MINDO-Forces Study of Methyl Substituted Allyl...

7
This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz. MINDO-Forces Study of Methyl Substituted Allyl Cations Hayfa M. Jarjis and Salim M. Khalil Chemistry Department, College of Science, University of Mosul, Mosul, Iraq Z. Naturforsch. 42 a, 174-180 (1987); received August 2, 1986 MINDO-Forces calculations have been performed on methyl substituted allyl cations with complete energy minimization. It was found that the methyl substitution on the terminal carbon atoms of the allyl cation stabilizes the cation more than that at the center carbon atom. Also, the stability of the cation depends on the conformation of the cation and not on the number of methyl substituents. Introduction Recently [1], we have studied the allyl and crotyl systems, using the MINDO-Forces M O method [2], Here we would like to extend this study to methyl substituted allyl cations which are of considerable importance in organic chemistry [3] such as Diels- Alder cycloaddition reactions [4], The methyl substituted allyl cations have been investigated by semiempirical methods [5, 6] and ab initio calculations [7, 8] without comprehensive studies of the geometries and electron densities. Therefore, the aim of the present work is to give full geometry optimization in order to assess and augment experimental data. Results and Discussion The calculated heats of formation and electron densities of methyl substituted allyl cations after complete optimization of geometry are given in Tables 1 and 2, respectively. /. Effect of One Methyl Group From the calculated heats of formation (Table 1) it was found [1] that the substitution on the terminal carbon atom of the allyl cation increases the stability more than that at the center carbon atom, which is in agreement with experiment [9] and theory [8]. Part of the M.Sc. thesis, H. M. Jarjis, University of Mosul 1986. Reprint requests to Prof. S. M. Khalil, Chemistry Depart- ment, College of Science, University of Mosul. Mosul, Iraq. 2. Effect of Two Methyl Groups There are six possibilities for the substitution of two methyl groups on the allyl cations which are represented by cations 5, 6, 7, 8, 9 and 10 as shown in Figure 1. Besides that, there are also different possibilities for some of these cations. For example, cation 6 has the trans eclipsed-eis staggered (t.e.-c.s.) form beside the trans eclipsed-eis eclipsed (t.e.-c.e.) form. t-c -c-s -t-e-i-e The calculated heats of formation show that the most stable cation is (t.e.-c.e.). Also, cation 7 has the (c.s.-c.e.) form as well as the (c.s.-c.s.) one, and it was found that the latter is more stable than the former. For cation 8, it was found that the (t.e.-c.s.) form is more stable than the (t.e.-c.e.) form. Also, it can be seen from Table 1 that the most stable cation out of these six cations is the cation 5. On rotating one of the methyl groups of the cation 5 to a eis form to obtain cation 6, the heat of formation increases due to steric strain. The cation 7 can be obtained by rotating the second methyl group of cation 6 to a eis form. In this case the steric 0340-4811 / 87 / 0200-0127 $ 01.30/0. - Please order a reprint rather than making your own copy.

Transcript of MINDO-Forces Study of Methyl Substituted Allyl...

Page 1: MINDO-Forces Study of Methyl Substituted Allyl Cationszfn.mpdl.mpg.de/data/Reihe_A/42/ZNA-1987-42a-0174.pdf · 2018-02-09 · MINDO-Forces Study of Methyl Substituted Allyl Cations

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution4.0 International License.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschungin Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung derWissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:Creative Commons Namensnennung 4.0 Lizenz.

MINDO-Forces Study of Methyl Substituted Allyl Cations H a y f a M . Jarjis a n d S a l i m M . K h a l i l

Chemis t ry D e p a r t m e n t , Col lege of Science, Univers i ty of Mosu l , Mosu l , I raq

Z. N a t u r f o r s c h . 42 a, 1 7 4 - 1 8 0 (1987); received Augus t 2, 1986

M I N D O - F o r c e s ca lcula t ions have been p e r f o r m e d on m e t h y l subs t i tu ted allyl ca t ions with comple t e energy min imiza t ion . It was found tha t the me thy l subs t i t u t i on on the t e r m i n a l c a rbon a t o m s of the allyl ca t ion stabil izes the ca t ion m o r e t h a n tha t at t h e center c a r b o n a t o m . Also, the s tabi l i ty of the ca t ion d e p e n d s on the c o n f o r m a t i o n of t h e ca t ion and not on the n u m b e r of methy l subs t i tuents .

