Inhaltsverzeichnis · Especially, inorganic-organic biohybrid NPs are considered to be important...

120

Transcript of Inhaltsverzeichnis · Especially, inorganic-organic biohybrid NPs are considered to be important...

Inhaltsverzeichnis

Inhalt des Abstactbandes

Grusswort

Unterstützer

Messestände

Vortragende Appetithäppchen

Abstracts der Teilnehmer

Teilnehmerliste nach Fachbereichen aufgeschlüsselt

Notizen

Programm (Rückseite)

Druck

Copier-Center Haase, Würzburg

Dieser Abstractband besitzt keine Seitenzahlen. Dafür sind jeweils am Rand die

Posternummern eingetragen. In eben dieser Reihenfolge sind die Poster auch während der

Posterpräsentation aufgestellt. Weitere Informationen können aus den Lageplänen

entnommen werden.

GRUSSWORT JCF

Liebe Teilnehmer der Chem-SyStM 2016, sehr geehrte Gäste,

vor ziemlich genau 10 Jahren hatten die damaligen, aktiven Mitglieder des

JungChemikerForums Würzburg die Idee ein Symposium an unserer Fakultät ins Leben zu

rufen und somit einen gewichtigen Beitrag zum wissenschaftlichen Austausch und zur

Vernetzung der einzelnen Fachbereiche zu leisten. Tragende Säule dieser Veranstaltung sollte,

damals wie heute, die Studentenschaft bilden und dadurch die Möglichkeit erhalten sich im

familiären Umfeld erste oder weiterführende Fertigkeiten im wissenschaftlichen Präsentieren

und Kommunizieren zu erlangen. Vor diesem Hintergrund und der Tatsache, dass sich dieses

Symposium auch zur 6. Auflage weiterhin großer Beliebheit erfreut, ist es dem JCF-Würzburg

ein besonderes Vergnügen Sie zur Chem-SyStM 2016 begrüßen zu dürfen.

Unter dem Motto „Großes vereint im Kleinsten“ bieten wir auch dieses Jahr wieder ein

abwechslungsreiches Programm, darunter die bekannten Poster-Appetithäppchen und die

Postersession, sowie einen Abendvortrag zum Thema „Chemie der Pyrotechnik“ gehalten von

Herrn Dr. Klein-Sommer. Darüber hinaus wird es erstmals bereits am Morgen einen Vortrag

geben, Vortragsgast ist Herr Christian Lange vom VAA (Verband angestellter Akademiker und

leitender Angestellter der Chemischen Industrie e.V.). Als abschließenden Höhepunkt dürfen

wir uns alle auf ein Feuerwerk auf dem Campusgelände freuen, bevor ein hoffentlich

ereignisreicher und wissenschaftlich ansprechender Tag bei geselliger Runde seinen

gebührenden Ausklang findet und vielleicht dem/der einen oder anderen Teilnehmer/in ein

zukünftiges Engagement im JungChemikerForum schmackhaft gemacht hat.

Wir wünschen Ihnen viel Freude, gute Unterhaltung und einen interessanten Austausch bei

der Chem-SyStM 2016.

Euer Sprecher-Team des JCF-Würzburg

Thomas Steffenhagen Sebastian Endres Domenik Schleier

GRUSSWORT OVV

Liebe Studierende,

Neugierde und Faszination sind gelebte Attribute, die uns in der Wissenschaft täglich Schritt

für Schritt auf dem steinigen Weg von der Idee zur Erkenntnis vorantreiben. Von den

Hochschulen werden Spitzenleistungen in Lehre und Forschung erwartet. Die Universität

Würzburg, im Speziellen die Fakultät für Chemie und Pharmazie, stellt sich diesen

Herausforderungen und forscht mit ihren Mitarbeitern und den Studierenden gemeinsam für

eine umfassende Perspektive auf die großen Zukunftsfragen wie Nachhaltigkeit und Gesundheit

oder neue Materialien und Bauelemente, führt aber auch wichtige Grundlagenforschung durch,

deren Relevanz sich vielleicht erst viel später zeigen wird.

Chemie – Großes vereint im Kleinsten kann natürlich vieles heißen. Großes schaffen mit

kleinen molekularen Einheiten. Es könnte aber auch bedeuten, die Ähnlichkeiten in großen

Gebilden, seien es biologische Zellen oder auf neuen Materialien basierende Bauelemente, sind

dadurch vereint, dass sie auf ähnlichen chemischen Prinzipien beruhen. Beides, das Große aber

auch die gemeinsamen Prinzipien bringt eine Komplexität der Fragestellungen mit sich, die

immer häufiger nur durch Netzwerke beantwortet werden können, an denen Wissenschaftler

aus vormals abgegrenzten Bereichen kooperieren müssen. Zentral für den Erfolg solcher

Netzwerke ist jedoch der kommunikative Austausch der einzelnen wissenschaftlichen

Disziplinen.

Das Chemie-Symposium der Studierenden Mainfrankens, kurz Chem-SyStM, die von dem

JCF-Regionalforum Würzburg in guter Tradition zum sechsten Mal organisiert wird,

ermöglicht eine solche Kommunikation, denn das grundlegende Ziel und die zentrale Aufgabe

dieses Symposiums liegen in der Präsentation und regen Diskussion wissenschaftlicher

Arbeiten von Studierenden sehr unterschiedlicher Fachrichtungen im familiären Umfeld der

eigenen Universität.

Ich freue mich auf interessante Forschungsarbeiten von Studierenden für Studierende und

wünsche allen Teilnehmerinnen und Teilnehmern einen spannenden und erkenntnisreichen

Tag.

Prof. Dr. Bernd Engels

Ortsverbandsvorsitzender

OV Unterfranken

GRUSSWORT Dekan

Liebe Mitglieder des Jungchemikerforums, liebe Kolleginnen und Kollegen, liebe

Studierende,

die ChemSyStM findet nun seit ihrer Etablierung im Jahre 2007 das sechste mal statt und

hat sich somit einen festen Platz im akademischen Jahr unserer Fakultät erarbeitet. Auch dieses

Jahr stehen wieder spannende Vorträge und eine Postersession an, in der junge

Nachwuchswissenschaftler ihre Forschung und damit einen Einblick in die Forschung unserer

Arbeitskreise vorstellen werden. Dies soll nicht nur dem wissenschaftlichen Austausch unter

den Arbeitskreismitgliedern dienen, sondern auch den Studierenden, sich über Arbeitskreise,

den dort bearbeiteten Forschungsschwerpunkten sowie über mögliche Bachelor- oder

Masterarbeitsthemen zu erkundigen. Aufgrund der stark gewachsenen Anzahl an

Arbeitskreisen haben wir und dieses Jahr dazu entschieden, die sonst übliche Präsentation der

Arbeitskreise durch Ultrakurzvorträge von den „Arbeitskreis-Chefs“ durch entsprechende

informative Poster zu ersetzen. Es würde mich freuen, wenn wir von Seiten der Teilnehmer

eine Rückmeldung über diese Vorgehensweise erhalten könnten, so dass wir Ihre Meinung bei

künftigen Planungen berücksichtigen können.

Für dieses Mal wünsche ich allen Teilnehmern eine spannende und nicht zuletzt auch

unterhaltsame ChemSyStM 2016!

Ihr

Christoph Lambert

Dekan

UNTERSTÜTZER

Bedanken möchten wir uns hiermit bei unseren finanziellen Unterstützern, den folgenden

Unternehmen und Institutionen:

Fakultät für Chemie und Pharmazie

MESSE

In diesem Jahr mit einem Informationsstand vertreten sind die folgenden Unternehmen und

Institutionen mit Ansprechpartnern:

Appetithäppchen

Appetithäppchen

# Name Vorname Arbeitskreis Kategorie

16 Paul Ursula Radius Anorganische Chemie und

Materialwissenschaften

22 Schmitt Hans-

Christian Fischer

Physikalische und Theoretische

Chemie

29 Lombe Blaise Bringmann Biochemie und Organische

Chemie

31 Schweeberg Sarah Krüger Biochemie und Organische

Chemie

38 Pres Sebastian Brixner Physikalische und Theoretische

Chemie

48 Warkentin Viktor Krüger Biochemie und Organische

Chemie

53 Griesbeck Stefanie Marder Anorganische Chemie und

Materialwissenschaften

66 Feizy Nilab Schatzschneider Anorganische Chemie und

Materialsynthese

67 Soberats Bartolome Würthner Biochemie und Organische

Chemie

72 Moustafa Ahmed Schatzschneider Anorganische Chemie und

Materialwissenschaften

80 Merz Julia Marder Anorganische Chemie und

Materialwissenschaften

83 Syamala Pradeep Würthner Biochemie und Organische

Chemie

86 Leonhardt Viktoria Beuerle Biochemie und Organische

Chemie

88 Wachtler Stefan Krüger Biochemie und Organische

Chemie

89 Nowak-Król Agnieszka Würthner Biochemie und Organische

Chemie

ABSTRACTS

ABSTRACTS

Anorganische Chemie und Materialwissenschaften

P1 AK Prof. Müller-Buschbaum

Hybrid Materials

Introduction and Overview of our Research

T. Schäfer, T. Wehner, S. Zottnick, J. Stangl, F. Mühlbach, A. Sedykh, J. Sorg, K. Müller-

Buschbaum

Institut für Anorganische Chemie, JMU-Würzburg, Am Hubland, 97074 Würzburg,

Germany

The research of our workgroup is focused on inorganic-organic hybrid materials based on solid-state

chemistry. This includes the field of coordination chemistry in particular complexes, coordination

polymers (CPs) and metal-organic frameworks (MOFs) as well as the functionalization of other

materials with our systems. For our syntheses, we employ various metal precursors and organic ligands

such as amines, amides, heterocyclic systems, ionic liquids and borates. Besides ordinary Schlenk-

techniques, various synthesis strategies are used, such as solvent-free melt synthesis and

mechanochemical synthesis, known from solid-state-chemistry. In addition, we are strongly interested

in the properties of our compounds with the synthesis of luminescent MOFs as well as fine-tuning of

their luminescence being one focus. The latter refers to maximize quantum-efficiencies as well as

accurate color adjustments, which is, among other things, achieved by co-doping of host lattices with

luminescent cations.

By combination of MOFs with other functional materials, new multifunctional hybrid materials and

composites with highly specialized properties can be obtained. Thus, we are interested in modification

of various substrates by deposition of defined thin films of MOFs on their surface. Furthermore, the

surface modification of luminescent or superparamagnetic micro- and nanoparticles with MOFs can lead

to unprecedented multifunctional sensor-type materials that combine the properties of both materials.

For the characterization of our materials, we use single crystal and powder X-Ray diffraction methods

assisted by a wide range of spectroscopic methods (IR, RAMAN, NMR, UV-VIS-NIR,

Photoluminescence spectroscopy and Fluorescence microscopy), elemental analysis methods like

CHNS and EDX and many other additional analytical methods such as simultaneous DTA/TG and BET.

For more information, please visit our website

http://www.mueller-buschbaum.anorganik.chemie.uni-wuerzburg.de/

or contact us via e-mail: [email protected]

Physikalische und Theoretische Chemie P2

AK Engel - höchst dynamisch!

Unser Ansatz:

Man nehme eine physikalisch-chemische Fragestellung und würze diese mit Mathematik, bis

sich ein Modell ergibt. Anschließend muss der Ansatz programmiert werden und hoffentlich

werden alle Bugs entfernt. Rechnungen mit Minuten oder Tagen an Rechenzeit liefern dann

mehr oder weniger erfreuliche Ergebnisse. Es fehlt dann noch deren Interpretation, die

eventuelle Modifizierung der Modelle und die publizierte Antwort auf alle Fragen.

In diesem Sinne werden auf unserem AK-Poster die grundlegenden Konzepte der

Quantendynamik und Auszüge aus der aktuellen Forschung vorgestellt.

Anorganische Chemie und Materialwissenschaften

P3 AK Mandel

Complex nanostructured particles by design

The Particle Technology Group (Karl Mandel)

Fraunhofer-Institut für Silicatforschung ISC Neunerplatz 2 97082 Würzburg

Lehrstuhl Chemische Technologie der Materialsynthese an der Julius-Maximilians-Universität

Würzburg, Röntgenring 11, 97070 Würzburg

The Particle Technology Group focuses on the synthesis and processing of nano- and microparticles.

The fundamental question is how complex, nanostructured particles can be synthesised and which novel

properties can be obtained from these (inorganic) particles.

In the recent years, the art of synthesising and tailoring nanoparticles with distinct properties has

attracted tremendous interest and has been explored very well.

The next step further is to consider these particles as nano-building blocks which shall be combined

bottom-up to form again particles, but now complex, nanostructured particles. The aim is to achieve

novel functional particles with interactive properties that can only be obtained from the smart assembly

of nano-building blocks to combined entities.

An example in the field of magnetic particles are nanocomposite particles which can be employed for

water purification[1,2] or as magnetically collectable, optical sensors for target substances in fluids[3] or

as unique hollow magnetic architectures.[4] Other nanoparticle building-blocks such as nano silica can

be assembled to nanostructured micro-raspberry particles which act as mechanically reactive container

structures, which can, for instance, be used in coatings with a refreshable surface functionality such as

an anti-bacterial activity.[5] Beyond that, many more unique properties, and from that, new applications

in the field of energy, environment or sustainability, can be targeted by building complex particle entities

from nano-building-blocks.

[1] ACS Applied Materials and Interfaces 2012, 4, 5633-5642.

[2] RSC Journal of Materials Chemistry A 2013, 1, 1840-1848.

[3] ACS Applied Materials and Interfaces 2016, 8, 5445-5452.

[4] ACS Nano, accepted, DOI: 10.1021/acsnano.6b06063

[5] ACS Applied Materials and Interfaces 2015, 7, 24909-24914.

Anorganische Chemie und Materialwissenschaften P4/5

AK Dembski

Multifunctional Nanoparticles for Medical Applications

S. Dembski, M. Straßer, C. Schneider, B. Christ, H. Walles

Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg, Germany

Translational Center Wuerzburg “Regenerative therapies in oncology and musculoskelettal diseases”

and Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital

Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany

The main emphasis of the competence team Theranostics at the Fraunhofer Institute for Silicate

Research ISC is, in cooperation with the Translational Center Würzburg “Regenerative therapies in

oncology and musculoskelettal diseases”, on products enabling highly efficient and personalized therapy

accompanying in vitro and in vivo diagnosis or even combine diagnosis and therapy in situ.

Well-tailored multifunctional nanoparticles (NPs), which are in focus of our R&D work, are playing

a major role in the development of future oriented advanced functional materials for life science

applications e.g. contrast agents in medical imaging, in vitro and in vivo diagnostics, drug delivery as

well as tissue engineering. Especially, inorganic-organic biohybrid NPs are considered to be important

for the development of smart materials and novel technologies for medical applications.

NPs can be prepared by wet-chemical methods: sol-gel, precipitation or hydrothermal synthesis. The

main focus of our R&D work lies on inorganic and hybrid materials e.g. silicate based materials, calcium

fluoride and phosphate, TiO2 and iron oxide. To ensure multifunctionality different approaches can be

applied e.g. labelling of NP matrix with organic dyes or lanthanoid ions as well as combination of

various materials by core-shell NP design. The resulting NPs are subsequently modified with various

chemical functionalities and biological moieties using conventional functionalization and

bioconjugation methods. The great potential of new developed NPs as immunodetection assay labels,

contrast agent for medical imaging or tool for tumor therapy is demonstrated by the different projects.

Organische Chemie und Biochemie

P6 AK Pöppler

Investigation of Polymeric Drug Delivery by NMR

[email protected]

Improvement of the drug delivery and bio-availability of active pharmaceutical ingredients (APIs) is

a huge and important field of research to which we would like to contribute on the basis of NMR

experiments in the solid-state, in gels and in solution (Figure 1).

For example, polymeric vehicles can reduce the toxicity of a

drug by shielding it, transport poorly soluble molecules to the

site of action or release molecules as response to an external

stimulus. A variety of systems such as different polymeric

architectures, microemulsions, liquid crystals or nanotubes can

be applied for this purpose.[1] Synthetic approaches can yield

tailored macromolecules with different functionalities[2] or

attached to biological molecules.[3]

The broad field of NMR Spectroscopy (Figure 2) provides a

variety of tools to study intermolecular interactions of the drug

molecules with each other as well as with the surrounding

polymeric environment. The poster will give a first impression

on three different steps, (i) the thorough analysis of the APIs by

NMR in the solid-state and in solution, (ii) the characterization

of polymer networks and hydrogels in general by anisotropic

NMR and (iii) the study of the interactions between the API and the polymer environment as well as the

drug release process (e.g. by diffusion, a stimulus, degradation, etc.). Furthermore, first NMR results

from a recently started study of curcumin in collaboration with the work group of Prof. Luxenhofer will

be shown.

Figure 2: Orientation dependent and orientation independent NMR interactions in solids and in liquids:

z = Zeemann, rf = radio frequency, D = diploar, CS = chemical shift, Q = quadrupolar and J = J coupling.

[1] N. Kamaly, Z. Xiao, P. M. Valencia, A. F. Radovic-Moreno, O. C. Farokhzad, Chem. Soc. Rev.

2012, 41, 2971-3010.

[2] M. Danial, C. My-Nhi Tran, P. G. Young, S. Perrier, K. A. Jolliffe, Nat Commun 2013, 4.

[3] I. Cobo, M. Li, B. S. Sumerlin, S. Perrier, Nat Mater 2015, 14, 143-159.

Figure 1: Schematic representation of

the systems and NMR methods to

study drug delivery mediated by

polymeric systems.

Organische Chemie und Biochemie P7

AK Lambert

Projekte für Bachelorarbeiten

M. Moos1, C. Lambert1

1Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg

[email protected], [email protected]

Mehr Informationen erhalten Sie an Poster 7, wir freuen uns auf Ihr Kommen!

Pharmazie und Lebensmittelchemie

P8 Characterization of novel in-silico designed Hsp70 inhibitors

C. Plank1,2, A. Hofmann1, C. Grimm2, C. Sotriffer1

1 Institute of Pharmacy and Food Chemistry, University of Würzburg

2 Theodor Boveri Institute, Department of Biochemistry, University of Würzburg

Heat-shock protein 70 (Hsp70) has been shown to play a crucial role in the development of

Multiple Myeloma (MM), a neoplastic disease of terminally differentiated, antibody-producing

B-cells. Although various Hsp70 inhibitors have already been reported, these were mostly

directed against the nucleotide (ATP)-binding domain of Hsp70, rendering them likely to cause

selectivity problems. Our work focusses on identifying inhibitors that bind to the domain

interface of Hsp70, thus greatly enhancing their selectivity for Hsp70. Starting from structural

information about the Hsp70 protein, virtual screening identified compounds that displayed low

micromolar activities against MM cells. The most potent hit was expanded into a library of

derivatives, which led to a series of compounds active against MM cells without toxicity on

non-malignant peripheral blood mononuclear cells. The mode of action of these compounds is

now being investigated by an approach combining functional assays and structural studies via

X-ray crystallography. To this end, recombinantly purified truncated and double-mutated

bovine heat-shock cognate 70 (bHsc70 ED 1-554) and endogenous native full-length Hsc70

from pig brain have been screened for crystallization with these inhibitors. In parallel,

functional viability of the purified Hsc70 isoforms was ascertained with luciferase refolding

assays, demonstrating 30-50% chaperone activity. Inhibition assays are now being conducted

to quantify the potency of the inhibitors and characterize their inhibition mechanism. This might

help to develop more potent and selective inhibitors of Hsp70, thus springing open interesting

avenues in translational research for MM.

Anorganische Chemie und Materialwissenschaften

P9 LÖSUNGEN VON BRØNSTED-SÄUREN UND

MÜNZMETALLSALZEN IN NIEDRIG-VISKOSEN IONISCHEN

FLÜSSIGKEITEN

C. Kerpen1, J. A. P. Sprenger1, L. Herkert1, T. Ribbeck1, F. A. Brede1, N. V. Ignat'ev2,

K. Müller-Buschbaum1, M. Finze1

1Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg;

2Berater, Merck KGaA, 64293 Darmstadt/D

[email protected], [email protected]

Ionische Flüssigkeiten, basierend auf Cyanoborat-Anionen, z. B. [BH4–n(CN)n]– (n = 2–4), sind

aufgrund ihrer hohen thermischen, elektrochemischen und chemischen Stabilität verbunden mit ihrer

meist sehr niedrigen Viskosität vielseitig einsetzbar.[1]

Gegenwärtig untersuchen wir ausgewählte physikalische und chemische Eigenschaften von

Hauptgruppen- und Übergangsmetallsalzen mit Cyanoborat-Anionen und ihre Lösungen in ionischen

Flüssigkeiten. Auf Cyanoborat-Anionen basierende Brønsted-Säuren stellen dabei zweckmäßige

Startmaterialien für eine Vielzahl von verschiedenen Cyanoboraten dar. Bisher wurden allerdings erst

wenige Protonen- und Oxonium-Salze mit Cyanoborat-Anionen beschrieben, beispielsweise

H[B(CN)4][2] und (H3O)2[B2(CN)6].[3]

Vor kurzem haben wir eine effiziente Synthese zu der bisher unbekannten Brønsted-Säure

H[BH2(CN)2] (Abb. 1) entwickelt,[4] die bisher beispiellose Eigenschaften in ihrem chemischen,

elektrochemischen und thermischen Verhalten zeigt. H[BH2(CN)2] besitzt eine außergewöhnlich hohe

Löslichkeit (ca. 35 Gew.% bei RT) in EMIm[BH2(CN)2].[5] Dies macht die Säure zu einem

ausgezeichneten Startmaterial für Synthesen, insbesonders von (Metall-)Salzen mit dem [BH2(CN)2]–-

Anion. Von großem Interesse sind die zu H+ isolobalen Münzmetall(I)-Ionen, wodurch sie für

Vergleiche mit Brønsted-Säuren interessant sind. Daher wurden die Ag+- und Cu+-Salze mit dem

[BH2(CN)2]–-Anion synthetisiert und ihre Eigenschaften mit denen des H+-Salzes verglichen.

Abbildung 1: Ausschnitt aus den Ketten von 1∞

H[BH2(CN)2]} (links) and 1∞

Ag(bpy)[BH2(CN)2]}

(rechts).

[1] N. V. Ignat'ev, M. Finze, J. A. P. Sprenger, C. Kerpen, E. Bernhardt, H. Willner, J. Fluorine

Chem. 2015, 177, 46-54.

[2] T. Küppers, E. Bernhardt, C. W. Lehmann, E. Willner, Z. Anorg. Allg. Chem. 2007, 633, 1666-

1672.

[3] J. Landmann, J. A. P. Sprenger, M. Hailmann, V. Bernhardt-Pitchougina, H. Willner, N.

Ignat'ev, E. Bernhardt, M. Finze, Angew. Chem. Int. Ed. 2015, 54, 11259-11264.

[4] M. Drisch, L. A. Bischoff, L. Herkert, J. A. P. Sprenger, M. Finze, N. Ignatyev, R. van Hal,

Merck Patent GmbH, WO2016074760A1, 2016.

[5] E. Bernhardt, V. Bernhardt-Pitchougina, H. Willner, N. Ignatyev, M. Schulte,

Merck Patent GmbH, WO2012163488, 2012.

Physikalische und Theoretische Chemie

P10 Photodissociation reactions of the ortho- & para-xylyl radical: A

Velocity Map Imaging study

K. Pachner1, I. Fischer1

1Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg,

Am Hubland Süd, 97074 Würzburg, Deutschland

Xylyl radicals can be found as intermediates in combustion processes. Their parent molecules, the

xylenes, are used as additives in fuels to increase antiknock properties. The thermal decomposition of

the xylyl radicals has been explored recently by Hemberger et al. in a synchrotron experiment.[1] Based

on these studies, we investigated the photodissociation of the ortho- &para-xylyl radical using velocity

map imaging. Xylyl radicals were formed via flash pyrolysis in a pulsed molecular beam using 2-

respectively 4-methylphenethyl nitrite as a precursor.

Irradiation of the xylyl radicals with UV light leads to a hydrogen atom loss forming para-xylylene

for the para isomer, while either ortho-xylylene or benzocyclobutane could be the product for the ortho

isomer. Generated hydrogen fragments are then ionized in a [1+1’]-REMPI process via the 1s-2p

transition and detected on a velocity map imaging detector. Afterwards the angular as well as the kinetic

energy distribution of the abstracted hydrogen atoms are analyzed.

[1] Hemberger et al., J. Phys. Chem. A 2014, 118, 3593-3604.

Organische Chemie und Biochemie P11 Star-shaped oligo(phenylenevinylene) mesogens for segregated

nanomaterials

M. Dechant, M. Hügel, M. Lehmann

Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg

Star-shaped oligo(p-phenylenevinylene) compounds are nonconventional shape-persistent

mesogens, which form liquid crystalline mesophases despite the large void space between their arms

(Figure 1).[1]

The four-armed phthalocyanine stars with terminal oligoethyleneoxy chains exhibit hexagonal

columnar LC-phases over broad temperature ranges by nanosegregation of the rigid core and the long

lateral chains. Phthalocyanines are highly interesting substances for the application in organic

photovoltaic cells due to their strong absorption in the red- and infrared range and their flat and broad

π-system, which allows efficient π-stacking along columnar assemblies.[2,3]

Analogous to previous work[4] fullerenes are covalently linked via short spacers to the stilbene arms.

This design should result in the segregation of fullerene and phthalocyanine/stilbene scaffolds and

consequently in quadruple helical columnar self-assemblies. The highly ordered, liquid-crystalline

structures are investigated by means of polarized optical microscopy, differential scanning calorimetry

and comprehensive X-ray scattering.

[1] M. Lehmann, B. Schartel, M. Hennecke, H. Meier, Tetrahedron 1999, 55, 13377-13394.

[2] R. F. Enes, J.-J. Cid, A. Hausmann, O. Trukhina, A. Gouloumis, P. Vázquez, J. A. S. Cavaleiro,

A. C. Tomé, D. M. Guldi, T. Torres, Chemistry – A European Journal 2012, 18, 1727-1736.

[3] P. Apostol, J. Eccher, M. E. R. Dotto, C. B. Costa, T. Cazati, E. A. Hillard, H. Bock, I. H.

Bechtold, Physical Chemistry Chemical Physics 2015, 17, 32390-32397.

[4] M. Lehmann, M. Hügel, Angewandte Chemie International Edition 2015, 54, 4110-4114.

