia:factor structure, reliability, and concurrent validity in a psychiatric patientsample. Compr. Psychiatry 50 (5), 424–430.

Grabe, H.J., Rufer, M., Bagby, R.M., Taylor, G.J., Parker, J.D.A., 2014. TSIA. Struktur-iertes Toronto Alexithymie Interview. Verlag Hans Huber, Bern.

Grynberg, D., Chang, B., Corneille, O., Maurage, P., Vermeulen, N., Berthoz, S.,Luminet, O., 2012. Alexithymia and the Processing of Emotional Facial Expres-sions (EFEs): systematic review, unanswered questions and further perspec-tives. PloS One 7 (8), e42429.

Hautzinger, M., Keller, F., Kühner, C., 2006. Beck-Depressions-Inventar (BDI).Frankfurt/Main: Harcourt Test Services.

Haxby, J.V., Hoffman, E.A., Gobbini, M.I., 2000. The distributed human neuralsystem for face perception. Trends Cogn. Sci. 4 (6), 223–233.

Heberlein, A.S., Adolphs, R., 2007. Neurobiology of emotion recognition: currentevidence for shared substrates. In: Harmon-Jones, E., Winkielman, P. (Eds.),Social Neuroscience, 1st edition Guilford Press, New York, pp. 31–55.

Heberlein, A.S., Atkinson, A.P., 2009. Neuroscientific evidence for simulation andshared substrates in emotion recognition: beyond faces. Emot. Rev. 1 (2), 162–177.

Honkalampi, K., Hintikka, J., Tanskanen, A., Lehtonen, J., Viinamäki, H., 2000.Depression is strongly associated with alexithymia in the general population.J. Psychosom. Res. 48 (1), 99–104.

Ihme, K., Dannlowski, U., Lichev, V., Stuhrmann, A., Grotegerd, D., Rosenberg, N.,Suslow, T., 2013. Alexithymia is related to differences in gray matter volume: avoxel-based morphometry study. Brain Res. 1491, 60–67.

Ihme, K., Sacher, J., Lichev, V., Rosenberg, N., Kugel, H., Rufer, M., Suslow, T., 2014.Alexithymia and the labeling of facial emotions: response slowing andincreased motor and somatosensory processing. BMC Neurosci. 15 (1), 40.

Inslegers, R., Meganck, R., Ooms, E., Vanheule, S., Bagby, M., Taylor, G., Desmet, M.,2013. The Dutch language version of the Toronto structured interview forAlexithymia: reliability, concurrent validity, and factor structure. Psychol. Belg.53, 93–116.

Iriki, A., 2006. The neural origins and implications of imitation, mirror neurons andtool use. Curr. Opin. Neurobiol. 16 (6), 660–667.

Jabbi, M., Keysers, C., 2008. Inferior frontal gyrus activity triggers anterior insularesponse to emotional facial expressions. Emotion 8 (6), 775–780.

Kanwisher, N., McDermott, J., Chun, M.M., 1997. The fusiform face area: a module inhuman extrastriate cortex specialized for face perception. J. Neurosci. 17 (11),4302–4311.

Kanwisher, N., Yovel, G., 2006. The fusiform face area: a cortical region specializedfor the perception of faces. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 361 (1476),2109–2128.

Kätsyri, J., Saalasti, S., Tiippana, K., von Wendt, L., Sams, M., 2008. Impairedrecognition of facial emotions from low-spatial frequencies in Aspergersyndrome. Neuropsychologia 46 (7), 1888–1897.

Krohne, H.W., Egloff, B., Kohlmann, C.-W., Tausch, A., 1996. Untersuchungen miteiner deutschen Version der “Positive and Negative Affect Schedule” (PANAS).[Investigations with a German version of the Positive and Negative AffectSchedule (PANAS).]. Diagnostica 42 (2), 139–156.

Kubota, M., Miyata, J., Hirao, K., Fujiwara, H., Kawada, R., Fujimoto, S., Murai, T.,2011. Alexithymia and regional gray matter alterations in schizophrenia.Neurosci. Res. 70 (2), 206–213.

Kugel, H., Eichmann, M., Dannlowski, U., Ohrmann, P., Bauer, J., Arolt, V., Suslow, T.,2008. Alexithymic features and automatic amygdala reactivity to facial emo-tion. Neurosci. Lett. 435 (1), 40–44.

Lane, R.D., Sechrest, L., Reidel, R., Weldon, V., Kaszniak, A., Schwartz, G.E., 1996.Impaired verbal and nonverbal emotion recognition in alexithymia. Psychosom.Med. 58 (3), 203–210.

Lane, R.D., Sechrest, L., Riedel, R., Shapiro, D., Kaszniak, a.W., 2000. Pervasiveemotion recognition deficit common to alexithymia and the repressive copingstyle. Psychosom. Med. 62 (4), 492–501.

Laricchiuta, D., Petrosini, L., Picerni, E., Cutuli, D., Iorio, M., Chiapponi, C., Spalletta,G. The embodied emotion in cerebellum: a neuroimaging study of alexithymia.Brain Struct. Funct. in press, http://dx.doi.org/10.1007/s00429-014-0790-0.

Laux, L., Glanzmann, P., Schaffner, P., Spielberger, C.D., 1981. State–Trait–AnxietyInventory (STAI). Hogrefe, Göttingen (German version).

Lee, B.-T., Lee, H.-Y., Park, S.-A., Lim, J.-Y., Tae, W.S., Lee, M.-S., Ham, B.-J., 2011.Neural substrates of affective face recognition in alexithymia: a functionalmagnetic resonance imaging study. Neuropsychobiology 63 (2), 119–124.

Lee, I.A., Preacher, K.J., 2013. Calculation for the test of the difference between twodependent correlations with one variable in common. ⟨http://quantpsy.org/corrtest/corrtest2.htm⟩ (accessed August 2014).

Lichev, V., Rufer, M., Rosenberg, N., Ihme, K., Grabe, H.J., Kugel, H., Suslow, T., 2014.Assessing alexithymia and emotional awareness: relations between measuresin a German non-clinical sample. Compr. Psychiatry 55 (4), 952–959.

Lumley, M.A., Gustavson, B.J., Partridge, R.T., Labouvie-Vief, G., 2005. Assessingalexithymia and related emotional ability constructs using multiple methods:interrelationships among measures. Emotion 5 (3), 329–342.

Lumley, M.A., Ovies, T., Stettner, L., Wehmer, F., Lakey, B., 1996. Alexithymia, socialsupport and health problems. J. Psychosom. Res. 41 (6), 519–530.

Lundqvist, D., Flykt, A., Öhman, A., 1998. The Karolinska Directed Emotional Faces –KDEF. Department of Clinical Neuroscience, Psychology Section, KarolinskaInstituteit, Stockholm.

Mann, L.S., Wise, T.N., Trinidad, A., Kohanski, R., 1994. Alexithymia, affect recogni-tion, and the five-factor model of personality in normal subjects. Psychol. Rep.74 (2), 563–567.

Mann, L.S., Wise, T.N., Trinidad, A., Kohanski, R., 1995. Alexithymia, affect recogni-tion, and five factors of personality in substance abusers. Percept. Mot. Skills 81(1), 35–40.

Meganck, R., Inslegers, R., Vanheule, S., Desmet, M., 2011. The convergence ofalexithymia measures. Psychol. Belg. 51 (3–4), 237–250.

Mériau, K., Wartenburger, I., Kazzer, P., Prehn, K., Lammers, C.-H., van der Meer, E.,Heekeren, H.R., 2006. A neural network reflecting individual differences incognitive processing of emotions during perceptual decision making. Neuro-Image 33 (3), 1016–1027.

Moriguchi, Y., Komaki, G., 2013. Neuroimaging studies of alexithymia: physical,affective, and social perspectives. BioPsychoSocial Med. 7 (1), 8.

Mugler, J.P., Brookeman, J.R., 1990. Three-dimensional magnetization-preparedrapid gradient-echo imaging (3D MP RAGE). Magn. Reson. Med. 15 (1),152–157.

Murphy, S.T., Zajonc, R.B., 1993. Affect, cognition, and awareness: affective primingwith optimal and suboptimal stimulus exposures. J. Personal. Soc. Psychol. 64(5), 723–739.

Pandey, R., Mandal, M.K., 1997. Processing of facial expressions of emotion andalexithymia. Br. J. Clin. Psychol. 36 (4), 631–633.

Parker, J.D., Taylor, G.J., Bagby, R.M., 1993. Alexithymia and the recognition of facialexpressions of emotion. Psychother. Psychosom. 59 (3–4), 197–202.

Parker, P.D., Prkachin, K.M., Prkachin, G.C., 2005. Processing of facial expressions ofnegative emotion in alexithymia: the influence of temporal constraint.J. Personal. 73 (4), 1087–1107.

Reker, M., Ohrmann, P., Rauch, A.V., Kugel, H., Bauer, J., Dannlowski, U., Suslow, T.,2010. Individual differences in alexithymia and brain response to maskedemotion faces. Cortex 46, 658–667.

Rochas, V., Gelmini, L., Krolak-Salmon, P., Poulet, E., Saoud, M., Brunelin, J., Bediou,B., 2012. Disrupting pre-SMA activity impairs facial happiness recognition: anevent-related TMS study. Cereb. Cortex 23 (7), 1517–1525.

Sel, A., Forster, B., Calvo-Merino, B., 2014. The emotional homunculus: ERP evidencefor independent somatosensory responses during facial emotional processing.J. Neurosci. 34 (9), 3263–3267.

Sifneos, P.E., 1973. The prevalence of alexithymic characteristics in psychosomaticpatients. Psychother. Psychosom. 22 (2–6), 255–262.

Sonnby-Borgström, M., 2009. Alexithymia as related to facial imitation, mentaliza-tion, empathy, and internal working models-of-self and -others. Neuropsy-choanalysis 11 (1), 111–128.

Spitzer, C., Siebel-Jurges, U., Barnow, S., Grabe, H.J., Freyberger, H.J., 2005. Alex-ithymia and interpersonal problems. Psychother. Psychosom. 74 (4), 240–246.

Sprengelmeyer, R., Rausch, M., Eysel, U.T., Przuntek, H., 1998. Neural structuresassociated with recognition of facial expressions of basic emotions. Proc. R. Soc.Biol. Sci. 265 (1409), 1927–1931.

Steiger, J.H., 1980. Tests for comparing elements of a correlation matrix. Psychol.Bull. 87 (2), 245–251.

Suslow, T., Kugel, H., Ohrmann, P., Stuhrmann, A., Grotegerd, D., Redlich, R.,Dannlowski, U., 2013. Neural correlates of affective priming effects based onmasked facial emotion: an fMRI study. Psychiatry Res. Neuroimaging 211 (3),239–245.

Swart, M., Kortekaas, R., Aleman, A., 2009. Dealing with feelings: characterization oftrait alexithymia on emotion regulation strategies and cognitive-emotionalprocessing. PloS One 4 (6), e5751.

Taylor, G.J., 2000. Recent developments in alexithymia theory and research. Can. J.Psychiatry 45 (2), 134–142.

Taylor, G.J., Bagby, R.M., 2004. New trends in alexithymia research. Psychother.Psychosom. 73, 68–77.

Trinkler, I., Cleret de Langavant, L., Bachoud-Lévi, A.-C., 2013. Joint recognition-expression impairment of facial emotions in Huntington's disease despite intactunderstanding of feelings. Cortex 49 (2), 549–558.

Troisi, A., Delle Chiaie, R., Russo, F., Russo, M.A., Mosco, C., Pasini, A., 1996.Nonverbal behavior and alexithymic traits in normal subjects. Individualdifferences in encoding emotions. J. Nerv. Ment. Dis. 184 (9), 561–566.

Tsuchida, A., Fellows, L.K., 2012. Are you upset? Distinct roles for orbitofrontal andlateral prefrontal cortex in detecting and distinguishing facial expressions ofemotion. Cereb. Cortex 22 (12), 2904–2912.

Van der Gaag, C., Minderaa, R.B., Keysers, C., 2007. Facial expressions: what themirror neuron system can and cannot tell us. Soc. Neurosci. 2 (3–4), 179–222.

Van der Velde, J., Gromann, P., Swart, M., Wiersma, D., de Haan, L., Bruggeman, R.,Aleman, A., 2014. Alexithymia influences brain activation during emotion

K. Ihme et al. / Neuropsychologia 64 (2014) 289–299298

Page 39: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

perception but not regulation. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nsu056 (online).

Van der Velde, J., Servaas, M.N., Goerlich, K.S., Bruggeman, R., Horton, P., Costafreda,S.G., Aleman, A., 2013. Neural correlates of alexithymia: a meta-analysis ofemotion processing studies. Neurosci. Biobehav. Rev. 37 (8), 1774–1785.

Vorst, H., Bermond, B., 2001. Validity and reliability of the Bermond–VorstAlexithymia Questionnaire. Personal. Indiv. Differ. 30 (3), 413–434.

Wittchen, H., Wunderlich, U., Gruschwitz, S., Zaudig, M., 1997. SKID-I. StrukturiertesKlinisches Interview für DSM-IV. Göttingen, Hogrefe.

Yarkoni, T., Braver, T.S., 2010. Cognitive neuroscience approaches to individualdifferences in working memory and executive control: conceptual and meth-odological issues. In: Gruszka, A., Matthews, G., Szymura, B. (Eds.), Handbook ofIndividual Differences in Cognition. Springer, New York, NY, pp. 87–107.

K. Ihme et al. / Neuropsychologia 64 (2014) 289–299 299

Page 40: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

39 

 

 2.3  Study  3:  Alexithymia  and  the  labeling  of  facial  emotions:  response  slowing  and 

increased motor and somatosensory processing (Ihme et al., 2014b) 

Similar to Study 2, Study 3 was accomplished  in the project supported by a grant of the German research 

foundation  to  Thomas  Suslow  and  Harald  Kugel  (grant  number  SU  222/6‐1).  Please  note  that  the 

supplementary data of Study 3 can be found in the Appendix on page 79.   

   

Page 41: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Ihme et al. BMC Neuroscience 2014, 15:40http://www.biomedcentral.com/1471-2202/15/40

RESEARCH ARTICLE Open Access

Alexithymia and the labeling of facial emotions:response slowing and increased motor andsomatosensory processingKlas Ihme1, Julia Sacher2,3, Vladimir Lichev1, Nicole Rosenberg1, Harald Kugel4, Michael Rufer5,Hans-Jörgen Grabe6,7, André Pampel8, Jöran Lepsien8, Anette Kersting1, Arno Villringer2,3 and Thomas Suslow1,9*

Abstract

Background: Alexithymia is a personality trait that is characterized by difficulties in identifying and describingfeelings. Previous studies have shown that alexithymia is related to problems in recognizing others’ emotional facialexpressions when these are presented with temporal constraints. These problems can be less severe when theexpressions are visible for a relatively long time. Because the neural correlates of these recognition deficits are stillrelatively unexplored, we investigated the labeling of facial emotions and brain responses to facial emotions as afunction of alexithymia.

Results: Forty-eight healthy participants had to label the emotional expression (angry, fearful, happy, or neutral) offaces presented for 1 or 3 seconds in a forced-choice format while undergoing functional magnetic resonanceimaging. The participants’ level of alexithymia was assessed using self-report and interview. In light of the previousfindings, we focused our analysis on the alexithymia component of difficulties in describing feelings. Difficultiesdescribing feelings, as assessed by the interview, were associated with increased reaction times for negative(i.e., angry and fearful) faces, but not with labeling accuracy. Moreover, individuals with higher alexithymia showedincreased brain activation in the somatosensory cortex and supplementary motor area (SMA) in response to angry andfearful faces. These cortical areas are known to be involved in the simulation of the bodily (motor and somatosensory)components of facial emotions.

Conclusion: The present data indicate that alexithymic individuals may use information related to bodily actions ratherthan affective states to understand the facial expressions of other persons.

Keywords: Alexithymia, Supplementary motor area, Somatosensory cortex, Facial emotion, Labeling, Torontostructured interview for Alexithymia

BackgroundUnderstanding the emotional expression of another personis thought to require mimicry or simulation of others’ facialexpressions [1,2]. Thus, it is likely that neural assembliesexist that are active both when a person is experiencing andexpressing an emotion and when the same person is seeingand interpreting the facial emotions of somebody else [3,4].Recent evidence indicates that interpreting facial expres-sions is a multi-faceted endeavor that requires recruiting a

* Correspondence: [email protected] of Psychosomatic Medicine and Psychotherapy, University ofLeipzig, Semmelweisstrasse 10, 04103 Leipzig, Germany9Department of Psychiatry, University of Münster, Münster, GermanyFull list of author information is available at the end of the article

© 2014 Ihme et al.; licensee BioMed Central LCommons Attribution License (http://creativecreproduction in any medium, provided the orDedication waiver (http://creativecommons.orunless otherwise stated.

multitude of cortical and subcortical circuits, such as thevisual system (e.g., occipital gyrus, fusiform gyrus [FFG]), toprocess the visual information of the face, the motor systemfor the (covert) physical simulation of the facial movement(supplementary motor area [SMA] or premotor cortex),somatosensory areas for proprioceptive feedback (primarysomatosensory cortex, insula) and limbic or frontal re-gions for reenacting and feeling the according emotion(striatum, ventromedial pre-frontal cortex [vmPFC],amygdala [AMG]) [3-8].A personality trait that is related to difficulties in the

recognition of emotional facial expression is alexithymia(literally translated as “no words for emotion”). Alexithymia

td. This is an Open Access article distributed under the terms of the Creativeommons.org/licenses/by/2.0), which permits unrestricted use, distribution, andiginal work is properly credited. The Creative Commons Public Domaing/publicdomain/zero/1.0/) applies to the data made available in this article,

Page 42: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Ihme et al. BMC Neuroscience 2014, 15:40 Page 2 of 10http://www.biomedcentral.com/1471-2202/15/40

is characterized by deficits in identifying and describingone’s feelings [9]. Alexithymic features can be assessedusing the 20-item self-reported Toronto Alexithymia Scale(TAS-20, [10]) or the Toronto Structured Interview forAlexithymia (TSIA, [11]). Both measures of alexithymiainclude the subscales Difficulties Describing Feelings(DDF), Difficulties Identifying Feelings and ExternallyOriented Thinking (the TSIA additionally includesimaginal processing).It has been repeatedly shown that alexithymia is asso-

ciated with a decreased ability to identify the facialexpressions of others, especially when these expressionsare presented under temporal constraints [12-14]. Inter-estingly, a recent electromyographic (EMG) study demon-strated that highly alexithymic individuals exhibit less facialmimicry when confronted with emotional faces [15]. Thiscould mean that individuals who are high in alexithymiahave difficulties in interpreting the emotions of others be-cause they automatically simulate others’ facial expressionsto a lesser degree and therefore lack the capability to fullycapture the other person’s feelings.On the contrary, when the presentation time is increased,

most studies did not reveal a relationship between the de-gree of alexithymia and recognition accuracy for emotionalfacial expressions (e.g., [12,16,17]). So far, only one study[16] has investigated brain activation related to facial emo-tion labeling, as assessed with longer presentation times(3.75 s) and as a function of alexithymia. No differences asa function of alexithymia could be found. However, theauthors studied only 23 participants in a correlational ap-proach. Yarkoni and Braver instead proposed the use of atleast 40 participants for a correlational analysis in neuroim-aging research [18]. In addition, alexithymic tendencies wereonly assessed through self-report, although a multi-methodapproach is recommended [19-21]. Moreover, behavioralevidence [12] suggests that DDF, as opposed to the TAS-20total score, is most predictive for facial emotion recognition.Thus, the current study investigated the labeling of facialemotions and brain responses to facial emotions as a func-tion of DDF (as measured with TAS-20 and TSIA) usingfunctional magnetic resonance imaging (fMRI). Because ourdesign includes a relatively long response window after thepresentation of the facial stimuli, we hypothesized that DDFwould have an adverse effect on response latencies but notrecognition accuracy.