Introduction

Recent ly [1], we have s tud ied the allyl a nd crotyl

systems, u s i n g the M I N D O - F o r c e s M O m e t h o d [2],

H e r e we w o u l d l ike to extend this s tudy to methy l

subst i tuted allyl cat ions w h i c h are o f cons iderab le

impo r tance in o r gan i c chemi s t ry [3] s uch as D i e l s -

A l d e r c y c l oadd i t i on react ions [4],

T h e methy l subst i tuted allyl cat ions have been

invest igated by s em iemp i r i c a l m e t h o d s [5, 6] a n d ab

in i t io ca lcu lat ions [7, 8] w i thout c o m p r e h e n s i v e

studies o f the geomet r ie s and electron densities.

There fo re , the a i m o f the present w o r k is to g i ve full

geomet r y o p t i m i z a t i o n in order to assess a n d

a u g m e n t exper imenta l data.

Results and Discussion

T h e calculated heats o f f o rma t i on and electron

densit ies o f methy l subst i tuted allyl cat ions after

complete op t im i z a t i on o f geomet ry are g i v en i n

Tab le s 1 and 2, respectively.

/. E f f e c t of One Methyl Group

F r o m the ca lcu lated heats o f f o rma t i on ( Tab l e 1)

it was f o u n d [1] that the subs t i tu t ion o n the te rmina l

c a rbon a tom o f the allyl cat ion increases the stability

m o r e than that at the center c a r bon atom, w h i c h is

i n ag reement w i t h expe r iment [9] a n d theory [8].

Part of the M.Sc. thesis , H. M. Jarj is , Univers i ty of Mosul 1986. Repr in t reques ts to Prof. S. M. Khali l , C h e m i s t r y D e p a r t -ment , Col lege of Science, Univers i ty of Mosul . Mosul , Iraq.

2. E f f e c t of Two Methyl Groups

T h e r e are s ix poss ib i l i t ie s for the subst i tut ion o f

two methy l g r o u p s o n the al ly l cat ions w h i c h are

represented by cat ions 5, 6, 7, 8, 9 and 10 as s h o w n

in F i g u r e 1. Bes ides that, there are also dif ferent

poss ib i l i t ie s for s o m e o f these cations. F o r examp le ,

cat ion 6 has the trans e c l i p s e d - e i s s taggered

(t.e.-c.s.) f o r m bes ide the trans e c l i p s e d - e i s

ec l ipsed (t.e.-c.e.) fo rm.

t-c - c - s -t-e-i-e

T h e ca lcu lated heats o f f o r m a t i o n s h o w that the

most stable ca t ion is (t.e.-c.e.). A l s o , cat ion 7 has

the (c.s. -c.e.) f o r m as well as the (c.s.-c.s.) one,

a n d it wa s f o u n d that the latter is mo re stable than

the former. F o r cat ion 8, it wa s f o u n d that the

(t.e.-c.s.) f o r m is m o r e stable than the (t.e.-c.e.)

fo rm.

A l s o , it c an be seen f r o m T a b l e 1 that the mos t

stable ca t ion out o f these s ix cat ions is the cat ion 5.

O n rotat ing one o f the methy l g r o u p s o f the

cat ion 5 to a eis f o r m to o b t a i n cat ion 6, the heat o f

f o r m a t i o n increases d u e to steric strain. T h e cat ion 7

can be ob ta i ned by rotat ing the second methy l

g r o u p o f cat ion 6 to a eis fo rm. I n this case the steric

0340-4811 / 87 / 0200-0127 $ 01 .30 /0 . - Please order a reprint rather than making your own copy.

