Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen...

19
Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung

Transcript of Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen...

Page 1: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Nächste Übung:• Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ

Listen• Anwesenheitsliste

14. Übung: Omegagleichung

Page 2: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

• p-System

Vorticitygleichung

Von links nach rechts:• Lokale zeitliche Änderung der relativen Vorticity• Horizontale Advektion absoluter Vorticity• Vertikale Advektion relativer Vorticity• Divergenzterm• Drehterm („Twisting“- oder „Tilting“-Term)

z: planetare Vorticty; t: Zeit; v: horizontaler Windvektor; f: Coriolisparameter; w: lokal zeitliche Änderung des Drucks; u: zonale Windgeschwindigkeit; v: meridionale Windgeschwindigkeit

Page 3: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Divergenzterm der Vorticitygleichung

Beim Zusammenströmen von Luftmassen (Konvergenz) lenkt die Corioliskraft die Luft auf der Nordhalbkugel nach recht ab und erzeugt zyklonale relative Vorticity. Beim Auseinanderströmen von Luftmassen (Divergenz) lenkt die Corioliskraft die Luft auf der Nordhalbkugel auch nach rechts ab und erzeugt antizyklonale relative Vorticity.Dieser Term ist bei großskaligen Strömungen entscheidend für die Produktion relativer Vorticity.

© Clemens Simmer, Universität Bonn

Page 4: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Drehterm der Vorticitygleichung

Umwandlung von der Wirbelgröße um horizontale Achsen in eine Wirbelgröße um vertikale Achsen.Dieser Term spielt bei großräumigen Strömungen keine wesentliche Rolle. Wichtig wird er aber auf kleinen Skalen, wie beispielsweise bei der Entstehung von Tornados. Auch bei der Entstehung von Genuazyklonen ist er wichtig.

© www.wetter3.de © Clemens Simmer, Universität Bonn

Page 5: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Vertikalbewegungen sind von entscheidender Bedeutung für das Wettergeschehen, da sie beispielsweise durch Abkühlung zur Wolken- und Niederschlagsbildung beitragen. Die quasi-geostrophische Diagnostik gibt eine Erklärung für die großräumigen Vertikalbewegungen und einen Einblick in die Dynamik der atmosphärischen Strömung. Es zeigt sich, dass vor allem die Vergenzen in der Höhenströmung ausschlaggebend für das Vorzeichen und die Stärke der Vertikalbewegung sind, sowie auch für die daran gekoppelten Entwicklungen im Bodendruckfeld. Die auf- und abwärts gerichteten Bewegungen sind deshalb räumlich und zeitlich untrennbar mit der Entstehung, Entwicklung und Verlagerung von Hoch- und Tiefdruckgebieten verbunden.Die quasi-geostrophische Theorie geht davon aus, dass die Atmosphäre jederzeit nach einem Gleichgewicht zwischen Massen-, Druck- und Windfeld strebt. Es werden hydrostatische Verhältnisse und eine Balance zwischen dem Vorticity- und Druckfeld angenommen.Annahmen: b-Flächen-Approximation (konstanter Coriolisparameter), synoptische Raum- und Zeitskala (großräumige Strömungen), ...

Das quasi-geostrophische System

Page 6: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Das quasi-geostrophische System

Mit f0: Coriolisparameter an einer geographischen BreiteΔ=∇2: horizontaler Laplaceoperator (zweite Ableitungen in Richtung x und y)F: Geopotential

Im Folgenden wird das quasi-geostropische System verwendet. Mit Hilfe dieses System lassen sich die Vergenzen, d. h. ebenso das Aufsteigen und Absteigen, von großräumigen Strömungen erläutern.Das quasi-geostrophisch System nimmt an, dass zu jedem Zeitpunkt die Atmosphäre ein Gleichgewicht zwischen Massen-, Druck- und Windfeld anstrebt und aufrecht erhält. Angenommen wird deshalb das hydrostatische Gleichgewicht und das Gleichgewicht zwischen den Druck- und Vorticityfeldern. Aus diesem Grund ist die Vorticity bzw. die Vorticitygleichung sehr bedeutend.Angenommen wird ebenfalls eine geostrophische Approximation der relativen Vorticity:

Page 7: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Der horizontale Laplaceoperator bedeutet, dass die geostrophische genäherte relative Vorticity direkt mit der Krümmung des Geopotentialfeldes, d. h. der Druckflächen, verknüpft ist. Das bedeutet wiederum, dass aus der Krümmung einer Druckfläche die Wirbelstärke bestimmt werden kann. Druckflächen mit einem Höhentief („Delle“ im Geopotentialfeld) bzw. einem Höhenhoch („Aufwölbung“ der Druckfläche) besitzten also Windfelder mit zyklonaler bzw. antizyklonaler relativer Vorticity. Die Vorticity von Luftmassen ist also gemäß dem quasi-geostropischen System genau mit der Krümmung von Druckflächen abgestimmt. Das Vorticityfeld steht mit dem Druckfeld in geostrophischer Balance.Verändert sich also die Vorticity, dann muss entsprechend die Krümmung der Druckflächen bzw. das Geopotentialfeld angepasst werden.