MethodsParticipantsFifty-two healthy young German native speakers (age range:18 to 29 yrs) participated in the study. All of them wereright-handed and had normal or corrected-to-normal visualacuity. None of the participants had any history of neuro-logical or psychiatric illnesses or contraindications formagnetic resonance imaging. All participants gave written

consent to participate and received financial compensa-tion for their participation. The study procedure was ap-proved by the ethics committee of the Medical Schoolof the University of Leipzig and was in accordance withthe Declaration of Helsinki. Four participants had tobe excluded from data analysis (one participant had adepression score of BDI > 14 at time of scanning, onesubject displayed excessive head motions in the magneticresonance imaging (MRI) scanner (>3 mm translation)and two participants demonstrated erroneous reactionsand responded before the intended time window). Thus,48 participants (23 female, age 24 ± 3 yrs, mean ± SD)entered final analysis.

Assessment of alexithymia and control variablesAlexithymic tendencies were measured using a ques-tionnaire, the TAS-20 (German version: [22]), and anobserver-rated measure, the TSIA (German version: [23]).The complete TSIA was administered by one trainedinterviewer and rated during the interview according tothe manual. Before the study, the interviewer was trainedto conduct and score the TSIA by the translators of theGerman version of the TSIA (coauthors MR and HG). Thisincluded becoming familiar with the alexithymia construct,the manual outlining administration and the scoring proce-dures for the TSIA, as well as discussion of the guidelines,the scoring of the items and the correct use of the promptsand probes. Moreover, test interviews were supervised untilthe interviewer was secure in the solo administration andscoring of the interview. Our analysis was focused on onesubscale, DDF, of the TAS-20 and TSIA. This subscale con-sists of five items in the TAS-20 and six items in the TSIA,respectively. To control for depressive symptoms, anxietyand affectivity, participants also completed the BeckDepression Inventory (German version: [24]), the State-Trait-Anxiety Inventory (German Version: [25]) and thePositive and Negative Affect Schedule (German Version:[26]) trait version.

Task and designThe participants’ task was to label the facial emotion ofa target face. Facial stimuli were color photographs takenfrom the Karolinska Directed Emotional Face database[27] depicting four different emotions (happy – HA,angry – AN, fearful – FE, and neutral – NE). Pictures oftwenty different individuals (ten females) were shown ineach of the four emotional conditions, consisting of 80trials in total. Each trial lasted for 9 s, initiated by thepresentation of a fixation cross in the center of the screenfor 800 ms. In the first 40 trials of the experiment, thetarget was shown for 1 s; in the second half of theexperiment, the target presentation time was set to 3 s.After presentation of the target, participants had 7.2 (5.2)s to label the emotions by pressing a button. Participants

Page 43: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Ihme et al. BMC Neuroscience 2014, 15:40 Page 3 of 10http://www.biomedcentral.com/1471-2202/15/40

had one response pad per hand with two buttons each andprovided their responses with their index and middle fin-gers. Each emotion was attributed to one button during theentire experiment counterbalanced across participants.During the response window, participants saw the fouroptions in the order of button attribution, e.g., the labelon the left side on the screen matched the most left but-ton (i.e., left middle finger). After pressing a button, thelabels vanished and only a gray screen was visible until thenext trial started with the presentation of the fixationcross. Participants were instructed to answer as correctlyas possible within the given time frame and were aware ofthe fact that the response window was shorter in the sec-ond half of the experiment. Trials were shown in two fixedrandom sequences with the constraints that no two subse-quent trials depict the same person and that no more thantwo subsequent trials show the same emotion.

MRI acquisition and preprocessingStructural and functional MR images were obtained on a 3 Tscanner (Magnetom Verio, Siemens, Erlangen, Germany).For each participant, structural images were acquired with aT1-weighted 3D MP-RAGE [28]. Magnetization preparationconsisted of a non-selective inversion pulse. The imagingparameters were as follows: TI 650 ms, TR 1300 ms,TE 3.5 ms, flip angle 10°, isotropic spatial resolution of1 mm3, two averages. Blood oxygen level dependent con-trast sensitive images were collected using T2*-weightedecho-planar imaging (EPI) sequence [matrix 642; resolution3 mm× 3 mm× 4 mm; gap 0.8 mm; TR 2 s; TE 30 ms; flipangle 90°; interleaved slice acquisition; 385 images]. Theslices were oriented parallel to a line through the posteriorand anterior commissures.MRI data were preprocessed and analyzed using SPM8

(http://www.fil.ion.ucl.ac.uk/spm/). The initial five functionalvolumes were discarded to allow longitudinal magnetizationto reach equilibrium. Functional volumes were slice-timecorrected (temporal middle slice as reference), realigned tothe first image and corrected for movement-induced imagedistortions (6-parameter rigid body affine realignment).The structural T1 images were coregistered to the meanfunctional EPI image (default in SPM). Anatomical imageswere segmented, including normalization to a standardstereotaxic space using the T1 MNI within SPM8. Thenormalization parameters were then applied to thefunctional EPI series. The resulting voxel size for thefunctional images was 3x3x3 mm3. A temporal high-passfilter (128 s) was applied to remove slow signal drifts. Forthe functional data, spatial smoothing was performed usinga three-dimensional Gaussian filter of 6 mm full-width athalf-maximum. We chose this rather small smoothingkernel such that the potential activation in subcorticalareas involved in facial emotion processing was stilldetectable and not washed out.

Data analysisLabeling accuracy was evaluated by the Grier sensitivityindex [29], which considers true and false positives. Theresulting values for this sensitivity index range from 0 to1, with a value of 1 meaning perfect performance and avalue of 0.5 referring to chance level. Due to the highaccuracy and thus lack of sufficient trials to reliably esti-mate error responses, incorrect trials were discardedprior to analysis of reaction time and fMRI data. Thedata were pooled across both presentation time condi-tions. Originally, we aimed to differentiate between thetwo temporal conditions (1 and 3 s), similar to the studyof Parker et al. [12]. However, the accuracy was at itsceiling (> .9) with little variance, such that we decidedto collapse across temporal conditions for analysis ofreaction time and fMRI data. The high recognition ratesin the current study compared to those of Parker et al.seem to be related to our long response window. Theparticipants in Parker et al.’s study had to respond whilethe picture was presented (1 or 3 s). Participants hadmore time to respond in the current study, most likelyresulting in higher accuracy. This is in line with the con-clusions of a recent review (Grynberg et al. [14]), whichwas published when the data collection for this studywas almost finished. Grynberg and colleagues concludedthat alexithymic individuals' difficulties in recognizing facialemotions are most prominent when the pictures are pre-sented for less than 300 ms. To investigate associationsbetween measures of alexithymia and labeling accuracy, aswell as RTs, correlational analyses were accomplished usingSpearman’s rho. Spearman’s rho was also used to checkfor associations between the measures of alexithymiaand affectivity questionnaires (BDI, STAI, and PANAS).We employed Spearman’s rho for correlational analysesbecause the RT and TSIA-DDF scores were not normallydistributed. All associations were tested against a signifi-cance threshold of p = .05 (two-tailed).The fMRI data were analyzed by modeling the onset

and duration of the presentation times of each facialexpression and by convolving these regressors with thehemodynamic response function for the different emo-tions. Incorrect trials were included in the first-level de-sign matrix as nuisance regressor. First level t-contrastswere calculated by contrasting each emotional conditionwith the neutral one (HA >NE, AN >NE, FE > NE). Thecontrast images for the first level contrasts were thentransferred to the second level models for the main effects(HA >NE, AN >NE and FE >NE) and regression modelswith TAS-20-DDF and TSIA-DDF as regressors. One sec-ond level model was calculated per alexithymia measure(TAS-20-DDF, TSIA-DDF) and experimental condition.For all models, significance was tested at the clusterlevel against a family-wise-error-corrected significancethreshold of p = .05 at an individual voxel threshold of

Page 44: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Table 1 Correlations (Spearman’s rho) between measuresof alexithymia

TAS-20 TAS-20-DDF TSIA TSIA-DDF

TAS-20 .85** .47* .57**

TAS-20-DDF .41* .55**

TSIA .81**

TSIA-DDF

*significant at p < .01 (two-tailed).**significant at p < .001 (two-tailed).Note. TAS-20 = 20-Item Toronto Alexithymia Scale, TSIA = Toronto StructuredInterview for Alexithymia; DDF: subscale Difficulties Describing Feelings.

Ihme et al. BMC Neuroscience 2014, 15:40 Page 4 of 10http://www.biomedcentral.com/1471-2202/15/40

t = 3.5. As advised in the literature [30], we also reportthe activations that would survive a more lenientthreshold (p = .001, k = 10) in the additional material toafford using these data in future meta-analyses.In a recent paper, Yarkoni and colleagues [31] argued that

the reaction times per second increase brain activation be-cause the time required for preparatory processes for motoractivation is increased. Thus, for contrasts yielding signifi-cant clusters, we checked whether adding the differencein RT between the two the conditions in that contrast(e.g., AN >NE) or the RT for the emotion only (e.g., AN)as nuisance covariates changed the results substantially.Although an association between behavior and TSIA-

DDF was revealed for angry and fearful faces, it was onlyreflected in significant brain activation related to TSIA-DDFin the contrast AN>NE, but not in FE >NE. For FE >NE,the effects on brain activation may be smaller and could thusnot be detected using a whole brain approach. Thus, weadditionally tested whether there was an association betweenTSIA-DDF and brain activation in these clusters in an ROI-based approach using small volume correction for FE >NE.For this, the significant clusters from the model testing for apositive correlation between TSIA-DDF and brain activationfor the contrast AN>NE were saved as a mask. These, inturn, were employed as an ROI to check for activations posi-tively correlating with TSIA-DDF in these brain areas.Finally, an exploratory analysis was conducted to check

whether our measures of alexithymia (TAS-20, TAS-20-DDF, TSIA, TSIA-DDF) displayed a relationship with brainactivations in ROIs, which, based on the previous literature,are associated with facial emotion processing. To estimatethe activation in these ROIs, the eigenvariates of the ac-tivation in these ROIs were extracted for the main con-trasts (i.e., HA > NE, AN > NE, FE > NE) using SPM8.The activations in these ROIs were then related to themeasures of alexithymia by employing Spearman’s rho.We decided to employ the following ROIs: amygdala(AMG), ventro-medial pre-frontal gyrus (vmPFC), fusiformgyrus (FFG) and striatum. The masks for AMG, FFGand striatum were defined using the automated anatom-ical labeling toolbox [32] as implemented in the WFUPick Atlas [33] using SPM8. However, this tool did notinclude a reasonable mask for the vmPFC, so we definedthis region as a sphere of 20 mm around the MNI coor-dinates xyz = [0 50–2]. These coordinates were based onthe results of a study by Pessoa et al. on facial emotionprocessing [34]. We also decided to include the clusters(SMA, right S1) positively correlating with TSIA-DDFin the contrast AN > NE as further ROIs.

ResultsAlexithymia measures and control variablesThe mean scores for the alexithymia subscales were 12.4 ±4.6 (mean ± standard deviation) for the TAS-20-DDF and

2.9 ± 3.4 for the TSIA-DDF. The TAS-20 total score was43.0 ± 10.7, and the TSIA total score was 16.9 ± 9.9. Internalconsistencies for TAS-20-DDF (Cronbach’s α = .87) andTSIA-DDF (α = .90) were sufficiently high. All measuresof alexithymia were significantly correlated with eachother (see Table 1). There was no correlation betweenTAS-20-DDF and depression as assessed by the BDI[35], trait-anxiety as measured by the STAI [36], or posi-tive and negative affect as assessed by the PANAS [37](all ps > .05). TSIA-DDF was not related to BDI or toSTAI and PANAS negative (all ps > .05), but there was anegative correlation between TSIA-DDF and PANASpositive (rho = −.33, p < .05). There was a correlationbetween STAI and BDI (rho = .49, p < .005).

Behavioral dataLabeling accuracy was above 0.9 for all facial emotionconditions (happy [HA]: .99, neutral [NE]; .97; angry[AN]: .96; fearful [FE]: .96), and there was no relationshipbetween TAS-20-DDF or TSIA-DDF and performance asmeasured using the Grier sensitivity index [29] in anyof the emotional conditions (all ps > .1). The fastestreaction times were revealed for happy faces, and theslowest reaction times for fearful faces (HA: .73 s, NE: .96 s,AN: 1.06 s, FE: 1.17 s; F(3,141) = 36.4, p < .01; post-hocs:HA <NE =AN< FE). TAS-20-DDF did not correlate withreaction time (RT) in any condition (all ps > .1). However,there was a positive correlation between TSIA-DDF andRT for angry (rho = .30, p < .05) and fearful faces (rho = .31,p < .05), but no correlation was observed between TSIA-DDF and RT for happy (rho =−.01, p = .47) and neutralfaces (rho = .07, p = .32) (see Table 2).

fMRI dataMain effectsHappy versus neutral faces elicited significant brain acti-vation in clusters in the left middle occipital gyrus ex-tending to the middle temporal gyrus, in the left middleorbital gyrus extending to both the superior frontalgyrus and the bilateral anterior cingulate gyrus, and acluster in the middle frontal gyrus extending to the su-perior frontal gyrus. In the contrast AN >NE, significant

Page 45: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Table 2 Correlations (Spearman’s rho) between difficultiesdescribing feelings (as assessed by TAS-20-DDF andTSIA-DDF) and reaction times in the four facialexpression conditions

Reaction times

Happy Neutral Angry Fearful

TAS-20-DDF rho .06 -.04 .15 .11

p 34 .41 .15 .22

TSIA-DDF rho -.01 .07 .30* .31*

p .47 .32 .02 .02

*significant at p < .05 (two-tailed).Note. TAS-20 = 20-Item Toronto Alexithymia Scale, TSIA = Toronto StructuredInterview for Alexithymia; DDF: subscale Difficulties Describing Feelings.

Ihme et al. BMC Neuroscience 2014, 15:40 Page 5 of 10http://www.biomedcentral.com/1471-2202/15/40

clusters were revealed in the right fusiform gyrus, theright inferior occipital gyrus extending to middle occipitaland lingual gyrus, the left fusiform gyrus extending to infer-ior temporal gyrus and the left middle occipital gyrus. Thecontrast FE >NE activated the left inferior frontal gyrus,left fusiform gyrus extending to inferior occipital gyrus, leftmiddle temporal gyrus, right inferior occipital gyrusand right cerebellar structures (lobule VIIb and VIIa).An overview of the results is presented in Table 3. Theactivations for the main contrasts are presented at a morelenient threshold (p = .001, k = 10) in the Additional file 1:Table S1.

Relationships between brain activation and measuresof alexithymiaA significant cluster positively correlating with TSIA-DDFin the contrast AN >NE was revealed in the supplemen-tary motor area (SMA) (Montreal Neurological Institute[MNI] coordinates xyz = [−6 -1 61], cluster extent k = 64,

Table 3 Significant brain activations for all fMRI main contras

Cluster Peak

k pfwe x y z Z pfwe

HA > NE 1 361 <.001 −42 −76 31 5.10 <.01

2 461 <.001 −6 53 2 4.99 .01

3 54 <.05 −30 26 49 4.43 .16

AN > NE 1 98 <.01 42 −49 −14 4.63 .05

2 81 <.01 36 −91 4 4.98 .11

3 121 <.001 −39 −73 −8 4.40 .13

4 48 <.05 −30 −94 7 3.92 .52

FE > NE 1 615 <.001 −45 14 22 5.93 <.001

2 167 <.001 36 −91 2 5.58 <.001

3 292 <.001 −36 −73 −8 5.03 <.01

4 106 <.01 −57 −55 7 4.62 .05

5 102 <.01 15 −79 −35 4.58 .06

Note. Only clusters that are significant on cluster level (pfwe < 0.05) at an individualwhich the cluster is spanning. HA > NE = happy versus neutral faces, AN >NE = angry vand z are in MNI space.

pcluster = .013). The peak of this cluster lay in SMA proper,but the activity clearly extended more rostrally to pre-SMA.A second cluster was found in the post-central gyrus(xyz = [30–37 40], pcluster = .039, k = 47) (see Figure 1),which could be attributed to the right primary somatosen-sory (S1) cortex. No significant clusters were revealed re-lated to TAS-20-DDF or any other contrast for TSIA-DDF.Because TSIA-DDF was negatively correlated with thepositive affect, we checked whether entering the PANASpositive score as a nuisance covariate into the model af-fected the results. We found a small change for the clusterin the SMA (xyz = [−6 -1 61], k = 39, pcluster = .089) and adecrease in cluster size in the somatosensory cortex (xyz =[30–37 40], k = 14, pcluster = .45, ppeak-uncorrected < .0001).Entering the difference between the reaction times for

AN and NE as nuisance covariates into our second-levelmodel slightly changed the results (SMA: xyz = [3 2 61],k = 43, pcluster = .05; somatosensory cortex: xyz = [30–37 40],k = 47, pcluster = .038). Similarly, using only the reaction timein the angry condition as a covariate led to small changes inthe results (SMA: xyz = [3 2 61], k = 37, pcluster = .08; som-atosensory cortex: xyz = [30–37 40], k = 45, pcluster = .046).Thus, our findings are highly likely to mainly reflect differ-ences due to alexithymia (TSIA-DDF) and cannot be attrib-uted to (differences in) the reaction time. The activationsfor the models related to the measures of alexithymia arepresented at a more lenient threshold (p = .001, k = 10) inthe Additional file 2: Table S2.

