Katalytisch aktive Materialien für (de)zentrale ...

41
Leibniz-Institut für Katalyse e.V. LIKAT Rostock „Katalytisch aktive Materialien für (de)zentrale Energiespeichertechniken“ Henrik Junge Konferenz des Leibniz-Forschungsverbundes Energiewende Berlin, 30. Juni 2016

Transcript of Katalytisch aktive Materialien für (de)zentrale ...

Leibniz-Institut für Katalyse e.V.

LIKAT Rostock

„Katalytisch aktive Materialien für (de)zentrale Energiespeichertechniken“

Henrik Junge

Konferenz des Leibniz-Forschungsverbundes Energiewende Berlin, 30. Juni 2016

LIKAT Rostock 2

LIKAT: Yesterday and Today

Leibniz – Institut für Katalyse: Know How in Catalysis

„Das Institut erbringt ganz überwiegend exzellente, international hoch anerkannte Leistungen auf einem sowohl wissenschaftlich interessanten als auch gesellschaftlich und ökonomisch hoch bedeutsamen Gebiet. Es ist inhaltlich überzeugend und zukunftsorientiert aufgestellt, indem es seine Arbeiten an langfristig tragfähigen Problemstellungen orientiert.“ 2009 - Gutachterkommission nach einer intensiven Evaluierung des LIKAT

History

1952 founded as first research institute for catalysis in Europe 1959 Separation in two institutes (later IfOK and ACA) 2003 Integration of IfOK into the Leibniz-Society 2006 Merger of IfOK and ACA to LIKAT which is today the largest non-profit research institute on applied catalysis

Status

31.12.2014: 302 co-workers 271 publications in 2014 basic funding ca. 10.8 Mio € external funding 7.4 Mio €

Prof. Rienecker Prof. Langenbeck

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

Challenges for the 21st Century ─

Top 10 of mankind‘s global problems*

1. Energy

2. Water

3. Food

4. Environment

5. Poverty

6. Terrorism and war

7. Diseases

8. Education

9. Demokracy

10. Population

Energy issues are primary:

Problems 2-9 are dependent directly or indirectly by energy!

*Richard. E. Smalley, MRS-Bulletin 2005, 30, 412-417.

Nobleprice-winner Chemistry 1996 (together with Robert F. Curl Jr. and Sir Harold Kroto)

Catalysis - science of acceleration of chemical reactions - is a

key technology for the fields of energy and environmental protection

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016 3

LIKAT Rostock

“Catalysis for Energy” at LIKAT in Rostock

1

1,008

4

Actual sources of Hydrogen: Steam Reforming of natural gas (48%),

Refinery- and chemical off gases (30%), coal gasification (18%), Electrolyses of water (4%)

Hydrogen storage in liquid chemical compounds (formic acid, methanol…)

Continious hydrogen generation with Ru- and Fe-based catalysts up to 47 L h-1

<10 ppm CO TON > 106, TOF 47000 h-1

e.g. Angew. Chem. Int. Ed. 2008, Science 2011 and EES 2012

Design of heterogeneous catalysts

Fuel cell catalysts for special appli-cations (e.g. deep sea)

Hydrogenation and oxidation catalysts

e.g. Science 2013 and Nat. Prot. 2015

„Sun Fuels“ by photocatalytic water cleavage and CO2 reduction

e.g. Angew. Chem. Int. Ed. 2009 and 2013, ChemCatChem 2015

Hydrogen Genera- tion from alcohols, sugars and biomass

biomass or its fermentation products as feedstock mild conditions, low CO content

e.g. Nature 2013 and Angew. Chem. Int. Ed. 2013

BOCKRIS Hydrogen Society

ASINGER/OLAH MeOH Economy

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

„Energiewende“ – Storage of fluctuating energy

5

http://www.itm-power.com/wp-content/uploads/2014/01/Cleantech-Investor-Energy-Storage-15mins.pdf (11.08.2014).