Free space 1

R = O(C2H

4O)

3C

2H

5

n = 0,1,2

X = H,

Anorganische Chemie und Materialwissenschaften

P12 NHC-stabilisierte Derivate des Tricarbonylnitrosylkobalts

K. Lubitz, U. Radius*

Institut für Anorganische Chemie der Julius-Maximilians-Universität Würzburg, Am Hubland,

97074 Würzburg, E-Mail: [email protected]

Durch die Umsetzung des Tricarbonylnitrosylkobalts [Co(CO)3(NO)] mit N-Heterozyklischen

Carbenen (NHC´s) konnte eine Vielzahl einfach und zweifach substituierter Komplexe des Typs

[Co(CO)2(NO)(NHC)] bzw. [Co(CO)(NO)(NHC)2] isoliert und charakterisiert werden (NHC: iPr2Im,

nPr2Im, Cy2Im, Me2Im, iPr2ImMe, Me2ImMe, MeiPr2Im, MetBu2Im; R2Im = 1,3-di-alkyl-imidazolin-2-

ylidene).[1] Die Verwendung sterisch anspruchsvoller NHC´s führte dabei ausschließlich zu der Bildung

der einfach substituierten Komplexe [Co(Dipp2Im)(CO)2(NO)], [Co(Mes2Im)(CO)2(NO)] sowie

[Co(MecAAC)(CO)2(NO)]. Für die Umsetzung mit tBu2Im wurde eine „abnormale“ Koordination über

das Rückgrat beobachtet und der Komplex [Co(tBu2aIm)(CO)2(NO)] erhalten. Eine Untersuchung der

thermischen Eigenschaften ergab, dass sich die Komplexe leicht in die Gasphase überführen lassen,

sublimierbar sind und sich erst bei hohen Temperaturen zersetzen. Somit erfüllen sie die thermischen

Ansprüche, um zum Beispiel in der chemischen Gasphasenabscheidung Anwendung zu finden.[2,3]

[1] F. Hering, J. H. J. Bertel, Organometallics 2016, 35, 2806-2821.

[2] K. Gao, N. Yoshikai, Acc. Chem. Res. 2014, 47, 1208-1219.

[3] M. Leskalä, M. Ritala, Thin Solid Films 2002, 409, 138-146.

Anorganische Chemie und Materialwissenschaften P13

Copper(I)-catalyzed Suzuki-Miyaura type cross-coupling reactions

A. Eichhorn, U. Radius*, T. B. Marder*

Prof. Dr. Todd B. Marder, Chair of Inorganic Chemistry, Institut für Anorganische Chemie,

Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg

Email: [email protected]

We recently reported efficient systems for the borylation of arylhalides and alkylhalides using

copper(I) and phosphines as ligands.[1,2] In addition, we are interested in developing other Cu-catalyzed

B-C and C-C coupling processes, such as Suzuki-Miyaura type reactions.[3,4]

Proposed catalytic cycle for Cu(I) Discrete steps in Cu-catalyzed C-B and

catalyzed borylation. C-C coupling processes.

In order to obtain insight into reaction mechanisms and rates, we have begun a study of stoichiometric

reactions modelling discrete steps in likely catalytic pathways. To do this, we have prepared and

characterized a wide variety of (NHC)-Cu(I)-Y complexes wherein Y = halides, alkoxide, acetate, alkyl,

aryl and boryl. The synthesis and preliminary reactivity studies of such Cu(I) complexes will be

presented.

[1] C. Kleeberg, L. Dang, Z. Lin, T. B. Marder, Angew. Chem. Int. Ed. 2009, 48, 5350-5354.

[2] C.-T. Yang, Z.-Q. Zhang, H. Tajuddin, C.-C. Wu, J. Liang, J.-H. Liu, Y. Fu, M. Czyzewska, P.

G. Steel, T. B. Marder, L. Liu, Angew. Chem. Int. Ed. 2012, 51, 528-532.

[3] Y. Zhou, W. You, K. B. Smith, M. K. Brown, Angew. Chem. Int. Ed. 2014, 53, 3475-3479.

[4] S. K. Gurung, S. Thapa, A. Kafle, D. A. Dickie, R. Giri, Org. Lett. 2014, 16, 1264-1267.

Organische Chemie und Biochemie

P14 Living Supramolecular Polymerization of Dye Aggregates with

H- and J-Type Exciton Coupling

W. Wagner, M. Wehner, O. Soichiro, V. Stepanenko, F. Würthner*

Universität Würzburg, Center for Nanosystems Chemistry, Institut für Organische Chemie and

Bavarian Polymer Institute, Universität Würzburg, 97074 Würzburg, Germany

*e-mail: [email protected]

Supramolecular polymerization of π–conjugated has recently attracted attention in material science

as a concept to create well-defined architectures with controlled properties and functions.[1] Although

the thermodynamics of supramolecular polymerizations was studied in detail and analyzed by

mathematical models,the knowledge about the kinetics of aggregation processes is still not well-known.

Remarkably, kinetic effects in supramolecular systems are essential, playing an important role in the

structure and functions of the self-assembled aggregates. One strategy to control the kinetics of an

aggregation process is the seeded polymerization concept, which consists of the induction of

supramolecular polymerization of kinetically trapped building blocks by addition of seeds (small

aggregates acting as nuclei).[2]

Figure 1: Visualization of the concept of seeded polymerization and molecular structure of MeO-PBI.

In our previous studies we have successfully applied the concept of seeded supramolecular

polymerization in perylene bisimide (PBI) dye aggregates.[3] In the present work, we demonstrate that

this approach can be also employed to transform kinetically trapped non-fluorescent H-aggregates of a

dimethoxy-substituted PBI dye (MeO-PBI) into highly emissive J-aggregates by an innovative living

supramolecular polymerization mechanism. This is an unprecedented approach to control the kinetics

of supramolecular polymerization and to obtain out-of-equilibrium polymers with low polydispersity,

narrow size distribution and photofunctional properties.

[1] (a) T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813. (b) D. van der Zwaag, T. F. A.

de Greef, E. W. Meijer, Angew. Chem. Int. Ed. 2015, 54, 8334.

[2] S. Ogi, K. Sugiyasu, S. Manna, S. Samitsu, M. Takeuchi, Nat. Chem. 2014, 6, 188.

[3] (a) S. Ogi, V. Stepanenko, J. Thein, F. Würthner, J. Am. Chem. Soc. 2016, 138, 670. (b) S. Ogi,

V. Stepanenko, K. Sugiyasu, M. Takeuchi, F. Würthner, J. Am. Chem. Soc. 2015, 137, 3300.

Anorganische Chemie und Materialwissenschaften P15

The Light at the End of the Cycle: Luminescent

Rhodacyclopentadienes and Rhodium 2,2 ՚ Biphenyl Complexes

C. Sieck1, M. Guan Tay2, M.-H. Thibault2, A. Steffen1,2, T. B. Marder1,2*

1Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg,

Am Hubland, 97074 Würzburg, Germany 2Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK

Reactions of [Rh(κ2-O,O-acac)(PMe3)2] (acac = acetylacetonato) and α,ω-bis-

(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different

photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5-

bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence (Φ

= 0.07-0.54, τ = 0.1-2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl

complexes (B), which show exceptionally long-lived (hundreds of μs) phosphorescence (Φ =

0.02-0.29) at room temperature in solution, have been isolated as a second isomer originating

from an unusual [4+2] cycloaddition reaction and a subsequent β-H-shift. We attribute the

different photophysical properties of isomers A and B to a higher excited state density and a

less stabilized T1 state in the biphenyl complexes B, allowing for more efficient intersystem-

crossing S1→Tn and T1→S0. Control of the isomer distribution is achieved by modification of

the bis(diyne) linker length, providing a fundamentally new route to access photoactive metal

biphenyl compounds.[1]

[1] C. Sieck, M. G. Tay, M.-H. Thibault, R. M. Edkins, K. Costuas, J.-F. Halet, A. S. Batsanov, M.

Haehnel, K. Edkins, A. Lorbach, A. Steffen, T. B. Marder, Chem. Eur. J. 2016, 22, 1052.

Anorganische Chemie und Materialwissenschaften

P16 Eigenschaften und Reaktivität von zyklischen Alkylaminocarbenen

(CAACs) und deren Nickelcarbonylkomplexe

U. Paul, U. Radius*

Institut für Anorganische Chemie der Julius-Maximilians-Universität Würzburg

email: [email protected], [email protected]

Seit den bahnbrechenden Arbeiten von Arduengo et al. zur Synthese und Isolierung des stabilen 1,3-

Diadamantylimidazolin-2-ylidens[1] vor 25 Jahren hat die Chemie von N-Heterozyklischen Carbenen

(NHCs) enorme Beachtung erfahren, besonders durch deren Anwendung als Liganden in der

Übergangsmetallchemie.[2] Ihre Effizienz ist auf einen sterisch anspruchsvollen Aufbau und starke σ-

Donor-Eigenschaften zurückzuführen.[3] Durch Austausch eines der beiden elektronegativen

Aminosubstituenten in direkter Nachbarschaft zum Carbenkohlenstoffatom durch Alkylgruppen werden

sogenannte zyklische Alkylaminocarbene (CAACs) generiert. Diese sind folglich elektronenreicher und

somit nukleophiler als die zugrundeliegenden NHCs. Gleichzeitig resultiert dieser Austausch auch in

einer Absenkung des Carben π*-Orbitals, was zudem eine höhere Elektrophilie der CAACs bedingt.[4]

Im Fokus unserer Arbeiten standen CAAC-stabilisierte Nickelcarbonylkomplexe, welche primär

dazu dienen sollten, einen Einblick in elektronische und sterische Parameter, die diese Carbenklasse

auszeichnen, zu erlangen und sie mit denen der verwandten NHCs zu vergleichen.[5]

Desweiteren wollten wir die Reaktivität dieser neuartigen heteroleptischen Nickelcarbenkomplexe mit

Hauptaugenmerk auf CO-Substitution durch Neutralliganden und oxidativer Addition von Aryl- und

Allylhalogeniden untersuchen. Im Rahmen dieses Beitrags wollen wir die entsprechenden Ergebnisse

vorstellen und diskutieren.

[1] A. J. Arduengo III, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361-363.

[2] a) P. de Frémont, N. Marion, S. P. Nolan, Coord. Chem. Rev. 2009, 253, 862-892; b) S. P. Nolan

(Ed.), N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis, Wiley-VCH,

Weinheim, 2014.

[3] C. M. Crudden, D. P. Allen, Coord. Chem. Rev. 2004, 248, 2247-2273.

[4] a) V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2005,

44, 5705-5709; Angew. Chem. 2005, 117, 5851; b) M. Soleilhavoup, G. Bertrand, Acc. Chem.

Res. 2015, 48, 256-266.

[5] U. S. D. Paul, C. Sieck, M. Haehnel, K. Hammond, T. B. Marder, U. Radius, Chem. Eur. J.

2016, 22, 11005-11014.

Physikalische und Theoretische Chemie P17

Study of the self-reaction products of o-benzyne radicals

via IR/UV ion-dip-spectroscopy

F. Hirsch, P. Constantinidis, I. Fischer, A. M. Rijs

The self-reaction products of o-benzyne radicals produced by flash pyrolysis have been studied by ion-dip-

spectroscopy in a free jet. As recent studies suggest, these molecules might play an important role in the even

numbered growth of polycyclic aromatic hydrocarbons (PAH’s) and consequently soot, as they can serve as a

source of acetylene and diacetylene in combustion processes.

The spectroscopic method utilized in this study is capable of providing mass selective infrared spectra,

which can be used for unambiguous identification of the formed molecules. The radicals have been generated

by flash pyrolysis from the benzocyclobutendion precursor and ionized at fixed wavelengths at 265 and 275

nm. A tunable free electron laser provided infrared radiation in the range of 550-1750 cm-1. Subsequent

analysis of the differences in ion signals, with and without infrared excitation, resulted in the sought after

infrared spectra. Eventually comparison with theoretical and experimental data was performed for

identification of the various reaction products.

This poster will provide a fundamental overview of methodology and results of this study, executed at the

Free Electron Laser for Infrared eXperiments (FELIX) (Nijmegen, Netherlands).

Organische Chemie und Biochemie

P18

Defined Electron-Poor Nanographenes: One-Pot Synthesis and Single

Crystal Structure Analysis

S. Seifert, K. Shoyama, D. Bialas, D. Schmidt, F. Würthner*

Universität Würzburg, Institut für Organische Chemie and Center for Nanosystems Chemistry,

Am Hubland, 97074 Würzburg, Germany

*e-mail: [email protected]

Polycyclic aromatic hydrocarbons (PAHs) are an outstanding class of organic molecules that are

characterized by extended carbon-rich sp2-hybridized scaffolds with high thermal stability and interesting

electronic properties. Therefore, this type of compounds has attracted continuous interest during the last

decades as promising candidates for applications in organic electronics and photovoltaics. The synthesis of

electron rich PAHs is often realized by multistep procedures including C-C coupling reactions and oxidative

dehydrogenations[1] while the synthetic access to electron-poor systems is generally underdeveloped

presumably due to the instability of electron-deficient carbocations which are integral intermediates in

oxidative dehydrogenation reactions.

In our contribution we report the one-pot synthesis and full characterization of core extended pyrenes

bearing multiple dicarboximide substituents that can be regarded as electron-poor nanographenes.[2]

Figure 1: Solid-state molecular structure of an electron-poor nanographene (ellipsoids set at 50 % probability).

We efficiently combined palladium catalyzed Suzuki-Miyaura cross coupling and dehydrohalogenation to

synthesize large sized multiple imide containing chromophores with up to ten new C-C bonds formed in a

single reaction. The molecular structures of these π-extended systems have been elucidated by single-crystal

X-ray analysis confirming the formation of multiple C-C bonds and planar geometry of the scaffolds.

Moreover, the optical and electrochemical properties of these electron-poor PAHs have been characterized and

show their relevance for potential applications in (opto)electronic devices.

[1] a) A. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616; b) M. Grzybowski,

K. Skonieczny, H. Butenschön, D. T. Gryko, Angew. Chem. Int. Ed. 2013, 52, 9900.

[2] a) S. Seifert, K. Shoyama, D. Schmidt, F. Würthner, Angew. Chem. Int. Ed. 2016, 55, 6390;

b) S. Seifert, D. Schmidt, F. Würthner, Org. Chem. Front. 2016, DOI: 10.1039/c6qo00421k.

Anorganische Chemie und Materialwissenschaften P19

Bismuth-based Luminescent Materials

J. R. Sorg, K. Müller-Buschbaum

Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg

This research projects aims at the synthesis and characterisation of new coordination polymers (CPs) and

metal-organic frameworks (MOFs) constructed from inorganic bismuth salts, such as bismuth halides, and

organic, multidentate, aromatic N-donor ligands. Various synthetic pathways have already been established

for the synthesis of such CPs, namely reactions in solution, in ligand- and salt-melts, under solvothermal

conditions, as well as mechanochemical reactions.

Bismuth-based CPs show extraordinary luminescence properties dominated by charge-transfer processes

between inorganic building units, e.g. bismuth/halide-units, and the π-system of the organic linkers.[1]

Additionally, Bi3+ and trivalent lanthanide cations Ln3+ prefer the same oxidation state +3 and exhibit similar

ionic radii, hence bismuth-based CPs are predestined as host-lattices for Ln3+ cations.[2] As lanthanides are

well-known emission centres in luminescent materials, these host/guest compounds promise applicability in

lighting and sensor technologies, as they combine the luminescence properties of the bismuth-based host-

lattices and the Ln3+ guests. Thus, colour-tunable emission by variation of the ratio of the different emission

centres becomes availbale.[3] Furthermore, these co-doped materials could be used as ratiometric sensors, in

which the emission of the host-lattice serves as internal standard to enable quantitative detection of small target

molecules.

The first examples of bismuth-based coordination polymers synthesised during this research project are the

one-dimensional compounds α- and β- [∞1 Bi2X6(bipy)2] (X: Cl, Br, I; bipy: 4,4’-Bipyridine), in which the

bismuth cations are coordinated in distorted octahedra by four chlorido- and two 4,4’-bipyridine ligands.

Interesting photoluminescence properties based on charge-transfer processes are observed for X = Cl and X =

Br.

Figure 1: Crystal structure along 𝑐 (left) and photoluminescence spectra measured at 77 K (right) of

β- [∞1 Bi2Cl6(bipy)2].

[1] O. Toma, M. Allain, F. Meinardi, A. Forni, C. Botta, N. Mercier, Angewandte Chemie International

Edition 2016.

[2] J. Heine, T. Wehner, R. Bertermann, A. Steffen, K. Müller-Buschbaum, Inorg Chem 2014, 53, 7197-

7203.

[3] P. R. Matthes, C. J. Hoeller, M. Mai, J. Heck, S. J. Sedlmaier, S. Schmiechen, C. Feldmann, W.

Schnick, K. Müller-Buschbaum, J. Mater. Chem. 2012, 22, 10179-10187.

Pharmazie und Lebensmittelchemie

P20

Isotopically labelled mass tags as in vivo diagnostics

K. Dodt1, A. Schlosser2, J. Vanselow2, T. Lühmann1, L. Meinel1

1Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg,

Germany 2Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, University of Würzburg,

Josef-Schneider- Str. 2, 97080 Würzburg, Germany

Profiling enzymatic activity of inflamed tissues is essential for patient stratification. In one scenario, each

patient is a priori categorized and directed to medicine one is going to respond to (personalized medicine). In

spite of this promise, proper tools for patient stratification within the context of inflamed joints (rheumatoid

arthritis - RA, osteoarthritis - OA) are yet to be found in the future. Therefore, we aim at developing protease-

cleavable linkers (PCL) conjugated to mass encoded peptides that are cleaved by upregulated matrix

metalloproteinases (MMP) in inflamed osteoarthritic joints, thereby reflecting the release of the drug in situ

(Figure 1).

Figure 1: Bioresponsive drug delivery system: protease-cleavable linkers are cleaved by up regulated MMP

and released mass tags are analysed by LC-MS/MS in body fluids.

To detect PCL cleavage by MMP activity in vivo, mass tags with isotopically labelled amino acids were

designed, allowing quantification by tandem mass spectrometry.[1] In order to create a suitable mass tag that

forms two major ion fragments, three amino acid sequences were synthesized by Fmoc based solid phase

peptide synthesis (SPPS). After RP-HPLC purification the mass tags were analysed by LC-MS/MS resulting

in the amino acid sequence SADGPGFR being the best fragmenting mass encoded peptide. Four different

PCLs and the respective mass tags are currently prepared by SPPS and are conjugated to a biopolymer by

conducting bio-orthogonal chemical reactions, such as copper-catalyzed azide–alkyne cycloaddition

(CuAAC).[2]

Future steps include the demonstration of the in vivo efficacy in relevant animal systems of RA and OA.

[1] G. A. Kwong, G. von Maltzahn, G. Murugappan, O. Abudayyeh, S. Mo, I. A. Papayannopoulos, D.

Y. Sverdlov, S. B. Liu, A. D. Warren, Y. Popov, D. Schuppan, S. N. Bhatia, Nat. Biotechnol. 2013,

31, 63.

[2] M. Gutmann, E. Memmel, A. C. Braun, J. Seibel, L. Meinel, T. Luhmann, Chembiochem 2016, 17,

866.

Mass

tag

Drug PCL Surfa

ce

MMP

Organische Chemie und Biochemie P21

Kinetic control of supramolecular polymerization by ultrasonication

M. Wehner, S. Ogi, W. Wagner, V. Stepanenko, F. Würthner*

Universität Würzburg, Center for Nanosystems Chemistry, Institut für Organische Chemie, and Bavarian

Polymer Institute, Universität Würzburg, 97074 Würzburg, Germany

*e-mail: [email protected]

Supramolecular polymerization has recently attracted particular attention for the development of well-

defined functional architectures.[1] While the thermodynamics of supramolecular polymerizations were studied

in detail by mathematical models, deep knowledge on the kinetics of aggregation processes is still lacking.

Perylene bisimide (PBI) dyes are suitable to study these phenomena since they possess favorable aggregation

behaviors and outstanding optical properties.[2] Recently, the kinetics of self-assembly processes of PBI

derivatives have been studied by seeded supramolecular polymerization.[3] In the present work we achieved

the kinetic control on the aggregation behavior of chiral (S,S)-PBI-C2* and studied the influence of

ultrasonication by IR, UV/Vis and CD spectroscopy as well as AFM (Figure 1).

Figure 1. Chemical structure of (S,S)-PBI-C2* (a); absorption spectra (b) and AFM height images (c) of the

different aggregates of (S,S)-PBI-C2* and photographs of their colored solutions in MCH/Tol 5:4

(cT = 400 µM, 298 K).

[1] T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813-817.

[2] F. Würthner, C. R. Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Chem. Rev. 2016,

116, 962-1052.

[3] a) S. Ogi, V. Stepanenko, J. Thein, F. Würthner, J. Am. Chem. Soc. 2016, 138, 670; b) S. Ogi, V.

Stepanenko, K. Sugiyasu, M. Takeuchi, F. Würthner, J. Am. Chem. Soc. 2015, 137, 3300-3307.

Physikalische und Theoretische Chemie

P22

ps-zeitaufgelöste Photoionisation des S2(ππ*)-Zustands von Xanthon

M. Flock, H.-C. Schmitt, I. Fischer

Die Dynamik angeregter Zustände von Heterozyklen, die auch Carbonylgruppen enthalten, hängt stark von

der Konkurrenz der Desaktivierung über IC und ISC ab. Dies konnte bereits an den Molekülen 9-Fluorenon,[1]

NDCA[2] und Naphthalimid[3] gezeigt werden. Ein weiterer Vertreter dieser Substanzklasse ist Xanthon.

Mittels Photoinisations-Experimenten konnte die vibronische Struktur des S2-Zustands aufgelöst und die

Desaktivierung des Moleküls nach Anregung in diesen verfolgt werden. In einem gepulsten

Molekularstrahlexperiment wurden die Moleküle mit einem 325.5 nm Pump-Puls zunächst resonant in den S2-

Zustand angeregt. Anschließend erfolgte die Ionisation mit einem 351 nm Probe-Puls.

Zwei Zeitkonstanten sowie ein anschließender Offset wurden im Experiment beobachtet. Während die erste

Zeitkonstante unterhalb der zeitlichen Auflösung des Setups liegt, konnte für die zweite ein Wert von 24 ps

ermittelt werden. Der Offset kommt durch die Population eines im Rahmen der Zeitskala des Experiments

langlebigen Triplett-Zustands zustande, was in Einklang der literaturbekannten Phosphoreszenz steht.[4] Für

die Relaxation aus dem S2-Zustand können zwei verschiedene Modelle in Betracht gezogen werden. Es kann

zum einen zunächst ein IC-Übergang in den S1-Zustand und anschließend ein ISC-Prozess in die Triplett-

Umgebung stattfinden (Modell A). Andererseits kann es auch zuerst zu einem ultraschnellen ISC-Prozess in

die Triplett-Umgebung, gefolgt von anschließender Interner Konversion (IC) innerhalb dieser, kommen

(Modell B). Um dies aufklären zu können, sollen in Zukunft zeitaufgelöste Photoelektronen-Imaging-

Experimente durchgeführt werden.

[1] T. Gerbich, J. Herterich, J. Köhler, I. Fischer, The Journal of Physical Chemistry A 2014, 118, 1397-

1402.

[2] T. Gerbich, H.-C. Schmitt, I. Fischer, J. Petersen, J. Albert, R. Mitrić, The Journal of Physical

Chemistry A 2015, 119, 6006-6016.

[3] T. Gerbich, H.-C. Schmitt, I. Fischer, R. Mitrić, J. Petersen, The Journal of Physical Chemistry A 2016,

120, 2089-2095.

[4] H. J. Pownall, J. R. Huber, Journal of the American Chemical Society 1971, 93, 6429-6436.

Organische Chemie und Biochemie P23

MOLECULAR DESIGN OF METALLOSUPRAMOLECULAR

RUTHENIUM CATALYSTS FOR WATER OXIDATION

A. L. Meza, D. Schindler, V. Kunz, M. Schulze, F. Würthner

Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074 Würzburg, Germany

The development of new sustainable energy sources constitutes one of the most important challenges of

our generation. In this regard, the light-induced splitting of water into its elements has attracted particular

attention as both sunlight and water are widely available and inexpensive resources. The goal is to achieve a

cycle of clean energy production by using the elemental hydrogen obtained from the catalytic splitting of water

as an ecologically friendly fuel.

Currently, our research has focused on the half reaction of the oxidation of water to oxygen which is

considered to be the bottleneck of the entire water splitting process. So far we have been able to synthesize a

robust metallosupramolecular ruthenium catalyst, which has an activity comparable to that of the oxygen

evolving complex (OEC) of the photosystem II. Based on our mechanistic investigations on the catalytic water

oxidation our next goal is to introduce different substituents into the catalyst’s scaffold to tune its electronic

properties to obtain even higher catalytic activities.

Here we present the synthesis and characterization of novel molecularly designed metallo-supramolecular

ruthenium catalysts that are equipped with electron withdrawing or donating substituents. Investigations

regarding their activity toward chemical and light-induced water oxidation are currently being performed in

our laboratories.

[1] V. Balzani, A. Credi, M. Venturi, Chem. Sus. Chem. 2008, 1, 26-58.

[2] P. D. Frischmann, K. Mahata, F. Würthner, Chem. Soc. Rev. 2013, 42, 1847-1870.

[3] M. Schulze, V. Kunz, P. D. Frischmann, F. Würthner, Nat. Chem. 2016, 8, 576-583.

Organische Chemie und Biochemie

P24

Synthesis of a novel Donor – Sensitizer – Acceptor Triad for the

Investigation of Magnetic Field Effects

D. Mims, C. Schwarz, C. Lambert

Triads with small B1/2,hfc values, which are about one magnitude larger than the earth’s magnetic field have

already been investigated by Lambert et. al.[1] These triads comprise of triarylamine donors containing a

nitrogen atom with a nuclear spin of I = 1. Since the magnetic field effect is dependent on the nuclear magnetic

moment of the donor- and acceptor moiety, a substitution of these donors with the sulfur (I = 0) bearing

building block tetrathiafulvalene should lead to a charge separated state with a decreased effective magnetic

moment and thus should give rise to triads that are sensitive to the earth’s magnetic field.