Page 2: MINDO-Forces Study of Methyl Substituted Allyl Cationszfn.mpdl.mpg.de/data/Reihe_A/42/ZNA-1987-42a-0174.pdf · 2018-02-09 · MINDO-Forces Study of Methyl Substituted Allyl Cations

H. M. Jarjis and S. M. Khalil • M I N D O - F o r c e s Study of Methyl Substituted Allyl Cations 175

Page 3: MINDO-Forces Study of Methyl Substituted Allyl Cationszfn.mpdl.mpg.de/data/Reihe_A/42/ZNA-1987-42a-0174.pdf · 2018-02-09 · MINDO-Forces Study of Methyl Substituted Allyl Cations

176 H. M. Jarjis and S. M. Khali l • M I N D O - F o r c e s Study o f Methy l Subst i tuted Allyl Cat ions 176

s t ra in b e c o m e s m o r e p r o n o u n c e d , w h i c h g i v e s r i se

to a n i n c rea se i n the heat o f f o r m a t i o n .

It c a n be seen f r o m the heats o f f o r m a t i o n i n

T a b l e 1 that the s tab i l i t y dec rea se s f r o m ca t i on 5 to

7 i n a g r e e m e n t w i t h e x p e r i m e n t [8] a n d t heo r y

[10 ,7 ] . It w a s f o u n d e x p e r i m e n t a l l y [11] that the

d i f f e rence i n the heat s o f f o r m a t i o n be tween cat-

i o n s 6 a n d 7 is 6.5 k c a l / m o l e , w h i c h is i n v e r y g o o d

a g r e e m e n t w i t h the p re sen t c a l cu l a t i on s (6.4 k c a l /

m o l e ) a n d i n d i s a g r e e m e n t w i t h a b i n i t i o c a l c u l a -

t i on s [7] (31.4 k c a l / m o l e ) . A l s o it w a s f o u n d e x p e r i -

m e n t a l l y [12] that o n s u b s t i t u t i o n o f two m e t h y l

g r o u p s o n the t e r m i n a l c a r b o n a t oms , ca t i on 5 is

o b t a i n e d a n d not c a t i on s 6 o r 7. T h i s s ugge s t s that

c a t i o n 5 is the m o s t s tab le one, w h i c h is i n a g ree -

m e n t w i t h the p resent ca l cu l a t i on s .

F o r the s u b s t i t u t i o n o f t w o m e t h y l g r o u p s o n o n e

o f the t e r m i n a l c a r b o n a t o m s o f the a l ly l c a t i o n to

o b t a i n c a t i o n 8 ( F i g . 1), the s tab i l i t y i nc reases i n

c o m p a r i s o n w i t h that o f c a t i o n 2. I n the case o f

c a t i o n 9, the i nc rea se i n the heat o f f o r m a t i o n i n

c o m p a r i s o n w i t h c a t i o n 8 is d u e to the s u b s t i t u t i o n

o f a m e t h y l g r o u p o n the center c a r b o n a t o m o f the

al lyl c a t i o n [1]. T h e r e p u l s i o n b e t w e e n the m e t h y l

g r o u p s i n the c a t i o n 9 i nc reases the ang l e C 2 C 1 C 4

in c o m p a r i s o n w i t h that o f C 2 C 3 H ' ( F i g u r e 1).

O n r o t a t i n g the m e t h y l g r o u p at the t e r m i n a l

c a r b o n a t o m o f the c a t i o n 9 to the eis f o r m to o b t a i n

c a t i o n 10 ( F i g . 1), a s l i gh t dec rease i n the heat o f

f o r m a t i o n w i t h that o f c a t i o n 9 sugges t s a dec rea se

in the r e p u l s i o n b e t w e e n the two m e t h y l g r o u p s .