Renewable power / energy (wind, solar, biomass) 2013 in

Mecklenburg-Western Pomerania: 0.95 GW / 8.3 TWh

Annual consumption: 7 TWh; daily: 0.45 – 1.1 GW

Expected necessary storage capacity in Germany:

18 GW / 7.5 TWh (2050)

Power-to-Liquid

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

Energy storage based on H2 and CO2

H2 HCOOH CH3OH CH4

H2O

½ O2

CO2 2 H2

H2O

H2

H2O

H2 storage efficiency

[%]

100 66.7 50

energy content [kWh/kg]/[kWh/L]

1.45/1.76 5.47/4.44 13.9/9.97x10-3

CO

energy- storage

base material for chemical industry

fuel

methanol economy

syngas (Fischer Tropsch) base material

for chemical industry (ethylen, propylen…)

energy storage

fuel additive (MTBE)

energy storage (natural gas

net)

energy storage (water gas shift reaction)

H2O

33.33/ 2.72x10-3

6 Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

Outline

Power to X: Hydrogen, formic acid and methanol

State of the art (available technologies)

New technologies (lab scale/still under development)

Examples from own research

Conclusion: Outlook, influence and timeline

7 Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

„Dream Reaction“ ─ Catalytic Water Cleavage

DG° = +238 kJ mol-1

DH° = +286 kJ mol-1

2500°C

1.23 eV 1/2

„I believe that one day hydrogen and oxygen, which are the components of water, can be used as a never ending source of heat and light; much better than coal. … Water will be the coal of the future.“ Jules Verne, The Secret Island (1874)

8

LIKAT Rostock

Benchmark for Renewable Hydrogen

Utsira, Norway

Energy efficiency:

Electrolysis: >70% Si-photovoltaics: <20% Org.-photovoltaics: <10%

Threshold*: 10% Lab scale*: 22.4%

*L. Spiccia et al. Energy Environ. Sci. 2015, 8, 2791: Perowskite PV cell, concentrated solar light (100 suns), Ni foam as electrodes

9

LIKAT Rostock 10

State of the Art in Germany: Renewable Hydrogen

>30 pilot plants in Germany combining wind power, Electrolysis and/or Sabatier (built and planned)

World first hybrid power plant by ENERTRAG in Prenzlau, Brandenburg

the grid

3 windparks (each ~2000 kW)

500 kW electrolyzer 120 Nm³/h H2

30 bar pressure

H2

storage (H2+biogas)

1350 kg H2 max 30 bar pressure

1000 kW biogas

block heating station

400 kW

block heating station

350 kW (70% H2 max.)

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

Combining Photosynthesis with H2 Generation

Water + Energy Hydrogen + Oxygen

11

LIKAT Rostock

Simple models for Hydrogenases

grün: i:\Promotion\Experimentelles\Messdaten\GC\09_08\FG01-321\FG01-321.FG3

blau: i:\Promotion\Experimentelles\Messdaten\GC\09_08\FG01-304\FG01-304.FG3

[ h ]

43210

[ m

l ]

26

24

22

20

18

16

14

12

10

8

6

4

2

0

light on light off

F. Gärtner, S. Basker, A. Surkus, A. Boddien, H. Junge, B. Loeges, P. Dixneuf, M. Beller,

Angew. Chem. Int. Ed. 2009, 48, 9962.

In D2O experiments D2 is formed instead of H2 (water as hydrogen source)

Conditions: 7.5 μmol Ir, 18.3 μmol Fe, 10 mL TEA/H2O/THF = 1/1/4, 25 °C.

H2

D2

Dr. F. Gärtner

12 Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

The Iridium/Iron water reduction cascade

2nd generation: Up to 4550 turn over numbers for Ir-PS and 2770 for Fe-WRC + Phosphin

