Heat transfer in convective turbulence

34
Heat transfer in convective turbulence Jörg Schumacher Theoretical Fluid Mechanics Technische Universität Ilmenau Germany

Transcript of Heat transfer in convective turbulence

Page 1: Heat transfer in convective turbulence

Heat transfer in convective

turbulence

Jörg Schumacher

Theoretical Fluid MechanicsTechnische Universität Ilmenau

Germany

Page 2: Heat transfer in convective turbulence

Where is Ilmenau?

Page 3: Heat transfer in convective turbulence

Johann W. Goethe Karlheinz

Brandenburg

Barrel of Ilmenau

Über allen GipfelnIst Ruh'In allen WipfelnSpürest DuKaum einen Hauch;Die Vögelein schweigen im WaldeWarte nur, baldeRuhest Du auch.

Page 4: Heat transfer in convective turbulence

Outline

IntroductionLocal: Boundary layer structureLocal: Temperature and thermal dissipationGlobal: Large-scale flow patternsLocal: Lagrangian fingerprintGlobal: Plume clusters?Outlook

Page 5: Heat transfer in convective turbulence

Hydrostatic equilibrium

warmer fluidelement

colder fluidelement

fluid element

Ttop Tbottom

Nusselt number

Page 6: Heat transfer in convective turbulence

Rayleigh instabilityRayleigh, Philos. Mag. 1916; Jeffreys, Philos. Mag. 1926;

Schlüter, Lortz & Busse, J. Fluid Mech. 1965

Further bifurcations Transition to convective turbulence

stable unstable

Ra

Heatconductiononly

Heatconduction &convection

unstable branch

Page 7: Heat transfer in convective turbulence

Model equations

Rotation (opt.) Buoyancy

Approximations

• Density is linear function of temperature Boussinesq-Approximation

• Flow is incompressible (u much smaller than speed of sound)

Oberbeck, Ann. Phys. Chem. 1879; Boussinesq, Théorie Analytique de la Chaleur, 1903

Page 8: Heat transfer in convective turbulence

Rayleigh-Bénard convection

HDimensionless controlparameters

Page 9: Heat transfer in convective turbulence

Examples

Semiconductor chips, Ra=106

Buildings, Ra=1012

Atmosphere, Ra=1020

Sun, Ra=1023

Page 10: Heat transfer in convective turbulence

Rayleigh-Bénard convection

H

„System response“

Power law for heat transfer (for fixed Pr)

Page 11: Heat transfer in convective turbulence

=2/7 or 1/3?Shraiman & Siggia, Phys. Rev. A 1991; Großmann & Lohse, J. Fluid Mech.

2000

Deviation by morethan 100% !!!

Niemela et al., Nature

2000

Different models for the velocity boundary layer

Page 12: Heat transfer in convective turbulence

Regions in convective turbulence

Bulk Boundary layer

Mixing zone?

Mixing zone?

Plume

Boundarylayer

thickness:0.01

Page 13: Heat transfer in convective turbulence

Turbulenttemperature

field

Mean temperature

Heig

ht

Turbulent

structureMean profile Transport law

„Perturbation“„Response“

Why study mean profiles?

Page 14: Heat transfer in convective turbulence

7 Meters

„Barrel of Ilmenau“

Worlds biggest convection experiment

Page 15: Heat transfer in convective turbulence

Accessible range in the Barrel

6 9 12 15 18

log(Ra)

log

(R

)

Fitzjarrald (1976)

Castaing (1989)

Niemela (2000)

Barrel of Ilmenau (2000)50000

5000

500

50

R=Size of Experiment

Size of Sensor

Luft

Luft

Helium

Helium

Air

Air

Page 16: Heat transfer in convective turbulence

Velocity measurements

LD

A

du Puits, Resagk & Thess, Phys. Rev. Lett. 2007

Laser-Doppler-Anemometry vx

Theoretical model

Resolve

boundary

layers!!

vy

Data

Page 17: Heat transfer in convective turbulence

Numerical simulations in cylindrical cell

T =0.00005 HRa=1017

T =0.0014 HRa=1012

T =0.016 HRa=109

Proper resolution of boundary layerslimits accessible Ra

Verzicco & Orlandi, JCP 1996

No-slip boundaries, adiabatic side walls

Second-order finite difference scheme

Page 18: Heat transfer in convective turbulence

Temperature & temperature derivativeEmran & Schumacher, J. Fluid Mech., in revision