Yet the synthesis of the desired complex proves to be difficult due to the electronrich tetrathiafulvalene

building block. Hence detailed information on planed and already realized synthesis is given in this study.

Figure 1: After absorption of visible light a charge separated state occurs. The triplet splitting of the cs-state

and its kinetics are dependent on the external magnetic field.[1]

[1] J. H. Klein, D. Schmidt, U. E. Steiner, C. Lambert, J. Am. Chem. Soc. 2015, 137, 11011-11021.

Organische Chemie und Biochemie P25

Functionalised precursors for extended π-systems with a

Tribenzotriquinacene core

R. Buschmann, A. Krueger

Institut für Organische Chemie, Am Hubland, 97074 Würzburg

Tribenzotriquinacene (TBTQ, 1) is a bowl-shaped aromatic hydrocarbon, whose curved structure derives

from the three fused five-membered rings at its centre. Theoretical studies have indicated that TBTQ can be

considered as a defect centre in a distorted nanographene.[1] The aim is to functionalise 1 by bridging the bay

regions (indicated in bold below) and thereby extend the carbon network to give PAH 2.

TBTQ synthesis can be achieved either using the Kuck synthesis pathway[2] or the triple cyclisation method

from Hopfet al.,[3] which allows access to ortho-functionalised derivatives, by using suitably substituted

starting materials. Examples of ortho-substituted TBTQ derivatives are limited,[4] due to increased steric strain

experienced at this position. TBTQs 3, 4 and 5 are synthetic aims of this work and progress made towards their

realisation will be presented and discussed.

[1] J. Tellenbröker, D. Kuck, Angew. Chem. Int. Ed. 1999, 38, 919.

[2] D. Kuck, Angew. Chem. Int. Ed. Engl. 1984, 23, 508.

[3] H. Hopf, G. Markopoulos, L. Henneicke, J. Shen, Y. Okamoto, P. G. Jones, Angew. Chem. Int. Ed.

2012, 51, 12884.

[4] Y. Kirchwehm, A. Damme, T. Kupfer, H. Braunschweig, A. Krueger, Chem. Comm. 2012, 48, 1502.

Physikalische und Theoretische Chemie

P26

Excitons and Polarons in Motion: Understanding Charge Generation

Pathways at the Interfaces of Organic Solar Cells

C. Brückner, B. Engels

Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Germany

e-mail: [email protected]

In view of the need to exploit alternative energy resources, organic solar cells based on small organic

molecules were designed. While fullerene and derivatives are often employed as the n-type semiconductor,

the structural diversity of p-type semiconductors is larger.

For a selection of p-type molecular semiconductors in combination with fullerene C60, we generated model

structures of the organic-organic interfaces in organic solar cells using MM (molecular mechanics) techniques.

Careful benchmarking (DFT, semiempiric and wave-function based methods) was performed in order to

find quantum-mechanical methods that are both efficient and correct (to a reasonable extent) for the prediction

of geometric and electronic properties of the p-type semiconductors.

Energetic profiles of the bilayer interfaces were calculated using a dimer approach, electric fields and an

effective epsilon. The calculation of both charged and excited transport bands yields polaronic and excitonic

states in the vicinity of the organic-organic interface. From the energetic profiles of the interfaces, it can be

concluded that particularly interfacial trap states, i.e., geminate electron-hole pairs which are significantly

bound due to weakly shielded charge-charge interactions, could limit device efficiencies.

In order to model the charge generation route in organic solar cells, kinetic Monte Carlo simulations were

conducted. Resulting charge separation efficiencies highlighted the critical role of slow charge transport

processes around the organic-organic interface.

Pharmazie und Lebensmittelchemie P27

Personalisierte Dosisfindung in der Psychiatrie

A. Pospiech*1, M. Zilker*1, J. Scheiber2, U. Holzgrabe1, P. Högger1

*zu gleichen Teilen beigetragen

1 Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg

2 BioVariance GmbH, Waldsassen

Einleitung

Die patientenindividuelle pharmakogenetische Ausstattung bestimmt die Pharmakokinetik von in der

Psychiatrie eingesetzten Arzneistoffen, weshalb Dosisanpassungen und Anwendungsbeschränkungen in der

psychiatrischen Praxis an der Tagesordnung sind. Das Ziel ist die Entwicklung eines Algorithmus, der

basierend auf Literaturdaten und einer experimentell angelegten Studie eine zuverlässige Aussage zur

Dosisfindung von Psychopharmaka liefert und für die Umsetzung einer Smartphone App geeignet ist.

Methoden

Zuerst wurde für die Arzneistoffklasse der trizyklischen Antidepressiva eine umfassende Datenerhebung

durchgeführt, da deren Metabolismus hochgradig von Polymorphismen beeinflusst wird. Parallel dazu wird

eine Genotypisierungsstudie durch das Labor für Therapeutisches Drug Monitoring des Zentrums für

psychische Gesundheit am Universitätsklinikum Würzburg organisiert. Die Literatursuche erfolgt nach einem

Rechercheleitfaden, der eine umfassende und systematische Datensammlung und –auswertung ermöglicht.

Ergebnisse

Für die trizyklischen Antidepressiva Amitriptylin, Nortriptylin, Clomipramin, Doxepin, Imipramin,

Desipramin und Trimipramin wurden detaillierte Informationen zu Polymorphismen relevanter CYP-Enzyme,

wie z.B. CYP 2D6 und CYP 2C19, Daten zur Pharmakokinetik sowie Häufigkeiten unerwünschter

Arzneimittelwirkungen in Abhängigkeit von CYP-Genvarianten gesammelt. Jede Quelle wurde mit Hilfe eines

Scoring Systems hinsichtlich ihrer Methodik und analytischen Qualität geprüft bevor die Daten aufbereitet

und strukturiert in die Datenbank eingetragen wurden.

Fazit

Am Ende soll ein Algorithmus etabliert werden, um eine intuitiv leicht bedienbare Datenbank zu

entwickeln, die alle Antidepressiva und Antipsychotika enthält. Dabei soll die Suche nach der optimalen

Dosierung basierend auf individuellen genetischen Daten ermöglicht und dadurch die Therapiesicherheit

erhöht werden.

Anorganische Chemie und Materialwissenschaften

P28

Conjugated Triarylborane Dendrimers

F. Rauch1, L. Ji1, T. B. Marder1

1Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

email: [email protected]

Triarylboranes are interesting acceptor moieties in the synthesis of π-conjugated materials and find

application in OLEDs, nonlinear optical materials and anion sensors as well as two-photon absorption (TPA)

materials.[1] Conjugated dendrimers also show promising properties for applications in OLEDs, TPA materials

and photovoltaics.[2]

Herein, we report the development of a new reaction sequence by which triarylboranes can be synthesized

using bench stable potassium trifluoroborate salts as precursors. Furthermore, we applied this reaction

sequence in the synthesis of a novel first generation borane dendrimer which exhibits a considerable amount

of conjugation throughout the π-system.

[1] For reviews see:

a) C. D. Entwistle, T. B. Marder, Angew. Chem. Int. Ed. 2002, 41, 2927-2931;

b) C. D. Entwistle, T. B. Marder, Chem. Mater. 2004, 16, 4574-4585.

[2] For reviews see:

a) D. Astruc, C. Ornelas, J. Ruiz, Acc. Chem. Res. 2008, 41, 841-856;

b) R. Hourani, A. Kakkar, Macromol. Rapid Commun. 2010, 31, 947-974.

Organische Chemie und Biochemie P29 Absolute Stereostructures and Possible Biosynthetic Origins of the

Novel Cage-like Naphthylisoquinoline Alkaloid Dimers

Cyclo-Mbandakamines A1 and A2

B. K. Lombe1,2, T. Bruhn1, D. Feineis1, V. Mudogo2, G. Bringmann1

1Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany 2Faculté des Sciences, Université de Kinshasa, B.P. 202, Kinshasa XI, Democratic Republic of the Congo

Naphthylisoquinoline alkaloids constitute a unique class of natural products, found so far only in the

Ancistrocladaceae and Dioncophyllaceae plant families.[1] They consist of two polyketide-derived molecular

portions, a naphthalene and an isoquinoline moiety, connected by a biaryl axis, which is, in most cases,

rotationally hindered. Besides this element of axial chirality, these alkaloids carry one or two stereogenic

centers in the isoquinoline part, hence making them stereochemically thrilling.[1] Even more stimulating are

the dimeric naphthylisoquinoline alkaloids, since some of them, depending on the individual structures, have

shown pronounced bioactivities[2,3] and a total number of seven stereogenic elements.[3,4]

From the leaves of a botanically yet undescribed Congolese Ancistrocladus species,[5] we have discovered

the very first oxygen-bridged naphthylisoquinoline alkaloids dimers, named cyclo-mbandakamines A1 (1) and

A2 (2). Their cage-like structures, displaying an unprecedented dihydrofuran-cyclohexenone-pyrane sequence,

reveal eight elements of chirality – the highest total number for all naphthyl isoquinoline alkaloids known so

far. In addition, one of their C,O-bonds (highlighted in yellow in the figure), arises presumably from a phenol

oxidation, thus making them the first representatives to result from four phenol-oxidative steps (three C,C- and

one C,O-bonds highlighted in the figure).

Our poster will provide more details on the structural elucidation of 1 and 2 and will also present the

proposed biosynthetic pathway leading to these unprecedented quateraryls.

[1] G. Bringmann, F. Pokorny, In The Alkaloids (Cordell, G. A., Ed.) 1995, 46, 127-271.

[2] M. R. Boyd et al., J. Med. Chem. 1991, 34, 3402-3405.

[3] G. Bringmann et al., Chem. Eur. J. 2013, 19, 916-923.

[4] G. Bringmann et al., Org. Lett. 2013, 15, 2590-2594.

[5] F. Turini et al., Taxon 2014, 63, 329-341.

Anorganische Chemie und Materialwissenschaften

P30

Reversible Oxidative Addition of Highly Polar Bonds to a

Transition Metal

J. Müssig, H. Braunschweig*

email: [email protected]

Department of Inorganic Chemistry, Julius-MaximiliansUniversitaetWuerzburg, 97074 Wuerzburg,

Germany

The reactivity of group 13 halides towards the well established metal Lewis base [Pt(PCy3)2] has

been studied in our group in the past years. We found that AlX3 (X = Cl, Br, I) and GaCl3 form

unsupported metal-only Lewis pairs (MOLPs) with [Pt(PCy3)2], whereas the reaction with BX3 (X =

Cl, Br, I), GaBr3 and GaI3 results in oxidative addition (OA) products: trans-(halo)(gally) and trans-

(halo)(boryl) complexes.[1-4] In the case of gallium halides the substitution of the halide plays an

important role to vary the reaction pathway. To gain better understanding of dative bonds between two

metals our current investigations are concentrated on the reactivity of InX3 (X = Cl, Br, I) towards

platinum(0) Lewis bases. The indium-platinum systems show well-defined equilibrium mixtures

between the products of oxidative additions of the highly polar In-X bonds (∆EN = 0.88-1.38) and their

MOLP counterparts (reductive elimination products).The results mark the first observation of an

equilibrium between MOLPs and OA isomers, as well as the most polar bond ever observed to undergo

reversible oxidative addition to a metal complex.

[1] H. Braunschweig, K. Gruss, K. Radacki, Angew. Chem. Int. Ed. 2007, 46, 7782-7784.

[2] H. Braunschweig, K. Gruss, K. Radacki, Inorg. Chem. 2008, 47, 8595-8597.

[3] H. Braunschweig, P. Brenner, A. Müller, K. Radacki, D. Rais, K. Uttinger, Chem. Eur. J. 2007, 13,

7171-7176.

[4] H. Braunschweig, K. Radacki, K. Uttinger, Inorganic Chemistry 2007, 46, 8796-8800.

Organische Chemie und Biochemie P31

Dispersability of Nanodiamonds in Physiological Media

S. Schweeberg1, S. Suliman2, M. Popa3, K. Mustafa2, A. Krueger1

1Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland,

97074 Würzburg 2Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway

3KinN Therapeutics, Bergen, Norway

Nanotechnology is gaining increasing interest for a wide community of medical, chemical and physical

scientists.[1] Nanodiamond in particular has unique properties such as inertness, chemical reactivity if surface

functionalization is involved, hardness and biocompatibility.[2]

Nanodiamond particles tend to agglomerate in solutions with a high salt concentration so that physiological

media like PBS buffer are not suitable for the preparation of nanodiamond for biomedical applications.

Figure 1: Nanodiamond without dispersion and with dispersion in glucose solution.

Physiological glucose solution was used as an alternative for the preparation of stable, fully dispersed

colloids, and even after 20 days at room temperature the particles do not agglomerate, which is a very positive

indication of its suitability as a suitable, fully dispersed nanodiamond formulation.

With the nanodiamond solution in water, agglomeration takes places immediately just as the proteins of the

serum get in contact with the particles (figure 1). Due to the strong precipitation and agglomeration DLS

measurements were not successful. In glucose solution, no agglomeration takes place upon adding serum to

the nanodiamond solution.

Funding by Volkswagenstiftung (grant number: 88393) is gratefully acknowledged.

[1] V. N. Mochalin, Y. Gogotsi, Nat Nano 2012, 7, 11-23.

[2] A. M. Schrand, L. Dai, J. Phys. Chem. B 2007, 111, 2-7.

Organische Chemie und Biochemie

P32

A Supramolecular Cage linked by Boron Nitrogen Dative Bond and

Synthesis of a New Apically Functionalized Tribenzotriquinacene

Building Block

A. Dhara, F. Beuerle*

Universität Würzburg, Institut für Organische Chemie & Center for Nanosystems Chemistry, Am Hubland,

97074 Würzburg, Germany

*E-mail: [email protected]

Precise control of supramolecular self-assembly processes is fundamental requirement to construct a well-

defined architecture from a set of molecular building blocks by utilizing non-covalent interactions. Although

hydrogen bond, metal coordination and hydrophobic interactions are well-explored to form a number of

supramolecular structures[1] the bond strengths of these interactions are not so easy to tune systematically to

have the desired thermodynamic and kinetic stabilities of the self-assembled systems. In this respect BN

dative bonds which are formed by Lewis acid/base interactions between electrophilic boron center and nitrogen

nucleophiles can act as a suitable motif for supramolecular self-assembly.[2] Here we present a bipyramidal

[2+3] assembly formed by BN dative bond.[3] Thermodynamic equilibria of cage formation were studied by

isothermal titration calorimetry (ITC) and reversible cage opening/reassembly was investigated by variable

temperature 1H-NMR spectroscopy.

Also we report on the facile synthesis of a new tribenzotriquinacene (TBTQ) molecule possessing a

terminal alkyne group at the apical position which can be modified by the azide–alkyne Huisgen cyclo addition

and Sonogashira cross-coupling reaction to attach different functional groups as needed.[4] This can lead to

facile exohedral functionalization of organic cages formed by TBTQ building units. Also we describe a mild

and practically useful protocol to deprotect methoxy- groups in presence of terminal alkyne.

[1] M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418-3438.

[2] K. Severin, Dalton Trans. 2009, 5254-5264.

[3] A. Dhara, F. Beuerle, Chem. Eur. J. 2015, 21, 17391-17396.

[4] A. Dhara, J. Weinmann, A-M. Krause, F. Beuerle, Chem. Eur. J. 2016, 22, 12473-12478.

Pharmazie und Lebensmittelchemie P33

Site-directed conjugation and bioresponsive delivery of IGF-I

A. Braun1, M. Gutmann1, R. Ebert2, F. Jakob2, T. Lühmann1, L. Meinel.1

1Institute for Pharmacy and Food Chemistry, University of Würzburg, Germany 2Orthopedic Center for Musculoskeletal Research, Würzburg, Germany

Human Insulin-like Growth Factor-I (IGF-I) is a 7.6 kDa peptide hormone with an anabolic function e.g.

in muscle growth and regeneration, therefore discussed as a potential treatment option for muscular atrophy.[1]

In this study we aimed at developing IGF-I delivery systems with superior safe and efficacy profiles by

directing the hormone’s release to inflamed muscle tissue and minimizing off-target activity.[1,2]

To this end, IGF-I was conjugated at position 68 to a protease-cleavable linker (PCL) responding to patho-

physiologically elevated matrix metalloproteinase (MMP)-9 as representative for the inflamed muscle.[3] In

the next step, this PCL-IGF-I conjugate was site-specifically coupled to DBCO-reactive PEG10kDa and

characterized before and after exposition to MMPs.[4] Characterization of the coupled IGF-I variants was

performed by MALDI-MS, HPLC and tricine gel electrophoresis. Bioactivity was determined by MG-63 cell

proliferation in comparison to wild type IGF-I.

Scheme 1: Principle of bioresponsive IGF-I release triggered by MMP-9 secretion of diseased tissue.

Site-directed conjugation of the PCL to IGF-I as well as response to MMP-9 was confirmed by HPLC and

MALDI-MS analysis. The PCL-IGF-I conjugate demonstrated comparable bioactivity as the wild type

analogue. The conjugate was successfully immobilized onto DBCO-functionalized agarose particles using

SPAAC click chemistry and labelled with monoclonal IGF-I antibody and Alexa 488 conjugated secondary

antibody. The soluble conjugate with PEG10kDa also responded to MMP-9 and is now profiled for systemic

delivery, thereby featuring site-directed conjugation of IGF-I to biomaterials as a promising approach for an

improved safety profile of anabolic growth factor delivery targeting muscle regeneration.

Acknowledgments: The financial support from the Bavarian Research Foundation (grant # AZ-1044-12

‘FORMOsA’) is gratefully acknowledged.

[1] I. Schultz, J. Wurzel, L. Meinel, European Journal of Pharmaceutics and Biopharmaceutics 2015, 97,

Part B, 329-337.

[2] T. Lühmann, L. Meinel, Current Opinion in Biotechnology 2016, 39, 35-40.

[3] A. C. Braun, M. Gutmann, R. Ebert, F. Jakob, H. Gieseler, T. Lühmann, L. Meinel, Pharmaceutical

Research 2016, 1-15.

[4] O. Germershaus, T. Lühmann, J. C. Rybak, J. Ritzer, L. Meinel, International Materials Reviews 2015,

60, 101-131.

Pharmazie und Lebensmittelchemie

P34

Site-directed functionalization of cell derived matrices by metabolic

glycol-engineering and click chemistry

M. Gutmann1, A. Braun1, E. Memmel2, J. Seibel2, L. Meinel1, T. Lühmann1

1Institute for Pharmacy and Food Chemistry, University of Würzburg, Germany

²Institute for Organic Chemistry,University of Würzburg, Germany

The extracellular matrix (ECM) is a complex and 3D-network that is secreted by various cell types. The ECM has

different essential roles in regulating the function, development and homeostasis of eukaryotic cells. It provides

mechanical support, regulates the abundance of signaling molecules (e.g. growth factors) and receptors as well as pH and

hydration status. Cell derived matrices (CDM) have been recently attracted attention as biocompatible scaffold material

for skeletal tissue engineering and cardiovascular/vascular tissue engineering.[1]

This study aims at modification of glyco-engineered ECM scaffolds derived from fibroblasts (NIH3T3) by site

directed chemistry deploying bioorthogonal azide-alkyne cycloadditions (CuAAC/SPAAC). For the synthesis of

glycoengineered CDMs, NIH3T3 fibroblasts were incubated with N-azido acetyl glucosamine[2] and stimulated with 50

µg/mL ascorbic acid and decellularized as previously described.[3,4] To analyze the presentation of the azide-modified

glycoproteins embedded in the CDM, we applied alkyne-azide click reactions using opposed fluorescent dyes (Sulfo-

Cy5-alkyne; DBCO-Sulfo-Cy5) in line with an anti-fibronectin antibody and a fluorescent-labeled second antibody for

ECM structure visualization. Site-directed immobilization of the fluorophor was investigated by confocal laser scanning

microscopy (CLSM) after different time points, displaying ECM like structures, which colocalized with the fibronectin

counterstaining (Figure 1).

Figure 1: Isolated modified ECM after 9 days. (A) Azido-sugar treated ECM stained with Sulfo-Cy5-Alkyne (1) and

Anti-Fibronectin-Alexa 488 (2). (B) Untreated ECM stained with Sulfo-Cy5-Alkyne (1) and Anti-Fibronectin-Alexa 488.

Ongoing experiments focus on the modification of glycoengineered material with respect to protein modification[5]

and on the characterization of the cell-derived material by western blotting procedures.

We successfully developed protocols enabling both CDM formation and the integration of functionalizable sugar-

moieties by metabolic glycolengineering. Engineering CDMs with functional cues is a promising strategy for scaffold

design allowing for high decoration versatility in tissue engineering applications.

[1] L. E. Fitzpatrick et al., Biomater. Sci. 2015, 3 12-24.

[2] E. Memmel et al., Chemical communications 2013, 49, 7301-7303.

[3] M. Gutmann et al., Chembiochem : a European journal of chemical biology 2016, 17, 866-875.

[4] R. Castello-Cros et al., Methods in molecular biology 2009, 522, 275-305.

[5] G. Wandrey et al., Journal of biological engineering 2016, 10, 11.

Organische Chemie und Biochemie P35

PBI-Cyclophane – Chromophormakrozyklen für die

Wirt/Gast-Chemie

M. Sapotta, A. Sieblist, P. Spenst, F. Würthner*

Universität Würzburg, Center for Nanosystems Chemistry, Institut für Organische Chemie,

Universität Würzburg, 97074 Würzburg, Germany

*e-mail: [email protected]

Seitdem die Entdeckung der Kronenether und deren Kationen-komplexierende Eigenschaft durch

Pedersen[1] in den 60er Jahren den Weg für die Supramolekulare Chemie ebnete, haben makrozyklische

Moleküle die Wissenschaft fasziniert. Eine ihrer bekanntesten Eigenschaften ist hierbei die Fähigkeit zur

Aufnahme von Gästen in ihrem Innenraum.[2] Eine besonders interessante Verbindungsklasse stellen

makrozyklische Verbände aus Chromophoren dar, in denen sich die optischen Eigenschaften des

Molekülverbands durch Aufnahme von Gastmolekülen verändern.[3]

Das kürzlich in unserem Arbeitskreis synthetisierte Cyclophan 1 illustriert dies in beeindruckender

Weise.[3] Durch die rigide Xylylenbrückeneinheit werden die Chromophore in einem Abstand von 6.5 Å

fixiert, der zwar noch schwache Wechselwirkungen zwischen den Chromophoren erlaubt, aber eine

vollständige Aggregation verhindert. Gleichzeitig wird eine Kavität aufgespannt, in der über π-π-

Wechselwirkungen eine Vielzahl aromatischer Kohlenwasserstoffe wie Naphthalin, Fluorenon oder Perylen

gebunden werden können. Bemerkenswert ist, dass hierbei die elektronische Situation des Gastes Einfluss auf

die Emissionseigenschaften des Cyclophans in Chloroform nimmt (Abbildung 1). Bei Komplexierung eines

elektronenreicheren Gastmoleküls kommt es zur Fluoreszenzlöschung des Wirts, wohingegen die Einlagerung

elektronenärmerer Gäste eine Fluoreszenzverstärkung hervorruft. Dadurch wird 1 gleichzeitig sowohl zu

einem turn on- als auch einem turn off-Fluoreszenzsensor für polycyclische Aromaten.

Abbildung 1: Struktur des Perylenbisimidcyclophans 1 und schematische Darstellung der bei der

Komplexierung von Gästen auftretenden Fluoreszenzverstärkung (links) oder Fluoreszenzlöschung (rechts).

[1] a) C. J. Pedersen, J. Am. Chem. Soc. 1967, 89, 7017−7036; b) C. J. Pedersen, J. Am. Chem. Soc. 1967,

2495–2496; c) C. J. Pedersen, Angew. Chem. Int. Ed. Engl. 1988, 27, 1021−1027.

[2] D. J. Cram, J. M. Cram, Science 1974, 183, 803−809.

[3] a) P. Spenst, F. Würthner, Angew. Chem. Int. Ed. 2015, 54, 10165−10168; b) P. Spenst, R. M. Young,

M. R. Wasielewski, F. Würthner, Chem. Sci. 2016, 7, 5428−5434.

Organische Chemie und Biochemie

P36

PHOTOPHYSICS AND SPIN-CHEMISTRY IN DONOR-ACCEPTOR-

SUBSTITUTED DIPYRRINATO-METAL-COMPLEXES

S. Riese1, U. E. Steiner2, C. Lambert1

1University of Würzburg, Am Hubland, 97074 Würzburg

2University of Konstanz, 78457 Konstanz

Magnetic field dependent transient absorption measurements of Triarylamine-iridium(III)-dipyrrin-

naphthalene diimide triads could show for the first time a biphasic magnetic field effect which can be assigned

to the transition from coherent to incoherent spin-motion at about 10 mT.[1]

In this study we focus on the influence of the central, metal containing chromophor on the lifetime and

spin-chemistry of the charge separated states. Therefore we synthesized the Pt(II)-analogue of the Ir(III)-triad.

The complexes were characterized by steady-state UV/vis-spectroscopy, cyclic voltammetry and magnetic

field dependent transient absorption spectroscopy in the nanosecond time-regime at fields between 0 mT and

1800 mT.

The analysis of the experimental data show that the central complex does indeed influence both the

photophysics and the spin-chemistry of the triads. For example the magnetic field effect rises from a 6 times-

increase in lifetime for Ir to a 27 times-increase for Pt while the characteristic magnetic field-strenghts remain

relativly unchanged as shown in Fig. 1.

Figure 1: Plot of the relaxation-constant against the magnetic field strength

[1] J. H. Klein, D. Schmidt, U. E. Steiner, C. Lambert, J. Am. Chem. Soc. 2015, 137, 11011-11021.

0.01 0.1 1 10 100 100010

4

105

106

107

108 Pt

triad (THF)

Irtriad

(MeCN)

Fit (Irtriad

)

Fit (Pttriad

)

B / mT

k

/ s

-1

Pharmazie und Lebensmittelchemie P37

Diagnostic chewing gums targeting the tongue as

24/7 available detector

T. Miesler1, J. Ritzer1, C. Rode2, M. C. Amstalden1, M. Pein3, T. Lühmann1, L. Meinel1

1Institute for Pharmacy and Food Chemistry, University of Würzburg, Germany 2 INNOVENT e.V., Technology Development Jena, Germany

3 Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Germany

Sore throat is a well perceptible symptom, but a lot of diseases have to be considered as the trigger.[1] On

the other hand, some infections are noted too late, because of a lack of specific symptoms, for example the

early stages of caries.[2] To this end, we (1) designed and synthesized specific systems reacting to the presence

of a respective pathogen by releasing a flavor (Fig. 1) and (2) formulated these systems into a chewing gum to

make use of the human tongue as a 24/7 detector.