© wissen.de © forum.graphisoft.de

Geostrophische Balance zwischen Vorticity & Geopotential

Page 8: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Geostrophische Balance zwischen Vorticity & Geopotential

• In Gebieten, in denen die isobaren Flächen „eingedellt“ sind (positive Krümmung), besitzt das Windfeld zyklonale relative Vorticity.

• In Gebieten in denen die isobaren Fächen „aufgewölbt“ sind (negative Krümmung), besitzt das Windfeld eine antizyklonale relative Vorticity.

Das Geopotential- bzw. Druckfeld steht in geostrophischer Balance mit dem Vorticityfeld.

Page 9: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Quasi-geostrophische Vorticitygleichung

Als nächstes wird die Vorticitygleichung quasi-geostropisch approximiert und vereinfacht. Es ergibt sich die quasi-geostrophische Vorticitygleichung:

mit

Die lokal zeitliche Veränderung der geostrophisch approximierten Vorticity wird also durch die geostrophische Advektion absoluter Vorticity und durch Vergenzen des Horizontalwindes bestimmt.Verändert sich die Krümmung einer Druckfläche dann kann an einem bestimmten Ort die passende Vorticity durch Advektion und durch Vergenzen hergestellt werden. D. h. reicht die Advektion von absoluter Vorticity nicht aus um die geostrophische Balance herzustellen, kommt es zur Horizontalkonvergenz oder –divergenz, wodurch Luftmassen zum Auf- oder Absteigen bewegt werden.

Page 10: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Mit Hilfe des quasi-geostrophischen Systems lässt sich die sog. Omega-gleichung herleiten. Diese Gleichung erlaubt es herauszufinden welche großskaligen Antriebe zum Aufsteigen und Absinken von Luftmassen führen.Annahmen: • Die Vertikalgeschwindigkeit verschwindet am Boden und am Oberrand der

Atmosphäre• w ist als Sinusfunktion beschreibbar.Dann ergibt sich folgende Proportionalität:

Die w-Gleichung

Mit: R: universelle Gaskonstante; cp: spezifische Wärmekapazität bei konstantem Druck; T: Temperatur; H: diabatische Wärmezufuhr

Term B Term C Term DTerm A

Page 11: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Die w-Gleichung

Term A: w ~ -wTerm B:

Höhenabhängigkeit der Advektion absoluter Vorticity (differentielle Vorticityadvektion) => Zusammenhang mit Rossby-WellenTerm C:Horizontale Unterschiede bzgl. der Stärke der Temperatur-/SchichtdickenadvektionTerm D:Horizontale Unterschiede in Bezug auf die diabatische WärmezufuhrD. h. das großskalige Aufsteigen und Absteigen von Luftmassen tritt im Zusammenspiel mit atmosphärischen Wellen, der Temperaturadvektion und diabatischen Wärmezufuhr auf.

Term B Term C Term DTerm A

Page 12: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Die w-Gleichung

Term B: Höhenabhängigkeit der Advektion absoluter Vorticity (differentielle Vorticityadvektion) => Zusammenhang mit Rossby-WellenAufsteigen entsteht in Gebieten wenn:

die positive absolute Vorticityadvektion mit der Höhe anwächst die negative absolute Vorticityadvektion mit der Höhe abnimmtIn diesen Fällen gilt: Term B < 0 => w < 0 w > 0 AufsteigenDie erste Bedingung ist auf der Vorderseite von Kurzwellentrögen gegeben. Da die absolute Vorticity im Bereich der Trogachse ihr Maximum aufweist, wird auf der Trogvorderseite zyklonale absolute Vorticity advehiert. Die Advektion nimmt aufgrund der starken Höhenwinde des Polarjets mit der Höhe zu.Absinken gibt es in Gebieten wenn: die negative absolute Vorticityadvektion mit der Höhe anwächst die positive absolute Vorticityadvektion mit der Höhe abnimmt

Term B Term C Term DTerm A

Page 13: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

• die adiabatische Abkühlung bei der Aufwärtsbewegung trägt zur Abnahme des Geopotenzials bei

Die w-GleichungTerm B: physikalische Interpretation (Teil I)

Quelle: www.wetter3.de

Annahme:kurze, sich nicht in der Amplitude verändernde, barokline Welle, bei der keine Temperaturadvektion auftritt, d. h. Temperatur- und Geopotenzialwelle sind in Phase