Post-hoc analysis of activation in SMA and S1 positivelycorrelating with TSIA-DDF for contrast FE > NEA post-hoc region of interest (ROI) analysis revealed asignificant small-volume-corrected (SVC) peak voxel

ts

Localization

hem. Region

Left Middle occipital gyrus, middle temporal gyrus

Left Middle orbital gyrus, superior frontal gyrus, superiormedial gyrus, anterior cingulate gyrus

Left Middle frontal gyrus, superior frontal gyrus

Right Fusiform gyrus

Right Inferior occipital gyrus, middle occipital gyrus, lingual gyrus

Left Fusiform gyrus, inferior temporal gyrus

Left Middle occipital gyrus

Left Inferior frontal gyrus, pars triangularis

Right Inferior occipital gyrus

Left Fusiform gyrus, inferior occipital gyrus

Left Middle temporal gyrus

Right Cerebellum, lobule VIIb

voxel threshold of t = 3.5 are reported. The region refers to brain areas throughersus neutral faces, FE > NE = fearful versus neutral faces, hem. = hemisphere, x, y

Page 46: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Figure 1 Activation in the right postcentral gyrus (A) and supplementary motor area (B) in response to angry (vs. neutral) faces(AN > NE) positively correlating with TSIA-DDF.

Ihme et al. BMC Neuroscience 2014, 15:40 Page 6 of 10http://www.biomedcentral.com/1471-2202/15/40

activation in the SMA (xyz = [−9 -4 61], pSVC = .019)and a marginally significant peak voxel activation in S1(xyz = [30–37 40], pSVC = .069) positively correlatingwith TSIA-DDF in the contrast FE > NE. The activationin SMA remained marginally significant when control-ling for PANAS positive affect (pSVC = .061) and signifi-cant when entering the difference in RT between FEand NE (pSVC = .032), or RT in FE alone (pSVC = .034).Similarly, the significance of the activation in S1 changedonly slightly when controlling for PANAS (pSVC = .084),the difference in RT (pSVC = .052) or the reaction time forFE (pSVC = .059).

Exploratory analysis of correlations between brain regionsrelevant for emotion processing and measures of alexithymiaThe results of our exploratory analysis considering associa-tions between measures of alexithymia and brain activity inthe AMG, FFG, vmPFC, striatum, SMA and S1 are dis-played in Figure 2. Descriptively, our measures of alexithy-mia are rather positively related to activation in S1 andSMA and show no or negative correlative trends withAMG and vmPFC. These relationships between alexithymiaand FFG as well as striatum depend on the contrast, andno consistent pattern emerges. When thresholding the plotat p = .05 (two-tailed), SMA seems to be strongly associatedwith TSIA-DDF (all contrasts), while S1 is related to TSIA-DDF (AN >NE, FE >NE), TSIA and TAS-20 (AN>NE) inthe conditions with negative emotions. For the contrastHA > NE, the activity in vmPFC is negatively related toTAS-20-DDF and TSIA-DDF. Moreover, FFG activityseems to be positively related to TAS-20 in both negativeconditions. For AN >NE, activation in the left striatumseems to be positively related to TSIA-DDF. However, it

has to be noted that the correlations between TSIA-DDFand SMA and S1 for AN >NE are likely to be an overesti-mation of the real correlations in these areas because weextracted a cluster using a mask defined by voxels thatpositively correlated with TSIA-DDF in that very contrast(cf. [38,39]). Thus, these correlations are only presentedhere in an exploratory and descriptive fashion.

DiscussionThis study investigated the effects of self-report (TAS-20-DDF) and observer-rated (TSIA-DDF) facets of alexithymiaon the labeling and neural processing of facial emotionspresented for a rather long time (1 or 3 seconds). Our ana-lysis of the main contrasts revealed significant clusters ofbrain activation in the fusiform gyrus, inferior and middleoccipital gyrus (all conditions), in the middle temporalgyrus (fearful faces), inferior (fearful) and orbital and medial(happy) frontal gyrus as well as the cerebellum. All of theseregions have been reported to be implicated in facial emo-tion processing (e.g.: [7,8,40-42]). Thus, we can assume thatour experimental design is suitable for eliciting brain activa-tion related to facial emotion recognition. Considering thespecific effects of alexithymia, we found that high TSIA-DDF scores were related to increased reaction times whenlabeling angry and fearful faces and to increased brainactivation in SMA and right S1 during the recognitionof these negative faces. A post-hoc exploratory analysissuggests that activity in brain areas that are importantin the affective components of facial emotion processing(AMG, vmPFC, striatum) does not show a particularrelationship with alexithymia in the current task.Their increased reaction times indicate that alexithymic

individuals were slower in labeling negative emotions.

Page 47: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Figure 2 Relationship (as calculated with Spearman’s rho) between measures of alexithymia and brain activations in regions-of-interest that are relevant for facial emotion processing. The left column (A,C,E) depicts the magnitude of rho coded by color; in the rightcolumn (B,D,F), rho is only presented as different from zero if the according p < .05. Each row is related to one contrast: HA > NE (happy > neutral) inA and B. AN > NE (angry > neutral) in C and D. FE > NE (fearful > neutral) in E and F. l = left, r = right; AMG = amygdala, FFG = fusiform gyrus,vmPFC = ventro-medial pre-frontal cortex, STR = striatum, SMA = supplementary motor area, S1 = primary sensory cortex.

Ihme et al. BMC Neuroscience 2014, 15:40 Page 7 of 10http://www.biomedcentral.com/1471-2202/15/40

Highly alexithymic individuals appear to need moretime to reach a labeling accuracy level similar to subjectswith low alexithymia. In contrast to previous studiesdescribing a relationship between accuracy and degreeof alexithymia [12,13], we used relatively long stimuluspresentation times and response windows and couldnot reveal interrelationships between alexithymia andrecognition accuracy. Thus, it seems that alexithymicindividuals have difficulties in recognizing facial ex-pressions, which are reflected in decreased accuracywhen presentation times and response windows are short(see also [14]). Prolonging presentation times and responsewindows could improve recognition accuracy, however, atthe cost of increases in response time.SMA is part of a brain network that is involved in the

processing of motor-related information and motor prepar-ation and has been shown to be involved in the productionof facial emotions [43]. Moreover, it has been argued that(especially pre-) SMA is involved in the recognition of facialemotions [44] by playing an important role in the motorcomponents of simulation (see also [6]). Additionally,a cluster in S1 was revealed, which seems to reflectsomatosensory aspects of facial emotion processing[3,7,45]. According to Adolphs et al. [46], recognizingemotions from facial expressions requires right primarysomatosensory areas. The authors argue that recognition ofanother individual’s emotional state is mediated by intern-ally generated somatosensory representations that simu-late how the other individual would feel when displaying a

certain facial expression. Taken together, this mediationcould mean that highly alexithymic individuals have diffi-culties in automatically reenacting the negative facial emo-tion of others when these are presented briefly [15]. Whenthe presentation time is increased, highly alexithymic indi-viduals can reach a similar performance as less alexithymicindividuals, which seem to require an increased activationof motor and somatosensory areas. Interestingly, it has beenfound that highly (as compared to less) alexithymic individ-uals also show increased activation in motor-related brainareas when interpreting the directed actions of others ina classical mirror-neuron task and show no differencesin interpreting these actions [47]. Thus, highly alexithymicindividuals may be more inclined to imitate the actionsof others via (covert) motor simulation than are non-alexithymics. A recent meta-analysis by van der Veldeet al. [48] reported that high levels of alexithymia arerelated to decreased activity in the SMA when partici-pants are confronted with negative stimuli. However,this meta-analysis included all types of emotional para-digms and tasks (not only facial emotion recognition), sothe published results may not necessarily reflect processesrelated specifically to facial emotion recognition.There seems to be no particular relationship between

activity in the amygdala, vmPFC and ventral striatum andalexithymia in the task studied here. This finding is very in-teresting because earlier studies on brain function [49-52]and structure [53] reported alterations in highly alexithymicindividuals in these regions. In particular, functional studies

Page 48: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Ihme et al. BMC Neuroscience 2014, 15:40 Page 8 of 10http://www.biomedcentral.com/1471-2202/15/40

on automatic processing of emotional faces (affectivepriming) [49-51] have revealed decreased activations inthese brain areas. The lack of involvement in the currenttask may be the case because the emotional faces werepresented for a rather long time in the current study. Theamygdala and the ventral striatum, however, are thoughtto operate in a fast and automatic fashion and may be lessrelevant when the participants are fully aware of the emo-tional nature of the faces (e.g., [54,55]), as in the currentstudy. Thus, it seems that alexithymic individuals showless automatic activation in brain regions particularlyinvolved in the affective components of face processing(AMG, ventral striatum, vmPFC), which most likely leadsto alterations in the processing of and difficulties in thelabeling of briefly presented faces. However, alexithymicindividuals seem to be able to simulate the bodily aspectsof facial expressions when the presentation times and re-sponse windows are long enough, which makes the correctrecognition of faces possible in this case.Our study points to deficits limited to the recognition

of negative faces in alexithymia. Neither behavioral norneurobiological differences were revealed for happyfaces. This finding suggests that alexithymics have fewerproblems interpreting positive compared to negative facialexpressions. A recent review on alexithymia and the pro-cessing of emotional facial expressions concluded that thedifficulties of alexithymic individuals in processing facialemotions are not specific to certain emotions [14]. Thework of Sonnby-Borgström [15] shows that the imitationof facial expressions (measured with facial EMG) in highlyalexithymic individuals was only decreased for corru-gator activity related to negative emotions, but not forzygomaticus activity related to happy faces. Againstthis background, alexithymic individuals may displayfewer deficits in automatically simulating happy facescompared to neutral ones, which possibly renders therecognition of happy faces easier.It is important to note that in our study, the objective

measure of alexithymia (TSIA), but not the self-reportmeasure (TAS-20), was predictive for recognition per-formance. Because some alexithymic individuals maynot be aware of their own deficits, self-report tests couldbe less suitable for measuring difficulties in describingfeelings compared to objective tests such as the TSIA.It has been argued that the TAS-20 and the TSIA only

measure cognitive aspects of alexithymia and neglectaffective parts of the alexithymia construct [56]. A ques-tionnaire that possibly captures these affective compo-nents is the Bermond-Vorst-Alexithymia Questionnaire([57], but see also [58]). It is possible that additionallyapplying this measure of alexithymia may have the potentialto discover relationships between the brain areas involvedin the affective components of emotional face processing.Future studies need to be conducted to determine whether

the results of the current study are only related to cog-nitive alexithymia or whether they generalize to affectivealexithymia as well.

ConclusionIn summary, alexithymic individuals have difficulties inlabeling facial expressions of emotion, even when these arepresented with little temporal constraints. Such individualsare slowed in their labeling of angry and fearful facial emo-tions, and they manifest increased activation in the somato-sensory and supplementary motor cortex in response tothese negative faces. These cortical regions are involved inthe simulation of the bodily components of facial emotionalexpressions. Thus, the present data suggest that alexithymicindividuals may recruit cortical processing resources thatare involved in the simulation of the bodily componentsrather than of affective states (angry and fearful) to interpretthese facial expressions.

Additional files

Additional file 1: Table S1. Brain activation in the three main contrastsat a threshold of t = 3.27, k = 10.

Additional file 2: Table S2. Brain activation related to measures ofalexithymia in the three contrasts at a threshold of t = 3.27, k = 10.

AbbreviationsAMG: Amygdala; AN: Experimental condition with angry faces; BDI: Beckdepression inventory; DDF: Difficulties describing feelings (subscale ofTAS-20 and TSIA); EMG: Electromyography; EPI: Echo planar imaging;FE: Experimental condition with fearful faces; FFG: Fusiform gyrus; (f)MRI: (functional) magnetic resonance imaging; HA: Experimental conditionwith happy faces; MNI: Montreal neurological institute; NE: Experimentalcondition with neutral faces; PANAS: Positive and Negative affect schedule;ROI: Region of interest; RT: Reaction time; S1: Primary somatosensory cortex;SMA: Supplementary motor area; STAI: State-trait-anxiety inventory;SVC: Small volume corrected; TAS-20: 20-Item Toronto Alexithymia scale;TSIA: Toronto structured interview for Alexithymia; vmPFC: Ventro-medialprefrontal cortex.

Competing interestThe authors declare that they have no competing interests.

Authors’ contributionsKI, JS, VL, NR, HK, MR, HG, AP, JL, AK, AV, TS designed the study; MR, HGsupervised the alexithymia interviews; KI, VL, NR, TS conducted thepsychometric testing of the participants; JS, HK, AP, JL, AV prepared the fMRIsequences; KI, JS, VL, NR, TS, AP run the fMRI experiments; KI, VL, NR, MR, HG,TS analyzed the psychometric data; KI, JS, TS analyzed the fMRI data; KI, JS,VL, NR, HK, MR, HG, AP, JL, AK, AV, TS interpreted the data; KI, JS, AK, TSwrote the manuscript. All authors read and approved the final manuscript.

AcknowledgementsThis work was supported by a grant from the German Research FoundationDFG to Thomas Suslow and Harald Kugel (SU 222/6-1).We thank Sophie-Luise Lenk and Marc Rupietta for their help in data collection.

Author details1Department of Psychosomatic Medicine and Psychotherapy, University ofLeipzig, Semmelweisstrasse 10, 04103 Leipzig, Germany. 2Department ofNeurology, Max-Planck-Institute of Human Cognitive and Brain Sciences,Leipzig, Germany. 3Clinic of Cognitive Neurology, University of Leipzig,Leipzig, Germany. 4Department of Clinical Radiology, University of Münster,

Page 49: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Ihme et al. BMC Neuroscience 2014, 15:40 Page 9 of 10http://www.biomedcentral.com/1471-2202/15/40

Münster, Germany. 5Department of Psychiatry and Psychotherapy, UniversityHospital Zurich, Zurich, Switzerland. 6Department of Psychiatry, University ofGreifswald, Greifswald, Germany. 7HELIOS Hospital, Stralsund, Germany.8Nuclear Magnetic Resonance Unit, Max-Planck-Institute of Human Cognitiveand Brain Sciences, Leipzig, Germany. 9Department of Psychiatry, Universityof Münster, Münster, Germany.

Received: 4 December 2013 Accepted: 7 March 2014Published: 14 March 2014

References1. Niedenthal PM: Embodying emotion. Science 2007, 316:1002–1005.2. Dimberg U, Andréasson P, Thunberg M: Emotional empathy and facial

reactions to facial expressions. J Psychophysiol 2011, 25:26–31.3. Heberlein AS, Adolphs R: In Neurobiology of Emotion Recognition: Current

Evidence for Shared Substrates, Soc Neurosci. 1st edition. Edited byHarmon-Jones E, Winkielman P. New York: Guilford Press; 2007:31–55.

4. Heberlein AS, Atkinson AP: Neuroscientific evidence for simulation andshared substrates in emotion recognition: beyond faces. Emot Rev 2009,1:162–177.

5. Heberlein AS, Padon AA, Gillihan SJ, Farah MJ, Fellows LK: Ventromedialfrontal lobe plays a critical role in facial emotion recognition. J CognNeurosci 2008, 20:721–733.

6. Van der Gaag C, Minderaa RB, Keysers C: Facial expressions: what the mirrorneuron system can and cannot tell us. Soc Neurosci 2007, 2:179–222.

7. Adolphs R: Neural systems for recognizing emotion. Curr Opin Neurobiol2002, 12:169–177.

8. Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, BenedettiF, Abbamonte M, Gasparotti R, Barale F, Perez J, McGuire P, Politi P: Functionalatlas of emotional faces processing: a voxel-based meta-analysis of 105functional magnetic resonance imaging studies. J Psychiatry Neurosci 2009,34:418–432.

9. Sifneos PE: The prevalence of alexithymic characteristics inpsychosomatic patients. Psychother Psychosom 1973, 22:255–262.

10. Bagby RM, Parker JDA, Taylor GJ: The twenty-item Toronto Alexithymiascale—I. Item selection and cross-validation of the factor structure.J Psychosom Res 1994, 38:23–32.

11. Bagby RM, Taylor GJ, Parker JDA, Dickens SE: The development of theToronto Structured Interview for Alexithymia: item selection, factorstructure, reliability and concurrent validity. Psychother Psychosom 2006,75:25–39.

12. Parker PD, Prkachin KM, Prkachin GC: Processing of facial expressions ofnegative emotion in alexithymia: the influence of temporal constraint.J Pers 2005, 73:1087–1107.

13. Swart M, Kortekaas R, Aleman A: Dealing with feelings: characterization oftrait alexithymia on emotion regulation strategies and cognitive-emotionalprocessing. PLoS One 2009, 4:e5751.

14. Grynberg D, Chang B, Corneille O, Maurage P, Vermeulen N, Berthoz S,Luminet O: Alexithymia and the Processing of Emotional FacialExpressions (EFEs): systematic review, unanswered questions and furtherperspectives. PLoS One 2012, 7:e42429.

15. Sonnby-Borgström M: Alexithymia as related to facial imitation,mentalization, empathy, and internal working models-of-selfand -others. Neuropsychoanalysis 2009, 11:111–128.

16. Mériau K, Wartenburger I, Kazzer P, Prehn K, Lammers C-H, van der Meer E,Villringer A, Heekeren HR: A neural network reflecting individualdifferences in cognitive processing of emotions during perceptualdecision making. Neuroimage 2006, 33:1016–1027.

17. Montebarocci O, Surcinelli P, Rossi N, Baldaro B: Alexithymia, verbal abilityand emotion recognition. Psychiatr Q 2011, 82:245–252.

18. Yarkoni T, Braver TS: In Cognitive Neuroscience Approaches to IndividualDifferences in Working Memory and Executive Control: Conceptual andMethodological Issues, Handb Individ Differ Cogn. Edited by Gruszka A,Matthews G, Szymura B. New York, NY: Springer; 2010:87–107 [The SpringerSeries on Human Exceptionality (Series editor)].

19. Lumley MA, Gustavson BJ, Partridge RT, Labouvie-Vief G: Assessing alexithymiaand related emotional ability constructs using multiple methods:interrelationships among measures. Emotion 2005, 5:329–342.