Figure 1: The peptide bond of the system is cleaved by proteases from macrophages or bacteria, so the flavor

(F) is released from the nanoparticle (NP).

The basic concept consists of an optimized peptide sequence linking a flavor with a nanoparticle.

Denatonium was used as flavor component. Taste intensity was measured using an electronic tongue setup.

Systems were originally designed, reacting to aureolysin from staphylococcus aureus and human matrix

metalloproteinases 1, 8, 9 and 13. Numerous peptide sequences were synthesized and analyzed for their

cleavage rate and selectivity towards the named proteases. Several systems were formulated into a chewing

gum to examine the release of our compounds. With the information gathered, we are now addressing caries

by detection of the decay-causing bacterium streptococcus mutans.

First systems are now established, enabling the specific detection of certain pathogens by their unique

enzymatic properties. The development and closer investigation of such systems could lead to new forms of

diagnostics.

[1] B. Renner, C. A. Mueller , A. Shephard, Inflamm Res. 2012, 61, 1041-1052.

[2] B. Nyvad, Caries Res. 2004, 38, 192-198.

Physikalische und Theoretische Chemie

P38

A coherent two-dimensional nanoscopy setup

S. Pres1, T. Brixner1, L. Dietrich1, M. Hensen1, B. Huber1, V. Lisinetskii1, J. Lüttig1

1 Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland,

97074 Würzburg, Germany

How do energy transport processes between individual molecules or inside large heterogeneous structures

like light harvesting complexes occur? Is the transport dominated by step-by-step hopping of excitation or do

the individual molecules form a strongly coupled system in which the excitation is delocalized over all

constituents (quantum mechanical entanglement). How are these transport phenomena influenced by

interactions with the substrate, the environment and external light sources? Is it possible to control the outcome

of chemical reactions by nanostructuring the environment of molecules?

To investigate these questions the measurement signal of the prepared system has to be retrieved with high

temporal (femtosecond regime) and spatial resolution far below the optical diffraction limit (several

nanometers). Therefore, we bring ultra-fast optical 2D spectroscopy, which is usually used to investigate

resonances and couplings of molecular systems, to the nanoscale: Instead of detecting optical-diffraction

limited light fields, we measure non-optical observables, i.e. photoemitted electrons which allow a resolution

down to 1 nm at 1 eV kinetic energy.[1]

The optical excitation is generated by a noncollinear optical parametric amplifier (NOPA) featuring wide

spectral tuneability from the NIR to the UV range. The excited state population can then be probed as

photoemitted electrons which are detected with high spatial resolution (<10 nm) using an aberration corrected

photoemission electron microscope (AC-PEEM).

This setup offers many possibilities for thesis projects in the fields of (an)organic synthesis, sample

preparation and characterisation as well as electron microscopy and laser spectroscopy.

[1] M. Aeschlimann et al., Science 2011, 333, 1723-1726.

Physikalische und Theoretische Chemie P39

Theoretical Studies On The Water Oxidation Mechanism in

Ruthenium Macrocyclic Systems

J. Lindner, M. I. S. Röhr, R. Mitric

We used the QM/MM approach to simulate the spectroelectrochemistry of Ruthenium water oxidation

catalysts by calculating UV/VIS spectra in different catalyst oxidation states. As absorption spectra are highly

dependent on structural changes, averaged ensemble spectra were identified to be an appropriate model.

Furthermore, molecular dynamics simulations were used in order to give insights on the reaction

mechanism with priority to the outstanding turnover frequency of the macrocycle compared to the

corresponding monomer.[1] We found different reasons for the enhanced activity, including H-bonding

networks between the three catalytic moieties of the macrocycle.

Figure 1: H-bonding networks promoting the water nucleophilic attack of a water molecule to the Ru(V)=O

species.

[1] M. Schulze, V. Kunz, P. D. Frischmann, F. Würthner, Nat. Chem. 2016, 8, 576.

Pharmazie und Lebensmittelchemie

P40

Targeting Structural Differences in MIP Proteins and FKBPs

M. A. Kuhn1*, C. A. Sotriffer1

1Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, 97074, Germany

*[email protected]

Bacterial Macrophage Infectivity Potentiator (MIP) proteins and human FK506-binding proteins (FKBPs)

both belong to the class of peptidyl-prolyl-isomerases and exhibit a highly conserved binding pocket. The MIP

proteins of Burkholderia pseudomallei and Legionella pneumophila are important for replication and full

virulence, rendering them potential targets for antimicrobial substances. Human FKBPs play miscellaneous

roles, as for example in the regulation of steroid hormone receptor function and the immune response.

Several small-molecule pipecolic acid derivatives are capable of binding to MIP proteins of B.

pseudomallei,[1,2] L. pneumophila[1,3] and other bacterial species as well as to human FKBPs. Analysing and

comparing the structure-activity relationships for these complexes is crucial for the development of new MIP

inhibitors with sufficient selectivity.

The impact of structural differences in two loops (called 50's and 80's loop in FKBP12) adjacent to the

binding pocket was investigated via molecular dynamics simulations. Substitutions at the phenyl ring of a

reference ligand (CJ168) positioned close to the 80's loop lead to differential effects on the ligand orientation

depending on the loop composition of the isoenzyme, thus modulating interaction pattern and binding affinity.

Furthermore, differences in the 50's loop between FKBPs and several MIP proteins should allow to

preferentially address the latter by modifying the ligand with an additional hydrogen bond acceptor.

[1] F. Seufert, M. Kuhn, M. Hein, M. Weiwad, M. Vivoli, I. Norville, M. Sarkar-Tyson, L. Marshall, H.

Bruhn, N. Harmer, C. Sotriffer, U. Holzgrabe, Bioorg. Med. Chem. 2016, 24, 5134-5147.

[2] D. Begley, D. Fox III, D. Jenner, C. Juli, P. Pierce, J. Abendroth, M. Muruthi, K. Safford, V. Anderson,

K. Atkins, S. Barnes, S. Moen, A. Raymond, R. Stacy, P. Myler, B. Staker, N. Harmer, I. Norville, U.

Holzgrabe, M. Sarkar-Tyson, T. Edwards, D. Lorimer, Antimicrob. Agents Chemother. 2014, 58, 1458-

1467.

[3] C. Juli, M. Sippel, J. Jäger, A. Thiele, M. Weiwad, K. Schweimer, P. Rösch, M. Steinert, C. Sotriffer,

U. Holzgrabe, J. Med. Chem. 2011, 54, 277-283.

Anorganische Chemie und Materialwissenschaften P41

Multifunctional soft materials based on borate-containing ionic liquids

and lanthanides

S. H. Zottnick, J. A. P. Sprenger, T. Ribbeck, M. Finze, K. Müller-Buschbaum

Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg

The focus of our joint research project is the synthesis of novel functional materials by a combination of

borate containing ionic liquids and salts with lanthanide metal ions. Therefore, the anions of ionic liquids (ILs)

are utilized as linkers for the formation of lanthanide based coordination compounds, thereby combining

relevant properties of lanthanide hybrid materials e. g. luminescence with the hydrophilic/hydrophobic

character of ionic liquids. As especially metal-organic frameworks (MOFs) and coordination polymers (CPs)

with boron-based linkers are hardly known, despite remarkable properties, boron-based ILs and salts are

particularly attractive.

For spiro-borates, the structural variability of the bis(salicylato)borate anion (BSB−) ranges from complexes

via one-dimensional strand-like coordination polymers 1∞[Ln(BSB)3(py)2], Ln = Y, La – Nd, Sm to two-

dimensional structures 2∞[Ln(BSB)3(py)], Ln = Tb, Er, exhibiting strong luminescence of the constituting units

(Fig. 1). Reactions utilize salts and ionic liquids and are carried out at the junction of ionothermal and

solvothermal reaction conditions.[1] For cyanoborates, the one-dimensional coordination

polymers 1∞[La(NO3)2(H2O)4B(CN)4] and 1

∞{[EMIM][La(NO3)(H2O)3{B(CN)4}3] (EMIM= 1-ethyl-3-methyl-

imidazolium) as well as 3∞[La{C2F5B(CN)3}3] show the variability of possible products, all obtained from ILs

without further solvents.

Figure 1: Crystal structure of 2∞[Tb(BSB)3(py)] along the c-axis as well as excitation and emission spectra

(right).

[1] S. H. Zottnick, J. R. Sorg, J. A. P. Sprenger, M. Finze, K. Müller-Buschbaum, Z. Anorg. Allg. Chem.

2015, 641, 164-167.

Pharmazie und Lebensmittelchemie

P42

Prevention of colitis by controlled oral release of carbon monoxide

C. Hermann1, C. Steiger1, L. Meinel1

1Institute for Pharmacy and Food Chemistry, University of Würzburg, Germany

Carbon monoxide (CO) has been recognized as an endogenous signal transmitter for several years. CO is

produced endogenously by the enzyme heme oxygenase (HO) which catalyses the degradation of heme to

billiverdin, ferrous iron and CO. This signal transmitter triggers various physiological processes including

gastrointestinal (GI) homeostasis. Although CO has been described as potential therapeutic, addressing

inflammatory gastrointestinal (GI) disorder, translation of these findings into clinical practise is currently

challenged by inappropriate drug delivery approaches. We recently described a micro scale Oral Carbon

Monoxide Release System (M-OCORS) for controlled oral delivery of CO in rodent animal models and

reported on promising pharmacokinetic (PK) / pharmacodynamic (PD) characteristics of this system.[1] A

major challenge limiting therapeutic use of this approach, however, is the exposure of the GI tract with

potentially toxic transition metals (e.g. Ruthenium). We hence modified the release system by translating the

concept into a membrane based release system (Membrane based Carbon Monoxide Release System – MCRS).

MCRS comprises the CO releasing as well as CO release triggering compounds of M-OCORS in a gas

permeable silicone membrane. On top, it comprises a water cartridge initiating CO release upon breakage (see

Figure 1A). In conclusion, the novel release system was designed to deliver CO to GI tissue and on top prevent

leakage of transition metals from the system exposing the GI tract addressing the challenges of our previous

delivery concepts.

Figure 1: (A) Schematic drawing detailling the Membrane based Carbon Monoxide Release System (MCRS).

A sealed straw (yellow) containing water is disrupted upon manual activation, dissolving coated Sodium sulfite

particles wich releases carbon monoxide (CO) from CORM-2. Generated CO thereafter is released via the

silicone membrane in a highly tailorable fashion allowing controlled GI delivery. In contrast to other

approaches, potentially challenging transition metals are retained within the capsule. (B) CO release pattern of

the MCRS .

[1] C. Steiger, K. Uchiyama, T. Takagi, K. Mizushima, Y. Higashimura, M. Gutmann, C. Hermann, S.

Botov, H. G. Schmalz, Y. Naito, L. Meinel, J. Control. Release, 2016, 239, 128-136.

Physikalische und Theoretische Chemie P43

Investigations on covalent-reversible inhibitors using QM and

QM/MM approaches

A. Heilos, T. A. Le, W. Waigel, B. Engels

Most drugs consist of ligands which interact with their target non-covalently. They have the advantage that

they are so unreactive that unintended reactions with DNA or proteins do not take place. However, they have

the drawback that their free energy of binding do generally not exceed 15 kcal/mol. Higher binding affinities

can only be achieved with ligands which form a covalent bond with their target. Despite famous examples as

Penicillin or Aspirin in the past the industry hesitated to develop new covalent drugs because they fear

unintended side reactions resulting from the reactivity of ligands. Since about 2005 covalent ligands undergo

an intensive renaissance in academia and industry, because various very selective drugs were detected in the

last few years. As for example covalent reversible protease inhibitors based on nitriles or a number of reversible

and irreversible kinase inhibitors. [1-4] In this work, several systems have been investigated in regard of possible

covalent inhibitors and inhibition mechanisms. Also calculations concerning the protonation state of active

site cysteine and histidine has been performed (Figure 1).

Figure 1: surface: CathB, crystal structure 1HUC; ball and stick: active site amino acids CYS29 and HIS199.

[1] Gütschow and Co-work., ChemMedChem 2013, 8, 1330.

[2] Schirmeister and Co-work., ChemMedChem 2013, 8, 967.

[3] Kwak et al., Proc. Natl. Acad. Sci. USA 2005, 102, 7665.

[4] Taunton and Co-work., J. Am. Chem. Soc. 2013, 135, 5298.

HIS19

CYS

?

Organische Chemie und Biochemie

P44

Controlling the Superstructure in Polymeric Squaraine Dyes

M. H. Schreck1, C. Lambert2

1,2Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg

Am Hubland 97074 Würzburg, Germany

E-mail: [email protected]

We recently prepared a polymer P1 based on a dicyanovinylene-substituted cis-indolenine squaraine dye

M1 via Ni-mediated Yamamoto homocoupling reaction.This homopolymer displays a bathochromic shift of

the absorption maximum but also a weaker band at higher energies. This observation can be explained by a

mixture of H- and J-type alignment of chromophores, which then exhibit hypsochromic (H) and bathochromic

(J) shifts. In this context, the solvent itself is significantly involved in the sort of superstructure (helical or zig-

zag-structures) formed by the polymer in solution.

The ongoing goal is to control the superstructure and the optical properties involved, and rule out the

superior role of the solvent by structurally modifying the parent squaraine monomer M1 which was realized

via two attempts: (1) Introducing bulky substituents into the indolenine moiety and (2) partially stiffening the

polymer backbone. Both new polymers P2 and P3 show a red-shifted absorption in comparison to their

corresponding monomers M2 and M3, respectively, indicating J-aggregate behavior and no dependence on

the solvent. Consequently, the polymers exclusively form zig-zag structures irrespective of the chosen solvent.

Anorganische Chemie und Materialwissenschaften P45

Ungewöhnlich effiziente struktur dirigierte Phosphoreszenz in

Silber(I)-Clustern realisiert mit Carba-closo-dodecaboranylethinyl-Liganden

M. Hailmann, N. Wolf, B. Hupp, A. Steffen, M. Finze*

Universität Würzburg, Institut für Anorganische Chemie

[email protected]

Silber(I)-alkinyle zeigen eine vielseitige Chemie und sind für eine Vielzahl (potentieller) Anwendungen

von Interesse. Beispielsweise sind sie Startmaterialien in der Synthesechemie und werden aufgrund ihrer

Eigenschaften, wie z. B. Lumineszenz, im Bereich der Materialwissenschaften untersucht.[1] Ihre Struktur-

chemie ist aufgrund der Bildung von AgI-Clustern äußerst vielfältig. Im Gegensatz zu Silber(I)-alkinylen, die

oft schwierig zu charakterisierende Koordinationspolymere sind, sind Silber(I)-alkinyle mit weiteren Ligand-

en, wie z.B. Pyridin, Silber(I)-Doppelsalze oder mit Templaten in der Regel einfacher zugänglich. Die Selbst-

organisation zu Koordinationspolymeren oder AgI-Clustern beruht vor allem auf (i) der flexiblen Koordination

der AgI-Ionen an mehrere Alkinylliganden, (ii) verbrückenden Alkinylliganden und (iii) argentophilen

Wechselwirkungen. Diese Wechselwirkungen sind häufig auch der Grund für Lumineszenz. Carba-closo-

dodecaboranylethinyl-Liganden zeigen ein ungewöhnliches Koordinationsverhalten,[2] das maßgeblich durch

die negative Ladung des Borkäfigs und die B–CC-Bindung bestimmt wird. Cs[12-HC≡C-closo-1-CB11H11][3]

reagiert mit AgNO3 in wässriger Lösung zu {Ag2(12-C≡C-closo-1-CB11H11)}n (1), das in exzellenter Ausbeute

als mikrokristalliner Feststoff isoliert wird.[4] Die Reaktion von 1 mit Pyridin, 4-Me-Pyridin, 4-tBu-Pyridin

und 3,5-Lutidin führt zu AgI-Clustern mit sieben bis acht AgI-Ionen, vier Carba-closo-dodecaboranylliganden

und zehn bis 12 der jeweiligen Pyridinmoleküle (2−5).[4] Mit 4-CF3-Pyridin werden temperaturabhängig

unterschiedliche Cluster gebildet: [Ag16(12-C≡C-closo-1-CB11H11)8(4-CF3Py)10{(CH3)2CO}2] (6) bei

Raumtemperatur und [Ag(4-CF3Py)2]2[Ag14(12-C≡C-closo-1-CB11H11)8(4-CF3Py)12] (7) bei –30 °C. Alle AgI-

Cluster zeigen bei Raumtemperatur Phosphoreszenz mit Lebensdauern im Bereich von s und im Falle des

verzerrt pentagonal-bipyramidalen Clusters, der ausgehend von 1 und 3,5-Lutidin gebildet wird, wird eine für

AgI-Cluster präzedenzlose Quantenausbeute von 0.76 beobachtet.

[1] H. Schmidbaur, A. Schier, Angew. Chem. Int. Ed. 2015, 54, 746-784; Q.-W. Wang, Y.-M. Lin, K.-G.

Liu, Acc. Chem. Res. 2015, 48, 1570-1579; N. J. Long, C. K. Williams, Angew. Chem. Int. Ed. 2003,

42, 2586-2617; R. Buschbeck, P. J. Low, H. Lang, Coord. Chem. Rev. 2011, 255, 241-272; U. Halbes-

Letinois, J.-M. Weibel, P. Pale, Chem. Soc. Rev. 2007, 36, 759-769.

[2] A. Himmelspach, M. Finze, S. Raub, Angew. Chem. Int. Ed. 2011, 50, 2628-2631.

[3] A. Himmelspach, G. J. Reiss, M. Finze, Inorg. Chem. 2012, 51, 2679-2688; A. Himmelspach, M.

Finze, J. Organomet. Chem. 2010, 695, 1337-1345.

[4] M. Hailmann, N. Wolf, R. Renner, T. C. Schäfer, B. Hupp, A. Steffen, M. Finze, Angew. Chem. 2016,

128, 10663-10667.

Physikalische und Theoretische Chemie

P46

Ultrafast Coherent Multidimensional Spectroscopy with

Shot-to-Shot Scanning

S. Roeding1, S. Draeger1, T. Brixner1

1Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland,

97074 Würzburg, Germany

Coherent two-dimensional (2D) femtosecond spectroscopy, the optical analogue of 2D NMR, is a powerful

technique to investigate the temporal evolution of complex quantum systems, such as natural and artificial

light-harvesting multichromophores, on an ultrafast timescale.[1] In intuitive and readily understandable 2D

spectra it is possible to look into the dynamics of quantum states and especially to resolve couplings between

the states.

First, we implement liquid-phase 2D spectroscopy with collinear four-pulse excitation and fluorescence

detection (see Fig. 1). Pulse-sequence parameters are varied on a shot-to-shot basis using a fast pulse shaper.

A complete set of all third-order signals (photon echo, double-quantum coherence, etc.) is acquired via 27-fold

phase cycling[2,3] in just 6 s plus averaging.

Second, we introduce as a new technique coherent two-dimensional (2D) spectroscopy on molecular beams,

combining mass-resolved ion detection and ultrafast pulse shaping in the visible regime. This provides2D

spectra of isolated molecules in the gas phase with ion selectivity. For demonstration we investigate the

photodissociation of highly-excited NO2.

Figure 1: (a) Experimental setup. The pulse sequence is varied on a shot-to-shot basis using an acousto-optic

programmable dispersive filter (AOPDF). (b) Absorptive spectra in collinear fluorescence (top) and

noncollinear geometry (bottom). The different signs result from different numbers of interactions with the ket

side of the Feynman diagram. (c) Off-diagonal signals from regions marked in (b) as a function of population

time in collinear (red) and noncollinear geometry (green) reveal an oscillatory behavior due to vibrational

coherence.

With both implementations at hand we can in principle study the same sample in different environments

and investigate the role of the environment in the decoherence of photophysical phenomena.

[1] T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, G. R. Fleming, Nature 2005, 434,

625-628.

[2] P. Tian, D. Keusters, Y. Suzaki, and W. Warren, Science 2003, 300, 1553-1555.

[3] H. Tan, J. Chem. Phys. 2008, 129, 124501.

Pharmazie und Lebensmittelchemie P47 Fluorine Walk: The Role of Fluorine in Quinolone amides active

against T. b. brucei

M. Berninger1, A. Fuß2, E. Al-Momani3, I. Israel3, P. Guentzel1, M. Raschig1, S. Samnick3,

U. Holzgrabe1

1Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg,

Germany 2Medical Mission Institute Würzburg, Hermann-Schell-St. 7, 97074 Würzburg, Germany

3Institute of Nuclear Medicine, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg,

Germany

Human African Trypanosomiasis (HAT) is caused by an infection with Trypanosoma brucei, a vector-

borne parasite, which is transmitted by the bite of infected tsetse flies. Two clinically relevant stages can be

differentiated, i.e. stage I which is characterized by unspecific headache, fever and joint pains, and stage II in

which the parasites cross the blood brain barrier (BBB) and affect the central nervous system.[1] Previous

investigations identified novel 4-quinolone-3-carboxamides as a promising scaffold having a submicromolar

activity[2] and a confirmed in vivo efficacy against T. b. brucei.[3] As the ability of the quinolone amides to pass

the BBB should be investigated, 18F-labeled derivative of our most potent substance was synthesized and

subjected to autoradiography studies. Experiments using murine brain confirmed the ability of the respective

derivative 1 to pass the BBB 60 min after p.i. application. Besides utilizing fluorine for PET, we explored its

impact on toxicity, pharmacokinetic and pharmaco dynamics properties when being added in different position

of the quinolone scaffold. This “fluorine walk” led to structure 2 with an improved selectivity index >2000

due to lower cytotoxicity and consistent activity against T. b. brucei.

[1] WHO, www.who.int; fact sheet N°259; February 2016

[2] G. Hiltensperger et al., J. Med. Chem. 2012, 55, 2538-2548.

[3] G. Hiltensperger et al., Antimicrob Agents Chemother 2016, 60, 4442-4452.

Organische Chemie und Biochemie

P48

A Zwitterion a Day Keeps the Proteins Away

V. Warkentin, A. Krueger

Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg

[email protected]

Surface functionalization of nanoparticles (NPs) is an essential tool for the control of chemical, physical

and physiological behavior of these materials. Especially nanodiamond’s (ND’s) surface can easily be

modified by using their broad variety of functional moieties.[1] In addition, NDs have low to non-existing

toxicity, reliable production and chemical inertness which makes them attractive for biomedical applications.[2]

When NDs are exposed to bio-fluids, such as serum, proteins adsorb on the surface of the particles and

form in situ a “protein corona”. This corona masks all the desired functionalities on the surface and changes

the interaction with the surrounding fluid. Both, the colloidal stability and the physiological properties are not

controllable anymore.[3]

Here, we report zwitterionic moieties in combination with tetraethylene glycol (TEG) to improve the

colloidal dispersion in physiological media with strong ion background and the prevention of non-specific

interactions with proteins.[4]

Figure 1: Schematic illustration of a functionalized ND with zwitterionic head of a TEG chain.[5]

These properties play a central role for the bioapplication of nanomaterials since only a precise surface

functionalization leads to controlled behavior in biomedical application.

This project has received funding from the Volkswagenstiftung under Grant Agreement no. 88393.

[1] A. Krueger, D. Lang, Adv. Funct. Mater. 2012, 22, 890.

[2] A. Krueger, Chem. Eur. J. 2008, 14, 1382.

[3] W. C. W. Chan, C. D. Walkey, J. Am. Chem. Soc. 2012, 134, 2139.

[4] V. M. Rotello, D. F. Mayano, ACS Nano 2014, 8, 6748.

[5] S. Heywood, R. Adams, mAbs 2016, 8, 1336.

Organische Chemie und Biochemie P49

Coupled Chromophores for Studying Energy Transfer

N. A. Schopf, C. Lambert*

Institut für Organische Chemie & Wilhelm Conrad Röntgen Research Center for Complex Material

Systems, Universität Würzburg, Am Hubland, 97074 Würzburg

*E-mail: [email protected]

Energy transfer is a highly researched topic as it is not only a fundamental process in the

photosynthesis of plants and bacteria but also finds application in organic photovoltaics.[1]

Suitable model systems to study energy transfer processes indepth are needed. In such systems a

donor is excited and transfers energy to an acceptor, which then can fluoresce.[2] To get a better

understanding of the dependency of the energy transfer on the photophysical properties, different trimers

were synthesised by choosing from a pool of four different chromophores. With these chromophores a

broad spectral range of absorption and fluorescence wavelength can be covered. By varying the types

of chromophores, the amount of different chromophores, and the sequence several trimers can be

synthesised.

The energy transfer properties are investigated through steady-state absorption, fluorescence

spectroscopy and transient absorption spectroscopy.

[1] R. Ziessel, G. Ulrich, A. Haefele, A. Harriman, J. Am. Chem. Soc. 2013, 135, 1130-11344.

[2] G.-S. Jiao et al., Tetrahedron 2003, 59, 3109-3116.

Anorganische Chemie und Materialwissenschaften

P50

Superparamagnetic Luminescent MOF@Fe3O4/SiO2

Composite Particles

T. Wehner1, K. Mandel2, M. Schneider2, G. Sextl2, K. Müller-Buschbaum1

1Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Deutschland

2Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg, Deutschland

Herein, we present the generation of multifunctional composite materials consisting of superparamagnetic

Fe3O4/SiO2 microparticles and different luminescent lanthanide-containing metal-organic frameworks (MOFs).

The modification could be achieved by various reaction conditions including mechanochemistry. The resulting

composites are core-shell materials with the microparticle as core and a MOF-containing shell and combine the

properties of both constituents: superparamagnetism and luminescence. If the magnetite particles are

functionalized with the 2D-MOF 2∞

[Eu2Cl6(Bipy)3]·2Bipy (Bipy = 4,4’-bipyridine), the hybrid material can be

used as potential water detector in fluids since the MOF luminescence is quenched by contact with low amounts

of water. Exploiting the magnetic properties of the composite, the signal can be augmented by gathering the

particles in one spot.

Figure 1: Detection of water and magnetic signal augmentation of the composite particles 2∞

[Eu2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 (top) and principle of the water detector system (bottom).