Quantum Yield: up to 48 % at 415 nm (SR: Triethylamine)

a) F. Gärtner, B. Sundararaju, A.-E. Surkus, A. Boddien, B.Loges,H. Junge, P. H. Dixneuf, M. Beller, Angew. Chem. Int. Ed. 2009, 48, 9962. b) F. Gärtner, A. Boddien, E. Barsch, K. Fumino, S. Losse, H. Junge, D. Hollmann, A. Brückner, R. Ludwig, M. Beller, Chem. Eur. J. 2011, 17, 6425; c) F. Gärtner, D. Cozzula, S. Losse, A. Boddien, G. Anilkumar, H. Junge, T. Schulz, N. Marquet, A. Spannenberg, S. Gladiali, M. Beller Chem. Eur. J. 2011, 17, 6998; d) D. Hollmann, F. Gärtner, R Ludwig, E. Barsch, H. Junge, M. Blug, S. Hoch, M. Beller, A. Brückner; Angew. Chem. Int. Ed. 2011, 50; 10246; e) F. Gärtner, St. Denurra, S. Losse, A. Neubauer, A. Boddien, A. Gopinathan, A. Spannenberg, H. Junge, S. Lochbrunner, M. Blug, S. Hoch, J. Busse, S. Gladiali, M. Beller, Chem. Eur. J. 2012, 18, 3220.

Dr. D. Cozzula Dr. F. Gärtner

13

LIKAT Rostock

1975 1980 1985 1990 1995 2000 2005 2010 2015

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

Pt

Co

Fe

Rh

Dyads

Ni

TO

N

Performance of Water Reduction Catalysts

Fe: 200 (2009)

Fe: 2770 (2011)

metal

CHm

blankobs

metaln

V

VV

TON

25,,

.

2

TON =

Turn Over Number

metal

hydrogen

metaln

nTON

Fe: 22200 (2013)

Zeng et al. Angew. Chem.

Int. Ed. 2013, 52, 5631

14 Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

1975 1980 1985 1990 1995 2000 2005 2010 2015

0

100000

200000

300000

400000

500000

600000

Pt

Co

Fe

Rh

Ni

Cu

Dyads

TO

N

Performance of Water Reduction Catalysts

Increase by four orders of magnitude for Ni and by three orders for Fe and Co within the last 6-8 years!

metal

CHm

blankobs

metaln

V

VV

TON

25,,

.

2

TON =

Turn Over Number

metal

hydrogen

metaln

nTON

Ni: 280000 (2015)

15

Eisenberg et al. ACS Catal. 2015, 5, 1397

(X = CH, N)

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

Mode of operation

16 Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

D. Hollmann, F. Gärtner, R. Ludwig, E. Barsch, H. Junge, M. Blug, S. Hoch, M. Beller, A. Brückner, Angew. Chem. Int. Ed. 2011, 50, 10246; “Hot paper”

time-resolved photoluminescence spectroscopy and DFT: A. Neubauer, G. Grell, A. Friedrich, S. Bokarev, P. Schwarzbach, F. Gärtner, A.-E. Surkus, H. Junge, M. Beller, O. Kühn, S. Lochbrunner, J. Phys. Chem. Lett., 2014, 5, 1355.

LIKAT Rostock

From Sacrificial Reagents to Overall Water Splitting

Lewis and Nocera Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729 and 2007, 104, 20142.

Photoelectrochemical Cell Artificial Leaf

Domen et al. Angew. Chem. Int Ed. 2010, 49, 4096.

Semiconductors with appropriate band gap

Kudo et al. J. Am. Chem. Soc., 2013, 135, 5441.

Tandem cells

C.A. Grimes, Light, Water & Hydrogen, 2008, Springer; X. Chen, Chem. Rev., 2010, 6503; K. Domen, ChemCatChem, 2012, 1485

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016 17

LIKAT Rostock

From Sacrificial Reagents to Overall Water Splitting

Domen et al. Angew. Chem. Int Ed. 2010, 49, 4096.

Semiconductors with appropriate band gap

Kudo et al. J. Am. Chem. Soc., 2013, 135, 5441.

Tandem cells

Photoelectrochemical Cell: Development of photoelectrode materials

L. Sun et al., Chem. Comm. 2010, 46, 7307. (TON 16)

C.J. Pickett et al., Angew. Chem. 2010, 122, 1618. (stable for 1 h)

dye/catalyst/

semiconductor/

TCO/glass or metal

assemblies

oxidation reduction

18

LIKAT Rostock

Nocera, Science 2011, 334, 645.

(eff.: 2.5% wireless, 4.7% wired)

.