20. Taylor GJ: Recent developments in alexithymia theory and research.Can J Psychiatry 2000, 45:134–142.

21. Lichev V, Rufer M, Rosenberg N, Ihme K, Grabe HJ, Kugel H, Donges U-S,Kersting A, Suslow T: Assessing alexithymia and emotional awareness:Relations between measures in a German non-clinical sample. ComprPsychiatry. in press.

22. Bach M, Bach D, de Zwaan M, Serim J, Böhmer J: Validierung der deutschenVersion der 20-Item Toronto Alxithymie Skala bei Normalpersonen undpsychiatrischen Patienten. Psychother Psychosom Med Psychol 1996, 46:23–28.

23. Grabe HJ, Löbel S, Dittrich D, Bagby RM, Taylor GJ, Quilty LC, Spitzer C,Barnow S, Mathier F, Jenewein J, Freyberger HJ, Rufer M: The German versionof the Toronto Structured Interview for Alexithymia: factor structure,reliability, and concurrent validity in a psychiatric patient sample.Compr Psychiatry 2009, 50:424–430.

24. Hautzinger M, Keller F, Kühner C: Beck-Depressions-Inventar (BDI). HarcourtTest Services: Frankfurt/Main; 2006.

25. Laux L, Glanzmann P, Schaffner P, Spielberger CD: State–Trait–AnxietyInventory (STAI). [German version.]. 1981.

26. Krohne HW, Egloff B, Kohlmann C-W, Tausch A: Untersuchungen mit einerdeutschen Version der “Positive and Negative Affect Schedule” (PANAS).[Investigations with a German version of the Positive and NegativeAffect Schedule (PANAS).]. Diagnostica 1996, 42:139–156.

27. Lundqvist D, Flykt A, Öhmann A: The Karolinska Directed EmotionalFaces - KDEF. 1998.

28. Mugler JP, Brookeman JR: Three-dimensional magnetization-preparedrapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990,15:152–157.

29. Grier JB: Nonparametric indexes for sensitivity and bias: computingformulas. Psychol Bull 1971, 75:424–429.

30. Lieberman MD, Cunningham WA: Type I and Type II error concerns infMRI research: re-balancing the scale. Soc Cogn Affect Neurosci 2009,4:423–428.

31. Yarkoni T, Barch DM, Gray JR, Conturo TE, Braver TS: BOLD correlates oftrial-by-trial reaction time variability in gray and white matter:a multi-study fMRI analysis. PLoS One 2009, 4:e4257.

32. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O,Delcroix N, Mazoyer B, Joliot M: Automated anatomical labeling ofactivations in SPM using a macroscopic anatomical parcellation of theMNI MRI single-subject brain. Neuroimage 2002, 15:273–289.

33. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH: An automated method forneuroanatomic and cytoarchitectonic atlas-based interrogation of fMRIdata sets. Neuroimage 2003, 19:1233–1239.

34. Pessoa L, McKenna M, Gutierrez E, Ungerleider LG: Neural processing ofemotional faces requires attention. Proc Natl Acad Sci U S A 2002,99:11458–11463.

35. Beck AT, Steer RA, Brown GK: BDI-II Beck Depression Inventory Manual. 2ndedition. Psychological Corp.: San Antonio, TX; 1998.

36. Spielberger CD, Gorsuch R, Lushene PR, Vagg PR, Jacobs AG: State-TraitAnxiety Inventory. ; 1970.

37. Watson D, Clark LA, Tellegen A: Development and validation of briefmeasures of positive and negative affect: the PANAS scales. J Pers SocPsychol 1988, 54:1063–1070.

38. Vul E, Harris C, Winkielman P, Pashler H: Puzzlingly high correlations infMRI studies of emotion, personality, and social cognition. PerspectPsychol Sci 2009, 4:274–290.

39. Kriegeskorte N, Lindquist MA, Nichols TE, Poldrack RA, Vul E: Everything younever wanted to know about circular analysis, but were afraid to ask.J Cereb Blood Flow Metab 2010, 30:1551–1557.

40. Pizzagalli DA, Lehmann D, Hendrick AM, Regard M, Pascual-Marqui RD,Davidson RJ: Affective judgments of faces modulate early activity(160 ms) within the fusiform gyri. Neuroimage 2002, 16:663–677.

41. Suslow T, Kugel H, Rauch AV, Dannlowski U, Bauer J, Konrad C, Arolt V,Heindel W, Ohrmann P: Attachment avoidance modulates neuralresponse to masked facial emotion. Hum Brain Mapp 2009, 30:3553–3562.

42. Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T,Grotegerd D, Domschke K, Hohoff C, Ohrmann P, Bauer J, Lindner C, PostertC, Konrad C, Arolt V, Heindel W, Suslow T, Kugel H: Limbic scars: long-termconsequences of childhood maltreatment revealed by functional andstructural magnetic resonance imaging. Biol Psychiatry 2012, 71:286–293.

43. Likowski KU, Mühlberger A, Gerdes ABM, Wieser MJ, Pauli P, Weyers P:Facial mimicry and the mirror neuron system: simultaneous acquisitionof facial electromyography and functional magnetic resonance imaging.Front Hum Neurosci 2012, 6:214.

Page 50: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

Ihme et al. BMC Neuroscience 2014, 15:40 Page 10 of 10http://www.biomedcentral.com/1471-2202/15/40

44. Rochas V, Gelmini L, Krolak-Salmon P, Poulet E, Saoud M, Brunelin J, BediouB: Disrupting pre-SMA activity impairs facial happiness recognition: anevent-related TMS study. Cereb Cortex 2012, 23:1517–1525.

45. Haxby JV, Hoffman EA, Gobbini MI: The distributed human neural systemfor face perception. Trends Cogn Sci 2000, 4:223–233.

46. Adolphs R, Damasio H, Tranel D, Cooper G, Damasio AR: A role forsomatosensory cortices in the visual recognition of emotion as revealedby three-dimensional lesion mapping. J Neurosci 2000, 20:2683–2690.

47. Moriguchi Y, Ohnishi T, Decety J, Hirakata M, Maeda M, Matsuda H,Komaki G: The human mirror neuron system in a population withdeficient self-awareness: an fMRI study in alexithymia. Hum BrainMapp 2009, 30:2063–2076.

48. Van der Velde J, Servaas MN, Goerlich KS, Bruggeman R, Horton P,Costafreda SG, Aleman A: Neural correlates of alexithymia: A meta-analysisof emotion processing studies. Neurosci Biobehav Rev 2013, 37:1774–1785.

49. Reker M, Ohrmann P, Rauch AV, Kugel H, Bauer J, Dannlowski U, Arolt V,Heindel W, Suslow T: Individual differences in alexithymia and brainresponse to masked emotion faces. Cortex 2010, 46:658–667.

50. Duan X, Dai Q, Gong Q, Chen H: Neural mechanism of unconsciousperception of surprised facial expression. Neuroimage 2010, 52:401–407.

51. Kugel H, Eichmann M, Dannlowski U, Ohrmann P, Bauer J, Arolt V, HeindelW, Suslow T: Alexithymic features and automatic amygdala reactivity tofacial emotion. Neurosci Lett 2008, 435:40–44.

52. Lee B-T, Lee H-Y, Park S-A, Lim J-Y, Tae WS, Lee M-S, Joe S-H, Jung I-K, Ham B-J:Neural substrates of affective face recognition in alexithymia: a functionalmagnetic resonance imaging study. Neuropsychobiology 2011, 63:119–124.

53. Ihme K, Dannlowski U, Lichev V, Stuhrmann A, Grotegerd D, Rosenberg N,Kugel H, Heindel W, Arolt V, Kersting A, Suslow T: Alexithymia is related todifferences in gray matter volume: a voxel-based morphometry study.Brain Res 2013, 1491:60–67.

54. Pessoa L: On the relationship between emotion and cognition. Nat RevNeurosci 2008, 9:148–158.

55. Pessoa L, Japee S, Sturman D, Ungerleider LG: Target visibility and visualawareness modulate amygdala responses to fearful faces. Cereb Cortex2006, 16:366–375.

56. Bermond B, Clayton K, Liberova A, Luminet O, Maruszewski T, Ricci Bitti PE,Rimé B, Vorst HH, Wagner H, Wicherts J: A cognitive and an affectivedimension of alexithymia in six languages and seven populations.Cogn Emot 2007, 21:1125–1136.

57. Vorst H, Bermond B: Validity and reliability of the Bermond–VorstAlexithymia Questionnaire. Pers Individ Dif 2001, 30:413–434.

58. Bagby RM, Quilty LC, Taylor GJ, Grabe HJ, Luminet O, Verissimo R, Grootte I,De Vanheule S: Are there subtypes of alexithymia? Pers Individ Dif 2009,47:413–418.

doi:10.1186/1471-2202-15-40Cite this article as: Ihme et al.: Alexithymia and the labeling of facialemotions: response slowing and increased motor and somatosensoryprocessing. BMC Neuroscience 2014 15:40.

Submit your next manuscript to BioMed Centraland take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

Page 51: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

50 

 

3 GENERAL DISCUSSION

This chapter summarizes the results of the three original research articles and integrates them into a model 

of facial emotion recognition in alexithymia. Furthermore, open issues of the model and the dissertation in 

general are discussed. Finally, I will close the dissertation with a conclusion.  

 3.1  Summary of the original research articles 

Study 1  revealed  that HAIs display  less GM  in  the  left  amygdala,  left  anterior  insula  and pregenual ACC 

extending  to dorsal part, which  is  in  accordance with H1. Against  the hypothesis, no differences  in GM 

volume could be found in the FFG. However, the exploratory whole brain analysis revealed that GM volume 

in  left MTG  was  shown  to  be  reduced  in  HAIs.  Neither  the  ROI  analysis  nor  the whole  brain  analysis 

uncovered brain regions in which HAIs show more GM volume than LAIs.  

Study 2  showed  that high  alexithymic  features  are  related  to deficiencies  in  the  accuracy when  labeling 

briefly presented  (≤ 100 ms) masked  facial expressions  (H2.1). This deterioration  is existent  for all  tested 

emotions (happy, angry and fearful). The fMRI data point towards reduced activation with high alexithymic 

features  in  the basal  ganglia,  temporal  and  frontal  areas.  Specifically, during  the  labeling of  angry  facial 

expressions, HAIs display reduced neural processing  in the ventral striatum, the OFC, IFG, STG and SFG. In 

addition, high degrees of alexithymia were  related  to decreased activations  in ventral  striatum and MTG 

when  labeling fearful faces. Thus,  in keeping with H2.2, reduced brain activity  in a broad network of brain 

areas postulated to be important for facial emotion recognition has been found.  

Study 3 did not reveal an association between alexithymic features and accuracy in a facial emotion labeling 

task, in which the emotional faces were presented for ≥ 1 s. However, the study revealed that high degrees 

of alexithymic  features are related  to  increased response  latencies during  labeling of negative  (angry and 

fearful)  facial  expressions,  which  is  line  with  H3.  In  the  exploratory  part  investigating  the  neural 

underpinnings, we could show that  individuals with high degrees of alexithymia displayed  increased brain 

activations in SMA and primary somatosensory cortex (S1) when labeling negative (angry and fearful) facial 

expressions. No significant increases in brain activation were revealed during the labeling of happy faces. A 

post‐hoc ROI analysis suggests none or only weak negative relationships between alexithymic features and 

activation in areas related to processing of affective information (amygdala, ventral striatum, vmPFC).  

 3.2  Integration of findings 

HAIs show accuracy decrements in labeling facial expressions of emotions when these are presented briefly 

(i.e. ≤ 100 ms, see Study 2), but are able to correctly attribute an emotional  label to a facial expression  in 

Page 52: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

51 

 

case these are displayed for longer times (1 s or more, see Study 3). Study 3 suggests that this equalization 

of accuracy at longer presentation times comes at a cost of increased reaction times for HAIs. These results 

are  in  line with  the  proposal  of Grynberg  et  al.  (2012)  that HAIs  need more  perceptual  information  to 

process facial expressions of emotion, and therefore have problems when facial expressions are presented 

for a brief time. 

 

Figure 2.  Integration of  functional and  structural MRI  studies on  facial emotion processing  in alexithymia. At  the earliest  stage, emotional  information  is already processed  shallower  in  the amygdala  (AMG).  Less affective processing  takes also place at  later stages in the striatum (STR) and frontal areas (OFC, vmPFC). Moreover, activation in the frontal and temporal areas (IFG, SFG, MTG, STG) is reduced and the decreased activation in ACC and anterior insula point to diminished conscious feeling. Together, this leads to  reduced  simulation  giving  rise  to  a  rather  fragmented  representation  of  the  facial  expression.  If  presentation  of  the  facial expressions  is  interrupted  at  this  stage  (or  other  perceptual  constraints  are  present),  a  recognition  is  impeded  for HAIs.  Facial expressions presented  for a  longer  time can be recognized  through  increased processing of bodily and sensory properties of  the facial  expressions  in  somatosensory  (S1,  posterior  insula)  and  sensorimotor  (SMA)  regions.  Picture  on  bottom  right  presents contribution of this dissertation to the presented integration across presentation times. Meaning of color with respect to high levels of alexithymia: red filling: reduced activation in HAIs; red boundary: reduced GM volume in HAIs; dotted red boundary: GM found to be reduced  in this dissertation, but seems more complicated considering the  literature; green filling:  increased activation  in HAIs; green boundary: increased GM in HAIs. Picture of facial affect is taken from the Radboud faces database (Langner et al., 2010). 

Page 53: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

52 

 

The findings related to the neural basis of facial emotion recognition in alexithymia are best described with 

respect to the network for facial emotion recognition introduced in section 1.3. In the initial stage, the seen 

face is subject to a relatively coarse significance evaluation in the amygdala (Adolphs, 2002a). HAIs already 

show decreased activation in the amygdala at this stage (Kugel et al., 2008; Reker et al., 2010). This may be 

promoted by a  reduced GM volume  in  the amygdala  (Study 1), possibly  leading  to a  reduced  transfer of 

affective information to other brain regions (see Figure 2). In support of this, a newer study has confirmed 

this decreased GM volume in the amygdala with increasing degrees of alexithymia (Laricchiuta et al., 2014). 

At  the  next  stage,  signals  from  the  amygdala  are  sent  to  visual  and  temporal  areas  to  guide  a more 

elaborated visual analysis of emotional faces. In HAIs, this preferred processing of emotional stimuli seems 

to be weaker as reflected  in decreased activation  in the FFG and STG (Eichmann et al., 2008; Reker et al., 

2010). Decreases  in activation  in  these  regions may be  related  to  reductions  in GM volume, which have 

been revealed for the STG (Borsci et al., 2009), but not for the FFG (see Study 1 and also Laricchiuta et al., 

2014;  see  Figure  2).  In  the  meantime,  communication  between  amygdala,  striatum  and  frontal  areas 

induces  simulated  or  actual  affective  reactions  leading  to  changes  in  the  physiological  state.  Study  2 

proposes  that  high  degrees  of  alexithymia  are  related  to  decreases  in  activity  in  these  regions  (ventral 

striatum,  OFC), which  again may  be  fostered  by  decreased  GM  volumes with  increasing  alexithymia  in 

striatum (Kubota et al., 2011) and OFC (Borsci et al., 2009, see also van der Velde et al., 2014; see Figure 2). 

Through simulation and concerted activation in the aforementioned regions (amygdala, striatum, OFC), the 

anterior insula, areas with mirror‐like properties (IFG, MTG, STG and SFG) as well as motor (SMA and PMC) 

and somatosensory cortices, a multi‐modal internal representation of the facial expression is created. Based 

on this internal representation, the emotion on the seen face can be ultimately interpreted and labeled (see 

Adolphs, 2002a; van der Gaag et al., 2007). Yet, in persons with high alexithymic features, activity in some of 

these regions, as IFG, MTG, STG, SFG and OFC, is reduced (Study 2), probably resulting in a less vivid internal 

representation. Again, GM reductions in some of the implicated areas (MTG, STG, OFC, striatum, amygdala, 

and anterior insula) might promote this (Study 1; Borsci et al., 2009; Kubota et al., 2011; Laricchiuta et al., 

2014; van der Velde et al., 2014). With this impoverished representation, recognition is impeded, especially 

when  the  faces are only presented with  temporal constraints  (Study 2, see Figure 2). Nonetheless, when 

enough time for extensive processing is available, HAIs can correctly label the facial expressions, though at 

the costs of increased reaction times (Study 3). The accompanying increased activations in SMA and S1 with 

increasing  alexithymia  revealed  in  Study  3  indicate  that  an  increased  analysis  of  sensorimotor  and 

somatosensory aspects of  the  facial expression  takes place. Hence, HAIs  initially acquire a  less  complete 

affective representation as reflected in decreased limbic activation (Study 2; Kugel et al., 2008; Reker et al., 

2010), but can make up for this by relying on bodily cues of the face  like the configuration of the muscles 

(Study  3).  This  overamplification  of  bodily  and  physical  signals  (see  also  Krystal,  1988; Moriguchi  and 

Page 54: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

53 

 

Komaki,  2013)  is  in  line  with  two  recent  sMRI  studies  revealing  more  GM  volume  with  increasing 

alexithymia in cerebellar regions (Laricchiuta et al., 2014) and posterior insula (Goerlich‐Dobre et al., 2014) 

which –  in  contrast  to  the anterior  insula – has been  linked  to  the  somatosensory network  (Deen et al., 

2011)  (Figure  2).  To  sum  up,  it  seems  as  if  the  problems  in  labeling  facial  emotions  in HAIs  stem  from 

difficulties  in  early  processing  which  is  then  passed  to  later  stages  leading  to  impoverished  internal 

representations  of  the  seen  emotional  face.  With  enough  time,  HAIs  can  partly  account  for  this  by 

increasingly relying on processing and interpretation of physical (sensorimotor and somatosensory) aspects 

of the faces.  