A color mixture of red Eu3+ and green Tb3+ centers can be achieved via the composite 2∞

[EuxTb2-xCl6(Bipy)3]·2Bipy@Fe3O4/SiO2, which can therefore be used for color tuning and is potentially suitable

as ratiometric luminescent detector. The modification of Fe3O4/SiO2 with other MOF systems like 3∞

[Eu(Im)2]

(Im = imidazolate) and 3∞

[Eu2(BDC)3]·2DMF·2H2O (BDC = 1,4-benzendicarboxylate) leads to further variation

of the luminescence color and other properties of the composite.

Instead of spherical Fe3O4/SiO2 particles, magnetite microrods can be prepared, which exhibit intensive light

reflection in dependence of their orientation in an external magnetic field as additional property. Modification of

the microrods with 3∞

[Eu2(BDC)3]·2DMF·2H2O leads to a hybrid material, which combines the isotropic reflection

properties of the microparticles with the anisotropic luminescence of the MOF. Switching between both properties

is possible by variation of the excitation wavelength.

[1] T. Wehner, K. Mandel, M. Schneider, G. Sextl, K. Müller-Buschbaum, ACS Appl. Mater. Interfaces 2016,

8, 5445.

[2] K. Mandel, F. Hutter, C. Gellermann, G. Sextl, ACS Appl. Mater. Interfaces 2012, 4, 5633.

[3] C. J. Höller, M. Mai, C. Feldmann, K. Müller-Buschbaum, Dalton Trans. 2010, 39, 461.

[4] P. R. Matthes, C. J. Höller, M. Mai, J. Heck, S. J. Sedlmaier, S. Schmiechen, C. Feldmann, W. Schnick,

K. Müller-Buschbaum, J. Mater. Chem. 2012, 22, 10179.

[5] A. Zurawski, M. Mai, D. Baumann, C. Feldmann, K. Müller-Buschbaum, Chem. Commun. 2011, 47, 496.

[6] Z.-H. Zhang, S.-Y. Wan, T.-a. Okamura, W.-Y. Sun, N. Ueyama, Z. Anorg. Allg. Chem. 2006, 632, 679.

Pharmazie und Lebensmittelchemie P51

Bioresponsive interleukin-4 delivery system deploying silk-elastin-

like proteins for the treatment of osteoarthritis

V. Spieler1, C. Karavasili2, T. Lühmann1, L. Meinel1*

1Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg,

Germany 2Department of Pharmaceutical Technology, Aristotle University, Thessaloniki GR 54124, Greece

*Corresponding Author: Lorenz Meinel, [email protected]

Controlling macrophage polarization using a bioresponsive drug delivery system for rhIL-4 in

osteoarthritis holds potential in meeting challenges with the systemic administration of this anti-

inflammatory cytokine.[1,2] In this study, the silk-elastin-like protein (SELP) S2E8C, a genetically

engineered biomaterial, is used for immobilization of IL-4. SELPs consist of repeating units of silk and

elastin blocks and self-assemble into small micellar-like particles at body temperature.[3] S2E8C features

twelve cysteines allowing for bioorthogonal conjugation reactions. IL-4 modified with an unnatural

amino acid containing a functionality for copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) at

position 42[4] and a protease cleavable linker (PCL) responding to proteases up regulated during

inflammation[5] modified with a sulfhydryl-reactive iodoacetyl group were used to decorate S2E8C.

Following intra articular injection, the system is designed to remain within the osteoarthritic joint, where

it deploys its sensory function for constant surveilling of the disease status only to respond to flare by

releasing IL-4, hence preventing disease progression and initiating tissue repair.

A new S2E8C version with thrombin cleavable His-tag was cloned and expressed in E. coli.

Purification was performed by precipitation at high temperature and low pH with subsequent re-

solubilization in water, thereby removing the potential need of a potentially immunogenic His-tag.

Conjugation of S2E8C to the PCL was with a succinimidyl iodo acetate crosslinker. CuAAC linking

S2E8C-PCL and IL-4 is currently under investigation.

S2E8C as a biomaterial for site-directed immobilization of IL-4 allows for creating a biocompatible

and injectable drug delivery system for targeting inflammation by controlling macrophage plasticity in

a timely and spatially regulated manner.[6]

[1] D. M. Mosser, J. P. Edwards, Nat. Rev. Immunol. 2008, 8, 958–969.

[2] T. Lühmann, L. Meinel, Curr. Opin. Biotechnol. 2016, 39, 35–40.

[3] X. X. Xia, Q. Xu, X. Hu, G. Qin, D. L. Kaplan, Biomacromolecules 2011, 12, 3844–3850.

[4] T. Lühmann, V. Spieler, V. Werner, M.-G. Ludwig, J. Fiebig, T. Müller, L. Meinel,

Chembiochem 2016.

[5] A. C. Braun, M. Gutmann, R. Ebert, F. Jakob, H. Gieseler, T. Lühmann, L. Meinel, Pharm. Res.

2016, 1–15.

[6] W. Huang, A. Rollett, D. L. Kaplan, Expert Opin. Drug Deliv. 2015, 12, 779–791.

Anorganische Chemie und Materialwissenschaften

P52

Reactivity of the Vicinal Biscarbenoid Bis(piperidyl)acetylene

H. Braunschweig1, S. Kachel1, H. Kelch1

1Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg,

Deutschland

We present the reactivity of the diaminoacetylene PipCCPip which exhibits strong biscarbenoid

behavior based on the extraordinarily high electron density of the acetylenic moiety.[1] The molecule

displays extensive bond activation chemistry beyond that of commonly employed monofunctional

carbenes. Treatment with moderately Lewis acidic and/or polar substrates leads to clean activation of

BB, BC and BN bonds under ambient conditions.[2] The resulting products feature intriguing

structural and electronical properties as exemplified in the first transition-metal-free synthesis of 1,4-

azaborinines – highly sought-after benzene analogs with potential applications in medicinal and material

science.[3] Cyclodimerization of PipCCPip with the aid of group XIV metals leads to the formation

of cyclobutadiene derivatives displaying a unique mode of stabilization based on charge separation and

Lewis pair formation.[4]

[1] A. R. Petrov, T. Bannenberg, C. G. Daniliuc, P. G. Jones, M. Tamm, Dalton Trans. 2011,

a 40, 10503.

[2] H. Kelch, S. Kachel, M. A. Celik, M. Schäfer, B. Wennemann, K. Radacki, A. R. Petrov, M.

Tamm, H. Braunschweig, Chem. Eur. J. 2016, 22, 13815.

[3] H. Lee, M. Fischer, B. K. Shoichet, S.-Y. Liu, J. Am. Chem. Soc. 2016, 138, 12021.

[4] R. Bertermann, H. Braunschweig, M. A. Celik, T. Dellermann, H. Kelch, Chem. Commun.,

DOI: 10.1039/C6CC07741B.

Anorganische Chemie und Materialwissenschaften P53 Water-Soluble 3-Coordinate Boron Chromophores for One- and

Two-Photon Excited Fluorescence Imaging of Mitochondria in Cells

S. Griesbeck1, Z. Zhang1, M. Gutmann2, T. Lühmann2, R. M. Edkins1, G. Clermont3, A. N. Lazar3,

M. Blanchard-Desce3, L. Meinel2, T. B. Marder1

email: [email protected] 1Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg,

Germany 2Institut für Lebensmittelchemie und Pharmazie, Julius-Maximilians-Universität Würzburg,

Würzburg, Germany 3Institut de Sciences Moléculaires, Université de Bordeaux, Bordeaux, France

Triarylboranes have attracted a huge amount of interest due to their application in many different

fields such as anion sensing, OLEDs and non-linear optical materials.[1] Over the last few years, we have

studied the use of dimesitylboron-based -acceptors (A) in two-photon absorption (TPA) chromophores.

We designed dipolar, quadrupolar and octupolar compounds with exceptional TPA cross sections and

high fluorescence quantum yields.[2] Furthermore, we reported structure-TPA cross section relationships

for our quadrupolar A--A compounds.[3] Recently, we synthesized oligothiophene-BMes2

chromophores, with significantly enhanced TPA cross sections of up to 1930 GM in the near-infrared

region, the “biological transparent window”.[4] We present herein the further functionalization of such

chromophores with ammonium groups, an approach pioneered by Gabbaï,[5] in order to achieve

hydrophilicity and biocompatibility, and our initial results of both one- and two-photon excited

fluorescence (TPEF) microscopy allowing the imaging of mitochondria in cells with our chromophore.

[1] (a) C. D. Entwistle, T. B. Marder, Angew. Chem. Int. Ed. Engl. 2002, 41, 2927-2931. (b) C. D.

Entwistle, T. B. Marder, Chem. Mater. 2004, 16, 4574-4585.

[2] J. C. Collings, C. Katan, A. Beeby, D. Kaufmann, W.-Y. Wong, M. Blanchard-Desce, T. B.

Marder et al., Chem. Eur. J. 2009, 15, 198-208.

[3] (a) M. Charlot, L. Porrès, C. D. Entwistle, A. Beeby, T. B. Marder, M. Blanchard-Desce, Phys.

Chem. Chem. Phys. 2005, 7, 600-606. (b) C. D. Entwistle, J. C. Collings, A. Steffen, A. Beeby,

A. S. Batsanov, J. A. K. Howard, W.-Y. Wong, A. Boucekkine, J.-F. Halet, T. B. Marder et al.,

J. Mater. Chem. 2009, 19, 7532-7544.

[4] L. Ji, R. M. Edkins, A. Beeby, A. S. Batsanov, J. A. K. Howard, A. Boucekkine, Z. Liu, J.-F.

Halet, C. Katan, T. B. Marder et al., Chem. Eur. J. 2014, 20, 13618-13635.

[5] C.-W. Chiu, Y. Kim, F. P. Gabbaï, J. Am. Chem. Soc. 2009, 131, 60-61.

Anorganische Chemie und Materialwissenschaften

P54

Experimentelle und theoretische Untersuchungen sterischer und

elektronischer Parameter NHC-stabilisierter Nickel-Carbonylkomplexe

J. Berthel, U. Radius*

Julius-Maximilians-Universität Würzburg/Institut für Anorganische Chemie

[email protected], [email protected]

Freie NHCs finden seit ihrer erstmaligen Synthese und Isolierung[1] breitgefächerte Anwendung in

der Übergangsmetallchemie.[2-4] Dies gründet neben ihren starken σ-Donor- und schwachen π-

Akzeptoreigenschaften auch auf ihren mannigfaltigen Synthesemöglichkeiten bei struktureller

Variabilität und sterischer Flexibilität.[5-8] Mithilfe des sterischen Anspruchs und der elektronischen

Eigenschaftender NHCs kann dabei deren Einfluss auf die Struktur von Übergangsmetallkomplexen

bestimmt werden.[9]

Vorgestellt wird die Synthese neuer NHC-stabilisierter Nickel-Carbonylkomplexe und die

Untersuchungen bezüglich ihrer sterischen und elektronischen Eigenschaften.

Zur Unterstützung der Ergebnisse wurden quantenmechanische Berechnungen angefertigt und die

Bindungsbildungs- und Bindungsdissoziationsenergien ΔG der Komplexe abgeschätzt.

[1] A. J. Arduengo III, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.

[2] N-Heterocyclic Carbenes in Synthesis, S. P. Nolan (Hrsg.), Wiley-VCH, Weinheim, 2006.

[3] N-Heterocyclic Carbenes in Transition Metal Catalysis, F. Glorius (Hrsg.), Top. Organomet.

Chem., Vol. 21, 2007.

[4] N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, S. Díez-

González (Hrsg.), Catalysis Series No. 6, RSC, Cambridge, 2010.

[5] N. M. Scott, S. P. Nolan, Eur. J. Inorg. Chem. 2005, 1815.

[6] V. Lavallo, Y. Canac, A. DeHope, B. Donnadieu, G. Bertrand, Angew. Chem. 2005, 117, 7402;

Angew. Chem. Int. Ed. 2005, 44, 7236.

[7] E. Peris, R. H. Crabtree, Coord. Chem. Rev. 2004, 248, 2239.

[8] C. M. Crudden, D. P. Allen, Coord. Chem. Rev. 2004, 248, 2247.

[9] U. S. D. Paul, C. Sieck, M. Haehnel, K. Hammond, T. B. Marder, U. Radius, Chem. Eur. J.

2016, 22, 11005-11014.

Anorganische Chemie und Materialwisenschaften P55

„iClick“-Reaktionen von Ru- und Rh-Azid-Komplexen mit

elektronenarmen Alkinen:

Regioselektivität, Stabilität und Kinetik

L. Waag-Hiersch1, S. Eilbacher1, M. Voelkel1, J. Mößeler1, U. Schatzschneider1,*

1 Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg

Am Hubland, D-97074 Würzburg (Germany)

e-mail: [email protected]

Anorganische Click-Reaktionen (engl. inorganic click, „iClick“)[1-2] zwischen Metall-Azid-

Komplexen und elektronenarmen Alkinen stellen einen schnellen Zugang zu strukturell vielfältigen

Triazolatkomplexen dar. Die „iClick“-Reaktion von Ruthenium-Azid-Komplexen der allgemeinen

Formel [Ru(N3)(aren)(L-L)]+ mit bidentaten Stickstoffliganden sowie Rhodium-Azid-Komplexen der

allgemeinen Formel [Rh(Cp*)(N3)(bpyR,R)]+ mit unterschiedlich substituierten 2,2‘-Bipyridin-

Coliganden und elektronenarmen Alkinen wie Dimethylacetylendicaboxylat (DMAD) und 4,4,4-

Trifluorobut-2-insäureethylester wurde untersucht. Inbesondere wurde die Geschwindigkeit der

„iClick“-Reaktion von Ruthenium-Azid-Komplexen in Abhängigkeit von funktionellen Gruppen in 4-

und 4‘-Position am Bipyridin-Ligand sowie Variation des Aren-Liganden (Hexamethylbenzol vs. p-

Cymol) bestimmt und dafür verschiedene analytische Methoden (HPLC, IR-Spektroskopie in Lösung

und 19F NMR-Spektroskopie) verwendet. Da Triazolate prinzipiell über die N1-, N2- oder N3-

Stickstoffatome an ein Metallzentrum binden können, wurde ein besonderes Augenmerk auch auf die

Untersuchung der Regioselektivität gerichtet. Des Weiteren wurde die Stabilität der resultierenden

Verbindungen unter biorelevanten Bedingungen untersucht. Neben der Stabilität in saurem und schwach

basischem Milieu ist dabei insbesondere der mögliche Ligandenaustausch mit funktionellen Gruppen in

Aminosäureseitenketten von Bedeutung.

[1] T. J. D. Castillo, S. Sarkar, K. A. Abboud, A. S. Veige, Dalton Trans. 2011, 40, 8140-8144.

[2] L. Henry, C. Schneider, B. Mützel, P. V. Simpson, C. Nagel, K. Fucke, U. Schatzschneider,

Chem. Commun. 2014, 50, 15692-15695.

Anorganische Chemie und Materialwissenschaften

P56

Photocatalytic water splitting with [FeFe]-hydrogenase mimic in

aqueous micellar solution

M. Roos1, C. Lambert1, R. Luxenhofer2

1Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg

2Chair of chemical technology of material synthesis, University of Würzburg,

Röntgenring 11, 97074 Würzburg

Because of the continual growth of worldwide energy demand and against the background of the

climate change the interest in an environmental friendly energy carrier generation becomes more and

more important. One possible method is the photocatalytic water splitting, in which hydrogen is

generated due to sunlight irradiation. As catalyst a [FeFe]-hydrogenase mimic is used, which gets

reduced during the process by a light-excited photosensitizer. In order to archive a thermodynamic

favored electron cascade the redoxpotentials of the concerned components has to be adjusted to each

other.[1] Besides transition metal organic complexes like Tris(bipyridine)ruthenium(II) chloride also

pure organic compounds like the Xanthene dye Eosin Y could be use as photosensitizer.[1,2] As electron

source a sacrificial donor like triethylamine or the Vitamin C containing ascorbic acid is used.[1] To

perform the photocatalysis in pure water, the [FeFe]-catalyst, as a water insoluble compound, is

solubilized with poly(2-oxazoline) micelles.[3] Due to the dynamic character of the micelle formation

the exchange between the ambient solution and the [FeFe]-catalyst within the micelle is possible, so the

requirements for the photocatalytic activity of the three component system are fulfilled.

We synthesised in our group a series of [FeFe]-catalysts with different dithiolate bridging ligands

and characterised their photocatalytic properties. Thereby a maximum turnover number of 144 was

archived with the system shown above.

[1] M. Wang, L. Chen, X. Lia, L. Sun, Dalton Trans. 2011, 40, 12793-12800.

[2] C. Orain, F. Quentel, F. Gloaguen, ChemSusChem. 2014, 7, 638-643.

[3] Y. Han, Z. He, A. Schulz, T. K. Bronich, R. Jordan, R. Luxenhofer, A. V. Kabanov, Mol. Pharm.

2012, 9, 2302-2313.

Organische Chemie und Biochemie P57

Functionalised Diamond Particles for the Photocatalytic Conversion

of CO2

B. Kiendl, J. Fink, C. Heinz, A. Krueger1

1Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg

[email protected]

Carbon dioxide, one of the most alarming greenhouse gases, is usually reduced by transition metals

and their corresponding oxides.[1] Recently, synthetic diamond materials have been used to convert

carbon dioxide to carbon monoxide or even formaldehyde, either photocatalytically or

electrochemically.[2,3] Therefore, diamond based materials provide a cheap, antrophogenic and safe

alternative for the selective reduction of carbon dioxide.

Concerning diamond catalysed reduction processes, solvated electrons play an important role as

powerful reducing agent. In order to generate those electrons, boron-doped diamond materials have been

irradiated so far using high-energy UV light.[2] However, the electronic structure of diamond can not

only be influenced by dopants, but also by different surface terminations and functionalizations.

Figure 1: Immobilisation of transition metal complexes (TMC) by linker molecules.

In this work we present the synthesis of a bifunctionalised linker molecule and its subsequent grafting

onto diamond nanoparticles. Furthermore, the immobilisation of transition metal complexes on this

linker using the concept of click-chemistry is reported. The ability of these conjugates to reduce carbon

dioxide will be investigated in the context of photocatalysis.

This project has received funding from the European Unions´s Horizon 2020 Programme under Grant

Agreement no. 665085 (DIACAT).

[1] J. L. White, M. F. Baruch, J. E. Pander III, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao,

J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Chem. Rev. 2015, 115, 12888-12935.

[2] L. Zhang, D. Zhu, G. M. Nathanson, R. J. Hamers, Angew. Chem., Int. Ed. 2014, 53, 9746-9750.

[3] K. Nakata, T. Ozaki, C. Terashima, A. Fujishima, Y. Einaga, Angew. Chem, Int. Ed. 2014, 53,

871-874.

Organische Chemie und Biochemie

P58

Synthesis and Characterization of Bay-tether-connected

Perylene Bisimide Dimers

C. Kaufmann, A. Nowak-Król, F. Würthner*

Universität Würzburg, Institut für Organische Chemie and Center for Nanosystems Chemistry,

Am Hubland, 97074 Würzburg, Germany

*e-mail: [email protected]

Perylenebisimides (PBI) form remarkable self-assembled structures induced by stacking of

monomeric units, yielding fascinating optical and electronic properties.[1] The aggregation behavior of

such organic dyes is often governed by a solvent, concentration and temperature dependence. This self-

assembly of perylenebisimide (PBI) dyes has been a subject of extensive investigations over more than

a decade. By developing a foldable system where single monomers are covalently fixed in a rigid

framework, the resulting PBI aggregate with defined geometry may shed light on the structure-property

relationship of this class of dyes.[2] Hence, we paid attention to covalent scaffolds that preorganize PBI

dyes in a suitable way with regard to intramolecular folding into specific three-dimensional

architectures. Therefore we present the synthesis and characterization of new covalently linked bis-

perylene-bisimids which were investigated by UV/Vis-, Fluorescence- and NMR-Spectroscopy to

determine their individual aggregation behavior – intermolecular aggregation into defined dye stacks

vs. self-assembly into larger aggregates.

Scheme 1: Synthetic route and molecular structures of bis-PBIs 1-3 (left) and structural model of bis-

PBI 1 dimers (right).

[1] a) X. Zhang, S. Rehm, M. M. Safont-Sempere, F. Würthner, Nature Chem. 2009, 1, 623-

629; b) Z. Chen, V. Stepanenko, V. Dehm, P. Prins, L. D. A. Siebbeles, J. Seibt, P.

Marquetand, V. Engel, F. Würthner, Chem. Eur. J. 2007, 13, 436-449.

[2] B. Fimmel, M. Son, Y. M. Sung, M. Grüne, B. Engels, D. Kim, F. Würthner, Chem. Eur. J.

2015, 21, 615-630.

Anorganische Chemie und Materialwissenschaften P59

Rare earth metal coordination polymers with pyrene-2,7-

dicarboxylate linkers

A. E. Sedykh, J. Merz, L. Ji, T. B. Marder, K. Müller-Buschbaum

Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

A coordination polymer (CP) is a coordination compound with repeating coordination entities

extending in 1, 2, or 3 dimensions.[1] Rare earth metals (RE) are outstanding functional metal centers

due to their coordination behavior[2] and luminescent properties.[3] The architecture of their coordination

polymers is directly connected with the linker structure.[4] Pyrene-2,7-dicarboxylic acid (H2PDC) is a

linear rigid molecule, and usage of it as a linker source might lead to the formation of coordination

polymers with potential voids – metal-organic frameworks (MOFs). Till now only a few examples of

CPs with pyrene-2,7-dicarboxylate are known, almost all of them with transition metals,[5,6] but one with

rare earth metal – terbium.[6]

Reaction between pyrene-2,7-dicarboxylic acid and rare earth metal chloridesleads to the formation

of desired products. Several different structures were obtained, determined by infrared spectroscopy and

powder X-ray diffraction, still yet only for one of them a single crystal was successfully acquired and

studied. Interesting results await in the luminescence properties studies: a combination of luminescent

lanthanides and linker leads to the complete absence of luminescence. This is most likely the result of

radiationless decay instead of emission from corresponding lanthanide and ligand energy levels.

Nonetheless, products of non-luminescent metals show ligand-based emission. Wherein, the ligand

emission band is shifted hypsochromically by 50 nm as result of deprotonation and coordination to the

metal. In addition, the intensity of some processes is increasing upon cooling.

[1] S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M.

O’Keeffe, M. P. Suh, J. Reedijk, Pure Appl. Chem. 2013, 85, 1715.

[2] S. A. Cotton, J. M. Harrowfield, “Lanthanides: Coordination Chemistry. Encyclopedia of

Inorganic and Bioinorganic Chemistry”, 2012.

[3] G. F. de Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, E.

F. da Silva Jr., Coord. Chem. Rev. 2000, 196, 165.

[4] G. Zhu, Coord. Chem. Rev. 2009, 253, 2891.

[5] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Science 2002,

295, 469.

[6] N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2005,

127, 1504.

Pharmazie und Lebensmittelchemie

P60

Site-directed incorporation of propargyl-L-lysine into insulin-like

growth factor- I (IGF-I) for site specific decoration

F. Wu, J. Ritzer, T. Lühmann, L. Meinel

Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074,

Wuerzburg, Germany

Current decoration approaches, which typically follow random coupling strategies to present lysines

or cysteines on the protein-surface, have led to heterogeneous pharmaceutical products.[1] This impacts

their activity and challenges homogenous product outcome. Here we pursue a highly attractive strategy

for the controlled insulin-like growth factor- I (IGF-I) conjugates delivery.

We genetically engineered IGF-I variants (TrxplkIGF-I) containing a N-terminal thioredoxin[2] (Trx)

His6[3] tag-thrombin cleavage site and a non-natural amino acid, propargyl-protected lysine derivative

(plk) incorporated at position 3 of IGF-I, thereby allowing targeted, specific decoration of IGF-I with

other molecules. The expression of the TrxplkIGF-I fusion protein was compared in four different

Escherichia coli hosts (BL21 (DE3), shuffle T7, Rosetta DE3, and C321 delA.exp). Additionally, the

effects of different expression conditions (induction temperature, isopropyl β-D-1-

thiogalactopyranoside (IPTG) concentration, plk amount) were systematically investigated.

Figure 1: Expression of plkIGF-I. The propargyl-L-lysine (plk) is incorporated at the site of an amber

stop codon (UAG) of IGF-I by using the orthogonal pair PylRS/tRNAPyl from M. barkeri.

The TrxplkIGF-I fusion protein was expressed in all these four strains with different expression

levels, whereas shuffle T7 showed the highest soluble TrxplkIGF-I production. Furthermore,

TrxplkIGF-I production was correlated to plk concentrations and induction parameters including time

and IPTG amount. Purified plkIGF-I was successfully demonstrated by Western Blot. In conclusion, we

maximize the risk-benefit ratio of our IGF-I conjugate by directing these anabolic therapeutic to local

sites in need while minimizing systemic exposure.

[1] K. S. Masters, Macromolecular Bioscience 2011, 11, 1149-1163.

[2] D. Zhang, P. Wei, L. Fan, J. Lian, L. Huang, J. Cai, Z. Xu, Process Biochemistry 2010, 45,

1401-1405.

[3] E. Hochuli, W. Bannwarth, H. Dobeli, R. Gentz, D. Stuber, Nat Biotech 1988, 6, 1321-1325.

Pharmazie und Lebensmittelchemie P61

The use of capillary blood to estimate the kidney function of diabetic

patients

M. Scherf-Clavel, P. Högger

Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am

Hubland, 97074 Würzburg, Deutschland

In therapy with renally eliminated drugs, for example metformin or sitagliptin, it is important to

monitor the kidney function. Typically, the renal function is estimated with the help of serum creatinine

based equations, for example the Cockcroft-Gault equation.[1] Therefore, a venous blood sampling has

to be performed and in patients´ serum the creatinine concentration is quantified with the Jaffé reaction,

which is affected by many other compounds.[2] To simplify the control of the therapy, a method to

quantify metformin, sitagliptin and creatinine out of dried capillary blood samples was recently

developed by our group.[3] The quantification of creatinine is very selective, the sampling of capillary

blood is much easier and more comfortable for the patient than the venous blood sampling.[3] Due to the

use of the Cockcroft-Gault formula, a correlation factor to convert the capillary blood concentration of

creatinine into serum concentration had to be evaluated.

Figure 1: Illustration how to handle with dried blood spot analytics. A drop of capillary blood is sampled

by finger prick and spotted on a filter paper. After drying the sample is extracted and the analytes are

quantified.