• Grundstrom und Vorticityextrema gewinnen mit der Höhe an Stärke

• planetare Vorticityadvektion ist vernachlässigbar Trogvorder-(rück)seite: positive (negative) Vorticityadvektion Aufsteigen (Absinken) nach w-Gleichung

Page 14: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Die w-GleichungTerm B: physikalische Interpretation (Teil II)

Trogvorderseite (Rückseite analog):• quasi-geostrophische Vorticity-

gleichung die allein aus der Advektion der

absoluten Vorticity resultierende lokale Wirbeltendenz ist in der unteren (oberen) Troposphäre kleiner (größer) als die auf den jeweiligen Potentialfall

abgestimmte geostrophische Vorticityänderung

Verstärkung (Abschwächung) der Vorticity durch Konvergenz (Divergenz) [vgl. Eisläufer]

Aufsteigen• divergenzfreies Niveau (~500 hPa)

Erhaltung der geostrophischen Vorticitybalance ohne Vergenzen

Quelle: www.wetter3.de

Page 15: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Die w-Gleichung

Term B Term C Term DTerm ATerm C:

Horizontale Unterschiede bzgl. der Stärke der Temperatur-/SchichtdickenadvektionAufsteigen herrscht in Gebieten:

mit der relativ stärksten Warmluftadvektion => präfrontales Aufgleiten vor Warmfront

mit der relativ schwächsten KaltluftadvektionDann gilt: Term C < 0 (Maximum => 1. Ableitung = 0; 2. Ableitung < 0)

=> w < 0 w > 0 AufsteigenAbsinken herrscht entsprechend in Gebieten: Mit der relativ stärksten Kaltluftadvektion => postfrontale Subsidenz nach

Kaltfrontdurchzug Mit der relative schwächsten Warmluftadvektion

Page 16: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Die w-Gleichung

Term B Term C Term DTerm ATerm D:

Horizontale Unterschiede in Bezug auf die diabatische WärmezufuhrAufsteigen herrscht in Gebieten mit:

der relativ stärksten Wärmezufuhr => Freiwerden latenter Energie, Wärmeflüsse aus warmen Ozean, solare Strahlung (Hitzetiefs)

einem relativ schwächsten WärmeentzugsDann gilt: Term D < 0 => w < 0 w > 0 AufsteigenAbsinken entsteht in Gebieten mit: dem relativ stärksten Wärmeentzug => Winter: Nettostrahlungsverluste

(Kältehoch) der relativ schwächsten Wärmezufuhr„Relativ“ bezieht sich auf die horizontale Umgebung, d. h. beispielsweise ist die Warmluftadvektion in einer bestimmten Region maximal.

Page 17: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Die w-GleichungTerm C/D: physikalische Interpretation• Antrieb durch Temperaturadvektion (gilt

analog für diabatische Wärmezufuhr) Gebiete mit relativ stärkster Warmluft-

advektion [relativ: im Vergl. zur Umgebung] Schichtdicke wächst im Vergleich zur

Umgebung am stärksten an vertikale Streckung der Luftsäule, auf-

wärts zunehmende Aufwölbung und negative Krümmung der Druckflächen nimmt zu Quelle: www.wetter3.de

quasi-geostrophische Therie: Veränderung der Vorticity quasi-geostrophische Vorticitygleichung: Divergenz muss mit der Höhe

zunehmen (falls keine Vorticityadvektion auftritt) mittlere Troposphäre: ausgleichende Luftbewegung durch Aufsteigen untere Troposphäre: Massenverlust Potenzialfall Konvergenz

Page 18: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Holton, J. R., 1994: An Introduction to Dynamic Meteorology. San Diego, 535 S. (L HOL 4) Kurz, M., 1990: Synoptische Meteorologie. Leitfäden für die Ausbildung im Deutschen Wetterdienst Nr. 8. Offenbach/Main, 97 S. (L DWD VIII)Pichler, H., 1997: Dynamik der Atmosphäre. Heidelberg, Berlin, Oxford, 572 S. (L PICH)Holton, J. R., 1994: An Introduction to Dynamic Meteorology. San Diego, 535 S. (L HOL 4) www.wetter3.de Tutorial die Antriebe für Vertikalbewegungen

Die w-Gleichung

Page 19: Nächste Übung: Donnerstag, 10. Dezember 2015, Großer Seminarraum, 11:45 MEZ Listen Anwesenheitsliste 14. Übung: Omegagleichung.

Übungsaufgaben:

• Zu bearbeiten bis Donnerstag, den 10.12.2015

Analyse der Wetterlage vom http://www.uni-koeln.de/~ad106/synoptik2006/wetter20140120.html

Besprechung der Xynthia-Übungsaufgabe http://www.uni-koeln.de/~ad106/synoptik2006/xynthia.html