Photoelectrochemical Cell

Artificial Leaf

Domen et al. Angew. Chem. Int Ed. 2010, 49, 4096.

Semiconductors with appropriate band gap

Kudo et al. J. Am. Chem. Soc., 2013, 135, 5441.

Tandem cells

C.A. Grimes, Light, Water & Hydrogen, 2008, Springer; X. Chen, Chem. Rev., 2010, 6503; K. Domen, ChemCatChem, 2012, 1485

From Sacrificial Reagents to Overall Water Splitting

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016 19

LIKAT Rostock

[Ir(ppy)2(bpy)]PF6 [Fe3(CO)12]

THF/H2O/TEA 6/2/4, 25 °C Xe lamp, 0.5 eq. P(Ph(CF3)2)3

or Au/TiO2, 25°C, MeOH/H2O 1:1, Hg lamp

„Proof of principle“

Demonstration model

(10/2014)

Upscaling

mesopor. C3N4 (CN-6)/ Pt/TEOA

H2 generation: 0.5 L h-1

1.22 m2

H2 generation for propeller 10 mW Pt-TiO2-

Cu(InGa)Se2- Mo/Pt

16 x 4 cm2

H2 generation: up to 0.2 L h-1

H2 and O2 storage in bags

Output: 5 Wel for 1 h

20

Highlights

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 21

Hydrogen Storage

Physical storage

Compressed H2

Liquid H2

Cryo-physisorption • zeolithe

• MOFs

• PIMs

• SWCNTs, MWNTs, GNFs

• aluminium cylinders 6.7 wt % (500

bar)

• steel cylinder 2.5 wt % (11.000 bar)

• composite materials 6.0 wt % (700

bar)

• <15% of energy for compression

• steel cylinder

• stored at 22.4 K

• boil off 0.4 % (50 m³ tank)

• 40 % of the energy for cooling

• cryo compressed (+25% capacity)

Chemical storage

Hydrides

Ammonia, Hydrazine,

Amino-, Ammoniaborane,

C-based H2 Carrier

• metal hydrides (MgH2,

NaBH4…)

• complex hydrides (NaAlH4,…)

• NH3, N2H4

• RNH2BH3, NH3BH3

• [Mg(NH3)6]Cl2

• MeOH, EtOH

• LOHC: Decaline, Methylcyclo-

hexane, Carbazole, Marlotherm

• formic acid

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

Energy Storage in Nature

Only visible light is used (400 – 700nm): 50% loss

Reflection, absorption and transmission by leaves: 20% loss

Limited light reaction efficiency (8-10 photos per CO2): 72-77% loss

Respiration required for translocation and biosynthesis: 40% loss

Total theoretical efficiency is not more than 5.5-6.6% (reality:

0.6%)

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016 22

LIKAT Rostock

liquid slightly toxic* 1.76 kWh/L 4.38 wt% H2

CO2 neutral ambient conditions no H2 to water

* LD50 (oral rat): 730 mg/kg (OECD guideline 401)

FA: Hydrogen Transfer Reagent & Energy Carrier

∆G°: -32.8 …+9.4 kJ mol-1

23

Pilot plant for CO2-based FA synthesis developed at BASF

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 24

H2-Storage ̶ a CO2-neutral cycle

B. Loges, A. Boddien, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2008, 47, 3962 („Hot paper“); A. Boddien, B. Loges, H. Junge, M. Beller, ChemSusChem 2008, 1, 751; A. Boddien, F. Gärtner, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, M. Beller, Angew. Chem. 2011, 123, 6535.

Dr. B. Loges

For a similar approach see the work of Gabor Laurenzcy et al. and Fukuzumi et al.

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 25

8 cycles with the same catalyst with only slight deactivation!

0

1000

2000

3000

Vg

as (

H2+

CO

2)

[mL

]

1 2 3 4 5 6 7 8

cycle

CO2 hydrogenation (H2 recharge) - production of x HCO2H·y NEt3: 14.4 mmol NEt3, 10.4 µmol [RuH2(dppm)2], 20 mL DMF, 30 bar H2, 30 bar CO2, RT; Decomposition (H2 release): RT; Addition of 0.1 mL (0.73 mmol) NEt3 after each run.