Therefore, a clinical study was conducted in cooperation with a physician specialized in diabetology.

The study was approved by the Ethics Committee of the medical department of the University of

Würzburg. After patients´ informed consent capillary blood samples from 70 patients were collected.

After analyzing the samples a factor to convert the creatinine concentration in capillary blood into the

serum concentration was established and verified. With these results it is possible to use a drop of

capillary blood to estimate the renal function.

[1] J. L. Steffl, W. Bennett, A. J. Olyaei, J Clin Pharmacol 2012, 52,(1 Suppl), 63S-71S.

[2] E. Mohabbati-Kalejahi et al., Talanta 2012, 97, 1-8.

[3] M. Scherf-Clavel, P. Högger, J Chromatogr B Analyt Technol Biomed Life Sci 2015, 997, 218-

228.

Physikalische und Theoretische Chemie

P62

The CAST program – A tool for specialized potential energy surface

investigations

D. Weber1, D. Bellinger1, D. Kaiser1, M. Prem1, S. Sauer1, S. Wirsing1, B. Engels1

1Julius-Maximilians-Universität, Institut für Physikalische und Theoretische Chemie,

Emil-Fischer-Straße 42, D-97074 Würzburg, Germany

The CAST (Conformational Analysis and Search Tool)[1] program is a computational chemist’s

toolkit which enables users to investigate ground state chemistry problems like sampling, global

optimization and analysis in a sophisticated manner. The program-package is founded on the principle

to be independent of the underlying potential energy description. In this way, all implemented methods

can be performed via classical force field calculations as well as DFT or semi empirical methods.

CAST offers the Tabu-Search approach for finding the global minimum for a given system, e.g. an

optimal solvation shell. Multiple specially designed algorithms for the treatment of the solvation

problem are available, enhancing the speed and quality of optimizations of water shells. CAST is capable

to deal with complex chemical reactions through the use of the Pathopt[2] algorithm, as well as various

doubly nudged elastic band (NEB)[3] methods.

Within the framework of sampling of systems such as protein-inhibitor complexes CAST offers the

possibility to simulate changes in terms of free energy (FEP[4], modified FEP, Umbrella Sampling[5]). A

further but no less important issue is the analysis of data obtained from molecular simulations. Within

CAST this may be addressed through novel principal component analysis(PCA)[6] based approaches.

Acknowledgments: We are grateful to the Deutsche Forschungsgemeinschaft (GRK 1221, FOR 1809,

SPP 1355) for financial support.

[1] C. Grebner, J. Becker, D. Weber, D. Bellinger, M. Tafipolski, C. Brückner, B. Engels, J. Comp.

Chem. 2014, 35, 1801-1807.

[2] D. Weber, D. Bellinger, B. Engels, Methods in Enzymology 2016, 578, 145-167.

[3] G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys. 2000, 113, 9901-9904.

[4] C. Chipot, A. Pohorille, Free energy calculations. Springer-Verlag Berlin, Heidelberg, 2007.

[5] G. M. Torrie, J. P. Valleau, J. Comp. Phys. 1977, 23, 187-199.

[6] H. Abdi, L. J. Williams, Wiley Interdisciplinary Reviews: Computational Statistics 2010, 2, 433-

459.

Anorganische Chemie und Materialwissenschaften P63

Seltenerdmetallkomplexe mit dem Perfluorethyltricyanoborat-Anion

T. Ribbeck1, S. Zottnick1, N. V. Ignat'ev2, K. Müller-Buschbaum1, M. Finze1

1Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland,

97074 Würzburg 2Berater, Merck KGaA, 64293 Darmstadt/D

E-Mail: [email protected]

Perfluorierte Alkyltricyanoboratanionen[1] [RFB(CN)3]– (RF = Perfluoralkyl) sind ausgehend von

Salzen mit dem entsprechenden Perfluoralkyltrifluoroborat-Anion und Trimethylsilylcyanid gut

zugänglich.[1,2] Ausgehend von der Säure des Pentafluorethyltricyanoborat-Anions (H3O)[C2F5B(CN)3]

und den Chloriden der Seltenerdmetalle MCl3∙nH2O (M = Eu, La, Ho) konnten erstmals die Komplexe

M[C2F5B(CN)3]3∙nH2O synthetisiert und charakterisiert werden. Freie Koordinationsstellen am

Metallzentrum werden im Kristall durch Wassermoleküle besetzt, die jedoch im Vakuum entfernt

werden können. Die wasserfreien Salze M[C2F5B(CN)3]3 wurden u.a. NMR-, IR- und Raman-

spektroskopisch charakterisiert und das Lumineszenzverhalten des Europium-Salzes wurde untersucht.

Des Weiterengelang die strukturelle Charakterisierung der Verbindungen Eu[C2F5B(CN)3]3∙3H2O und

La[C2F5B(CN)3]3 an Einkristallen. Die Kristallisation von Eu[C2F5B(CN)3]3∙3H2O erfolgte aus

wässriger Lösung über konzentrierter Schwefelsäure. Einkristalle von wasserfreiem La[C2F5B(CN)3]3

wurden dagegen ausgehend von mikrokristallinem Material in der Ionischen Flüssigkeit

Ethylmethylimidazolium-Perfluorethyltricyanoborat EMIm[C2F5B(CN)3] unter Erwärmen erhalten.

Eine nennenswerte Löslichkeit der wasserfreien Salze in EMIm[C2F5B(CN)3] war allerdings nicht

festzustellen. Die Strukturaufklärung der wasserfreien Salze Eu und Ho[C2F5B(CN)3]3 erfolgte anhand

pulverdiffraktometrischer Daten.

Eu[C2F5B(CN)3]3∙3H2O La[C2F5B(CN)3]3

[1] J. Sprenger, Dissertation, Heinrich-Heine-Universität Düsseldorf.

[2] N. Ignatyev, M. Schulte, J. Sprenger, M. Finze, W. Frank, WO 2011/085966 A1, Merck Patent

GmbH, Darmstadt, Germany.

Pharmazie und Lebensmittelchemie

P64

Charakterisierung der Pharmakokinetik von intranasal appliziertem

Fluticasonpropionat (FP) und Azelastin-HCl (AZ)

A. Pospiech, P. Högger

Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg

Mit dem Kombinationspräparat Dymista® (Nasenspraysuspension, Wirksame Bestandteile: FP und

AZ) steht seit 2013 eine neue Therapieoption zur lokalen Behandlung der Allergischen Rhinitis zur

Verfügung, deren klinische Wirksamkeit bereits gezeigt werden konnte.[1]

Im Rahmen einer klinischen Studie wird die Aufnahme von FP in die Nasenschleimhaut aus einem

FP-Monopräparat und aus Dymista® untersucht und verglichen werden. Als Spezimen werden Abstriche

und Gewebeproben der Nasenschleimhaut der Probanden verwendet. Ziel ist die Entwicklung

geeigneter Extraktions- und empfindlicher Analytikmethoden zur Quantifizierung von FP und AZ in

beiden Spezimen.

Da menschliches Nasensekret und menschliche Nasenschleimhaut für die Methodenentwicklung

nicht verfügbar waren, bestand die Herausforderung darin, geeignete Probenmatrices festzulegen.

Weiterhin sollten effektive Extraktionsmethoden etabliert werden. Für die Methodenentwicklung der

Extraktion von FP und AZ aus Sinustamponaden wurde künstliches Nasensekret verwendet und mittels

Flüssig-Flüssig-Extraktion aufgearbeitet. Die Methodenentwicklung der Gewebeextraktion erfolgte mit

porciner Nasenschleimhaut, wobei nach enzymatischem Verdau mit Hilfe von Kollagenase eine

Festphasenextraktion durchgeführt wurde.

Abbildung: Beispielchromatogramm für die Extraktion von FP und AZ aus Sinustamponaden. Die

beiden Analyten und ihre internen Standards (Clomipramin und Amcinonid) können mit der

entwickelten Methode (Laufzeit 10 Minuten) basisliniengetrennt und simultan bei 254 nm detektiert

werden.

Zur Quantifizierung der Analyten wurden für die Extraktion aus den Sinustamponaden eine HPLC-

UV/VIS-Methode und für die Gewebeextraktion eine LC/MS-MS-Methode entwickelt. Die

Optimierung der Extraktionsmethoden sowie die Entwicklung und Validierung der analytischen

Methoden werden präsentiert.

[1] E. Meltzer et al., Int Arch Allergy Immunol 2013, 161, 369-377.

Pharmazie und Lebensmittelchemie P65

Bacterial protease responsive antibiotic delivery

M. C. Amstalden1, A. A. Fayad2, R. Müller2, T. Lühmann1, L. Meinel1

1Institute of pharmacy and food chemistry, University of Würzburg, Am Hubland 97074 Würzburg

2Helmholtz-Institute for Pharmaceutical Research Saarland, Saarland University, 66123 Saarbrücken

One cause driving antibiotic resistance is untargeted systemic circulation, leading to higher doses as

well as impacting the commensal, desirable bacterial flora. In this study, we aimed at developing a

bioresponsive drug delivery system (DDS) responding to virulent Staphylococcus aureus (S. aureus)

with antibiotic discharge, thereby homing antibiotic activity to sites in need while minimizing off target

activity.

The DDI comprises a polymer, a peptide cleavable linker (PCL) and the antibiotic which is covalently

attached to the peptide’s C terminus. The PCL responds to the protease aureolysin, which is a virulence

factor of S. aureus strains,[1] while the remaining amino acids attached to the antibiotic are cleaved by

human aminopeptidases (Figure 1).

Figure 1: Schematic representation of the protease dependent DDS. The dual-gated mechanism

comprise cleavage of the index protease aureolysin followed by the human aminopeptidase, present in

human plasma, and release of the active drug compound at target sites

PCL prototypes were synthesized by Fmoc based solid phase peptide synthesis.[2] The PCLs were

analyzed for sensitivity towards aureolysin (1.4 µg/mL) and human proteases. The conjugation of the

PCL to the antibiotic was performed via EDC/NHS reaction.[3] Resulting peptide fragments after

aureolysin cleavage were further analyzed for aminopeptidase cleavage using a final concentration of

3.6 µg/mL. We identified two selective and sensitive PCLs for aureolysin. Aminopeptidase treatment

of theaureolysin-cleaved peptide-drug fragment resulted in the release of the free compound within 20

minutes. Ongoing work focuses on the construction of the entire conjugate and analysis of antibacterial

activity.

[1] A. J. Laarman et al., J. Immunol. 2011, 186, 6445-6453.

[2] J. L. T. Ritzer et al., Journal of controlled release (submitted).

[3] K. Sakurai, T. M. Snyder, D. R. Liu, J. Am. Chem. Soc. 2005, 127, 1660-1661.

Anorganische Chemie und Materialwissenschaften

P66

iClick reactions of Pt-and Pd-azide complexes with

electron-poor alkynes

N. Feizy1, U. Schatzschneider1,*

1Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074

Würzburg (Germany)

e-mail: [email protected]

The concept of "iClick" reactions was first introduced by Veige for the inorganic version of the

1,3-dipolar cycloaddition between a metal-coordinated azide such as triphenylphosphine gold(I) azide

with triphenylphosphine gold(I) phenylacetylide to form dinuclear triazolate-bridged gold complexes.[1]

Triazolates and their metal complexes are used in pharmaceutical and inorganic medicinal chemistry.[2]

For example, the treatment of human breast cancer cells with triazolate-linked Au(I)-peptide conjugates

led to a breakdown of essential cell functions and eventually cell death.[3] To extend the range of

applications of the iClick reaction,[4] in the present work, the synthesis of platinum(II) and palladium(II)

triazolate complexes through a [3+2]-cycloaddition of Pt or Pd azide complexes with

dimethylacetylenedicarboxylate (DMAD) was investigated. Thus, an anionic tridentate N,N,N-chelating

1,3-bis(2-pyridylimino)isoindoline ligand was prepared and coordinated to a palladium(II) unit to obtain

a neutral complex. The initial chloride ligand was then replaced by reaction with sodium azide. Finally,

the iClick reaction with DMAD lead to the desired triazolate product and thus opens up a new and easy

access to square-planar metal(II)triazolate complexes. As an alternative pathway to cationic complexes

of a similar core structure, substituted terpyridine derivatives are currently explored and the

corresponding platinum(II) compounds are also under preparation.

[1] T. J. Del Castillo, S. Sarkar, K. A. Abboud, A. S. Veige, Dalton Trans. 2011, 40, 8140-8144.

[2] T. M. Klapötke, J. Stierstorfer, J. Am. Chem. Soc. 2009, 131, 1122-1134.

[3] S. D. Köster, S. Can, I. Kitanovic, S. Wolfl, R. Rubbiani, I. Ott, P. Riesterer, A. Prokop, K.

Merz, N. Metzler-Notle, Chem. Sci. 2012, 3, 2062-2072.

[4] L. Henry, C. Schneider, B. Mützel, P. V. Simpson, C. Nagel, K. Fucke, U. Schatzschneider,

Chem. Commun. 2014, 50, 15692-15695.

Organische Chemie und Biochemie P67

Self-Assembled Bolamphiphilic Perylene Bisimides in Water

B. Soberats, D. Görl, P. Syamala, F. Würthner*

Universität Würzburg, Center for Nanosystems Chemistry, Institut für Organische Chemie, and

Bavarian Polymer Institute, Universität Würzburg, 97074 Würzburg, Germany

*e-mail: [email protected]

Self-assembly of dyes in aqueous media has attracted a great deal of attention for the development

of biocompatible sensors and stimuli responsive photoactive materials.[1] We recently focus on the

fundamental understanding of the thermodynamic aspects of self-assembly in water of bolamphiphilic

perylene bisimide (PBIs) dyes bearing oligoethylene glycol (OEG) groups (Figure 1a).[2] We found that

the entropic release of water from the OEG chains overcomes the enthalpic contribution from π- π

stacking interactions (Figure 1c), which has a determining influence on the thermodynamics of the

aggregation process.[3] This leads to an inverse temperature response which induces lower critical

solution temperature (LCST) phenomena, where the solution phase separates at a particular temperature

upon heating. In the present study we show a novel supramolecular approach to control the LCST

transitions in PBI 1/PBI 2 mixtures by adjusting their mixing ratio (Figure 1a).[4]

Figure 1: a) Schematic representation of the supramolecular approach applied to control the LCST

phase transition in bolamphiphilic PBI 1 and PBI 2 aggregates. b) Illustration of the LCST phase

transition in PBI1/PB2 hydrogels.

Furthermore, based on this concept, we prepared stimuli responsive hydrogels that undergo a

remarkable color change triggered by the LCST phase transition between a hydrogel state and a lyotropic

liquid-crystalline state (Figure 1b).[4] This study open new avenues to the development of photoactive

biocompatible sensors based on aqueous soft matter systems.

[1] E. Krieg, M. M. C. Bastings, P. Besenius, B. Rybtchinski, Chem. Rev. 2016, 116, 2414-2477.

[2] a) D. Görl, X. Zhang, V. Stepanenko, F. Würthner, Nat. Commun. 2015, 6, 7009. b) X. Zhang,

D. Görl, V. Stepanenko, F. Würthner, Angew. Chem. Int. Ed. 2014, 53, 1270-1274.

[3] D. Görl, F. Würthner, Angew. Chem. Int. Ed. 2016, 55, 12094-12098.

[4] D. Görl, B. Soberats, S. Herbst, V. Stepanenko, F. Würthner, Chem. Sci. 2016, 7, 6786-6790.

Anorganische Chemie und Materialwissenschaften

P68

Luminescent Ln-MOFs as Detector Systems for Water-Sensitive

Pharmaceutical Products

J. Stangl1, L. V. Meyer1, K. Müller-Buschbaum1, L. Meinel2

1Institut für Anorg. Chemie, Würzburg, Germany;

2Institut für Phamazie u. Lebensmittelchemie, Würzburg, Germany;

Luminescent Metal-organic frameworks (MOFs) have attracted attention for sensing/detection

functions.[1,2] Based on the microporosity of the framework, chemical species such as gas, volatile

molecules and ions can be adsorbed/detected. The accompanying interaction with the MOF can

influence luminescence processes and is either reversible or irreversible. Thereby, especially strong

changes in the luminescence either in intensity (“turn-off” or “turn-on effects) or in the chromaticity are

interesting, especially if the signal change is selective for a certain species.

Figure 1: Partial loss of the luminescence properties due to the presence of humidity

We can now present lanthanide containing Ln-MOFs with N-functionalized linkers that can be

utilized as water detectors.[3] Suitable MOF candidates are presented that show a significant “turn-off”

effect of the luminescence through humidity, which can be combined with water sensitive

pharmaceutical products. Complete quenching of the luminescence is used as an easy observable, which

can be used for a screening of the real status of a pharmaceutical product instead of fixed usability dates.

An additional control becomes available upon integration of the Ln-MOFs into the package materials of

a pharmaceutical product. We can show that the lanthanide metal-based luminescence of the MOFs is

retained, if they are included into organic polymers. Correlating border concentrations/sensitivities of

Ln-MOF and pharmaceutical products enables a real status analysis. Different from other MOF sensors,

this process is irreversible and can`t be falsified by a re-drying process.

[1] K. Müller-Buschbaum, F. Beuerle, C. Feldmann, Microporous and Mesoporous Materials 2015,

216, 171-199.

[2] L. V. Meyer, F. Schönfeld, K. Müller-Buschbaum, Chem. Commun. 2014, 50, 8093–8108.

[3] L.V. Meyer, F. Schönfeld, A. Zurawski, M. Mai, C. Feldmann, K. Müller-Buschbaum, Dalton

Trans. 2015, 44, 4070–4079.

Organische Chemie und Biochemie P69

Total Synthesis of the Antimalarial Naphthylisoquinolines Dionco-

phylline C, 5-epi-Dioncophylline C and Dioncophylline F

W. Shamburger, R. Seupel, S. K. Bischof, G. Bringmann

Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg

Dioncophylline C (3a), a 5,1’-coupled naphthylisoquinoline alkaloid isolated from the West African

liana Triphyophyllum peltatum, was found to show remarkable activity against Plasmodium falciparum

in vitro and against P. berghei in vivo.[1,2] Therefore 3a represents an attractive synthetic target. This

was further underlined by the outcome of Q(SAR) studies on structurally simplified analogs of 3a, such

as molecules 4, 5, and 6, which were all found to display distinct weaker antiplasmodial activities

compared to 3a.[3] Following a highly concise route, we now aim at the synthesis of compounds which

differ from 3a only in one single structural parameter like e.g., 5-epi-dioncophylline C (3b). Key step is

the Pd-catalyzed Suzuki-Miyaura cross-coupling of a naphthalene boronic acid ester (here 1) and an

isoquinoline bromine (here 2). This approach furnished 3a and its atropisomer 3b in a good chemical

yield and in stereochemically pure form after their resolution on a Symmetry-C18 column. This pathway

has also been successfully applied to the total synthesis of the first, and so far only, 5,8’-coupled

Dioncophyllaceae-type alkaloid dioncophylline F (7a and 7b), which is configurationally unstable at the

biaryl axis.

[1] G. Bringmann, Ann. Trop. Med. Parasitol. 1996, 90, 115-123.

[2] G. Bringmann, Antimicrob. Agents Chemother. 1997, 41, 2533-2539.

[3] G. Bringmann, Eur. J. Med. Chem. 2010, 45, 5370-5383.

OH

NH

Me

Me

R

N

Me

Me

5

8'

OMeOMe

PMe

S

Me

OH

NH

Me

Me

R

S N

Me

Me

5

8'

OMe

M

OMe

dioncophylline F ( + )7a 7b

fast

O Pri

NBn

Me

Me

Me

Br

R

R

Me

O Pri OMe

BPin

OH

NH

Me

Me

N

Me

Me

5

1'

OMeOH

MeP

OH

NH

Me

Me

N

Me

Me

5

1'

OMe

5

OH

Me

+

dioncophylline C ( )3a 5- -dioncophylline C ( )epi 3b

+

1 2

iPrO OMe

OH

NH

Me

OMe

N

Me

Cl

OH

NN

Me

R

Me

MeO

OH

NN

MeMe

4 5 6

Anorganische Chemie und Materialwissenschaften

P70

Pseudo-polypeptides forming thermo responsive, biocompatible and

injectable gels for multiple biomedical applications

T. Lorson1, T. Jüngst2, J. Groll2, T. Lühmann3, R. Luxenhofer1

1Functional Polymer Materials, Chair for Chemical Technology of Materials Synthesis, University of

Würzburg, Röntgenring 11, 97070 Würzburg, Germany 2Department for Functional Materials in Medicine and Dentistry, University of Würzburg,

Pleicherwall 2, D 97070 Würzburg, Germany 3Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg,

Germany

[email protected]

Stimuli-responsive polymers that form physical or chemical hydrogels find great interest among

engineers, scientist and clinicians.[1] With this development and the ever increasing visions on potential

and actual applications, the need of suitable and adjustable hydrogels is rapidly developing and can be

seen as a potential bottleneck. They have to meet various requirements like sufficient quantity, consistent

quality and tunable biological and physical properties.[2] Having this in mind, natural polymers as well

as synthetic polymers need to be taken into account.

In the last decades poly(2-oxazoline)s, a prominent member of pseudo-polypeptides, have been

intensely investigated, especially as thermo responsive materials[3] and for the usage as biomedical

applications.[4] However, to the best of our knowledge no reports on thermogelling poly(2-oxazoline)s

can be found through the literature. Here we report the synthesis of novel thermogelling pseudo-

polypeptides, their cytocompatibility and structure property relationships with respect to their

rheological properties. 3D-printing experiments revealed potential applicability as BioInk.

[1] T. Jüngst, W. Smolan, K. Schacht, T. Scheibel, J. Groll, Chem. Rev. 2015.

[2] S. Wang, J. M. Lee, W. Y. Yeong, Int. J. Bioprinting 2015.

[3] C. Weber, R. Hoogenboom, U. S. Schubert, Progress in Polymer Science 2012, 37, 686.

[4] R. Luxenhofer, Y. Han, A. Schulz, J. Tong, Z. He, A. V. Kabanov, R. Jordan, Macromolecular

rapid communications 2012, 33, 1613.

Anorganische Chemie und Materialwissenschaften P71

Reaktivität N-heterocyclischer Carbene gegenüber Hauptgruppen-

Element-Verbindungen der 14. und 15. Gruppe

H. Schneider, D. Schmidt, U. Radius*

Institut für Anorganische Chemie der Julius-Maximilians-Universität Würzburg

[email protected], [email protected]

In den letzten Jahren wurde durch verschiedenste Beispiele gezeigt, dass sich die Verwendung N-

heterocyclischer Carbene nicht nur auf den Einsatz als Coliganden in Übergangsmetall-Komplexen

beschränkt. Neuartige subvalente Hauptgruppen-Element-Verbindungen wie auch Verbindungen mit

Element-Element-Bindungen konnten durch die guten σ-Donor-Eigenschaften dieser Singulett-Carbene

stabilisiert werden. Überraschender Weise zeigte sich, dass NHCs neben der Rolle als unschuldige σ-

Donoren, ebenfalls zur Element-Element- bzw. Element-Wasserstoff-Bindungsaktivierung unter milden

Bedingungen fähig sind.[1] Weitere Untersuchungen belegten, dass die Addukte von NHCs mit Lewis-

sauren Verbindungen bzw. Bindungsaktivierungsprodukte gegebenenfalls bei höheren Temperaturen

eine Ringerweiterungsreaktion (RER) eingehen. Durch Umsetzung diverser NHCs mit Phenylsilanen

konnten wir zeigen, das eine Insertion der Silyl-Einheit in den fünfgliedrigen Heterocyclus des NHCs

stattfindet und durch Migration der zuvor an das Silan gebundenen Wasserstoffatome bzw. Reste die

entsprechende Diazasilinane gebildet werden.[2] Ähnliche Reaktivitäten wurden von Hill[3], Rivard[4],

Inoue[5], Stephan[6] und unserer Gruppe[7-8] für Beryllium- wie auch Borhydridverbindungen beobachtet

und es konnte damit veranschaulicht werden, dass es ein gänzlich unbekanntes Feld der Reaktivität N-

heterocyclischer Carbene zu entdecken gilt. Da sich die Untersuchungen der Reaktivität bis dato mit

wenigen Ausnahmen auf die Element-Hydrid-Verbindungen der 13. und 14. Gruppe konzentrieren,

präsentieren wir hier unsere Ergebnisse zur Reaktivität von NHCs gegenüber Phenylchlorsilanen[9]

sowie den deutlich Lewis-basischeren Arylphosphanen[10].

[1] G. D. Frey, J. D. Masuda, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2010, 49, 9444.

[2] D. Schmidt, J. H. J. Berthel, S. Pietsch, U. Radius, Angew. Chem. Int. Ed. 2012, 51, 8881.

[3] M. Arrowsmith, M. S. Hill, G. Kociok-Köhn, D. J. MacDougall, M. F. Mahon, Angew. Chem.

Int. Ed. 2012, 51, 2098.

[4] S. M. I. Al-Rafia, R. McDonald, M. J. Ferguson, E. Rivard, Chem. Eur. J. 2012, 18, 13810.

[5] D. Franz, S. Inoue, Chem. Asian J. 2014, 9, 2083.

[6] T. Wang, D. W. Stephan, Chem. Eur. J. 2014, 20, 3036.

[7] S. Pietsch, U. Paul, I. A. Cade, M. J. Ingleson, U. Radius, T. B. Marder, Chem. Eur. J. 2015, 21,

9018.

[8] S. Würtemberger-Pietsch, H. Schneider, T. B. Marder, U. Radius, Chem. Eur. J. 2016, 22,

13032.

[9] H. Schneider, D. Schmidt, U. Radius, Chem. Eur. J. 2015, 21, 2793.

[10] H. Schneider, D. Schmidt, U. Radius, Chem. Commun. 2015, 51, 10138.