It w a s f o u n d e x p e r i m e n t a l l y [13] that the heat o f

f o r m a t i o n for a n a l ly l c a t i o n w h i c h h a s one m e t h y l

g r o u p at the t e r m i n a l c a r b o n a t o m a n d o n e at the

center is 192 k c a l / m o l e , w h i c h is a p p r o x i m a t e l y

equa l to that o f c a t i on s 9 o r 10 ( T a b l e 1).

It c a n be seen f r o m T a b l e 1 that c a t i on 5 is the

m o s t s tab le o n e i n c o m p a r i s o n w i t h ca t i on s 6, 7, 8, 9

a n d 10, w h i c h is i n a g r e e m e n t w i t h the e x p e r i m e n t a l

o b s e r v a t i o n [12].

3. Effect of Three Methyl Groups

T h e s u b s t i t u t i o n o f three m e t h y l g r o u p s o n the

al lyl c a t i on g i v e s r i se to a s ix d i f fe rent f o r m s o f

ca t ions , r ep re sen ted b y 11, 12, 13, 14, 15 a n d 16

( F i g u r e 2). It c a n be seen f r o m T a b l e 1 that there is

a sma l l d i f f e rence in the heat o f f o r m a t i o n b e t w e e n

ca t i on s 13 a n d 14, w h i c h m a y be d u e to the c r o w d -

i n g b e t w e e n the three m e t h y l g r o u p s i n c a t i o n 13.

T h e i nc rea se i n the heat o f f o r m a t i o n a n d the ang l e

C 1 C 2 C 3 i n the case o f c a t i o n 15 i n c o m p a r i s o n

w i t h that o f c a t i o n 14 are d u e to the t w o m e t h y l

g r o u p s i n the eis f o r m . T h e c a t i o n 11 ( F i g . 2) is

s i m i l a r to that o f c a t i o n 8 ( F i g . 1) apa r t f r o m the

extra m e t h y l g r o u p o n the t e r m i n a l c a r b o n a t o m

w h i c h c au se s a n i n c rea se i n the s tab i l i t y o f the

c a t i o n ( T a b l e 1). O n r o t a t i n g the m e t h y l g r o u p o n

the c a t i o n 11 to the eis f o r m to o b t a i n c a t i o n 12

( F i g . 2), the s tab i l i t y dec rea se s d u e to the r e p u l s i o n

b e t w e e n the t w o m e t h y l g r o u p s i n the eis f o r m . T h e

case o f c a t i o n 16 ( F i g . 2 ) is s i m i l a r to that o f

ca t i on 8 ( F i g . 1) apa r t f r o m the extra m e t h y l g r o u p

o n the center c a r b o n a t o m , w h i c h dec rea se s the heat

o f f o r m a t i o n ( T a b l e 1), i.e. i n c rea se the s tab i l i t y o f

the cat ion.

F r o m the c o m p a r i s o n b e t w e e n ca t i on s 8, 11 a n d

16 it c a n be seen that the a d d i t i o n o f a m e t h y l

g r o u p o n the t e r m i n a l c a r b o n a t o m o f the c a t i on 8

to o b t a i n c a t i o n 11, c a u s e s a dec rea se i n the heat o f

f o r m a t i o n b y 20.1 k c a l / m o l e w h i l e a d d i t i o n o f a

me thy l g r o u p at the center c a r b o n 8 causes a decrease

Table 1. Calculated heats of formation [AH{ in kcal/mole) for methyl substituted allyl cations.

Cation AH f Cation AH f

1 2 2 2 . 2

2 198.4

3 200.4

4 216.6

5 177.4

6 179.2

7 1 8 5 . 6

8 191.4

9 196.3

10 1 9 6 . 1

11 171.3

12 1 7 6 . 2

13 178.6

14 178.1

15 182.4

16 190.9

17 172.7

18 175.4

19 178.3

20 178.9

Page 4: MINDO-Forces Study of Methyl Substituted Allyl Cationszfn.mpdl.mpg.de/data/Reihe_A/42/ZNA-1987-42a-0174.pdf · 2018-02-09 · MINDO-Forces Study of Methyl Substituted Allyl Cations

H. M. Jarjis and S. M. Khalil • M I N D O - F o r c e s Study of Methyl Substituted Allyl Cations 177

16

Fig. 2. Optimized geometries for three methyl substituted allyl cations.