 3.3  Open issues and ideas for further research  

One open  issue  is the role of the ACC during facial emotion recognition  in alexithymia. The ACC has been 

suspected to be one of the core structures in the generation of alexithymia (Wingbermühle et al., 2012). In 

facial emotion recognition, it is thought to produce an affective state based on the seen stimulus (Phillips et 

al., 2003), which likely enriches the internal representation of the seen face. Moreover, in  interaction with 

other frontal areas and anterior insula, a conscious feeling is produced (Lane, 2008; Tsuchiya and Adolphs, 

2007). Still,  the  fMRI studies did not reveal a relationship between alexithymia and ACC activation during 

facial emotion  labeling (Studies 2 and 3). Moreover, the  literature on the association between alexithymia 

and ACC morphology provided highly diverse findings (Borsci et al., 2009; Gündel et al., 2000; Heinzel et al., 

2012, see also Goerlich‐Dobre et al., 2014; van der Velde et al., 2014). Our results  indicate that HAIs have 

decreased GM volume  in the pregenual ACC, extending dorsally (Study 1). A patient study has shown that 

lesions  to a  similar part of  the ACC have a negative  impact on  facial emotion  recognition  (Schäfer et al., 

2007), so that the reductions in GM volume revealed in Study 1 may link to this as well. This indicates a role 

of  the  (pregenual) ACC  in  alexithymia  (and  facial emotion  recognition), but  this  still needs  to be  further 

investigated in order to explain the ambiguous findings reported so far.  

The model presented here  (cf.  Figure 2) only  integrates  studies  reporting either GM differences or  task‐

related activations associated with alexithymia. Thus, the described interactions between the brain regions 

are based on general theory on facial emotion recognition (e.g., Adolphs, 2002a; van der Gaag et al., 2007, 

see  Figure  2).  To  further  refine  the model,  data  on  the  connectivity  between  these  regions  and  their 

dependence  on  alexithymia  and  facial  emotion  recognition  are  needed.  This  would  include  structural 

connectivity analysis as well as task‐related and resting‐state functional connectivity studies. To the best of 

my knowledge, up to now only  few studies exist that examine connectivity  in alexithymia, but the results 

are  inconclusive. In support of the model presented here, Liemburg et al. (2012) found decreased resting‐

state  connectivity  in  brain  areas  relating  to  emotional  processing,  but  increases  in  rather  sensory  and 

somatosensory  regions  indicating a more action‐oriented  focus of HAIs.  In  contrast, Kubota et al.  (2012) 

Page 55: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

54 

 

report no associations between structural connectivity and alexithymia in a group of HCs. Other than that, 

results on connectivity profiles attributed to  increased alexithymic features are sparse, so that research  is 

desired to shed light on the exact interactions between the described nodes of the network.  

Outside laboratory settings, emotions are expressed not only in the face, but also by other verbal and non‐

verbal cues, such as emotional words, prosody or body  language (Scherer and Ellgring, 2007). Up to date, 

research points towards reduced processing of emotional vocalizations with increasing alexithymia possibly 

linked to decreased amygdala and STG processing (Goerlich et al., 2011, 2012; Goerlich‐Dobre et al., 2013). 

Moreover,  viewing  bodily  expressions  of  emotions was  linked  to  decreased  amygdala  activation  in HAIs 

(Pouga et al., 2010). The findings support the model presented  in Figure 2. Hence, systematically studying 

the  influence  of  alexithymic  features  on  the  neural  processing  and  recognition  of  bodily  and  vocal 

expressions of emotions could heavily enrich the model and highlight its ecological validity.  

In their review, Grynberg et al. (2012) conclude that the difficulties of HAIs in processing facial expressions 

are not limited to particular (categories of) emotions. This is basically in  line with the behavioral results of 

Study 2. However, alterations  in neuronal processing seem  to be basically present  for negative emotions. 

Similarly,  in  Study  3  only  negative  emotions  were  significantly  related  to  an  increased  processing  in 

somatosensory and motor areas. Moreover, response latencies were found to be positively correlated with 

alexithymic  features only  for  fearful and angry, not  for happy  faces,  suggesting  that  recognizing negative 

emotions is harder. This may be due to the stimuli used here (Karolinska Directed Emotional Face Database, 

Lundqvist et al., 1998) for which  it has been reported that happy faces are easiest to recognize (Calvo and 

Lundqvist, 2008). Thus,  future  research needs  to examine possible emotion  specific effects  in  relation  to 

alexithymic features. 

With  respect  to  the assessment of alexithymia,  it  is worth mentioning  that a multi‐method approach  for 

assessing alexithymia, as desired in the literature (Lichev et al., 2014; Lumley et al., 2005), was employed in 

Study 2  and 3. Thus  the  results presented  in  these  studies  are unbiased by  the mere  self‐report of  the 

participants.  For  Study  1,  this  was  unfortunately  not  possible,  so  that  it  needs  be  tested  whether 

alexithymia as assessed with observer‐based methods is linked to similar morphological profiles as revealed 

here. Due  to  space  constraints,  I  referred  to  alexithymic  features  as whole  and  did  not  discuss  specific 

results of the measuring approach (TAS‐20 versus TSIA) or particular subscales. However, Study 2 and Study 

3 replicate previous studies reporting that labeling facial emotions is especially linked to the subscale DDF, 

possibly  because  this  task  involves  a  form  of  semantic  processing  when  providing  the  label  (see  also 

Grynberg et al., 2012; Parker et al., 2005).  

In light of a global neurobiological model for explaining the difficulties in identifying and describing feelings 

of high  alexithymic  individuals,  the  findings of  this dissertation  argue  in  favor of deficient processing of 

emotional  information.  This deficiency  seems  to be most  severe  in bottom‐up processing  and  lead  to  a 

Page 56: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

55 

 

decreased affective  reactivity  to external emotional  stimuli. As HAIs have an altered brain  structure and 

show reduced activation in the shared substrates of emotion (Heberlein and Adolphs, 2007), it may be that 

also processing of internally triggered affect is reduced in alexithymia. In addition, the current results point 

to altered brain structure and function in several brain regions, so that it seems that no single fix structure 

but rather a network as neural correlate of alexithymia.  

This dissertation shed  light on the neural mechanisms underlying HAIs’ difficulty  in recognizing emotional 

facial expressions and the conditions in which this is less severe. Based on the findings, it may be speculated 

that  interaction with HAIs  in daily  life could  improve  if the social partner expresses emotions more clearly 

and for a longer time in order to provide guidance for HAIs in the recognition of emotions from non‐verbal 

cues.  During  therapeutic  interventions  this may  also  help  to  enhance  patient‐therapist  interaction  and 

therefore  the  chance  for  a  positive  therapy  outcome.  Furthermore,  it would  be  interesting  to  conduct 

longitudinal  studies examining whether  training  to  recognize  facial emotions  leads  to an  improvement  in 

HAIs’ ability  therein and  a  change  in brain  structure and  function giving  rise  to an amelioration of  their 

social skills.  

 3.4  Conclusion  

To  sum up,  this dissertation  investigated  the  neural  correlates underlying  alterations  in  facial  emotional 

processing with  increasing alexithymic features. Together with the existing  literature,  it  indicates that high 

alexithymic  individuals  show  a  reduced  early  processing  of  affective  information when  confronted with 

emotional faces. At later processing stages this leads to an impoverished internal representation of the seen 

face resulting in a decreased ability to recognize its emotional content. However, in case temporal demands 

are  low,  high  alexithymic  individuals  can  account  for  this  reduced  affective  representation  by  increased 

processing of the sensorimotor and somatosensory aspects of the facial expressions. Under this condition, 

it becomes more likely that high alexithymic individuals correctly recognize the facial expression.  

Page 57: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

56 

 

4 ZUSAMMENFASSUNG DER ARBEIT

Dissertation zur Erlangung des akademischen Grades  

Dr. rer. med.  

  

Functional and structural neuroimaging of facial emotion recognition in alexithymia  

   

eingereicht von:  

Ihme, Klas  

geboren am 14.10.1983 in Braunschweig 

 

angefertigt in der:  

Klinik für Psychosomatische Medizin und Psychotherapie, Universität Leipzig 

  

betreut von Prof. Dr. med. Anette Kersting 

 

Oktober 2014 

 

Introduction

The ability to infer emotions, motivations and beliefs of other people from facial expressions is one of the 

prerequisites  for  successful  social  interaction as  these provide valuable  information about  inner affective 

states  (Erickson and  Schulkin, 2003). Recognizing emotional  facial expressions  requires a holistic  internal 

representation of the seen expressions, which  is achieved through covertly or overtly simulating the facial 

expression and  the underlying emotion of  the other person. This  is based on  the  integration of affective, 

visual, somatosensory and motor information and requires parallel and sequential processing in a multitude 

of cortical and subcortical brain structures (Adolphs, 2002; van der Gaag et al., 2007). In this process, brain 

areas with mirror‐like properties are essential, because these are involved in the expression and feeling of 

one’s own emotions and their recognition in other people (shared substrates of emotion, cf. Heberlein and 

Atkinson, 2009). Accordingly, a fragmented, incomplete representation of the seen facial expression hinders 

its correct recognition (Delle‐Vigne et al., 2014).  

Interestingly,  although  alexithymia  (“no  words  for  emotion”)  is  generally  characterized  by  difficulties 

identifying  and  describing  one’s  own  feelings,  recent  research  has  found  that  high  degrees  in  this 

Page 58: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

57 

 

personality  trait  also  come  along  with  difficulties  in  recognizing  emotional  facial  expressions  of  other 

persons  (Grynberg  et  al.,  2012).  As  this  difficulty  is  most  prominent  when  the  facial  expressions  are 

presented  with  temporal  or  other  perceptual  constraints,  it  has  been  suggested  that  high  alexithymic 

individuals need more time to process the given perceptual  information (Grynberg et al., 2012). However, 

little  research  has  systematically  investigated  the  structural  and  functional  neural  correlates  of  high 

alexithymic individuals' difficulties in recognizing facial expressions. Especially, it is still unclear whether high 

alexithymic  individuals show a different gray matter profile  than  low alexithymic  individuals. Moreover,  it 

needs  to  be  investigated  whether  alterations  in  brain  function  relate  to  high  alexithymic  individuals’ 

difficulties  in  labeling briefly presented facial expressions of emotion. Finally,  it has been shown that high 

alexithymic  individuals are capable of recognizing facial expressions of emotion when these are presented 

with little temporal constraints. However, whether a change in neural activation accompanies this change in 

performance remains to be elucidated.  

Original Research Articles

In order  to examine  the neural correlates of  facial emotion  recognition as a  function of alexithymia, one 

structural  and  two  functional  neuroimaging  studies  have  been  conducted.  These  are  compiled  into  the 

following three original research articles:  

Study 1:  

Ihme K*, Dannlowski U*, Lichev V, Stuhrmann A, Grotegerd D, Rosenberg N, Kugel H, Heindel W, Arolt V, Kersting A, and Suslow T. Alexithymia  is related to differences  in gray matter volume: a voxel‐based morphometry study. Brain Research, 1491: 60–7, 2013. (*equal contribution) 

Study 2: 

Ihme  K,  Sacher  J,  Lichev  V,  Rosenberg N,  Kugel H,  Rufer M, Grabe HJ,  Pampel A,  Lepsien  J,  Kersting  A, Villringer A,  Lane R,  and  Suslow T. Alexithymic  features  and  the  labeling of brief emotional  facial expressions – an fMRI study. Neuropsychologia, 64: 289‐299, 2014.  

Study 3: 

Ihme  K,  Sacher  J,  Lichev  V,  Rosenberg N,  Kugel H,  Rufer M, Grabe HJ,  Pampel A,  Lepsien  J,  Kersting  A, Villringer A,  and  Suslow T. Alexithymia  and  the  labeling of  facial emotions:  response  slowing  and increased motor and somatosensory processing. BMC Neuroscience, 15 (1): 40, 2014. 

Study 1 investigated whether high degrees of alexithymia are related to decreases in gray matter volume in 

brain  regions  associated  with  facial  emotion  processing.  Using  voxel‐based morphometry  of  structural 

magnetic  resonance  images,  a  group  of  high  alexithymic  individuals  was  compared  to  a  group  of  low 

alexithymic individuals with respect to their gray matter volume  in four a priori defined regions of interest 

(amygala,  anterior  insula,  anterior  cingulate  gyrus,  and  fusiform  gyrus). Moreover,  an  exploratory whole 

brain analysis was accomplished  in order to assess whether the gray matter profile was different  in other 

Page 59: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

58 

 

brain  regions.  In  total,  the  data  of  34  individuals were  analyzed.  Participants were  assigned  to  the  two 

alexithymia groups based on their score on the 20‐item version of the Toronto Alexithymia Scale (TAS‐20). 

Both  groups  significantly  differed  in  their  degree  of  alexithymia,  but  not  in  terms  of  age,  gender  (eight 

females per group) or depressivity. Results indicate that high compared to low alexithymic individuals show 

decreased  gray matter  volume  in  amygdala,  anterior  insula  and  anterior  cingulate  gyrus. Moreover,  the 

whole  brain  approach  revealed  decreased  gray  matter  volume  in  the  middle  temporal  gyrus.  Against 

expectations, no difference in gray matter volume was revealed for the fusiform gyrus. 

The aim of Study 2 was to investigate brain activation in alexithymia during the labeling of emotional facial 

expressions presented with high temporal constraints. The presentation times were chosen according to a 

range  in which performance decrements with  increasing alexithymia are highly  likely  (cf. Grynberg et al., 

2012). It was assumed that alexithymia negatively correlates with performance and the activation of brain 

areas implicated in the recognition of facial expressions of emotion. Functional magnetic resonance imaging 

(fMRI) data was  recorded  from 50 participants during  the  labeling of briefly presented  (66 and 100 ms) 

emotional  (happy,  neutral,  angry,  and  fearful)  facial  expressions.  The  degree  of  alexithymia  of  the 

participants was measured  using  the  20‐item  version  of  the  Toronto Alexithymia  Scale  and  the  Toronto 

Structured  Interview  for  Alexithymia  (TSIA).  Moreover,  participants'  degree  of  positive  and  negative 

affectivity was  assessed.  In  a  correlational  design,  accuracy  and  neural  activations were  related  to  the 

degree of alexithymic  features  (TAS‐20 and TSIA  total score, TAS and TSIA subscales difficulties describing 

feeling and difficulties  identifying  feelings).  In case one of  these measures of alexithymia correlated with 

negative or positive affectivity,  the  respective affectivity  score was added as nuisance  covariate  into  the 

calculated models  for  the  respective  alexithymia measure. The behavioral data  show  that  the degree of 

alexithymia was negatively related to  labeling accuracy for all presented emotions.  In terms of the neural 

correlates,  increased degrees of alexithymic features were associated with reduced activation  in the basal 

ganglia,  temporal  and  frontal  areas.  Specifically,  during  the  labeling  of  angry  facial  expressions,  high 

alexithymic individuals display a reduced neural processing in the ventral striatum, the orbito‐frontal cortex, 

inferior  and  superior  frontal  gyrus  as  well  as  superior  temporal  gyrus.  In  addition,  high  degrees  of 

alexithymia were  related  to  decreased  activations  in  ventral  striatum  and middle  temporal  gyrus when 

labeling  fearful  faces. These results were relatively  independent of negative and positive affectivity. Thus, 

reduced brain activity was revealed in a broad network of brain areas linked to facial emotion recognition. 

Study 3 was designed to examine whether high alexithymic  individuals show a particular neural activation 

pattern when labeling emotional facial expressions presented with little temporal constraints (i.e., ≥ 1 s). In 

this time range high alexithymic individuals are generally able to correctly assign an emotional label to the 

seen expression.  It was hypothesized  that  there  is no relationship between alexithymia and accuracy, but 

that the degree of alexithymic features positively correlates with response latency. The accompanying brain 

Page 60: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

59 

 

activations were exploratorily  investigated. Therefore, 48 participants were asked to  label emotional facial 

expressions  (happy, neutral, angry, and  fearful) presented  for 1 or 3 seconds while undergoing  functional 

magnetic resonance imaging. Participants' level of alexithymia was assessed using self‐report (TAS‐20) and 

interview (TSIA). In addition, their degree of negative and positive affectivity was recorded. Behavioral data 

were analyzed  in terms of accuracy (sensitivity) and response  latency and were tested for their relation to 

the degree of alexithymic features using correlation analyses. Moreover, neural activations during  labeling 

were related to the degree of alexithymic features (TAS‐20 and TSIA subscale difficulties describing feelings) 

in a correlational design. Participants’ positive affectivity scores were entered as nuisance covariate into the 

respective models, as these were inversely related to TAS‐20 subscale difficulties describing feelings. In this 

experiment, no association between alexithymic  features and accuracy  in the  facial emotion  labeling  task 

could be revealed. Interestingly, it could be shown that high degrees of alexithymic features were related to 

increased response latencies during labeling of negative (angry and fearful) facial expressions. With respect 

to  the  neural  underpinnings,  individuals  with  high  degrees  of  alexithymia  displayed  increased  brain 

activations in supplementary motor area and primary somatosensory cortex when labeling negative (angry 

and fearful) facial expressions. No significant changes in brain activation were revealed during the labeling 

of happy  faces. A post‐hoc  region‐of‐interest analysis  suggests none or only weak negative  relationships 

between  alexithymic  features  and  activation  in  areas  related  to  processing  of  affective  information 

(amygdala, ventral striatum, ventro‐medial pre‐frontal cortex).  