Anorganische Chemie und Materialwissenschaften

P72

Blue-light induced CO release from manganese(I) tricarbonyls

containing benzimidazole ligands

A. M. Mansour1,2*, U. Schatzschneider1*

1Institut für Anorganische Chemie der Julius-Maximilians-Universität Würzburg

2Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613 Egypt

E-mail: [email protected]

The development of carbon monoxide-releasing molecules (CORMs) as pro-drugs for the delivery

of CO to cells and tissues in vivo is significant of interest to biology, since this method of application is

an attractive and safe alternative to inhalation. Photo-activated CO release enables a well-defined control

of the location and the timing of the CO release as well as its dosage.[1] Although the benzimidazole

motif is a crucial pharmacophore in drug discovery with interesting biological properties including

antiviral, antitumor,antihistaminic, and antimicrobial activity,[2] it has not been explored in the context

of CORMs.So far a series of eight photoactivatable CORMs of the general formula [MnBr(CO)3(N-N)]

incorporating chelating 1H-benzimidazol-2-ylmethyl-(N-aryl)amine ligands was synthesized, and

characterized using several analytical and spectral methods.The influence of the type and position of the

substituent in the aniline ring on the photophysical properties of the studied compounds was

systematically explored. Photo-activation profiles were examined by UV/Vis and solution IR studies.

Illumination at 468 nm with a LED array resulted in fast release of two equivalents of carbon monoxide,

while stepwise liberation of two CO takes place upon excitation at 412 nm.Therefore, the CO release

from the investigated compounds could be switched on and off by time control and choosing the suitable

light source.

MnOC

OC

Br

CO

NHN

N

R

9, R = H (50%)

10, R = 4-CH3 (73%)

11, R = 4-OCH3 (64%)

12, R = 4-Cl (70%)

13, R = 4-COOCH3 (72%)

14, R = 4-NO2 (30%)

15, R = 2-COOCH3 (66%)

16, R = 3-COOCH3 (68%)

H

[1] U. Schatzschneider, Brit. J. Pharmacol. 2015, 172, 1638-1650.

[2] N. T. Abdel-Ghani, A. M. Mansour, Eur. J. Med. Chem. 2012, 47, 399-411.

300 400 500 6000.0

0.2

0.4

0.6

0.8

Ab

so

rba

nce

Wavelength / nm

0 min

1 min

2 min

3 min

4 min

5 min

10 min

15 min

20 min

25 min

Pharmazie und Lebensmittelchemie P73 Affinity Prediction of Protein-Ligand Complexes with Scoring

Functions Based on Clustered Linear Regression

L. P. Pason1*, C. A. Sotriffer1

1Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, 97074, Germany

email: [email protected]

The accurate prediction of binding affinities for protein-ligand complexes is a major challenge in

drug design.[1] For routine application in docking and virtual screening, methods like free energy

perturbation or thermodynamic integration are computationally still too demanding. Approximate but

much more rapid access to the desired quantity is provided by empirical scoring functions, which are

derived by relating structural features of protein-ligand complexes to the corresponding affinity values.

Classical linear regression techniques or machine leaning methods are applied for this purpose. The

circumvention of modelling assumptions in machine learning scoring functions has led to improved

performance in many cases,[2] but at the cost of reduced interpretability.

In this study, approaches of clustered linear regression [3] and clustered partial linear regression [4]

were followed to derive a set of new scoring functions based on the SFCscore descriptors and subsets

of the PDBbind refined set v2007 as training data.[5] The functions were tested against standard

benchmarks divided into subsets in a similar way as the training data. Comparing the performance to a

machine learning scoring function trained with the same experimental data and descriptors showed that

the clustered linear regression procedure approaches the predictive quality of the machine learning

function while maintaining full interpretability of the scoring functions.

[1] L. P. Pason, C. A. Sotriffer, Mol. Inf. 2016, DOI: 10.1002/minf.201600048.

[2] Q. U. Ain, A. Aleksandrowa, F. D. Roessler, P. J. Ballester, Wires Comput Mol Sci 2015,

5,405-424.

[3] B. Ari, H. A. Güvenir, Knowl-Based Syst 2002, 15, 169-175.

[4] L. Torgo, J. P. Da Costa, Mach Learn 2003, 50, 303-319.

[5] T. Cheng, X. Li, Y. Li, Z. Liu, R. Wang, J Chem Inf Model 2009, 49, 1079-1093.

Organische Chemie und Biochemie

P74

Entwicklung neuer Biokatalysatoren zur Synthese von

Oligosacchariden und Saccharose-Analoga

C. Possiel, M. E. Ortiz-Soto, M. Timm, J. Görl, J. Seibel

Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Deutschland

Die Levansucrase von B. megaterium ist eine bakterielle Fruktosyltransferase und gehört zu der

Enzymfamilie der Glykosidhydrolasen 68 (GH 68). Dieses Enzym katalysiert hauptsächlich die

Hydrolyse von Saccharose in die Monomer-Bausteine Glukose und Fruktose (90% Hydrolyse-

Aktivität), aber auch den Fruktosyl-Transfer auf weitere Zucker-Moleküle (Saccharose), was zur

Bildung von kurz- und langkettigen β(2→6)-verknüpften Fructanen (Levan)[1]sowie in Gegenwart eines

Glykosid-Akzeptors zu (1→2)-glykosidisch verknüpften Saccharose-Analoga führt.[2]

Durch die geringe Spezifizität entsteht in Gegenwart von Saccharose oder Saccharose-Analoga

jedoch eine große Bandbreite von verschiedenen Oligo- und Polysacchariden. Aus diesem Grund sollen

durch gezielte Mutagenese effizientere Biokatalysatoren für die Synthese der einzelnen Zucker-

Verbindungen entwickelt werden, die spezifisch (durch Verminderung des Produktspektrums oder

höherer Fruktosyl-Transferrate) kurzkettige Di- bzw. Oligosaccharide wie z. B. Blastose, 1-Kestose,

6-Kestose und Neokestose produzieren können.

Des Weiteren liegt der Fokus auf der Optimierung der Saccharose-Analoga-Synthese. Im Rahmen

eines EU-Projektes werden neue Varianten der Levansucrase entwickelt und so Biokatalysatoren für die

Synthese maßgeschneidert, um möglichst selektiv neuartige (1→2)-glykosidisch verknüpfte

Saccharose-Analoga herzustellen. Die erhaltenen Saccharose-Analoga können durch die Anwendung

zweier weiterer Enzyme gespalten, aktiviert und auf Aglykone (nicht-Zucker-Komponenten wie z. B.

Wirkstoffe) übertragen werden, wodurch u. a. die Löslichkeit sowie die biologische Aktivität der

Verbindungen erhöht werden können.[3,4]

[1] G. Meng, K. Fütterer, Nat. Struct. Biol. 2003, 10, 935-941.

[2] A. Homann, J. Seibel, Appl. Microbiol. Biotechnol. 2009, 83, 209-216.

[3] S. G. Withers et al., Annu. Rev. Biochem. 2008, 77, 521-555.

[4] Y. Zheng et al., J. Biol. Chem. 2011, 286, 36108-36118.

Anorganische Chemie und Materialwissenschaften P75 Nickel-Catalyzed Borylation of Polyfluoroarenes via C-F Bond

Cleavage

M. W. Kuntze-Fechner1, U. Radius1

email: [email protected], [email protected] 1Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg.

The selective synthesis of fluoroarene compounds has become a subject of growing interest due to the

prominent role such species play in many modern pharmaceuticals, agrochemicals and other industrially important

products.[1] An attractive route for the selective substitution of fluoroarenes is based on the functionalization of

activated aromatic C–F bonds derived from readily available perfluoroarenes. The presentation covers the

synthesis and reactivity of NHC-stabilized nickel complexes, which transfer the complex fragments [Ni(R2Im)2]

(R2Im = 1,3-Di(organyl)imidazole-2-ylidene) in stoichiometric and catalytic reactions under mild conditions, and

their use in the functionalization to polyfluorinated arenes.[2] We are currently developing convenient

methodologies to generate and use suitable, partially fluorinated organic precursors. These strategies employ, for

example, (i) C-F functionalization of polyfluoroaromatics or (ii) use of the polyfluoroaromatics or fluoroaryl

boronic ester in subsequent Suzuki-Miyaura coupling reactions. A smart way to achieve this goal would employ

fluoroaromatic boronic acids or boronate esters. Arylboronic acid esters are versatile reagents in organic synthesis,

especially in substituent conversions or in the widely employed Suzuki-Miyaura cross-coupling reaction.

Transition-metal-catalyzed direct C-H borylation of arenes[3] and borylation of aryl halides[4] has emerged as one

of the most important mild and attractive routes for the synthesis of aryl boronates in recent years. The conversion

of fluoroaromatics into arylboronic esters via C-F bond activation, however, is relatively unexplored and was

restricted to noble metal catalysts until recently. A focus of the contribution will be thus on the use of NHC nickel

complexes in carbon fluorine activation and the use of these processes in catalytic borylation.[5]

This work was supported in part by Deutsche Forschungsgemeinschaft (DFG) and the Julius-Maximilians-

Universität Würzburg.

[1] (a) H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119; (b) A. D. Sun, J. A. Love, Dalton Trans. 2010,

39, 10362; (c) T. Braun, D. Lenz, Angew. Chem. Int. Ed. 2013, 52, 3328; (d) T. Ahrens, J. Kohlmann, M.

Ahrens, T. Braun, Chem. Rev. 2015, 115, 931.

[2] (a) T. Schaub, U. Radius, Chem. Eur. J. 2005, 11, 5024; (b) T. Schaub, M. Backes, U. Radius, J. Am.

Chem. Soc. 2006, 128, 15964; (c) T. Schaub, M. Backes, U. Radius, Eur. J. Inorg. Chem. 2008, 2680; (d)

T. Schaub, P. Fischer, A. Steffen, T. Braun, U. Radius, A. Mix, J. Am. Chem. Soc. 2008, 130, 9304; (e)

T. Schaub, P. Fischer, T. Meins, U. Radius, Eur. J. Inorg. Chem. 2011, 3122; (f) T. Zell, M. Feierabend,

B. Halfter, U. Radius, J. Organomet. Chem. 2011, 696, 1380; (g) P. Fischer, K. Götz, A. Eichhorn, U.

Radius, Organometallics 2012, 31, 1374.

[3] (a) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2009, 110,

890; (b) A. Ros, R. Fernandez, J. M. Lassaletta, Chem. Soc. Rev. 2014, 43, 3229.

[4] (a) M. Murata, Heterocycles 2012, 85, 1795; (b) W. K. Chow, O. Y. Yuen, P. Y. Choy, C. M. So, C. P.

Lau, W. T. Wong, F. Y. Kwong, RSC Advances 2013, 3, 12518.

[5] J. Zhou, M. W. Kuntze-Fechner, R. Bertermann, U. S. D. Paul, J. H. J. Berthel, A. Friedrich, Z. Du, T. B.

Marder, U. Radius, J. Am. Chem. Soc. 2016, 138, 5250-5253.

Anorganische Chemie und Materialwissenschaften

P76

iClick reactions for a modular access to Pt/Pd- complexes with high

anticancer activity

K. Peng1, P. Simpson2, U. Schatzschneider1*

1Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg,

Am Hubland, D-97074 Würzburg (Germany) 2Nanochemistry Research Institute–Department of Chemistry, Curtin University

Kent Street, Bentley 6102 WA(Australia)

e-mail: [email protected]

Along with the widespread success of cisplatin in the clinical treatment of various types of

malignancies, the chemistry of metal-based drugs has received enormous attention over the last few

decades.[1] However, the effectiveness of these metal-based compounds as antitumor agents is often

hampered by their poor solubility, low bioavailability, and lack of target specificity. Therefore, synthetic

technology which quickly generates high molecular diversity and has great reaction efficiency is

required to optimize compounds for specific biological properties and activities.

Taking this perspective into consideration, inorganic Click (iClick) reactions, which will allow to

easily tune the bioavailability and ADMET (absorption, distribution, metabolism, excretion, toxicity)

properties of the novel compounds for bioactivity studies, were applied for a modular access to quickly

generate molecular diversity in the synthesis of transition metal complexes with high antitumor activity

based on novel structural motifs.[2] Consequently, two Pt/Pd- triazole complexes were synthesized by

this approach (Scheme 1).

Scheme 1: Synthetic routes to (a) Pt complexes and (b) Pd complexes by iClick reactions.

With a certain amount of pure Pt/Pd- iClick products at hand, we are now trying to investigate their

cytotoxicities, and their speciation and interaction with bio(macro)molecules such as amino acids, DNA

nucleobases, and double-stranded DNA to deeply understand antitumor activities of the two compounds.

[1] C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 2014, 114, 815.

[2] L. Herny, C. Schneider, B. Mützel, P. Simpson, C. Negal, K. Fucke, U.Schatzschneider, Chem.

Commun. 2014, 50, 15692.

Anorganische Chemie und Materialwissenschaften P77 Luminescent MOF-mixed-matrix membranes

F. Mühlbach1, J. Dechnik2, D. Dietrich2, T. Wehner1, M. Gutmann3, T. Lühmann3, L. Meinel3, C. Janiak2,

K. Müller-Buschbaum1

1Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg

2Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Universitätsstraße 1,

D-40225 Düsseldorf 3Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg,

Luminescent metal-organic frameworks (MOFs) have a high potential for sensing/detection applications. The

microporous character of MOFs allows them to adsorb/bind guest molecules, which can have significant influence

on the luminescence behavior of the MOF, e.g. enhance or quench the luminescence intensity. Due to this impact

of the guest molecules on the luminescence of the MOF, the latter can act as a sensor.[1]

For industrial applications, the used MOFs have to be processed for example as thin films, pressed into tablets

or used as part of a composite material. Some of the already established MOF composite materials are MOF-

mixed-matrix membranes (MMMs) for gas-separations.[2]

Our main aim in this research projectis to produce the first example of luminescent MOF-MMMs. Therefore,

we tried to embed 3∞

[Sr0.9Eu0.1(Im)2] (Im = imidazolate) and 2∞

[Tb2Cl6(bipy)3]∙2bipy(bipy = 4,4’-bipyridine) in the

mechanically stable polymers polysulfone and matrimid. For 3∞

[Sr0.9Eu0.1(Im)2], we could produce membranes

with polysulfone and matrimid, whereby for 2∞

[Tb2Cl6(bipy)3]∙2bipy embedding was only successful for

polysulfone. The membranes were characterized via photoluminescence spectroscopy, powder X-ray diffraction,

fluorescence microscopy and SEM-EDX. Investigations of the photoluminescence properties of the membranes

showed that the luminescence of the pure MOFs is maintained in the membranes. In sum, our first examples of

luminescent MOF-MMMs show that the application of MOF-MMMs for gas-separation can be expanded to

potential sensor applications.[3]

Figure 1: Normalized emission spectra of 𝟑∞

[Sr0.9Eu0.1(Im)2] and 𝟑∞

[Sr0.9Eu0.1(Im)2]@polysulfone.

[1] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112,

1105-1125.

[2] K. Hunger, N. Schmeling, H. B. T. Jeazet, C. Janiak, C. Staudt, K. Kleinermanns, Membranes 2012, 2,

727-763.

[3] J. Dechnik, F. Mühlbach, D. Dietrich, T. Wehner, M. Gutmann, T. Lühmann, L. Meinel, C. Janiak, K.

Müller-Buschbaum, Eur. J. Inorg. Chem. 2016, 4408-4415.

Organische Chemie und Biochemie

P78

FULLERENE-MEROCYANINE DYADS FOR SINGLE

COMPONENT ORGANIC SOLAR CELLS

R. Hecht, D. Bialas, M. Stolte, F. Würthner*

Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg,

Am Hubland, 97074 Würzburg, Germany, *E-Mail: [email protected]

R. Wagener: [email protected]

Dyads of fullerene and donor molecules are interesting components for organic photovoltaics,

because the fabrication of the cells is simplified and the morphology within the solar cell is more stable

compared to bulk heterojunction (BHJ) solar cells. Additionally, the light absorption and the charge

separation take place within the same molecule, so that short exciton diffusion length should not be a

limiting factor.[1]

A set of new dyad molecules was synthesized (Figure 1a). The dyads consist of a phenyl-C61-

propionic acid (PC61PM), which is covalently bound to three different merocyanine dyes. We prepared

solar cells from solution of these dyads (Figure 1b) and succeeded with first optimization experiments,

reaching power conversion efficiencies (PCE) of up to 0.53 % in air. For comparison we investigated

BHJ solar cells, using the merocyanines MD302, HB366[2] and CS254 as donor and PC61BM as

acceptor in a molar ratio of 1:1. To these reference systems we added dyad molecules as mediator, to

stabilize the donor-acceptor interface. The cells were characterized by measuring current-voltage

characteristics, UV/Vis absorption, EQE and AFM.

Figure 1: New dyad molecules and corresponding merocyanine dyes (a), studied in single component

solar cells in the following device architecture (b).

[1] J. Roncali, Advanced Energy Materials 2011, 1, 147-160.

[2] H. Bürckstümmer, E. V. Tulyakova, M. Deppisch, M. R. Lenze, N. M. Kronenberg, M. Gsänger,

M. Stolte, K. Meerholz, F. Würthner, Angewandte Chemie International Edition 2011, 50,

11628-11632.

Anorganische Chemie und Materialwissenschaften P79 Microbubbles loaded with platinum complexes for ultrasound-

mediated treatment of brain cancer

V. Mawamba1, C. Hagemann2, M. Löhr2, V. Sturm2, U. Schatzschneider1

1Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074

Würzburg 2Tumor biologisches Labor, Neurochirugische Klinik und Polyklinik, Universitätsklinikum Würzburg,

Joseph-Schneider Str.11/B1, D-97080 Würzburg

e-mail: [email protected]

Tumors of the central nervous system are among the most disabling and lethal types of cancer.[1]

Because of their depth and location in functional inoperable areas, some brain cancers are surgically

unreachable. Therefore, only standard treatment such as radio- and chemotherapy or a combination of

both are possible. Chemotherapy has gained a lot of attention in the past two decades. Anti-cancer drugs

are designed to kill malignant cells, but when administrated, only a small fraction of the injected dose

reaches the target site, with the rest circulating through healthy tissue, resulting in dose-limiting side

efffets. Encapsulation of drugs within microbubbles combined with local release triggered by focused

ultrasound is thought to increase the local concentration of a chemotherapeutic agent at the site of disease

while minimizing side effects on healthy tissue.[2,3]

Figure 1: Fluorescence microscopy picture of octafluoropropane-filled lipid microbubbles stained with

1,1‘-dioctadecyl-3,3,3‘,3‘-tetramethylindocarbocyanine perchlorate (left) and general structure of

membrane-affine cytotoxic platinum complex (right).

Microbubbles are gas-filled colloidal particles with a size range between 1-8 µm. In medicine, they

are well-known as ultrasound contrast agents for imaging and diagnosis.[4] Our current work to be

presented here is focused on the encapsulation of different platinum-based drug candidates within

microbubbles, the study of their stability, and payload delivery in vitro under application of ultrasound

as an external stimulus.

[1] S. A. Khuder, A. B. Mutgi, E. A. Schaub, Am. J. Ind. Med. 1998, 34, 252-260

[2] Y. Liu, H. Miyoshi, M. Nakamura, J. Control. Release 2006, 114, 89-99

[3] R. Deckers, C. T. W. Moonen, J. Control. Release 2010, 148, 25-33

[4] S. Tinkov, R. Bekeredjian, G. Winter, C. Coester, J. Pharm. Sci. 2009, 98, 1935-1961

Anorganische Chemie und Materialwissenschaften

P80

Pyrene MO Shuffle

Adjusting the HOMO-LUMO gap by changing the frontier MO ordering

J. Merz, L. Ji, J. Fink, A. Friedrich, I. Krummenacher, H. Al Mamari, S. Lorenzen, M. Hähnel,

A. Eichhorn, T. B. Marder*

Institut für Anorganische Chemie, Julius-Maximilians Universität Würzburg

E-Mail: [email protected]

Pyrene is a polycyclic aromatic hydrocarbon (PAH) that has very interesting photophysical

properties which makes it suitable for a broad range of applications.[1] The 2,7-positions of pyrene are

situated on nodal planes in both the HOMO and LUMO. Hence, electrophilic reactions take place at the

1-, 3-, 6-, and 8-positions. We developed a selective method to substitute directly the 2,7-positions by

an iridium-catalyzed C-H borylation.[2] First investigations demonstrated that pyrene derivatives

functionalized at the 2-position have different photophysical properties compared to the “traditional”

functionalized pyrenes at the 1-position.[3] We report a series of new donor-acceptor and donor-donor

pyrene systems with remarkable properties. Donors can raise HOMO-1 above the pyrene HOMO

whereas acceptors can lower LUMO+1 below the pyrene LUMO which facilitates strong

communication through the pyrene bridge. Further we could demonstrate the effectiveness of our pyrene

bridge in comparison with biphenyl by photophysical and electrochemical measurements that are

supported by DFT calculations and contrast with previous reports.

Figure 1: General numbering of pyrene (left) and our three target molecules (right).

[1] T. M. Figueira-Duarte, K. Mullen, Chem. Rev. 2011, 111, 7260

[2] A. G. Crawford, Z. Liu, I. A. I. Mkhalid, M.-H. Thibault, N. Schwarz, G. Alcaraz, A. Steffen,

J. C. Collings, A. S. Batsanov, J. A. K. Howard, T. B. Marder, Chem. Eur. J. 2012, 18, 5022.

[3] A. G. Crawford, A. D. Dwyer, Z. Liu, A. Steffen, A. Beeby, L.-O. Pålsson, D. J. Tozer, T. B.

Marder, J. Am. Chem. Soc. 2011, 133, 13349.

Anorganische Chemie und Materialwissenschaften P81 Formulation of extremely hydrophobic drugs using amphiphilic

pseudo-polypeptide block copolymers

M. Lübtow1, B. Christ2, S. Dembski3, L. Persano4, R. Luxenhofer1

1Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis, University of Würzburg, Röntgenring

11, 97070 Würzburg (Germany) 2Translational Center “Regenerative therapies in oncology and musculoskeletal diseases”, Fraunhofer IGB, Röntgenring 11,

97070 Würzburg (Germany) 3Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany)

4National Nanotechnology Laboratory of InstitutoNanoscienze-CNR, Università del Salento, via Arnosano, I-73100 Leece

(Italy)

[email protected]

Modern techniques like high-throughput combinatorial screenings[1] can quickly assay the biological or biochemical

activity of a large number of potential drugs, but when it comes to formulation, one major issue remains. More than 40% of all

NCEs (new chemical entities) developed in the pharmaceutical industry are practically insoluble in water.[2] Taking into

account, that 90% of all compounds in today’s drug delivery pipelines are reported to be poorly water-soluble, this poses a

major challenge for the pharmaceutical industry.[3] The demand for excipients, which increase the water solubility without

influencing the bioactivity of such hydrophobic drugs is enormous. Motivated by the high drug loadings of poly(2-

oxazoline)sPOx based micelles for paclitaxel (PTX) of up to 45 wt%,[4] this work presents a preliminary study on the structure

property relationships of pseudo-polypeptide based amphiphiles on the solubilization capacity for the non-water soluble

compound curcumin (CUR).The extraordinary large loading capacity for CUR of more than 50 wt% active drug as well as high

water solubility of the resulting formulation emphasize the use of these drug-loaded polymeric micelles for detailed in vitro

and in vivo studies with regard of their anticancer and anti-inflammatory potential. Besides the formulation in aqueous solution,

core-shell fibers comprised of a drug-loaded polymeric micelles core encapsulated in a biodegradable polycaprolactone (PCL)

shell[5] as well as silica fibers loaded with polymeric micelles were prepared to enable a more sustained drug-release.

Amphiphilic Block-Copolymers Extremely hydrophobic drugs

Figure 1: Solubilization of extremely hydrophobic drugs with amphiphilic poly(2-oxazoline) (POx) based block-copolymers.

[1] A. Persidis, Nat. Biotech. 1998, 16, 488-489.

[2] E. M. Merisko-Liversidge, G. G. Liversidge, Toxicologic Pathology 2008, 36, 43-48.

[3] V. A. V. Vharti, A. Munde, A. Birajdar, S. Bais, JIPBS 2015, 2, 482-494.

[4] a) R. Luxenhofer, A. Schulz, C. Roques, S. Li, T. K. Bronich, E. V. Batrakova, R. Jordan, A. V. Kabanov,

Biomaterials 2010, 31, 4972-4979; b) A. Schulz, S. Jaksch, R. Schubel, E. Wegener, Z. Di, Y. Han, A. Meister, J.

Kressler, A. V. Kabanov, R. Luxenhofer, C. M. Papadakis, R. Jordan, ACS Nano 2014, 8, 2686-2696; c) Y. Seo, A.

Schulz, Y. Han, Z. He, H. Bludau, X. Wan, J. Tong, T. K. Bronich, M. Sokolsky, R. Luxenhofer, R. Jordan, A. V.

Kabanov, Polymers for Advanced Technologies 2015, 26, 837-850; d) Z. He, X. Wan, A. Schulz, H. Bludau, M. A.

Dobrovolskaia, S. T. Stern, S. A. Montgomery, H. Yuan, Z. Li, D. Alakhova, M. Sokolsky, D. B. Darr, C. M. Perou,

R. Jordan, R. Luxenhofer, A. V. Kabanov, Biomaterials 2016, 101, 296-309.

[5] L. Romano, A. Camposeo, R. Manco, M. Moffa, D. Pisignano, Molecular Pharmaceutics 2016, 13, 729-736.

Pharmazie und Lebensmittelchemie

P82

Chemistry Meets Cancer Immunotherapy: Synthesis of Hapten-like

Compounds to Redirect the Specificity of Programmable Antibodies

and T Cells

P. A. Nagl1, L. Wallstabe2, M. Hudecek2, U. Holzgrabe1

1 University of Würzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg,

Germany 2Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik II,

Oberdürrbacherstraße 6, 97080 Würzburg, Germany

Immunotherapies are evolving as highly promising strategies for the treatment of cancer.

An essential component of these approaches are reactive, tumor-specific T lymphocytes, which are rare for

many malignancies and are difficult to isolate. However, they can be generated by genetic modification using

genes encoding chimeric antigen receptors (CARs) or T cell receptors (TCRs). CAR-modified T cells are

endowed with the specificity of tumor-specific antibodies.[1] Chemical programming of the used single-chain

variable fragment (scFv) should be possible in the same way as performed by chemically programmed

antibodies (cpAbs).[2] With this approach, the scope of potential tumor-specific targets could be enlarged

vastly while the production of effective T lymphocytes could be simplified.

The aim of this work is to contribute to the development of chemically programmed T cells for cancer

immunotherapy. Therefore, different hapten-like compounds should be synthesized. All of these compounds

have reactive groups, which selectively bind to the lysine residue of the antigen receptor, and ether a targeting

or labeling module (see figure 1).[3]

Figure 1: Different reactions for reprogramming monoclonal antibodies or CAR T cells.