Towards a Hydrogen Battery

Unprecedented formic acid to amine ratio of 2.69 (high energy content)

Fast H2 loading (even at RT) and unloading kinetics High productivity for H2 liberation of (TON: 800000)

A. Boddien, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, G. Laurenczy, M. Beller, Energy & Environmental Science 2012, 5, 8907.

Dehydrogenation after „Loading“

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 26

Reaction conditions: left: 9.52 μmol [RuCl2(benzene)]2, 6eq. dppe, 20 mL N,N-dimethyloctylamine (DMOA), 25 °C, p=0 bar, 300 rpm, const. addition of HCO2H 13 µL/min; right: 50 μmol [RuCl2(benzene)]2, 600 µmol dppe, 40 mL N,N-dimethyloctylamine (DMOA), 60 °C, p=6.5 bar, 300 rpm, const. addition of HCO2H 60-1300 µL/min.

P. Sponholz, D. Mellmann, H. Junge, M. Beller ChemSusChem 2013, 6, 1172.

0

5

10

15

20

25

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

time [days]

gas f

low

[m

l/m

in],

FA

flo

w [

μl/m

in]

0

5

10

15

20

25

30

35

40

45

50

55

60

H2 [%

]

gas flow [ml/min]

FA flow [μl/min]

H2 [%]

985 L gas from 841 mL FA

gas flow: 15.2 mL min-1

CO: < 2 ppm

TON: 1,058,546

Continuous hydrogen generation from FA

Dr. P. Sponholz

TOF up to 47,000 h-1

up to 47 L H2/h CO: < 2 ppm Energy up to 128 Wh

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 27

Advantages of Combination:

Hydrogen generation on demand via low

temperature H2 reforming

FC waste heat for FA reactor

Low CO content (< 10 ppm) HCOOH

Vorlage

Heizung

+ -

Brennstoffzelle

%

H2 50%,

CO2 50%

Luft

FM1

PI01

TI04

FM2PI02

TI02

rH01

TI01

Kondensat

TI9

MFC

Column

(Carbotex)

Massen-

flussmessung

Pumpe1

Pumpe 2

MFC

Sicherheitventil

TI05

TI08 TI10

TI07

TI06

Handventil

TI03

Gas-/Gas-

Befeuchter

Kühlung

AmeisensäurereaktorBrennstoffzellenstack

Temperierkreislauf

%

rH02

FM3

Filter

Flüssig-/Gas-

Befeuchter

Gasanalyse

Reactor

Temp. cycle

Fuel Cell Stack

(Thermal) coupling with a LT-PEMFC

0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

0 20 40 60

Cu

rre

nt

[A];

Vo

lta

ge

[V

]; P

el [W

]

Ga

s f

low

[m

L/m

in]

Time [h]

Gas flow [mL/min]

Power [W]

Current [A]

Voltage [V]

Source: C. Heßke, „Die Nutzung des Energiespeichermediums Ameisensäure für den kontinuierlichen Brennstoffzellenbetrieb“ presented at the 6th Workshop AiF – Brennstoffzellenallianz, 23. + 24. April 2013 in Duisburg

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 28

State-of-the-Art-Fe-Catalysts

TON: > 90,000

TOF: > 5,000 h-1

364.8 ml formic acid generate

>470 L hydrogen, CO: <10 ppm

C. Federsel, A. Boddien, R. Jackstell, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller,

Angew. Chem. Int. Ed. 2010, 49, 9777.

A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 2011, 333,

1733; D. Mellmann, E. Barsch, M. Bauer, K. Grabow, A. Boddien, A.

Kammer, P. Sponholz, U. Bentrup, R. Jackstell, H. Junge, G. Laurenczy, R. Ludwig, M. Beller, Chem. Eur. J. 2014, 20, 13589.

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 29

Direct catalytic Reduction of CO2

See e.g. E. Fujita Coord. Chem. Rev. 1999, 185–186, 373; G. Centi et al, Energy Environ. Sci. 2013, 1711; Y. Izumi, Coord. Chem. Rev. 2013, 257, 171; Y. Amao, ChemChatChem 2011, 3, 458; C. Wang et. al J. Phys. Chem. Lett. 2010, 1, 48.