Page 5: MINDO-Forces Study of Methyl Substituted Allyl Cationszfn.mpdl.mpg.de/data/Reihe_A/42/ZNA-1987-42a-0174.pdf · 2018-02-09 · MINDO-Forces Study of Methyl Substituted Allyl Cations

i n the heat o f f o rma t i on by 0.5 kca l/mole. T h i s

indicates that methy l subs t i tu t ion at the te rmina l

c a r b o n o f the cat ion increases the stabi l i ty m o r e

than that at the center c a r b o n atom, w h i c h is in

ag reement w i th ou r recent results [1] (see T a b l e 1

for c o m p a r i s o n between cat ions 2 a n d 4).

4. Effect of Four Methyl Groups

T h e subs t i tu t ion o f four methy l g r oup s o n the

allyl ca t ion g i ves rise to three different fo rms, w h i c h

are represented by cat ions 17, 18 a n d 19 ( F i g u r e 3).

T h e cat ion 17 is ob ta i ned by subst i tut ion o f a

methy l g r o u p o n the 11 in the eis f o r m ( F i g u r e 2). It

wa s expected that the add i t i on o f this methy l g r o u p

wi l l cause an increase in the stabi l i ty o f cat ion 17

due to an increase in the n u m b e r o f the methy l

g r oup s . But because o f the r e p u l s i o n between the

two methy l g r o u p s in the eis f o r m the stabi l ity o f

cat ion 17 decreases b y 1.4 k ca l /mo le in c o m p a r i s o n

w i th that o f cat ion 11 (Tab le 1).

T h e add i t i o n o f o n e methyl g r o u p on the center

c a r b o n a t o m o f ca t i on 11 (F ig . 2) to ob ta i n cat ion 18

(F i g . 3) causes an increase in the heat of f o rma t i on

b y 4.1 kca l/mo le ( T a b l e 1), w h i c h m a y be due to

c r o w d i n g . T h i s is a s im i l a r case to that w h e n a

methy l g r o u p is subst i tuted o n the center c a r bon

a t o m o f cat ion 5 (F i g . 1) to ob ta i n cat ion 13

( F i g u r e 2).

O n rotat ing the methy l g r o u p at c a r bon C 3 o f the

cat ion 18 to ob ta i n cat ion 19 ( F i g . 3), the heat o f

f o r m a t i o n increases by 2.9 k c a l /mo l e (Tab l e 1),

w h i c h m a y be d u e to the r epu l s i on between the two

methy l g r o u p s in the eis form.

Page 6: MINDO-Forces Study of Methyl Substituted Allyl Cationszfn.mpdl.mpg.de/data/Reihe_A/42/ZNA-1987-42a-0174.pdf · 2018-02-09 · MINDO-Forces Study of Methyl Substituted Allyl Cations

H. M. Jarjis and S. M. Khalil • M I N D O - F o r c e s Study of Methyl Substituted Allyl Cations 179

5. Effect of Five Methyl Groups

The re is on ly one f o rm for this k i n d o f s ub -

st itution w h i c h is represented by ca t ion 20 as s h o w n

in F i g u r e 3. T h i s cat ion can be ob ta i ned b y s u b -

st itution o f a methy l g r o u p at the center c a r b o n

a tom o f cat ion 17. T h i s k i n d o f subs t i tu t ion causes a

decrease in the b o n d ang le C 1 C 2 C 3 . T h i s decrease

in the b o n d angle causes an increase in the r e p u l s i o n

between the two methy l g r o u p s i n the eis f o r m o f

the cat ion 20, w h i c h results an increase in the heat

o f f o rmat i on (Tab le 1), i.e. a decrease in the

stabil ity.