BL Bulk

BLBulk

Strong vertical dependence of statistics of turbulent temperature field

Page 19: Heat transfer in convective turbulence

Deviations from local isotropySchumacher & Sreenivasan, Phys. Rev. Lett. 2003

BLBulk

Return to local isotropy (K41) for temperature fluctuations in bulk Formation of „superconducting core“ in high-Ra turbulence

Niemela & Sreenivasan, Phys. Rev. Lett. 2008

Page 20: Heat transfer in convective turbulence

Thermal dissipation rateEmran & Schumacher, J. Fluid Mech., in revision

Significant contribution to dissipation due to temperature fluctuations Does not enter the Großmann-Lohse scaling theory!

Großmann & Lohse, J. Fluid Mech. 2000

Page 21: Heat transfer in convective turbulence

„Wind of turbulence“

Mean (114 double frames) andsnapshot

Ra=1011, =2

z

x

Barrel: Visualisation with He bubbles

Page 22: Heat transfer in convective turbulence

Geometry dependence of heat transport

10% effect

POD analysis

Time-averaged streamlines

Page 23: Heat transfer in convective turbulence

Pair dispersion in turbulent convectionSchumacher, Phys. Rev. Lett. 2008

Page 24: Heat transfer in convective turbulence

Lagrangian fingerprint of thermal plumes

Page 25: Heat transfer in convective turbulence

L

H

Successively flatter cells

W

Cartesian geometry

Free-slip b.c. in zPeriodic b.c. in x and y

Pseudospectral method

Page 26: Heat transfer in convective turbulence

Volumetric 3D-FFT

xy

z

y1. r2c in x

2.

kx kx

3. c2c in y

4.z

ky

5. c2c in z

One more communication step necessary !

kz

3

2

1

0

0

1

2

3

Nx = Ny >> Nz is possible as necessary for our studies

N2 processors can be used 2D processor grid(iproc,jproc)

iproc=2

jproc=2

pencil

D. Pekurovsky (SDSC), p3dfft package

Page 27: Heat transfer in convective turbulence

Massively parallel supercomputing

Production jobs on 4096 CPUs

Schumacher & Pütz, Proceedings of PARCO 2007

Page 28: Heat transfer in convective turbulence

Effect of rotation

Temperature

Temperature

Ta=0

Ta=2.5 108

Page 29: Heat transfer in convective turbulence

Mean temperature and heat transfer

Rotation diminishesfluctuations and thus heat

transport

Rotationincreases

Page 30: Heat transfer in convective turbulence

Temperature patternsHartlep, Tilgner & Busse, J. Fluid Mech. 2005; von Hardenberg et al., Phys. Letters A

2008

Page 31: Heat transfer in convective turbulence

Plume clusters?

Page 32: Heat transfer in convective turbulence

... the road ahead

Scale analysis of plume clusters (image segmentation)

Lagrangian analysis in large-aspect-ratio convectioncells temporal persistence of plume clusters?

Statistical significance of thermal plumes with increasingRayleigh number (BL thickness ~ 1/Nu)

Together with O. Pauluis (NYU): simple extension tomoist convection

condensation at saturation level piecewise linear dependence of buoyancy on S and q dry and moist lapse rates allow to tune stability

Page 33: Heat transfer in convective turbulence

Summary

Boundary layers (BL): neither laminar Blasius type nor turbulentPrandtl type Scaling theories of heat transfer

Turbulent temperature fluctuations contribute significantly tothermal dissipation in BL

Lateral dispersion of Lagrangian tracers is Richardson-like

Rotation prohibits formation of horizontal large-scale patterns

Clusters of thermal plumes seem to cause large-scaletemperature patterns in non-rotating case

Page 34: Heat transfer in convective turbulence

Thanks to

Mohammad Emran, Jorge Bailon-Cuba (TU Ilmenau)

Ronald du Puits, Christian Resagk, Andre Thess (TU Ilmenau)

Katepalli R. Sreenivasan (ICTP Trieste / UMD College Park)

Roberto Verzicco (U Roma II)

Matthias Pütz (IBM Germany)

Jülich Supercomputing Centre (Germany)