General Discussion

In keeping with previous research, this dissertation shows that high alexithymic individuals have difficulties 

in  labeling  facial expressions of emotion, when  these are presented briefly, but have  less problems when 

temporal  demands  are  low  (cf.  Grynberg  et  al.,  2012).  The  increased  response  times  found  in  Study  3 

indicates that high alexithymic individuals need more perceptual information to recognize facial expressions 

(cf.  Grynberg  et  al.,  2012).  The  findings  related  to  the  neural  basis  of  facial  emotion  recognition  in 

alexithymia are best described with respect to the network for facial emotion recognition as described  in 

the  literature (Adolphs, 2002; van der Gaag et al., 2007).  In the  initial stage, the seen  face  is subject to a 

relatively coarse significance evaluation in the amygdala (Adolphs, 2002). High alexithymic individuals show 

decreased activation already at this stage (e.g. Reker et al., 2010). This appears to be promoted by reduced 

gray  matter  volume  in  the  amygdala  (Study  1),  possibly  leading  to  a  reduced  transfer  of  affective 

information  to other  brain  regions. At  the next  stage,  signals  from  the  amygdala  are  sent  to  visual  and 

temporal  areas  to  guide  a  more  elaborated  visual  analysis  of  emotional  faces.  In  high  alexithymic 

individuals,  this preferred processing of emotional  stimuli  seems  to be weaker as  reflected  in decreased 

activation in fusiform and superior temporal gyrus (e.g. Reker et al., 2010). Decreases in activation in these 

Page 61: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

60 

 

regions seems to be related to reductions in gray matter volume, which have been revealed for the superior 

temporal  gyrus  (Borsci  et  al.,  2009),  but  not  for  the  fusiform  gyrus  (see  Study  1).  Meanwhile, 

communication  between  amygdala,  striatum  and  frontal  areas  induces  simulated  or  actual  affective 

reactions  leading to changes  in the physiological state. Study 2 proposes that high degrees of alexithymia 

are related to decreases in activity in these regions (ventral striatum, orbito‐frontal gyrus), which seems to 

be fostered by decreased gray matter volumes  in these regions with  increasing alexithymia (Kubota et al., 

2011;  Borsci  et  al.,  2009).  Through  simulation  and  concerted  activation  in  the  aforementioned  regions 

(amygdala, striatum, orbito‐frontal gyrus), the anterior insula as well as other frontal and temporal regions 

plus motor (supplementary motor area and pre‐motor cortex) and somatosensory areas, a holistic internal 

representation of the facial expression is created. Based on this internal representation, the emotion on the 

seen face can be ultimately interpreted and labeled (see Adolphs, 2002a; van der Gaag et al., 2007). Yet, in 

persons with high degrees of alexithymic  features, activity  in  regions with mirror‐like properties  (inferior 

and  superior  frontal  gyrus  as well  as middle  and  superior  temporal  gyrus)  and  orbito‐frontal  cortex  is 

reduced  (Study 2),  likely  resulting  in a  less vivid  internal  representation. Again, gray matter  reductions  in 

some of the implicated areas (temporal areas, orbito‐frontal cortex, striatum, amygdala, and anterior insula) 

appear  to  promote  this  (Study  1;  Borsci  et  al.,  2009;  Kubota  et  al.,  2011).  With  this  impoverished 

representation, recognition is impeded, especially when the faces are presented with temporal constraints 

(Study 2). Nonetheless, when enough time for extensive processing is available, high alexithymic individuals 

can  correctly  label  the  facial expressions,  though at  the  costs of  increased  reaction  times  (Study 3). The 

accompanying  increased  activations  in  supplementary  motor  area  and  somatosensory  cortex  with 

increasing alexithymia revealed in Study 3 indicate that an increased analysis of motor and somatosensory 

aspects  of  the  facial  expression  takes  place.  Hence,  high  alexithymic  individuals  initially  acquire  a  less 

complete  affective  representation  as  reflected  in  decreased  limbic  activation  (Study  2,  e.g.  Reker  et  al., 

2010), but can make up for this by relying on physical cues of the face like the configuration of the muscles 

(Study 3).  

Conclusion

In summary, this dissertation shows that high alexithymic  individuals’ problems  in  labeling facial emotions 

seem  to  stem  from  difficulties  in  the  processing  of  affective  information.  This  in  turn  results  in  an 

impoverished  internal  representation  of  the  seen  emotional  face.  However,  with  enough  time  and 

information  available,  high  alexithymic  individuals  can  partly  account  for  this  by  increasingly  relying  on 

processing and interpretation of physical (motor and somatosensory) aspects of the facial expression.   

Page 62: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

61 

 

5 REFERENCES

Adolphs  R.  Neural  systems  for  recognizing  emotion.  Current  Opinion  in  Neurobiology,  12  (2):  169–177, 2002a. 

Adolphs  R.  Recognizing  emotion  from  facial  expressions:  psychological  and  neurological  mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1 (1): 21–62, 2002b. 

Adolphs R, Damasio H, Tranel D, Cooper G, and Damasio AR. A role for somatosensory cortices in the visual recognition  of  emotion  as  revealed  by  three‐dimensional  lesion  mapping.  The  Journal  of Neuroscience, 20 (7): 2683–90, 2000. 

Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, and Damasio AR. A mechanism for  impaired fear recognition after amygdala damage. Letters to Nature, 433: 68–72, 2005. 

Anderson BJ. Plasticity of gray matter volume: the cellular and synaptic plasticity that underlies volumetric change. Developmental Psychobiology, 53 (5): 456–65, 2011. 

Aust  S,  Härtwig  EA,  Heuser  I,  and  Bajbouj  M.  The  role  of  early  emotional  neglect  in  alexithymia. Psychological Trauma: Theory, Research, Practice, and Policy, 5 (3): 225–232, 2013. 

Bach M,  Bach  D,  de  Zwaan M,  Serim  J,  and  Böhmer  J.  Validierung  der  deutschen  Version  der  20‐Item Toronto  Alxithymie  Skala  bei  Normalpersonen  und  psychiatrischen  Patienten.  Psychotherapie, Psychosomatik, Medizinische Psychologie, 46 (1): 23–28, 1996. 

Bagby RM, Parker  JDA,  and  Taylor GJ.  The  twenty‐item  Toronto Alexithymia  scale—I.  Item  selection  and cross‐validation of the factor structure. Journal of Psychosomatic Research, 38 (1): 23–32, 1994. 

Bagby RM, Taylor GJ, Parker JDA, and Dickens SE. The development of the Toronto Structured Interview for Alexithymia:  item  selection,  factor  structure,  reliability and  concurrent validity. Psychotherapy and Psychosomatics, 75 (1): 25–39, 2006. 

Berenbaum H and Prince J. Alexithymia and the interpretation of emotion‐relevant information. Cognition & Emotion, 8 (3): 231–244, 1994. 

Bøen E, Westlye  LT, Elvsåshagen T, Hummelen B, Hol PK, Boye B, Andersson S, Karterud  S, and Malt UF. Regional  cortical  thinning  may  be  a  biological  marker  for  borderline  personality  disorder.  Acta Psychiatrica Scandinavica, 130 (3): 193–204, 2014. 

Borsci G, Boccardi M, Rossi R, Rossi G, Perez J, Bonetti M, and Frisoni GB. Alexithymia in healthy women: a brain morphology study. Journal of Affective Disorders, 114 (1‐3): 208–15, 2009. 

Calder AJ,  Keane  J,  Lawrence AD,  and Manes  F.  Impaired  recognition  of  anger  following  damage  to  the ventral striatum. Brain, 127 (9): 1958–69, 2004. 

Calder AJ, Keane  J, Young AW,  Lawrence AD, Mason  S, and Barker R a. The  relation between anger and different forms of disgust: implications for emotion recognition impairments in Huntington’s disease. Neuropsychologia, 48 (9): 2719–29, 2010. 

Page 63: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

62 

 

Calvo MG  and  Lundqvist D.  Facial  expressions  of  emotion  (KDEF):  Identification  under  different  display‐duration conditions. Behavior Research Methods, 40 (1): 109–115, 2008. 

Carr L, Iacoboni M, Dubeau M‐C, Mazziotta JC, and Lenzi GL. Neural mechanisms of empathy in humans: a relay  from  neural  systems  for  imitation  to  limbic  areas.  Proceedings  of  the National Academy  of Sciences of the United States of America, 100 (9): 5497–502, 2003. 

Cook R, Brewer R,  Shah  P,  and Bird G. Alexithymia, Not Autism, Predicts Poor Recognition of  Emotional Facial Expressions. Psychological Science, 24 (5): 723–732, 2013. 

Dannlowski U,  Stuhrmann A, Beutelmann V,  Zwanzger P,  Lenzen  T, Grotegerd D, Domschke K, Hohoff C, Ohrmann P, Bauer J, Lindner C, Postert C, Konrad C, Arolt V, Heindel W, Suslow T, and Kugel H. Limbic scars:  long‐term  consequences  of  childhood maltreatment  revealed  by  functional  and  structural magnetic resonance imaging. Biological Psychiatry, 71 (4): 286–93, 2012. 

De Gelder B, van Honk  J, and Tamietto M. Emotion  in  the brain: of  low  roads, high  roads and  roads  less travelled. Nature Reviews Neuroscience, 12 (7): 425; author reply 425, 2011. 

Dean AM, Goodby E, Ooi C, Nathan PJ, Lennox BR, Scoriels L, Shabbir S, Suckling J, Jones PB, Bullmore ET, and  Barnes  A.  Speed  of  facial  affect  intensity  recognition  as  an  endophenotype  of  first‐episode psychosis and associated  limbic‐cortical grey matter  systems. Psychological Medicine, 43  (3): 591–602, 2013. 

Deen B, Pitskel NB, and Pelphrey KA. Three systems of insular functional connectivity identified with cluster analysis. Cerebral cortex, 21 (7): 1498–506, 2011. 

Delle‐Vigne D, Wang W, Kornreich C, Verbanck P, and Campanella S. Emotional facial expression processing in depression : Data from behavioral and event‐related potential studies. Neurophysiologie Clinique / Clinical Neurophysiology, 44 (2): 169–187, 2014. 

Dickstein DP, Milham MP, Nugent AC, Drevets WC, Charney DS, Pine DS, and Leibenluft E. Frontotemporal alterations  in  pediatric  bipolar  disorder:  results  of  a  voxel‐based morphometry  study. Archives  of General Psychiatry, 62 (7): 734–41, 2005. 

Dimberg U,  Thunberg M,  and  Elmehed  K. Unconscious  Facial Reactions  to  Emotional  Facial  Expressions. Psychological Science, 11 (1): 86–89, 2000. 

Dolan RJ. Emotion, cognition, and behavior. Science, 298 (5596): 1191–4, 2002. 

Domes G, Grabe HJ,  Czieschnek D, Heinrichs M,  and Herpertz  SC. Alexithymic  traits  and  facial  emotion recognition  in  borderline  personality  disorder.  Psychotherapy  and  Psychosomatics,  80  (6):  383–5, 2011. 

Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, and May A. Neuroplasticity: changes in grey matter induced by training. Nature, 427 (6972): 311–2, 2004. 

Duan  X, Dai Q, Gong Q,  and  Chen H. Neural mechanism  of  unconscious  perception  of  surprised  facial expression. NeuroImage, 52 (1): 401–407, 2010. 

Eggert LD, Sommer J, Jansen A, Kircher T, and Konrad C. Accuracy and Reliability of Automated Gray Matter Segmentation Pathways on Real and Simulated Structural Magnetic Resonance Images of the Human Brain. PloS one, 7 (9): e45081, 2012. 

Page 64: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

63 

 

Eichmann M, Kugel H, and Suslow T. Difficulty identifying feelings and automatic activation in the fusiform gyrus in response to facial emotion. Perceptual and Motor Skills, 107 (3): 915–22, 2008. 

Ekman P. An argument for basic emotions. Cognition & Emotion, 6 (3): 169–200, 1992. 

Ekman P and Friesen W V. Nonverbal behavior and psychopathology.  In Friedman RJ and Katz MM  (Eds.), The psychology of depression: Contemporary  theory and  research. Oxford,  England:  John Wiley & Sons, 1974: 318 pp. . 

Ekman P, Sorenson ER, and Friesen W V. Pan‐Cultural Elements  in Facial Displays of Emotion. Science, 164 (3875): 86–88, 1969. 

Erickson K and Schulkin  J. Facial expressions of emotion: a cognitive neuroscience perspective. Brain and Cognition, 52 (1): 52–60, 2003. 

Franz M, Popp K, Schaefer R, Sitte W, Schneider C, Hardt  J, Decker O, and Braehler E. Alexithymia  in  the German general population. Social Psychiatry and Psychiatric Epidemiology, 43 (1): 54–62, 2008. 

Garrido L, Furl N, Draganski B, Weiskopf N, Stevens J, Tan GC‐Y, Driver J, Dolan RJ, and Duchaine B. Voxel‐based morphometry reveals reduced grey matter volume  in the temporal cortex of developmental prosopagnosics. Brain, 132 (Pt 12): 3443–55, 2009. 

Goerlich KS, Aleman A, and Martens S. The sound of feelings: electrophysiological responses to emotional speech in alexithymia. PloS one, 7 (5): e36951, 2012. 

Goerlich KS, Witteman J, Aleman A, and Martens S. Hearing feelings: affective categorization of music and speech in alexithymia, an ERP study. PloS one, 6 (5): e19501, 2011. 

Goerlich‐Dobre  KS,  Bruce  L, Martens  S,  Aleman  A,  and  Hooker  CI.  Distinct  associations  of  insula  and cingulate volume with the cognitive and affective dimensions of alexithymia. Neuropsychologia, 53: 284–92, 2014. 

Goerlich‐Dobre KS, Witteman  J, Schiller NO, van Heuven VJP, Aleman A, and Martens S. Blunted  feelings: Alexithymia is associated with a diminished neural response to speech prosody. Social Cognitive and Affective Neuroscience, nst075, 2013. 

Grabe HJ, Möller B, Willert C, Spitzer C, Rizos T, and Freyberger HJ. Interhemispheric transfer in alexithymia: a transcallosal inhibition study. Psychotherapy and Psychosomatics, 73 (2): 117–23, 2004. 

Grabe  HJ,  Schwahn  C,  Barnow  S,  Spitzer  C,  John  U,  Freyberger  HJ,  Schminke  U,  Felix  S,  and  Völzke  H. Alexithymia,  hypertension,  and  subclinical  atherosclerosis  in  the  general  population.  Journal  of Psychosomatic Research, 68 (2): 139–47, 2010. 

Grynberg D, Chang B, Corneille O, Maurage P, Vermeulen N, Berthoz S, and Luminet O. Alexithymia and the Processing of  Emotional  Facial  Expressions  (EFEs):  Systematic Review, Unanswered Questions  and Further Perspectives. PloS one, 7 (8): e42429, 2012. 

Gündel H, Ceballos‐Baumann AO, and von Rad M. Aktuelle Perspektiven der Alexithymie. Der Nervenarzt, 71 (3): 151–163, 2000. 

Gündel H, López‐Sala A, Ceballos‐Baumann AO, Deus J, Cardoner N, Marten‐Mittag B, Soriano‐Mas C, and Pujol J. Alexithymia correlates with the size of the right anterior cingulate. Psychosomatic Medicine, 66 (1): 132–40, 2004. 

Page 65: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

64 

 

Haxby J V, Hoffman EA, and Gobbini MI. The distributed human neural system for face perception. Trends in Cognitive Sciences, 4 (6): 223–233, 2000. 

Heberlein AS and Adolphs R. Neurobiology of Emotion Recognition: Current Evidence for Shared Substrates. In Harmon‐Jones E and Winkielman P  (Eds.), Social Neuroscience. New York: Guilford Press, 2007: 31–55. 

Heberlein AS and Atkinson AP. Neuroscientific Evidence  for Simulation and Shared Substrates  in Emotion Recognition: Beyond Faces. Emotion Review, 1 (2): 162–177, 2009. 

Heberlein AS, Padon AA, Gillihan SJ, Farah MJ, and Fellows LK. Ventromedial Frontal Lobe Plays a Critical Role in Facial Emotion Recognition. Journal of Cognitive Neuroscience, 20 (4): 721–733, 2008. 

Heinzel A, Minnerop M, Schäfer R, Müller H‐W, Franz M, and Hautzel H. Alexithymia in healthy young men: A voxel‐based morphometric study. Journal of Affective Disorders, 136 (3): 1252–1256, 2012. 

Honkalampi K, Hintikka J, Laukkanen E, and Viinamäki JLH. Alexithymia and Depression: A Prospective Study of Patients With Major Depressive Disorder. Psychosomatics, 42 (3): 229–234, 2001. 

Honkalampi K, Hintikka J, Tanskanen A, Lehtonen J, and Viinamäki H. Depression is strongly associated with alexithymia in the general population. Journal of Psychosomatic Research, 48 (1): 99–104, 2000. 

Hoppe  KD  and  Bogen  JE.  Alexithymia  in  twelve  commissurotomized  patients.  Psychotherapy  and Psychosomatics, 28 (1‐4): 148–55, 1977. 

Iacoboni M. Imitation , Empathy , and Mirror Neurons. Annual Review of Psychology, 60: 653:670, 2009. 

Ihme  K, Dannlowski U,  Lichev V,  Stuhrmann A, Grotegerd D, Rosenberg N,  Kugel H, Heindel W, Arolt V, Kersting A, and Suslow T. Alexithymia  is related to differences  in gray matter volume: a voxel‐based morphometry study. Brain Research, 1491: 60–7, 2013. 

Ihme  K,  Sacher  J,  Lichev  V,  Rosenberg N,  Kugel H,  Rufer M, Grabe HJ,  Pampel A,  Lepsien  J,  Kersting  A, Villringer A,  Lane R,  and  Suslow T. Alexithymic  features  and  the  labeling of brief emotional  facial expressions – an fMRI study. Neuropsychologia, 64: 289‐299, 2014a.  

Ihme  K,  Sacher  J,  Lichev  V,  Rosenberg N,  Kugel H,  Rufer M, Grabe HJ,  Pampel A,  Lepsien  J,  Kersting  A, Villringer A,  and  Suslow T. Alexithymia  and  the  labeling of  facial emotions:  response  slowing  and increased motor and somatosensory processing. BMC Neuroscience, 15 (1): 40, 2014b. 

Iriki A. The neural origins and  implications of  imitation, mirror neurons and  tool use. Current Opinion  in Neurobiology, 16 (6): 660–7, 2006. 

Izard CE. Basic emotions, relations among emotions, and emotion‐cognition relations. Psychological Review, 99 (3): 561–5, 1992. 

Jessimer M and Markham R. Alexithymia: a right hemisphere dysfunction specific to recognition of certain facial expressions? Brain and Cognition, 34 (2): 246–58, 1997. 

Joukamaa M, Miettunen J, Kokkonen P, Koskinen M, Julkunen J, Kauhanen J, Jokelainen J, Veijola J, Läksy K, and Järvelin M‐R. Psychometric properties of the Finnish 20‐item Toronto Alexithymia Scale. Nordic Journal of Psychiatry, 55 (2): 123–127, 2001. 

Page 66: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

65 

 

Jula A, Salminen  JK, and Saarijärvi S. Alexithymia: a  facet of essential hypertension. Hypertension, 33  (4): 1057–61, 1999. 

Kano M, Mizuno T, Kawano Y, Aoki M, Kanazawa M, and Fukudo S. Serotonin Transporter Gene Promoter Polymorphism and Alexithymia. Neuropsychobiology, 65 (2): 76–82, 2012. 

Kanwisher N, McDermott J, and Chun MM. The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. Journal of Neuroscience, 17 (11): 4302–4311, 1997. 

Kanwisher N and Yovel G. The fusiform face area: a cortical region specialized for the perception of faces. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 361  (1476): 2109–28, 2006. 

Kätsyri  J, Saalasti S, Tiippana K, von Wendt L, and Sams M.  Impaired  recognition of  facial emotions  from low‐spatial frequencies in Asperger syndrome. Neuropsychologia, 46 (7): 1888–97, 2008. 