Table 2. Calculated electron densities for methyl sub-stituted allyl cations.

Cat- Electron density ion

C, C2 C3

1 3.619 4.121 3.619 2 3.586 4.142 3.681 3 3.595 4.137 3.689 4 3.653 4.072 3.653 5 3.626 4.172 3.626 6 3.640 4.167 3.632 7 3.654 4.155 3.654 8 3.604 4.141 3.738 9 3.612 4.097 3.717

10 3.624 4.087 3.726

Cat- Electron density ion

c 1 c2 c 11 3.631 4.180 3.669 12 3.645 4.169 3.689 13 3.657 4.130 3.657 14 3.674 4.117 3.665 15 3.686 4.105 3.686 16 3.623 4.099 3.775 17 3.679 4.180 3.679 18 3.657 4.136 3.702 19 3.669 4.124 3.723 20 3.697 4.145 3.697

6. Electron Density

It can be seen f r o m T a b l e 2 that o n subs t i tu t ion o f

a methy l g r o u p at the termina l c a r b o n a t o m o f the

cat ion 2 to ob ta in cat ion 5 the electron dens i ty

increases at the center c a r b o n d u e to the equa l

effect o f two methy l g roups . F o r cat ion 6, the

electron dens ity at C 1 is greater t han that at C 3 d u e

to the induct ive effect o f the methy l g r o u p in the

trans form. T h e electron dens i t ies at the te rmina l

ca rbon a toms o f cat ion 7 b e c o m e equa l d u e to the

two methy l g r o u p s in the eis fo rm.

T h e induct ive effect o f two methy l g r o u p s at C I

(cat ion 8), is greater than that o f one methy l g r o u p

at C 1 (cat ion 2) as can be seen f r o m the h i g h

electron dens ity at C 3 o f ca t ion 8 in c o m p a r i s o n

with that o f cat ion 2 ( Tab l e 2). F o r cat ion 9, the

electron dens i ty decreases at the center c a r b o n i n

c o m p a r i s o n w i th that o f cat ion 2 because o f the

methy l g r o u p at the center c a r b o n atom.

O n rotat ing the methy l g r o u p at the te rmina l

c a rbon a tom o f cat ion 9 to ob t a i n cat ion 10, the

electron dens i ty increases o n the termina l c a r b o n

a toms and decreases o n the c a r b o n a tom o f cat-

ion 10, in c o m p a r i s o n wi th ca t ion 9. T h i s is d u e to

the methy l g r o u p in the eis f o r m (see the electron

densit ies o f cat ions 3 a n d 2 for c o m p a r i s o n ) .

F o r cat ion 11, the electron dens i ty at C 3 is still

greater than at C 1 because o f the h i g h i nduc t i ve

effect o f two methy l g r o u p s at C I . O n rotat ing the

methy l g r o u p at C 3 o f cat ion 11 to ob ta i n ca t ion 12,

the electron dens ity increases o n the termina l c a r b o n

a toms and decreases o n the center c a r bon a t o m i n

c o m p a r i s o n with cat ion 11. T h i s is due to the

methy l g r o u p in the eis f o rm, w h i c h is the s a m e

reason as g i ven for cat ions 10 a n d 3.

F o r cat ion 13, the electron densit ies are equa l o n

the terminal ca rbon a toms due to the two methy l

g r oup s in the trans form. O n rotat ing the methy l

g r o u p at C I o f cat ion 13, to bo ta i n cat ion 14, the

electron dens ity decreases o n the central c a r b o n

a tom and increases o n the te rmina l c a r b o n a t oms o f

cat ion 14 in c o m p a r i s o n w i th that o f cat ion 13. T h i s

is due to the same reason as g i v e n in the c o m -

pa r i s on between cat ions 11 a n d 12.

