Homeomorphisms on Edges of the Mandelbrot · PDF file and renormalization. Dierk Schleicher...
date post
22-Jul-2020Category
Documents
view
0download
0
Embed Size (px)
Transcript of Homeomorphisms on Edges of the Mandelbrot · PDF file and renormalization. Dierk Schleicher...
Homeomorphisms on Edges of the Mandelbrot Set
Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
Rheinisch-Westfälischen Technischen Hochschule Aachen genehmigte Dissertation
zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
vorgelegt von
Diplom-Mathematiker Wolf Jung
aus Gelsenkirchen-Buer
Berichter: Universitätsprofessor Dr. Volker Enss
Universitätsprofessor Dr. Gerhard Jank
Universitätsprofessor Dr. Walter Bergweiler
Tag der mündlichen Prüfung: 3.7.2002
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.
The author’s present address is:
Wolf Jung
Institut für Reine und Angewandte Mathematik
RWTH Aachen, D-52062 Aachen, Germany
[email protected] http://www.iram.rwth-aachen.de/∼jung
This Ph.D. thesis was accepted by the Faculty of Mathematics, Computer Science
and Natural Sciences at the RWTH Aachen, and the day of the oral examination
was July 3, 2002. The thesis is available as a pdf-file or ps-file from the author’s
home page and from the RWTH-library
http://www.bth.rwth-aachen.de/ediss/ediss.html.
Hints for viewing the file: The pdf-version is recommended for reading on the
screen. You should save it to your local disk and open it with Adobe’s Acrobat
Reader (http://www.adobe.com), setting the display to maximal width (CTRL 3),
which may require choosing single page mode. Clicking on the links on the current
page will start your web browser. Clicking on references on other pages will send
you approximately to the corresponding part of this manuscript, and you can return
with the Reader’s back button.
Program: All images have been produced with the DOS-program mandel.exe,
which is available from the author’s home page. The algorithm used for draw-
ing external rays will be described in [J2]. Although it is not considered to be part
of this thesis, writing the program and researching on holomorphic dynamics have
benefited from each other in turns.
Acknowledgment
I am most grateful to Volker Enss for his continuous interest and engaged support
of every aspect of my work. I wish to thank Walter Bergweiler and Gerhard Jank
for useful hints and for undertaking the labor of refereeing this thesis.
Thanks to Johannes Riedl for proofreading early versions of the manuscript, many
corrections and helpful suggestions, and for our most inspiring discussions on surgery
and renormalization. Dierk Schleicher provided invaluable advice on the background
in holomorphic dynamics, and his critical remarks influenced the course of my work,
and motivated in particular the research for Section 8.1.
I am grateful for useful hints from and inspiring discussions with Bodil Bran-
ner, Xavier Buff, Núria Fagella, Lukas Geyer, Peter Häıssinsky, Heinz Hanßmann,
Karsten Keller, Hartje Kriete, Steffen Rohde, Rudolf Winkel and Tan Lei.
I wish to thank all colleagues at the Institut für Reine und Angewandte Mathematik
for the supporting and warm atmosphere. Part of this work was done on long
evenings in some nice Cafés of Aachen: Kittel, Labyrinth, Last Exit, Meisenfrei,
Molkerei, Orient Expresso, Pontgarten, Wild Roses and Ohne Worte (Munich).