Krystal H. Integration and Self‐Healing: Affect, Trauma, Alexithymia. Hillsdale, NJ: The Analytic Press, 1988. 

Kubota M, Miyata  J,  Hirao  K,  Fujiwara  H,  Kawada  R,  Fujimoto  S,  Tanaka  Y,  Sasamoto  A,  Sawamoto  N, Fukuyama  H,  Takahashi  H,  and  Murai  T.  Alexithymia  and  regional  gray  matter  alterations  in schizophrenia. Neuroscience Research, 70 (2): 206–13, 2011. 

Kubota M, Miyata J, Sasamoto A, Kawada R, Fujimoto S, Tanaka Y, Sawamoto N, Fukuyama H, Takahashi H, and Murai T. Alexithymia and  reduced white matter  integrity  in  schizophrenia : A diffusion  tensor imaging study on  impaired emotional  self‐awareness. Schizophrenia Research, 141  (2‐3): 137–143, 2012. 

Kugel H, Eichmann M, Dannlowski U, Ohrmann P, Bauer  J, Arolt V, Heindel W, and Suslow T. Alexithymic features and automatic amygdala reactivity to facial emotion. Neuroscience Letters, 435 (1): 40–44, 2008. 

Lane  RD.  Neural  Substrates  of  Implicit  and  Explicit  Emotional  Processes:  A  Unifying  Framework  for Psychosomatic Medicine. Psychosomatic Medicine, 70 (2): 214–231, 2008. 

Lane RD, Ahern GL, Schwartz GE, and Kaszniak AW.  Is alexithymia the emotional equivalent of blindsight? Biological Psychiatry, 42 (9): 834–44, 1997. 

Lane  RD,  Quinlan  D,  Schwartz  G, Walker  P,  and  Zeitlin  S.  The  Levels  of  Emotional  Awareness  Scale:  A Cognitive‐Developmental Measure of Emotion. Journal of Personality Assessment, 55  (1): 124–134, 1990. 

Lane  RD,  Sechrest  L,  Reidel  R, Weldon  V,  Kaszniak  A,  and  Schwartz GE.  Impaired  verbal  and  nonverbal emotion recognition in alexithymia. Psychosomatic Medicine, 58 (3): 203–210, 1996. 

Lane RD, Sechrest L, Riedel R, Shapiro D, and Kaszniak a W. Pervasive emotion recognition deficit common to alexithymia and the repressive coping style. Psychosomatic Medicine, 62 (4): 492–501, 2000. 

Langner  O,  Dotsch  R,  Bijlstra  G,  Wigboldus  DHJ,  Hawk  ST,  and  van  Knippenberg  A.  Presentation  and validation of the Radboud Faces Database. Cognition & Emotion, 24 (8): 1377–1388, 2010. 

Laricchiuta D, Petrosini L, Picerni E, Cutuli D, Iorio M, Chiapponi C, Caltagirone C, Piras F, and Spalletta G. The embodied emotion in cerebellum: a neuroimaging study of alexithymia. Brain Structure & Function, 2014. 

Page 67: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

66 

 

Lee B‐T, Lee H‐Y, Park S‐A, Lim  J‐Y, Tae WS, Lee M‐S,  Joe S‐H,  Jung  I‐K, and Ham B‐J. Neural substrates of affective  face  recognition  in  alexithymia:  a  functional  magnetic  resonance  imaging  study. Neuropsychobiology, 63 (2): 119–24, 2011. 

Lichev V, Rufer M, Rosenberg N, Ihme K, Grabe HJ, Kugel H, Donges U‐S, Kersting A, and Suslow T. Assessing alexithymia and emotional awareness: Relations between measures in a German non‐clinical sample. Comprehensive Psychiatry, 55 (4): 952–959, 2014. 

Liemburg  E,  Swart M,  Bruggeman  R,  Kortekaas  R,  Knegtering  H,  Curcic‐Blake  B,  and  Aleman  A.  Altered resting state connectivity of the default mode network in alexithymia. Social Cognitive and Affective Neuroscience, 7 (6):  660–666, 2012. 

Likowski KU, Mühlberger A, Gerdes ABM, Wieser MJ, Pauli P, and Weyers P. Facial mimicry and the mirror neuron  system:  simultaneous  acquisition  of  facial  electromyography  and  functional  magnetic resonance imaging. Frontiers in Human Neuroscience, 6: 214, 2012. 

Logothetis NK, Pauls J, Augath M, Trinath T, and Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature, 412: 150–157, 2001. 

Lövdén M, Wenger  E, Mårtensson  J,  Lindenberger U,  and Bäckman  L.  Structural brain plasticity  in  adult learning and development. Neuroscience and Biobehavioral Reviews, 37 (9): 2296–2310, 2013. 

Lumley MA, Gustavson BJ, Partridge RT, and Labouvie‐Vief G. Assessing alexithymia and related emotional ability constructs using multiple methods:  interrelationships among measures. Emotion, 5 (3): 329–42, 2005. 

Lumley MA, Ovies T, Stettner L, Wehmer F, and Lakey B. Alexithymia, social support and health problems. Journal of Psychosomatic Research, 41 (6): 519–530, 1996. 

Lundqvist D, Flykt A, and Öhmann A. The Karolinska Directed Emotional Faces ‐ KDEF. 1998. 

Mann LS, Wise TN, Trinidad A, and Kohanski R. Alexithymia, affect recognition, and the five‐factor model of personality in normal subjects. Psychological Reports, 74 (2): 563–7, 1994. 

Mann  LS,  Wise  TN,  Trinidad  A,  and  Kohanski  R.  Alexithymia,  affect  recognition,  and  five  factors  of personality in substance abusers. Perceptual and Motor Skills, 81 (1): 35–40, 1995. 

Mériau K, Wartenburger I, Kazzer P, Prehn K, Lammers C‐H, van der Meer E, Villringer A, and Heekeren HR. A neural  network  reflecting  individual  differences  in  cognitive  processing  of  emotions  during perceptual decision making. NeuroImage, 33 (3): 1016–27, 2006. 

Messina  A,  Beadle  JN,  and  Paradiso  S.  Towards  a  classification  of  alexithymia:  primary,  secondary  and organic. Journal of Psychopathology, 20: 38–49, 2014. 

Montebarocci O, Surcinelli P, Rossi N, and Baldaro B. Alexithymia, verbal ability and emotion  recognition. The Psychiatric Quarterly, 82 (3): 245–52, 2011. 

Moriguchi Y and Komaki G. Neuroimaging studies of alexithymia: physical, affective, and social perspectives. BioPsychoSocial Medicine, 7 (1): 8, 2013. 

Murphy ST and Zajonc RB. Affective Priming With Optimal and Suboptimal Stimulus Exposures. Journal of Personality and Social Psychology, 64 (5): 723–739, 1993. 

Page 68: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

67 

 

Nichols T and Hayasaka S. Controlling the familywise error rate  in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12 (5): 419–46, 2003. 

Ogawa  S,  Tank DW, Menon  R,  Ellermann  JM,  Kim  SG, Merkle H,  and Ugurbil  K.  Intrinsic  signal  changes accompanying  sensory  stimulation:  functional  brain mapping  with  magnetic  resonance  imaging. Proceedings of the National Academy of Sciences, 89 (13): 5951–5955, 1992. 

Ogrodniczuk JS, Piper WE, and Joyce SJ. Effect of alexithymia on the process and outcome of psychotherapy: A programmatic review. Psychiatry Research, 190 (1): 43–48, 2011.    

Palermo R  and Rhodes G. Are  you  always on my mind? A  review of how  face perception  and  attention interact. Neuropsychologia, 45 (1): 75–92, 2007. 

Pandey R and Mandal MK. Processing of  facial expressions of emotion and alexithymia. British  Journal of Clinical Psychology, 36 (4): 631–633, 1997. 

Paradiso S, Vaidya JG, McCormick LM,  Jones A, and Robinson RG. Aging and alexithymia: association with reduced right rostral cingulate volume. The American Journal of Geriatric Psychiatry, 16 (9): 760–9, 2008. 

Parker  JD,  Taylor  GJ,  and  Bagby  RM.  Alexithymia  and  the  recognition  of  facial  expressions  of  emotion. Psychotherapy and Psychosomatics, 59 (3‐4): 197–202, 1993. 

Parker  JD.,  Taylor GJ,  and Bagby RM.  The  20‐Item  Toronto Alexithymia  Scale:  III. Reliability  and  factorial validity in a community population. Journal of Psychosomatic Research, 55 (3): 269–275, 2003. 

Parker  PD,  Prkachin  KM,  and  Prkachin  GC.  Processing  of  facial  expressions  of  negative  emotion  in alexithymia: the influence of temporal constraint. Journal of Personality, 73 (4): 1087–107, 2005. 

Pessoa  L  and Adolphs R.  Emotion processing  and  the  amygdala:  from  a  “low  road”  to  “many  roads” of evaluating biological significance. Nature Reviews Neuroscience, 11 (11): 773–83, 2010. 

Phillips ML, Drevets WC, Rauch SL, and Lane RD. Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biological Psychiatry, 54 (5): 504–14, 2003. 

Pizzagalli  DA,  Lehmann  D,  Hendrick  AM,  Regard  M,  Pascual‐Marqui  RD,  and  Davidson  RJ.  Affective Judgments of Faces Modulate Early Activity (about 160 ms) within the Fusiform Gyri. NeuroImage, 16 (3): 663–677, 2002. 

Pouga L, Berthoz S, de Gelder B, and Grèzes  J.  Individual differences  in  socioaffective  skills  influence  the neural bases of  fear processing: the case of alexithymia. Human Brain Mapping, 31  (10): 1469–81, 2010. 

Primmer JW. Understanding the Dimensional Nature of Alexithymia. Journal of Consciousness Studies, 20 (9‐10): 111–131, 2013. 

Prkachin  GC,  Casey  C,  and  Prkachin  KM.  Alexithymia  and  perception  of  facial  expressions  of  emotion. Personality and Individual Differences, 46 (4): 412–417, 2009. 

Reker M, Ohrmann P, Rauch AV, Kugel H, Bauer J, Dannlowski U, Arolt V, Heindel W, and Suslow T. Individual differences in alexithymia and brain response to masked emotion faces. Cortex, 46: 658–667, 2010. 

Page 69: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

68 

 

Rizzolatti G. The mirror neuron system and its function in humans. Anatomy and Embryology, 210 (5): 419–421, 2005. 

Rizzolatti G and Craighero L. The mirror‐neuron system. Annual Review of Neuroscience, 27: 169–92, 2004. 

Rufer M, Albrecht R, Zaum J, Schnyder U, Mueller‐Pfeiffer C, Hand I, and Schmidt O. Impact of alexithymia on  treatment  outcome:  a  naturalistic  study  of  short‐term  cognitive‐behavioral  group  therapy  for panic disorder. Psychopathology, 43 (3): 170–9, 2010. 

Russell  JA,  Bachorowski  J‐A,  and  Fernandez‐Dols  J‐M.  Facial  and  vocal  expressions  of  emotion.  Annual Review of Psychology, 54: 329–49, 2003. 

Schäfer R, Popp K, Jörgens S, Lindenberg R, Franz M, and Seitz RJ. Alexithymia‐like disorder in right anterior cingulate infarction. Neurocase, 13 (3): 201–8, 2007. 

Scherer KR and Ellgring H. Multimodal expression of emotion: affect programs or componential appraisal patterns? Emotion, 7 (1): 158–71, 2007. 

Sel  A,  Forster  B,  and  Calvo‐Merino  B.  The  emotional  homunculus:  ERP  evidence  for  independent somatosensory  responses during  facial emotional processing. The  Journal of Neuroscience, 34  (9): 3263–7, 2014. 

Sifneos  PE.  The  Prevalence  of  Alexithymic  Characteristics  in  Psychosomatic  Patients.  Psychotherapy  and Psychosomatics, 22 (2‐6): 255–262, 1973. 

Sonnby‐Borgström M.  Alexithymia  as  Related  to  Facial  Imitation, Mentalization,  Empathy,  and  Internal Working Models‐of‐Self and ‐Others. Neuropsychoanalysis, 11 (1): 111–128, 2009. 

Spitzer C, Siebel‐Jurges U, Barnow S, Grabe HJ, and Freyberger HJ. Alexithymia and interpersonal problems. Psychotherapy and Psychosomatics, 74 (4): 240–6, 2005. 

Strack F, Martin LL, and Stepper S. Inhibiting and facilitating conditions of the human smile: a nonobtrusive test of the facial feedback hypothesis. Journal of Personality and Social Psychology, 54 (5): 768–77, 1988. 

Suslow  T,  Kersting  A,  Ohrmann  P,  and  Arolt  V.  [A  critique  of  the  construct  “alexithymia”  and  its measurement‐‐the  weakness  of  self‐report  and  the  opportunities  of  an  objective  assessment approach]. Zeitschrift für Psychosomatische Medizin und Psychotherapie, 47 (2): 153–66, 2001. 

Suslow T, Kugel H, Ohrmann P, Stuhrmann A, Grotegerd D, Redlich R, Bauer  J, and Dannlowski U. Neural correlates of  affective priming effects based on masked  facial emotion:  an  fMRI  study. Psychiatry Research: Neuroscience, 211 (3): 239–45, 2013. 

Swart M, Kortekaas R, and Aleman A. Dealing with feelings: characterization of trait alexithymia on emotion regulation strategies and cognitive‐emotional processing. PloS One, 4 (6): e5751, 2009. 

Taylor GJ, Bagby RM, and Parker JDA. Disorders of Affect Regulation: Alexithymia in Medical and Psychiatric Illness. Cambridge: Cambridge University Press, 1997. 

Taylor  GJ,  Ryan  D,  and  Bagby  RM.  Toward  the  development  of  a  new  self‐report  alexithymia  scale. Psychotherapy and Psychosomatics, 44 (4): 191–199, 1985. 

Page 70: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

69 

 

Trinkler  I, Cleret de Langavant L, and Bachoud‐Lévi A‐C.  Joint  recognition‐expression  impairment of  facial emotions  in Huntington’s disease despite  intact understanding of  feelings. Cortex, 49  (2): 549–58, 2013. 

Troisi A, Delle Chiaie R, Russo F, Russo MA, Mosco C, and Pasini A. Nonverbal behavior and alexithymic traits in normal subjects. Individual differences in encoding emotions. The Journal of Nervous and Mental Disease, 184 (9): 561–6, 1996. 

Tsuchida A and Fellows LK. Are you upset? Distinct  roles  for orbitofrontal and  lateral prefrontal cortex  in detecting and distinguishing facial expressions of emotion. Cerebral Cortex, 22 (12): 2904–12, 2012. 

Tsuchiya N and Adolphs R. Emotion and consciousness. Trends in Cognitive Sciences, 11 (4): 158–167, 2007. 

Van der Gaag C, Minderaa RB, and Keysers C. Facial expressions: what the mirror neuron system can and cannot tell us. Social Neuroscience, 2 (3‐4): 179–222, 2007. 

Van der Velde  J, Servaas MN, Goerlich KS, Bruggeman R, Horton P, Costafreda SG, and Aleman A. Neural correlates  of  alexithymia:  A  meta‐analysis  of  emotion  processing  studies.  Neuroscience  & Biobehavioral Reviews, 37 (8): 1774–1785, 2013. 

Van der Velde J, Tol M‐J van, Goerlich‐Dobre KS, Gromann PM, Swart M, de Haan L, Wiersma D, Bruggeman R, Krabbendam L, and Aleman A. Dissociable morphometric profiles of  the affective and cognitive dimensions of alexithymia. Cortex, 54: 190–199, 2014. 

Vanheule  S, Desmet M, Meganck R,  and Bogaerts  S. Alexithymia  and  interpersonal problems.  Journal of Clinical Psychology, 63 (1): 109–17, 2007. 

Vorst  H  and  Bermond  B.  Validity  and  reliability  of  the  Bermond–Vorst  Alexithymia  Questionnaire. Personality and Individual Differences, 30 (3): 413–434, 2001. 

Vuilleumier  P  and  Pourtois  G.  Distributed  and  interactive  brain  mechanisms  during  emotion  face perception: evidence from functional neuroimaging. Neuropsychologia, 45 (1): 174–94, 2007. 

Wenzel U, Taubert M, Ragert P, Krug J, and Villringer A. Functional and structural correlates of motor speed in the cerebellar anterior lobe. PloS one, 9 (5): e96871, 2014. 

Wingbermühle  E,  Theunissen  H,  Verhoeven WMA,  Kessels  RPC,  and  Egger  JIM.  The  neurocognition  of alexithymia: evidence  from neuropsychological and neuroimaging  studies. Acta Neuropsychiatrica, 24(2):67–80, 2012. 

Yarkoni T and Braver TS. Cognitive Neuroscience Approaches to Individual Differences  in Working Memory and  Executive  Control:  Conceptual  and  Methodological  Issues.  In  Gruszka  A,  Matthews  G,  and Szymura B (Eds.), Handbook of Individual Differences in Cognition. New York, NY: Springer, 2010: 87–107. 

Zhang  X,  Salmeron  BJ,  Ross  TJ,  Geng  X,  Yang  Y,  and  Stein  EA.  Factors  underlying  prefrontal  and  insula structural alterations in smokers. NeuroImage, 54 (1): 42–8, 2011.   

Page 71: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

70 

 

6 APPENDIX

Page 72: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

71 

 

Lebenslauf

[Aus Gründen des Datenschutzes ist der Lebenslauf in der Onlineversion nicht enthalten.] 

Page 73: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

72 

 

Publikationsverzeichnis

Peer‐reviewed  

Artikel in Zeitschriften  

Ihme K,  Sacher  J,  Lichev V, Rosenberg N, Kugel H, Rufer M, Grabe H‐J, Pampel A,  Lepsien  J, Kersting A, Villringer A, Lane RD, and Suslow T. Alexithymic  features and  the  labeling of brief emotional  facial expressions – an fMRI study. Neuropsychologia, 2014. 

Lichev, V, Sacher, J, Ihme, K, Rosenberg, N, Quirin, M, Lepsien, J, Pampel, A, Rufer, M, Grabe, H‐J, Kugel, H, Kersting, A, Villringer, A, Lane, RD, and Suslow, T. Automatic Emotion Processing as a Function of Trait Emotional Awareness: An fMRI Study. Social Cognitive and Affective Neuroscience, nsu104, 2014. 

Fritz TH, Ciupek M, Kirkland A,  Ihme K, Guha A, Hoyer J, and Villringer A. Enhanced response to music  in pregnancy. Psychophysiology, 51 (9): 905‐911, 2014. 