.

Different products for CO2 reduction possible – proton coupled more electron processes are favoured (vs NHE at pH 7)

Kin

eti

c

Th

erm

od

yn

am

ic

photo-catalytic

electro-catalytic (Co-electrolysis)

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 30

Photochemical Reduction of CO2 to Formate

TON: 67 40 419 S: 526

Selectivity: 1.7 : 1 : 11 (80%)

TON: - 6 34 S: 40

Selectivity: 0 : 1 : 6 (85%)

MSc A. Rosas

L = CO, HCOO-, Cl, H2O, HCO3

2-

Isotope-labelling exp. H13COO

-

13CO

H13COO-

NMP

or

mesopor. C3N4 (CN-6)

Irradiation time / h

Pro

duct

s /

TO

N

HCOO-

CO

H2

A. Rosas, H. Junge, M. Beller, ChemCatChem, 2015, 7, 3316

For a previous example of Ru-based CO2 reduction catalysts see also Lehn et al. J. Organomet Chem. 1990, 382, 157.

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 31

Selective Photocatalytic CO2 reduction to CO

Catalyst Photosensitizer CO

(TON) H2

(TON) Selec. (CO)

1 [Ir(dF(CF3)ppy)2(dtbbpy)]+ 421 28 94%

2 [Ir(dF(CF3)ppy)2(dtbbpy)]+ 429 0 100%

[Ir(dF(CF3)ppy)2(dtbbpy)]+

7.5 mL CO2-saturated solution of NMP/TEOA (5:1, v/v), 1.0 µmol catalyst, 12.5 µmol PS.

Increased CO selectivity and activity by Knölker iron complexes with q.y. up to 68%

MSc A. Rosas Dr. P. Alsabeh

A. Rosas-Hernández, P. G. Alsabeh, E. Barsch, H. Junge, R. Ludwig, M. Beller, Chem. Comm. 2016, DOI: 10.1039/C6CC01671E

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

Only a question of energy densities?

0

1

2

3

4

0 1 2 3 4 5

Gravimetric energy density / [kWh/kg]

Volu

metr

ic e

nerg

y d

ensity / [k

Wh/l]

CH2, 350 bar

CH2, 700 bar

LH2

Metal Hydrides

Li-Ion Battery

DOE 2015

DOE 2010

CNG

Gasoline: 12 kWh/kg; 8.8 kWh/l

Formic Acid

Carbazol

Methanol/ Ethanol (reforming)

Source: C. Heßke, „Die Nutzung des Energiespeichermediums Ameisensäure für den kontinuierlichen Brennstoffzellenbetrieb“ presented at the 6th Workshop AiF – Brennstoffzellenallianz, 23rd - 24th April 2013 in Duisburg/Germany

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016 32

LIKAT Rostock

Applications

base material for the chemical industry (formaldehyde,

ethylene, propylene); 60 mill. tons p.a. (2012)

fuel additive (MTBE)

fuel for internal combustion engines M5 to M100 (ON > 100)

clean marine fuel

Methanol – a common resource

33 Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

CO2-based methanol synthesis

First examples published in lab scale with homogeneous and heterogeneous catalysts e.g. Leitner et. al Angew. Chem. Int. Ed. 2012, 51, 7499 ([(Triphos)Ru(TMM)]; TON 221); e.g. Tsang et. al Angew. Chem. Int. Ed. 2012, 51, 5832 (CuZnO catalysts); Three plants based on CO2 + 3 H2 = CH3OH + H2O; "George Olah CO2 to Renewable Methanol

Plant” in Iceland (4 Mill. L p. a.; ca. 3.500 t); Silicon Fire AG (50 L p. d.) and Mitsui Chemicals Japan (Pilot Plant - 100 t p. a.) (G. Olah, Angew. Chem. Int. Ed. 2013, 52, 104)