T h e effect o f the methy l g r o u p at the center

c a r bon a tom becomes m o r e p r o n o u n c e d o n the

c o m p a r i s o n between cat ions 16 and 8. F o r cat ion 17,

the four methy l g r o u p s have equa l effects o n the

electron dens ity at C 1 and C 3 .

T h e subst i tut ion o f a methy l g r o u p o n the u n s u b -

stituted terminal c a r bon a t o m o f cat ion 16 to ob t a i n

cat ion 18 decreases the electron dens it ies at C 3 o f

cat ion 18 in c o m p a r i s o n w i th that o f ca t ion 16,

w h i c h is due to the induct i ve effect o f a methy l

g roup . I n the case o f cat ion 19, the electron dens i ty

increases at C 3 in c o m p a r i s o n w i th cat ion 18, w h i c h

is due to the methy l g r o u p in the eis fo rm. F i n a l l y ,

equal effect o f the five methy l g r o u p s at C I a n d C 3

o f cat ion 20 can be seen f r o m T a b l e 2.

Conclusion

It can be conc l uded that the effect o f a methy l

g r o u p at the terminal c a r b o n a t o m o f the allyl

cat ion is greater than that at the center c a r b o n atom.

A l s o the stabi l ity o f the allyl ca t ion depend s o n the

different fo rms o f subst i tut ion and not o n the n u m -

bers o f the methy l g roups . T h i s can eas i ly be seen

f r om cat ion 11, w h i c h conta ins on l y three methy l

Page 7: MINDO-Forces Study of Methyl Substituted Allyl Cationszfn.mpdl.mpg.de/data/Reihe_A/42/ZNA-1987-42a-0174.pdf · 2018-02-09 · MINDO-Forces Study of Methyl Substituted Allyl Cations

180 H. M. Jarjis and S. M. Khalil • M I N D O - F o r c e s Study of Methyl Substituted Allyl Cations 180

g r o u p s but is f o u n d to be the most stable cat ion out

o f the twenty cat ions, t h o u g h there are cat ions

w h i c h conta in f ou r o r f ive methy l g roups . T h u s it is

not poss ib le to say that the stabi l i ty o f a c a r b o n i u m

i o n increases as the n u m b e r o f methy l subst ituents

increases.

Acknowledgement

W e w i s h to express o u r app rec i a t i on to the M o s u l

Un i v e r s i t y C o m p u t e r Cen t re for the generous

a m o u n t o f c o m p u t e r t ime.

[1] H. M. Jarjis and S. M. Khalil, J. Chem. Soc. Perkin II (in press).

[2] S. M. Khalil and M. Shanshal, Theor. Chim. Acta 46, 23 (1977).

[3] H. M. R. Hoffman, Angew. Chem. 85,877 (1973). [4] H. M. R. Hoffman, K. E. Clements, and H. Smithers,

J. Amer. Chem. Soc. 94,3940 (1972). [5] R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J.

Amer. Chem. Soc. 97,1294 (1975). [6] N. L. Allinger and J. H. Slefert, J. Amer. Chem. Soc.

97,752 (1975). [7] A. Sablijic, N. Trinajstic, J. V. Knop, J. Koller, and A.

Azmen, J. Mol. Structure 33,145 (1976).

[8] H. Mayr, W. Forner, and P. von R. Schleyer, J. Amer. Chem. Soc. 101,6032 (1979).

[9] K Conrow, J. Amer. Chem. Soc. 83,2343 (1961). [10] M. Shanshal, Z. Naturforsch. 29 a, 1791 (1974). [11] P. von R. Schleyer, T. M. Su, M. Saunders, and J. C.

Rosenfeld, J. Amer. Chem. Soc. 91,5174 (1969). [12] G. A. Olah and R. J. Spear, J. Amer. Chem. Soc. 97,

1539 (1975). [13] F. P. Lossing and J. C. Traeger, Int. J. Mass Spectrom.

Ion Phys. 19,9 (1976).