3
mailto:[email protected] http://www.iram.rwth-aachen.de/~jung http://www.iram.rwth-aachen.de/~jung http://www.bth.rwth-aachen.de/ediss/ediss.html http://www.adobe.com/products/acrobat/readstep.html http://www.iram.rwth-aachen.de/~jung/indexp.html http://www.iram.rwth-aachen.de/~jung
Contents
Introduction 7
1 Summary of Results 11
1.1 Quasi-Conformal Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 The Homeomorphism h on an Edge . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Comparison of Techniques and Results . . . . . . . . . . . . . . . . . . . . . 16
1.4 Edges and Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Repelling Dynamics at Misiurewicz Points . . . . . . . . . . . . . . . . . . . 20
1.6 Combinatorial Surgery and Homeomorphism Groups . . . . . . . . . . . . . 22
1.7 Suggestions for Further Research . . . . . . . . . . . . . . . . . . . . . . . . 22
2 Background 25
2.1 Conformal Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Quasi-Conformal Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 The Analytic Definition of Quasi-Conformal Mappings . . . . . . . . . . . . 30
2.4 Extension by the Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Extension of Holomorphic Motions . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Iteration of Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 The Mandelbrot Set 35
3.1 Iteration of Quadratic Polynomials . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The Mandelbrot Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Cycles and Hyperbolic Components . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Correspondence of Landing Patterns . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Limbs, Puzzles and Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Combinatorial and Topological Models . . . . . . . . . . . . . . . . . . . . . 51
3.7 Non-Hyperbolic Components . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4 Renormalization and Surgery 56
4.1 Polynomial-Like Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 A Quasi-Regular Straightening Theorem . . . . . . . . . . . . . . . . . . . . 59
4.3 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Renormalization and Local Connectivity . . . . . . . . . . . . . . . . . . . . 67
4
4.5 Examples of Homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 71
5 Constructing Homeomorphisms 74
5.1 Combinatorial Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Construction of gc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Properties of h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 The Exterior of Kc , M and D . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5 Bijectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6 Continuity and Analyticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6 Edges 96
6.1 Dynamic and Parameter Edges . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Homeomorphisms on Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Graphs of Maximal Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7 Frames 106
7.1 Dynamic and Parameter Frames . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Hierarchies of Homeomorphic Frames . . . . . . . . . . . . . . . . . . . . . . 109
7.3 The Structure of Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4 Different Limbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.5 Composition of Homeomorphisms and Tuning . . . . . . . . . . . . . . . . . 121
8 Repelling Dynamics at Misiurewicz Points 123
8.1 Expanding Homeomorphisms at Misiurewicz Points . . . . . . . . . . . . . . 123
8.2 α- and β-Type Misiurewicz Points . . . . . . . . . . . . . . . . . . . . . . . 126
8.3 Homeomorphisms at Endpoints, Homeomorphisms Between Edges . . . . . 129
8.4 Scaling Properties of M at a . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.5 Scaling Properties of Frames and of h . . . . . . . . . . . . . . . . . . . . . 137
8.6 Scaling Properties of M on Multiple Scales . . . . . . . . . . . . . . . . . . 142
9 Combinatorial Surgery and Homeomorphism Groups 145
9.1 The Mapping of External Angles . . . . . . . . . . . . . . . . . . . . . . . . 145
9.2 Hölder Continuity of H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.3 Combinatorial Approach to Surgery . . . . . . . . . . . . . . . . . . . . . . 151
9.4 Homeomorphism Groups of M . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.5 Homeomorphism Groups of S1/∼ . . . . . . . . . . . . . . . . . . . . . . . . 159
Bibliography 163
Index of Symbols and Definitions 169
5
Abstract
Consider the iteration of complex quadratic polynomials fc(z) = z2 +c. The filled-in Julia set Kc contains all z ∈ C with a bounded orbit. The Mandelbrot set M consists of those parameters c ∈ C, such that Kc is connected. Quasi-conformal surgery in the dynamic plane is employed to obtain homeomorphisms h : EM → ẼM between subsets of M. We give a general construction of h under the additional assumption that EM = ẼM . Then h has a countable family of mutually homeomorphic fundamental domains. Moreover, it extends to a homeomorphism of C, which is quasi-conformal in the exterior of M. The homeomorphisms h : EM → EM considered here fall into two categories: homeomorphisms on edges and homeomorphisms at Misiurewicz points.
Edges EM ⊂ M are constructed combinatorially. For a large cl