Ihme K,  Sacher  J,  Lichev V, Rosenberg N, Kugel H, Rufer M, Grabe H‐J, Pampel A,  Lepsien  J, Kersting A, Villringer A,  and  Suslow T. Alexithymia  and  the  labeling of  facial emotions:  response  slowing  and increased motor and somatosensory processing. BMC Neuroscience, 15 (1): 40, 2014. 

Lichev V, Rufer M, Rosenberg N, Ihme K, Grabe H‐J, Kugel H, Donges U‐S, Kersting A, and Suslow T. Assessing alexithymia and emotional awareness: Relations between measures in a German non‐clinical sample. Comprehensive Psychiatry, 55 (4): 952–959, 2014. 

Ihme K*, Dannlowski U*, Lichev V, Stuhrmann A, Grotegerd D, Rosenberg N, Kugel H, Heindel W, Arolt V, Kersting A, and Suslow T. Alexithymia  is related to differences  in gray matter volume: a voxel‐based morphometry study. Brain Research, 1491: 60–7, 2013. (*equal contribution) 

Donges U‐S, Kugel H, Stuhrmann A, Grotegerd D, Redlich R, Lichev V, Rosenberg N, Ihme K, Suslow T, and Dannlowski U. Adult attachment anxiety  is associated with enhanced automatic neural response to positive facial expression. Neuroscience, 220: 149–57, 2012. 

Zander  TO,  Ihme  K,  Gaertner  M,  and  Rötting  M.  A  public  data  hub  for  benchmarking  common  BCI algorithms. Journal of Neural Engineering, 8 (2): 25021, 2011. 

Zander  TO,  Lehne M,  Ihme K,  Jatzev  S, Correia  J, Kothe C, Picht B,  and Nijboer  F. A dry  EEG‐system  for scientific research and brain‐computer interfaces. Frontiers in Neuroscience, 5: 53, 2011. 

Conference Proceedings 

Protzak J,  Ihme K, and Zander TO. A Passive Brain‐Computer  Interface for Supporting Gaze‐Based Human‐Machine  Interaction.  In  Stephanidis C  and Antona M  (Eds.), Universal Access  in Human‐Computer Interaction.  Design  Methods,  Tools,  and  Interaction  Techniques  for  eInclusion,  Lecture  Notes  in Computer Science, Volume 8009. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 662–671. 

Ihme K and Zander TO. What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems  in Gaze‐Based HCI. Affective Computing and  Intelligent  Interaction, Lecture Notes in Computer Science, 6975: 2011. 

Page 74: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

73 

 

Lehne M,  Ihme  K,  Brouwer  A‐M,  van  Erp  JBF,  and  Zander  TO.  Error‐related  EEG  patterns  during  tactile human‐machine  interaction. Affective Computing and  Intelligent  Interaction and Workshops, 2009. ACII 2009. 3rd International Conference on, 1–9, 2009. 

 

Abstracts und Poster (Auswahl) 

Lethaus F,  Ihme K, Gürlük H, Rataj  J, and  Jipp M. Conceptual View of User‐ and Situation‐Based Adaptive Automation  in  Flight  and  Vehicle  Guidance.  Deutscher  Luft‐  und  Raumfahrtkongress,    Augsburg, Germany, September 15‐18, 2014. 

Ihme K, Lichev V, Rosenberg N, Sacher J, Villringer A, Kersting A, Lane R, and Suslow T. Ich fühle was, was Du nicht  siehst?  Alexithymie  und  die  Erkennung  von  Mikroexpressionen  –  eine  funktionelle Magnetresonanztomografiestudie. Klinische Neurophysiologie, 44 (01): P75, 2013.  

Ihme K, Lichev V, Rosenberg N, Sacher J, Villringer A, Kersting A, and Suslow T. P 59. Which brain regions are involved  in  the  correct  detection  of  microexpressions?  Preliminary  results  from  a  functional magnetic resonance imaging study. Clinical Neurophysiology, 124 (10): e92–e93, 2013.  

Lamke  J‐P,  Ihme K,  Lehne M,  and Wilutzky W. Moral  in  the  Face of Disgust. animal  emotionale  II –  The Evolution  of  Disgust.  From  Oral  to  Moral.  ZiF  Center  for  Interdisciplinary  Research,  Bielefeld, Germany, January 4‐7, 2012. 

 

Vorträge 

Ihme, K.  Ich  fühle was, was du nicht siehst? Neuronale Korrelate der Erkennung emotionaler Gesichter  in Abhängigkeit  des  Persönlichkeitsmerkmals  Alexithymie.  Vortrag  im  Neurowissenschaftlichen Kolloquium der Deutschen Sporthochschule Köln, Juli 2013. 

 

   

Page 75: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

74 

 

Erklärung über die eigenständige Abfassung der Arbeit

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und ohne unzulässige Hilfe oder Benutzung 

anderer  als  der  angegebenen  Hilfsmittel  angefertigt  habe.  Ich  versichere,  dass  Dritte  von  mir  weder 

unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten haben, die  im Zusammenhang mit 

dem  Inhalt der vorgelegten Dissertation stehen, und dass die vorgelegte Arbeit weder  im  Inland noch  im 

Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde zum Zweck einer Promotion oder 

eines anderen Prüfungsverfahrens vorgelegt wurde. Alles aus anderen Quellen und von anderen Personen 

übernommene Material, das  in der Arbeit verwendet wurde oder auf das direkt Bezug genommen wird, 

wurde  als  solches  kenntlich  gemacht.  Insbesondere  wurden  alle  Personen  genannt,  die  direkt  an  der 

Entstehung der vorliegenden Arbeit beteiligt waren. 

 

.................................          ....................................  

Datum              Unterschrift 

   

Page 76: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

75 

 

Acknowledgement

First of all, I would like to thank my supervisor Anette Kersting and my in‐official supervisor Thomas Suslow 

for providing me with  the opportunity  to accomplish a PhD  in  the exiting  field of affective neuroscience. 

During the last four years, especially the fruitful discussions with and support from Thomas Suslow gave me 

the possibility to learn a lot about alexithymia, emotions and neuroimaging which will definitely be useful in 

my future life as a researcher. In addition, I would like to thank all my colleagues and students in our lab and 

at  the Clinic  for Psychosomatic Medicine and Psychotherapy  in general  for help during daily work, a nice 

working atmosphere and relaxing lunch breaks. Thank you, Vladimir, Nicole, Vivien, Ulrike, Grit, Ruth, Caro, 

Jule, Jana, Helge, Franzi, Anne, Katja, Katharina, Sophie, Falk, Tobias, Marc, Antje, Fr. Säuberlich and all the 

ones that I forgot to mention. It was a pleasure to work with you!  

I gratefully acknowledge  the  contribution and  support of all  cooperation partners and  co‐authors  in  the 

three studies. Moreover, I'm grateful to the US National Institutes of Health (NIH, grants R90DA023420 and 

T90DA022761) and the Federation of European Neuroscience Societies (FENS) for travel grants to visit the 

Multimodal  Neuroimaging  Training  Program  (MNTP)  in  Pittsburgh  in  2012  and  the  FENS‐IBRO  Imaging 

Training Center in Lausanne and Geneva in 2013. The stuff I learned during these workshops was essential 

for the dissertation and will certainly be useful in the future as well. Furthermore, I thank Nicole Rosenberg, 

Vladimir Lichev, Rick Solis and Dominique Goltz for proofreading of the dissertation.  

Last but not  least,  I'm truly grateful to Domi and my parents for support and advice during my education 

and the rest of my life.  

   

Page 77: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

76 

 

Study 1: Specification of author contribution

 

Page 78: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

77 

 

Study 2: Supplementary Materials

In our study, we pooled (behavioral and fMRI) data across presentation time conditions (66 vs. 100ms) to 

increase statistical power. In the following, reasons are provided that justify this decision.  

It  has  to  be mentioned  that  in  our  sample  there  was  a  significant  difference  in  labeling  performance 

between presentation  time  conditions  (see  Table  S1  for means  and  standard deviations). A  4  (emotion: 

happy, neutral, angry,  fearful) x 2  (presentation  time: 66 vs. 100 ms)  repeated measures ANOVA  showed 

significant main effects of emotion  (F(3,147) = 9.4, p <  .001) and presentation  time  (F(1,49) = 46.4, p < 

0.001), but no significant  interaction effect of emotion condition and presentation time  (F(3,147) = 2.2, p 

=  .10).  This means  that performance was  significantly better  in  the 100 ms presentation  time  condition 

compared to the 66 ms presentation time condition. However,  in our study we were not  interested  in the 

difference between performances at 66 ms  versus 100 ms presentation, but  in  the effect of alexithymic 

features on labeling of briefly presented emotional facial expressions. In our view, there are two arguments 

in favor of our decision to pool data across presentation times. 

Table S1. Means and standard deviations of  labeling performance (sensitivity  index) for the emotional expression conditions as a function of presentation time (66 and 100 ms).

happy neutral angry fearful 66 ms 100 ms 66 ms 100 ms 66 ms 100 ms 66 ms 100 msmean .82 .90 .79 .86 .79 .86 .74 .85

standard deviation .18 .15 .18 .16 .15 .13 .17 .14

 

 1  We compared the correlation coefficients between alexithymia and  labeling performance for the two 

presentation  time conditions using Steiger's Z  (Steiger, 1980). This revealed no significant differences 

between  the  correlation  coefficients  for  any  of  the  alexithymia  measures.  An  overview  of  the 

correlations between alexithymia scores and labeling performance as a function of (emotion condition 

and) presentation time is presented in Table S2. Steiger's Z statistics comparing strength of correlation 

between labeling performance at the two different presentation times (66 and 100 ms) and measures 

of alexithymia are shown in Table S3. 

Page 79: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

78 

 

Table  S2.  Correlations  between  measures  of  alexithymia  and  labeling  performance  as  a  function  of  emotion  condition  and presentation  time  (66 vs. 100ms). The  last  line shows correlations between  labeling performance at 66 ms and 100 ms  for each emotion condition. 

HA NE AN FE  

66 ms 100 ms 66 ms 100 ms 66 ms 100 ms 66 ms 100 ms TAS-20 total -.24 -.21 -.16 -.25 -.28 -.31 -.24 -.16 

TAS-DDF -.26 -.40 -.24 -.34 -.30 -.41 -.27 -.29 TAS-DIF -.13 -.09 -.06 -.12 -.18 -.13 -.06 .04 

TSIA total -.03 .05 .09 .11 -.01 .03 -.12 .01 TSIA-DDF -.11 -.07 .03 .00 -.09 -.09 -.17 -.08 TSIA-DIF .08 .04 .19 .13 .07 .06 .00 .01 

66 ~ 100 .65 .74 .80 .82 Note. TAS‐20 = 20‐Item Toronto Alexithymia Scale, TSIA = Toronto Structured Interview for Alexithymia, DDF = Difficulties Describing Feelings, DIF = Difficulties Identifying Feelings. HA = happy faces, NE = neutral faces, AN = angry faces, FE = fearful faces.

Table S3. Steiger's Z  statistic  comparing  strength of  correlation between  labeling performance at  the  two different presentation times (66 and 100 ms) and measures of alexithymia for the four facial expression conditions. Steiger's Z was calculated using the program of Lee and Preacher (2013).  

HA NE AN FE 

Z p Z p Z p Z p 

TAS total -.25 .80 .88 .38 .34 .73 -.94 .35 TAS-DDF 1.24 .22 -.10 .92 1.29 .20 .24 .81 TAS-DIF -.33 .74 .57 .57 .66 .51 -1.15 .25 

TSIA total -.66 .51 -.10 .92 1.31 .19 -1.49 .14 TSIA-DDF -.33 .74 .29 .78 -.43 .66 -1.04 .29 TSIA-DIF -.33 .74 -.58 .56 0 1 -.23 .82 

Note. TAS‐20 = 20‐Item Toronto Alexithymia Scale, TSIA = Toronto Structured Interview for Alexithymia, DDF = Difficulties Describing Feelings, DIF = Difficulties Identifying Feelings. HA = happy faces, NE = neutral faces, AN = angry faces, FE = fearful faces. 

 2  In a recent review on alexithymia and processing of emotional facial expressions, which was published 

after  we  have  started  our  data  collection,  Grynberg  et  al.  (2012)  come  to  the  conclusion  that 

alexithymic individuals should have difficulties in labeling facial expressions especially when these are 

presented below 300 ms. Both of our presentation times are clearly below this value and therefore one 

can  expect  that  there  should  be  no  substantial  differences  in  the  association  of  alexithymia  and 

labeling performance between the two presentation time conditions (66 and 100 ms).   

 

References 

Grynberg,  D.,  Chang,  B.,  Corneille,  O., Maurage,  P.,  Vermeulen,  N.,  Berthoz,  S.,  &  Luminet,  O.  (2012). Alexithymia  and  the  Processing  of  Emotional  Facial  Expressions  (EFEs):  Systematic  Review, Unanswered Questions and Further Perspectives. PloS One, 7(8), e42429.  

Lee,  I.  A.,  &  Preacher,  K.  J.  (2013).  Calculation  for  the  test  of  the  difference  between  two  dependent correlations  with  one  variable  in  common.  http://quantpsy.org/corrtest/corrtest2.htm,  accessed August 2014. 

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245–251.   

Page 80: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

79 

 

Study 3: Supplementary Materials

Table S1. Brain activation in the three main contrasts at a threshold of t=3.27, k=10. 

cluster peak localization

k pfwe x y z Z pfwe hem. region HA>NE 1 429 <.001 -42 -76 31 5.10 <.01 left middle occipital gyrus,

middle temporal gyrus

2 571 <.001 -6 53 2 4.99 <.05 left middle orbital gyrus, superior frontal gyrus, superior medial gyrus, anterior cingulate gyrus

3 109 <.01 -30 26 49 4.43 .16 left middle frontal gyrus, superior frontal gyrus

4 33 .24 -6 -58 19 3.93 .52 left precuneus

5 14 .70 -24 -7 -20 3.93 .52 left amygdala

6 46 .11 -9 -46 34 3.88 .58 left middle cingulate gyrus

7 20 .52 -27 -34 -14 3.74 .74 left parahippocampal gyurs

8 17 .60 -63 -25 -14 3.66 .83 left middle temporal gyrus

AN>NE 1 140 <.01 42 -49 -14 4.63 .05 right fusiform gyrus

2 103 <.01 36 -91 4 4.98 .11 right inferior occipital gyrus, middle occipital gyrus, lingual gyrus

3 219 <.001 -39 -73 -8 4.40 .13 left fusiform gyrus, inferior temporal gyrus

4 77 <.05 -30 -94 7 3.92 .52 left middle occipital gyrus

5 45 .13 21 -10 -14 4.84 <.05 right amygdala, hippocampus

6 24 .42 51 -37 4 4.29 .19 right middle temporal gyrus

7 37 .20 -39 32 -5 4.28 .18 left inferior frontal gyrus

8 17 .61 51 35 1 4.09 .34 right inferior frontal gyrus

9 37 .20 -21 -7 17 4.03 .41 left amygdala

10 20 .52 -3 -31 -11 3.96 .48 left not found in probability map

11 62 .05 -51 5 28 3.89 .57 left precentral gyrus, inferior frontal gyrus

12 29 .31 -3 -13 4 3.76 .71 left thalamus

13 13 .74 -6 53 31 3.47 .95 left superior medial gyrus

FE>NE 1 721 <.001 -45 14 22 5.93 <.001 left inferior frontal gyrus, pars triangularis

2 203 <.001 36 -91 2 5.58 <.001 right inferior occipital gyrus

3 350 <.001 -36 -73 -8 5.03 <.01 left fusiform gyrus, inferior occipital gyrus

4 130 <.01 -57 -55 7 4.62 .05 left middle temporal gyrus

5 145 <.01 15 -79 -35 4.58 .06 right cerebellum, lobule VIIb

6 53 .09 -6 23 49 4.29 .13 left supplementary motor area

7 63 .06 48 -37 4 4.15 .27 right middle temporal gyrus

8 20 .53 42 17 25 3.98 .44 right inferior frontal gyrus

9 14 .71 -6 -10 4 3.91 .52 left thalamus

10 24 .44 42 -49 14 3.65 .81 right inferior temporal gyrus

Note. The region refers to brain areas through which the cluster is spanning. HA>NE = happy versus neutral faces, AN>NE = angry versus neutral faces, FE>NE = fearful versus neutral faces, hem. = hemisphere, x,y and z are in MNI space.  

Page 81: Functional and structural neuroimaging of facial emotion ... · 80 Seiten, 139 Literaturangaben 1, 2 Abbildungen2, 0 Tabellen3, 7 Anlagen. Referat: Research in the last decades has

80 

 

Table S2. Brain activation related to measures of alexithymia in the three contrasts at a threshold of t=3.27, k=10.  

cluster peak localization

k pfwe x y z Z pfwe hem. region

HA>NE TSIA-DDF+ 14 .70 30 -31 34 3.92 .52 right not assigned (close to

posterior gyrus)

TSIA-DDF- 16 .64 -3 53 4 3.86 .60 left middle orbital gyrus

AN>NE TSIA-DDF+ 61 .05 30 -37 40 4.76 <.05 right Area 3a, S1

87 <.01 -6 -1 61 4.20 .24 left Area 6, supplementary motor area

16 .64 54 -28 7 3.78 .69 right superior parietal lobule

23 .44 -18 -58 52 3.71 .76 left superior temporal gyrus

11 .80 -21 -49 49 3.67 .81 right Area 6, precentral gyrus

TSIA-DDF-: no suprathreshold activation

FE>NE TSIA-DDF+ 11 .80 -54 11 19 3.78 .67 left Area 44, inferior frontal gyrus

11 .80 9 -4 61 3.39 .96 right Area 6, supplementary motor area

TSIA-DDF- 15 .68 -9 -4 25 3.62 .83 left caudate nucleus

Note. No suprathreshold clusters were revealed in relation to the subscale DDF of the 20‐item Toronto Alexithymia Scale. The region refers  to brain areas  through which  the  cluster  is  spanning. HA>NE = happy versus neutral  faces, AN>NE = angry versus neutral faces, FE>NE = fearful versus neutral faces, TSIA = Toronto Structured Interview for Alexithymia. DDF = subscale difficulties describing feelings,  +  = positive  relationship between measure and  brain  activation,  ‐  = negative  relationship between measure and brain activation, hem. = hemisphere, x,y and z are in MNI space.