The test results of the first molecules, equipped with biotin as labeling module, proofed the concept by

showing that the compounds are not binding to reactive groups on the cell surface, but selectively react with

the lysine residue of the receptor. Current work includes the synthesis of an Arg-Gly-Asp (RGD)

peptidomimetic motif as targeting module for integrin αvβ3, which is overexpressed in solid tumor cells [4].

[1] C. J. Turtle, M. Hudecek, M. C. Jensen, S. R. Riddell, Curr. Opin. Immunol. 2012, 24, 633-639.

[2] C. Rader, Trends Biotechnol. 2014, 32, 186-197.

[3] J. I. Gavrilyuk, U. Wuellner, C. F. Barbas, Bioorg. Med. Chem. Lett. 2009, 19, 1421-1424.

[4] L. Li, C. Rader, M. Matsushita, S. Das, C. F. Barbas, R. a Lerner, S. C. Sinha, J. Med. Chem. 2004,

47, 5630-5640.

Organische Chemie und Biochemie P83 Thermodynamic insights into the entropically driven self-assembly

of rylene bisimide dyes in water

P. Syamala, D. Görl, B. Soberats, F. Würthner*

Universität Würzburg, Center for Nanosystems Chemistry (CNC), Institut für Organische Chemie, and

Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany

*e-mail: [email protected]

A fundamental understanding of the thermodynamic aspects of self-assembly is quintessential to develop

supramolecular polymers with desired properties.[1] This task is especially challenging in aqueous systems

where supramolecular polymerization is principally determined by the intricate interplay between entropic

contribution from solvation/dissolution of monomeric units and enthalpic contributions arising from the

solvation of extended aggregates.[3] We recently reported on the self-assembly behavior of bolaamphiphilic

perylene bisimide dyes appended with oligoethylene glycol (OEG), which show an entropically driven

aggregation process in water, while the process is enthalpically driven in the presence of THF as a co-solvent

(Figure 1a).[4] In the present study, a detailed thermodynamic profile of the self-assembly of various OEG

based bolaamphiphilic rylene dyes is carried out in water at different temperatures, using isothermal titration

calorimetry and UV/ Vis studies (Figure 1b).

Figure 1: a) Chemical structures of PBI 1 and NDI 1 (top) and Gibbs free energy, ΔG of PBI 1 self-assembly

in H2O/THF mixtures (bottom). b) Heat release per injection of an aqueous solution of PBI 1 (top) and NBI

1 (bottom) into pure water in an ITC dilution experiment showing enthalpic penalty associated with the self-

assembly. c) Schematic representation of the proposed aggregation mechanism of PBI 1 in water.

Remarkably, we found that the entropic release of water from the OEG chains overcomes the enthalpic

contribution from π- π stacking interactions (Figure 1c), which has a determining influence on the

thermodynamics of the aggregation process. This fundamental study sheds light on thermodynamics aspects

of self-assembly in water, providing new elements to control the aggregation processes.

[1] E. Krieg, M. M. C. Bastings, P. Besenius, B. Rybtchinski, Chem. Rev. 2016, 116, 2414-2477.

[2] J. N. Israelachvili, Intermolecular and Surface Forces (Third Edition), Academic Press: San Diego,

2010.

[3] D. Gorl, X. Zhang, F. Würthner, Angew. Chem. Int. Ed. 2012, 51, 6328-6348. [4] D. Görl, F. Würthner, Angew. Chem. Int. Ed. 2016, 55, 12094-12098.

Anorganische Chemie und Materialwissenschaften

P84

Synthesis of Neutral Boron-Centered Lewis Bases Derived from

Terminal Arylborylene-Complexes

M. Nutz, C. W. Tate, H. Braunschweig

Julius-Maximilians-Universitaet-Wuerzburg, Department of Inorganic Chemistry, 97074 Wuerzburg,

Germany

email: [email protected]

A variety of neutral electron-rich monovalent boron compounds has been synthesized (1−3).[1] The

synthetic strategy used – liberation of a borylene ligand from a transition metal – is broadly applicable,

leading to a number of unprecedented monovalent boron species bearing different Lewis basic

groups.[1,2] Depending on the steric demand of the base, homoleptic (1, 3) or heteroleptic (2) compounds

are formed, which all show a trigonal planar geometry at the boron atom. Analysis of the frontier orbitals

indicates that the HOMO level consists of a three-centered π-bonding interaction between the boron and

the attached ligands. Further computational investigations show an extensive boron-to-ligand

backbonding in these molecules

[1] H. Braunschweig, R. D. Dewhurst, F. Hupp, M. Nutz, K. Radacki, C. W. Tate, A. Vergas, Q.

Ye, Nature 2015, 522, 327-330.

[2] H. Braunschweig. R. D. Dewhurst, L. Pentecost, K. Radacki, A. Vargas, Q. Ye, Angew. Chem.

Int. Ed. 2015, 54, 1-6.

Anorganische Chemie und Materialwissenschaften P85 Reactivity of N-heterocyclic Carbenes towards Chloro- and

Hydrostannanes

M. J. Krahfuß, H. Schneider, U. Radius

Institut für Anorganische Chemie der Julius-Maximilians-Universität Würzburg,

[email protected], [email protected]

Since the isolation of the first N-heterocyclic carbene in 1991 through Arduengo[1] a multitude of

novel NHC-metal-complexes had been synthesized and characterized. In main-group element chemistry

these small organic molecules open up a variety of reaction pathways, which fundamentally differ from

their use as ligands in the coordination sphere of metals.[2,3]

Besides the deprotonation of Brønsted-acids using carbenes our group could observe reductive

dehydrocoupling of primary and secondary phosphines. Carbenes are also capable of oxidative addition

reactions with bond activation in e.g. boranes, silanes and phosphines. Furthermore, ring expansion

reactions of E-H-substrates of the groups 2, 13 and 14, as well as adduct formation followed by

rearrangement in silanes are known.[4]

Considering the significantly different reaction patterns of silicon hydrides and chlorides with NHCs

we were interested in their reactivity towards the heavier homologues of tin (RmSnHn/Xn). Studies of

Wesemann et al. with the sterically demanding stannanes trip2SnH2 and trip3SnH showed solely the

formation of the distannanes via reductive dehydrocoupling.[5] On this account we studied tin

compounds with more simple substituents like methyl and phenyl to investigate their behavior towards

the NHCs iPr2Im and iPr2ImMe.[6]

[1] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361-363.

[2] H. Braunschweig, R. D. Dewhurst, K. Ferkinghoff, Chem. Commun. 2016, 52, 183-185.

[3] P. Ai, A. A. Danopoulos, P. Braunstein, Dalton Trans. 2016, 45, 4771-4779.

[4] a) D. Schmidt, J. H. J. Berthel, S. Pietsch, U. Radius, Angew. Chem. Int. Ed. 2012, 51, 8881-

8885; b) H. Schneider, D. Schmidt, U. Radius, Chem. Commun. 2015, 51, 10138-10141; c) H.

Schneider, D. Schmidt, U. Radius, Chem. Eur. J. 2015, 21, 2793-2797.

[5] a) C. P. Sindlinger, L. Wesemann, Chem. Sci. 2014, 5, 2739-2746; b) C. P. Sindlinger, W.

Grahneis, F. S. W. Aicher. L. Wesemann, Chem. Eur. J. 2016, 22, 7554-7566.

[6] H. Schneider, M. J. Krahfuß, U. Radius, Z. Anorg. Allg. Chem. 2016, ahead of print.

Organische Chemie und Biochemie

P86

Shape-controlled Synthesis of Covalent Organic Cage Compounds

V. Leonhardt, S. Klotzbach, F. Beuerle*

Universität Würzburg, Institut für Organische Chemie & Center for Nanosystems Chemistry,

Am Hubland, Würzburg, Germany

*E-mail: [email protected]

Porous functional materials are promising candidates for applications in the areas of heterogeneous

catalysis, sensing, gas storage and separation, or membranes.[1] For example, organic cage compounds

can be constructed via the concept of dynamic covalent chemistry.[2]

Previously, we reported on the synthesis of molecular cubes,[3] tetrahedra and bipyramids by

crosslinking the catechol units of tribenzotriquinacene (TBTQ) with various diboronic acids.

Currently we elaborate on the self-assembly of planar, catechol functionalized hexahydroxytri-

phenylene (HHTP) with rigid diboronic acids possessing different bite angles into molecular cages.

Thereby, the geometry of the diboronic acids is transferred to structure and shape of the self-assembled

nanosized objects. Synthesis of the cage compounds can be monitored by 1H-NMR spectroscopy and

size and shape is analyzed by 2D-NMR as well as DOSY-NMR spectroscopy.

[1] G. Férey, Chem Soc. Rev. 2008, 37, 191-214.

[2] M. Mastalerz, Chem. Eur. J. 2012, 18, 10082-10091.

[3] S. Klotzbach, T. Scherpf, F. Beuerle, Chem. Comm. 2014, 50, 12454-12457.

Physikalische und Theoretische Chemie P87 Photoelectron Spectroscopy of the three Picolyl Radical Isomers

E. Reusch, F. Holzmeier, P. Constantinidis, P. Hemberger, I. Fischer

Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland,

97074 Würzburg, Germany

The picolyl radical (C6H6N), which is used as a model compound for heteroaromatic radicals, should

be a key-intermediate in the combustion of bio fuels. Its structure is isoelectronic to benzyl C7H7, an

important combustion intermediate. Therefore, the decomposition of picoline to picolyl in pyrolysis

processes has been studied previously.[1-3] In contrast to benzyl, there are three different isomers for

picolyl. The ring can be substituted in the ortho-, meta-, or para-position with respect to the nitrogen

atom. Even though the ionization energies of the three radicals have already been determined by electron

impact ionization, optimized values obtained by threshold photoelectron spectroscopy (TPES) will be

reported.[4,5]

Figure 1: Mass selective Threshold Photoelectron Spectra of the three Picolyl Radical Isomers

To get new insights this study applies imaging Photoelectron Photoion Coincidence Spectroscopy

(iPEPICO), which is able to supply mass selective TPES. This method has the advantage of assigning

only one mass to the corresponding TPES-signal.

Picolylamine has been selected as an excellent precursor for generating the picolyl radical. The

radical was produced by flash pyrolysis and photoionized by tunable vacuum ultraviolet synchrotron

radiation.

This poster offers a fundamental overview of mass selective TPES and an improved value for the

ionization energy of the three picolyl radicals, executed at the Swiss Light Source (SLS) for synchrotron

radiation (Villigen, Switzerland).

[1] A. Terentis, A. Doughty, J. C. Mackie, J. Phys. Chem. 1992, 96, 10334-10339.

[2] A. Doughty, J. C. Mackie, J. Phys. Chem. 1992, 96, 10339-10348.

[3] J. Jones, G. B. Bacskay, J. C. Mackie, Isr. J. Chem. 1996, 36, 239-248.

[4] J. A. Bray, E. R. Bernstein, J. Phys. Chem. A 1999, 103, 2208-2213.

[5] T. F. Palmer, F. P. Lossing, J. Am. Chem. Soc. 1963, 85, 1733-1735.

Organische Chemie und Biochemie P88 Sugar Coated Nanodiamonds

S. Wachtler1, C. Fessele2, V. Chandrasekaran2, C. Stiller1, T. K. Lindhorst2, A. Krueger1

1Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg

[email protected] 2Institut für Organische Chemie, Universität Kiel, Otto-Hahn-Platz 3–4,

D-24118 Kiel, [email protected]

Nanodiamonds have proven to be an interesting material for biological and biomedical applications

because of their low toxicity.[1] Several studies have also shown promising results of saccharide

functionalized nanodiamonds for detecting specific pathogens and creating antiadhesive surfaces. One

of these pathogens is type 1 fimbriated E. Coli bacteria which possess lectin FimH on their surface and

therefore show a specific binding to α-D-mannosides.[2]

Figure 1: Functionalization of nanodiamond with saccharides using thiourea-bridging.

In order to link the saccharides to the nanodiamond particles, a new binding method using the

formation of thiourea from an amino group and an isothiocyanate has been developed. All three

synthesized samples show affinity for bacterial lectin FimH and their binding strength is in accordance

with the expected interaction between the mannose derivatives and the lectin FimH binding pocket.[3]

This project has received funding from the European commision and the German Bundesministerium

für Bildung und Forschung (BMBF) (contract NanoDiaMed grant number 13N12255 in

EuroNanoMed).

[1] A. Krueger, Chem. Eur. J. 2008, 14, 1382-1390.

[2] M. Hartmann, P. Betz, Y. Sun, S. N. Gorb, T. K. Lindhorst, A. Krüger, Chem. Eur. J. 2012, 18,

6485-6492.

[3] C. Fessele, S. Wachtler, V. Chandrasekaran, C. Stiller, T. K. Lindhorst, A. Krüger, Eur. J. Org.

Chem. 2015, 25, 5519-5525.

Organische Chemie und Biochemie P89 Synthesis and Properties of Methoxy-Bay-Substituted Perylene

Bisimides

A. Nowak-Król, P. Leowanawat, F. Würthner

Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany

Universität Würzburg, Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI),

Theodor-Boveri-Weg, 97074 Würzburg, Germany

Perylene bisimides (PBIs) feature high molar absorption coefficients and mirror image fluorescence

with fluorescence quantum yields typically above 90% in a wide range of solvents. A combination of

these favorable properties along with an exceptional thermal and photostability accounts for an extensive

exploration of PBIs in a large variety of fields spanning from commercial colorant chemistry,

supramolecular polymerization, liquid crystals to complex supramolecular architectures.[1]

Core-non-substituted PBIs bearing a large variety of imide substituents and tetraphenoxy-PBIs were

commonly prepared and investigated within this group of compounds, whereas tetra-bay-substituted

alkoxy-PBIs were not accessible. Recently, we have developed an efficient protocol for the synthesis of

tetra-methoxy-bay-substituted PBIs via copper-mediated cross-coupling of 1,6,7,12-tetrabromo-

perylene tetraester with sodium methoxide, which gave rise to the corresponding PBIs.[2] The

introduction of four methoxy groups into bay positions of the PBI core entailed a significant modulation

of the electronic band gap. This new class of compounds display interesting photophysical properties,

such as bathochromically shifted absorption and emission (beyond 600 nm), and most notably high

fluorescence quantum yields despite electron-donating bay substituents. We have also identified

interesting features of the solid packing which have implications on the general understanding of

dynamic processes occurring in bay-substituted perylene bisimides. These aspects as well as

photophysical properties of the new class of compounds will be discussed and compared with the

previously studied bay-substituted-PBIs.

[1] F. Würthner, C. R. Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Chem. Rev.

2016, 116, 962-1052.

[2] P. Leowanawat, A. Nowak-Król, F. Würthner, Org. Chem. Front. 2016, 3, 537-544.

Organische Chemie und Biochemie P90 Anti-tumoral Naphthoquinones: Isolation from Plants

and Total Synthesis

C. Froschgeiser1, J. Maier1, G. Zhang1, A. Irmer1, S. Rüdenauer1, R. Bargou2, M. Chatterjee2,

G. Bringmann1

1Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany

2Department of Internal Medicine II, Comprehensive Cancer Center Mainfranken, Hospital of

Würzburg, Versbacher Straße 5, 97078 Würzburg, Germany

The West African liana Triphophyllum peltatum (Dioncophyllaceae) has proven to be a rich source

of natural products. Besides the plant itself, callus cultures were also found to produce distinct amounts

of secondary metabolites, in particular naphthoquinones like plumbagin and droserone. By solidification

of the medium, these cell cultures were exposed to aerobic and thus oxidative conditions, which favored

the formation of further, structurally related new naphthoquinones like dioncoquinones A (1) and B (2).

These new compounds (especially 2) show excellent - and specific - antitumoral activities against the

multiple-myeloma (MM) cell line INA-6 without any significant toxicity on normal blood cells.[1]

An efficient total synthesis of dioncoquinone B (2) was established to provide this lead structure in

sufficient amounts for a more-in-depth biological evaluation. A first series of structural analogs of

dioncoquinone B (2) was obtained by semi and total synthesis for structure-activity relationship (SAR)

studies hopefully leading to new agents with enhanced anti-MM activities and low cytotoxicities.[2]

Moreover, a synthetic route to a dioncoquinone B derivative was developed, equipped with a probe

(e.g., biotin like in 3) suited for affinity labeling experiments to investigate the interactions of 3 with its

cellular target(s) and/or binding partner(s).

[1] G. Bringmann et al., Phytochemistry 2008, 69, 2501-2509.

[2] G. Bringmann et al., Eur. J. Med. Chem. 2011, 46, 5778-5

Organische Chemie und Biochemie P91 Quality of Antimalarial Drugs in Africa: Data on Artemisinin-Based

Combination Therapy Products (Artemether-Lumefantrine) from

the Democratic Republic of the Congo

J. P. Mufusama1,2, K. Ndjoko Ioset1, U. Holzgrabe3, G. Bringmann1

1Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany 2Faculté des Sciences Pharmaceutiques, Université de Kinshasa, B.P. 212, Kinshasa XI,

Democratic Republic of the Congo 3Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg,

Germany

Malaria, with 90% of prevalence in Sub-Saharan Africa, is the most dangerous tropical disease with

more than two million people dying each year. Nearly half of the world population is exposed to the

disease; pregnant women and children under the age of five years are the main victims.[1]

Combination therapies in which an artemisinin (1) derivative like artemether (2) is associated to another

class of antimalarial drugs like lumefantrine (3), the so-called artemisinin-based combination therapies

(ACT), are nowadays recommended by the World Health Organization (WHO) as first-line treatment

for uncomplicated falciparum malaria.[2] The poster will address quality issues of these essential

antimalarial medicines within the African continent including findings of a nationwide survey in the

Democratic Republic of the Congo. Results were obtained based on packaging, thin-layer

chromatography (TLC), and high-performance liquid chromatography (HPLC) analyses.

[1] WHO (2015) World Malaria Report 2015. WHO, Geneva.

[2] WHO (2015) Guidelines for the treatment of malaria, 3rd Edition. WHO, Geneva.

Organische Chemie und Biochemie P92 Korundamines and Mbandakamines, Unsymmetric

NaphthylisoquinolineDimers from the Congolese Liana

Ancistrocladus ealaensis

D. T. Tshitenge1,2, D. Feineis1, B. K. Lombe1, G. Bringmann1

1Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany

2Faculty of Pharmaceutical Sciences, University of Kinshasa, P.O. Box 212 Kinshasa XI,

Democratic Republic of the Congo

Naphthylisoquinoline alkaloids (NIQs) are thrilling natural products occurring in the two paleotropic

plant families of Ancistrocladaceae and Dioncophyllaceae.[1] They are unique due to their unprecedented

biosynthetic origin, their unusual structural features, and their high anti-infective activities.[1]

Ancistrocladus ealaensis is a widespread Central African liana mainly located in the Northwestern

part of the Democratic Republic of the Congo.[2] Most recent phytochemical studies have shown that the

plant is a rich source of structurally intriguing, highly unsymmetric dimeric NIQs. More than twelve

new dimers, among them new korundamine-type dimers, have of two mbandakamine-type dimers,[3]

viz., 1-epi-mbandakamine A (2) and 1-epi-cyclombandakamine A (3).

The korundamines are the first fully elucidated NIQ ‘mixed’ dimers consisting of a 5,8’- and a 7,8’-

linked monomeric halves, connected by a freely rotating central biaryl axis.The new dimer 2 combines

in the highest known steric hindrance at the central chiral axis between the monomers, with the scarce

cis-relative configuration in one molecular half. Most exciting is the fact that dimers like 2 can undergo

further intramolecular cyclization reactions, due to the extreme steric constrains, leading to

unprecedented cage-like dimers, like e.g. 3.

The detection of dimers of a huge steric demand at the central axis, together with dimers possessing

a freely rotating central axis indicates the unique synthetic potential of A. ealaensis. Moreover, these

compounds exhibit remarkable antimalarial activities against Plasmodium falciparum.

[1] G. Bringmann et al., Progress in the Chemistry of Organic Natural Products, Springer-Verlag,

Wien, New York, 2001, 82, pp. 111-123.

[2] J. Léonard, Bull. Soc. Bot. Belg. 1949, 82, 27-40.

[3] G. Bringmann et al., Org.Lett. 2013, 15, 2590-259

Abstract Abendvortrag Dr. Klein-Sommer

Dr. Günther Klein-Sommer

Chemie der Pyrotechnik – Theorie und Effektdemonstration

Im Gegensatz zur Sprengtechnik werden in der Pyrotechnik die Explosionsstoffe für

Vergnügungs- oder technische Zwecke eingesetzt. Unter Ausnutzung der nach der Zündung

freigesetzten Energie können Licht-, Schall-, Rauch-, Nebel- oder Bewegungswirkungen

erzeugt werden. Von besonderem Interesse, wie die Umsätze der Pyrotechnischen Industrie

zum Jahresende zeigen, ist die Pyrotechnik im Zusammenhang mit der “Feuerwerkerei“.

Im Rahmen des Vortrages wird einleitend die historische Entwicklung der Feuerwerkskunst

vorgestellt. Aus der Erfahrung heraus resultiert die Entwicklung der heute verwendeten

pyrotechnische Zubereitungen und pyrotechnischen Gegenstände “Feuerwerkskörper“ die zur

Erzeugung von Licht-, Schall-, und Raucheffekten oder von Bewegungswirkungen verwendet

werden. Im Anschluss an den Vortrag erfolgt eine Demonstration von Effekten aus den

Bereichen Bühnenpyrotechnik, Spezialeffekte und Feuerwerk.

TEILNEHMER

TEILNEHMER

TEILNEHMER – Anorganische Chemie/Materialwissenschaften

# Name Vorname Arbeitskreis

54 Berthel Johannes Radius

13 Eichhorn Antonius Radius

66 Feizy Nilab Schatzschneider

53 Griesbeck Stefanie Marder

45 Hailmann Michael Finze

52 Kachel/ Kelch Stephanie u. Hauke Braunschweig

9 Kerpen Christoph Finze

85 Krahfuß Mirjam Radius

75 Kuntze-Fechner Maximilian Radius

70 Lorson Thomas Luxenhofer

12 Lubitz Katharina Radius

81 Lübtow Michael Luxenhofer

79 Mawamba Kemo Viviane Schatzschneider

80 Merz Julia Marder

72 Moustafa Mansour Ahmed Schatzschneider

77 Mühlbach Friedrich Müller-Buschbaum

30 Müssig Jonas Braunschweig

84 Nutz Marco Braunschweig

16 Paul Ursula Radius

76 Peng Kun Schatzschneider

28 Rauch Florian Marder

63 Ribbeck Tatjana Finze

71 Schneider Heidi Radius

59 Sedykh Alexander Müller-Buschbaum

15 Sieck Carolin Marder

19 Sorg Jens Müller-Buschbaum

68 Stangl Johannes Müller-Buschbaum

55 Waag-Hiersch Luisa Schatzschneider

50 Wehner Tobias Müller-Buschbaum

41 Zottnick Sven Müller-Buschbaum

TEILNEHMER – Organische Chemie/Biochemie

# Name Vorname Arbeitskreis

25 Buschmann Rachel Krüger

11 Dechant Moritz Lehmann

32 Dhara Ayan Beuerle

90 Froschgeiser Christina Bringmann

78 Hecht Reinhard Würthner

58 Kaufmann Christina Würthner

57 Kiendl Benjamin Krüger

86 Leonhardt Viktoria Beuerle

29 Lombe Blaise Kimbadi Bringmann

23 Meza Ana Lucia Würthner

24 Mims David Lambert

91 Mufusama Jean-Pierre Bringmann

89 Nowak- Król Agnieszka Würthner

74 Possiel Christian Seibel

36 Riese Stefan Lambert

56 Roos Markus Lambert

35 Sapotta Meike Würthner

49 Schopf Nina Lambert

44 Schreck Maximilian Lambert

31 Schweeberg Sarah Krüger

18 Seifert Sabine Würthner

69 Shamburger William Bringmann

67 Soberats Bartolome Würthner

83 Syamala Peethambaran Nair Würthner

92 Tshitenge Dieudonné Bringmann

88 Wachtler Stefan Krüger

14 Wagner Wolfgang Würthner

48 Warkentin Viktor Krüger

21 Wehner Marius Würthner

TEILNEHMER – Pharmazie/Lebensmittelchemie

# Name Vorname Arbeitskreis

65 Amstalde Cecilia Meinel

47 Berninger Michael Holzgrabe

33 Braun Alexandra Meinel

20 Dodt Katharina Meinel

34 Gutmann Marcus Meinel

42 Hermann Cornelius Meinel

40 Kuhn Maximilia Sotriffer

37 Miesler Tobias Meinel

82 Nagl Patrick Holzgrabe

73 Pason Lukas Sotriffer

8 Plank Christina Sotriffer

64 Pospiech Andreas Högger

27 Pospiech/Zilker Andreas u. Markus Högger/Holzgrabe

61 Scherf-Clavel Maike Högger

51 Spieler Valerie Meinel

60 Wu Fang Meinel

TEILNEHMER – Physikalische Chemie/Theoretische Chemie

# Name Vorname Arbeitskreis

62 Bellinger Daniel Engels

26 Brückner Charlotte Engels

22 Flock/Schmitt Marco u. Hans-

Christian Fischer

17 Hirsch Florian Fischer

43 Le Thien Anh Engels

39 Lindner Joachim Mitric

10 Pachner Kai Fischer

38 Pres Sebastian Brixner

87 Reusch Engelbert Fischer

46 Roeding Sebastian Brixner

NOTIZEN

Notizen

NOTIZEN

Organisationskomitee

Das Jungchemikerforum Würzburg im Februar 2016.

www.jcf-wuerzburg.de

JungChemikerForumWürzburg

Programm

ChemSyStM 2016

11.00 Begrüßung durch das JCF Würzburg und den

GDCh Ortsverband (HS B)

11.15 Gastvortrag des Verbandes angestellter

Akademiker und leitender Angestellter (VAA) (HS A)

12.00 Mittagspause

13.00 Posterappetizer (HS A)

14.00 Postersession

17.00 Sektempfang

17.15 Abendvortrag der Firma Sommer-Feuerwerk:

„Chemie der Pyrotechnik“ (HS A)

18.00 Preisverleihung (HS A)

18.30 Abschlussfeuerwerk im Freien (Sommer-Feuerwerk)

…gemütlicher Ausklang bei Abendessen und Bier