„green energy“

water

methanol H2O 3 H2

CO2

liquid 4.44 kWh/L 12.6 wt% H2

CO2 neutral ambient conditions toxic

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016 34

LIKAT Rostock

MeOH Reforming by Homogeneous Catalysts

M. Nielsen, E. Alberico, W. Baumann, H.-J. Drexler, H. Junge, S. Gladiali, M. Beller Nature 2013, 495, 85, see also: R. E. Rodríguez-Lugo, M. Trincado, M. Vogt, F. Tewes, G. Santiso-Quinones, H. Grützmacher, Nat. Chem. 2013, 5, 342; recently further examples have been reported by Milstein,Yamaguchi, Crabtree,…

Thermodynamics: ΔH298K = + 49.4 kJ mol-1

State-of-the-art:

Dumesic and co-workers, Nature 2002.

Pt or Sn/Ni, 200-225 °C, 25-50 bars of pressure, <300 ppm of CO contamination

Our recent system:

Full MeOH reforming to 3H2 + CO2 achieved, performs <100 °C,

TOF(max) ~5000 h-1 (counted per H2 molecule evolved), TON >350000, catalytic system active for weeks, <1 ppm levels of CO.

35 Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

TON (Ru) = 350000

Dr. M. Nielsen

MeOH Reforming@70-90°C

36

27% yield

59% yield in 24h with 150 ppm cat.

CO < 10 ppm

M. Nielsen, E. Alberico, W. Baumann, H.-J. Drexler, H. Junge, S. Gladiali, M. Beller Nature 2013, 495, 85.

MeOH/H2O (9:1, 40 mL)

KOH (8.0 M)

Tset = 94 °C

Henrik Junge / 21st WHEC Zaragoza 2016 2016-06-13

Dr. E. Alberico

TOF (Fe)

up to 777 h-1

TON (Fe)

up to 10,000

Stabilization

by addition of

further ligand

E. Alberico, P. Sponholz, C. Cordes, M. Nielsen, H.-J. Drexler, W. Baumann, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 14162.

LIKAT Rostock

CH3OH

CO2

H2

H2O

½ O2

H2

CO2 containing gas (>98%) CO2 sources

coupling with PEM FC

mini plant

coordinator catalyst development

electrolysis

MeOH production by silicon fire process

Funding:

Realization of the „Metha-Cycle“

37 Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock

Upscale experiment for fuel cell application

38

Conditions

propeller with ~10 mW (video: NDR Nordmagazin 2013)

40 mL MeOH/H2O 9:1 (v:v)

8 M KOH, 91°C

17 µmol catalyst (8 mg)

H2 per hour: ca. 0.1 L

CO content: < 10 ppm

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 39

Conclusion

M. Aresta et al. Chem. Rev. 2014, 114, 1709.

Social Effects:

merging of chemical and energetic industries

potential to (partly) decentralize energy and chemicals generation

big scale centralised solutions clothed to power plants, cement works and steel mills

value adding in less developed regions (technologies for CO2 usage from air required))

Power to X – State of the Art:

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

methods for CO2 reduction available or

already applied with high selectivity in

methanol/CH4/HCOOH/CO …….

need to collect, store and pressurize

hydrogen renewable hydrogen has to be

available at low price level (e.g. ≤ 4 €/kg)

application of direct photocatalytic hydrogen

generation is pending

direct photo-reduction of CO2 in water may

become an important option in the near

future

LIKAT Rostock 40

Acknowledgements

Prof. Matthias Beller

Funding

Dr. Associate Prof. Shu-Ping Luo (ZJUT Hangzhou)

Dr. Haijun Jiao (LIKAT; DFT)

Dr. V. Brüser (INP Greifswald, Plasmatechn.)

Dr. E. Alberico (CNR Sassari)

Prof. M. Bauer (Univ. Paderborn, XAS)

Prof. A. Brückner (LIKAT, EPR)

Prof. R. Ludwig, (Univ. Rostock, IR, DFT)

Prof. S. Lochbrunner (Univ. Rostock, UV, time resolved photoluminescence)

Cooperation

Henrik Junge / Konferenz des LVE - Berlin, 30. Juni 2016

LIKAT Rostock 41 Henrik Junge / Hanzhou

Thank you for your kind attention!

04.08.2016