Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D:...

38
Fachgebiet Angewandte Nanophysik, Institut für Physik Contact: [email protected]; [email protected] Office: Unterpoerlitzer Straße 38 (Heisenbergbau) (tel: 3748) www.tu-ilmenau.de/nanostruk Vorlesung: Thursday 13:00 – 14:30, F 3001 Übung: Friday (G), 11:00 – 12:30, C 110 Prof. Yong Lei & Dr. Huaping Zhao (a) (b 2 ) (b 1 ) UTAM-prepared free-standing one-dimensional surface nanostructures on Si substrates: Ni nanowire arrays (a) and carbon nanotube arrays (b). Nanostrukturphysik (Nanostructure Physics)

Transcript of Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D:...

Page 1: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Fachgebiet Angewandte Nanophysik, Institut für Physik

Contact: [email protected]; [email protected]: Unterpoerlitzer Straße 38 (Heisenbergbau) (tel: 3748)

www.tu-ilmenau.de/nanostruk

Vorlesung: Thursday 13:00 – 14:30, F 3001Übung: Friday (G), 11:00 – 12:30, C 110

Prof. Yong Lei & Dr. Huaping Zhao

(a) (b2)(b1)

UTAM-prepared free-standing one-dimensional surface nanostructures on Sisubstrates: Ni nanowire arrays (a) and carbon nanotube arrays (b).

Nanostrukturphysik (Nanostructure Physics)

Page 2: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

• Class 1: A general introduction of fundamentals of nano‐structured materials

• Class 2: Structures and properties of nanocrystalline materials• Class 3: Graphene• Class 4: 2D atomic‐thin nanosheets• Class 5: Optical properties of 1D nanostructures and nano‐generator• Class 6: Carbon nanotubes• Class 7: Solar water splitting I: fundamentals• Class 8: Solar water splitting II: nanostructures for water splitting• Class 9: Lithium‐ion batteries: Si nanostructures• Class 10: Sodium‐ion batteries and other ion batteries, and 

Supercapacitors• Class 11: Solar cells• Class 12: Other nanostructures

Page 3: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Photosynthesis and nanostructures for solar water splitting II

• Brief review of Class 7• Advantages and disadvantages• Material designs and nanostructural architecture

Page 4: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

N‐type semiconductor: top of valance band must be morepositive than water oxidization potential. Electric field generatedby band bending directs holes towards solution.

H2O + 2h+ ½ O2 + 2H+   + 4e‐

Ef H+ / H2

O2 / H2O

Thermodynamic Potential of Water: h

e-

h+

e-

Band Bending

Overpotential for O2 evolution

Photoanode for oxygen evolution

Page 5: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Requirement: proper bandgap; top of valance band must be morepositive than water oxidization potential; aganist corrosion.

TiO2: band gap is too large.

WO3: scarcity and high demand makes limited availability.

Fe2O3: short carrier diffusion length relative to absorption depth of light.

The semiconductor band‐edge position are plotted vesus their maximun theoretical photocurrent under Air Mass 1.5 illumination.

Photoanode materials

Page 6: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Photocathode (p‐type semiconductors) for hydrogen evolution

Requirement: proper bandgap; bottom of conduction band must bemore negative than water reduction potential; aganist corrosion.

P‐GaP: short carrier diffusion length relative to absorption depth of light

P‐InP: scarcity and high demand makes limited availability

P‐Si:  stable in acidic environment

2H2O  + 2e‐ H2  + 2OH‐ (high pH)

Page 7: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Typical photoelectrochemical (PEC) water splitting process 

AnodeCathodeElectrolyte

Page 8: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

One‐step photoexcitation system

Sufficiently narrow bandGap to harvest visiblephotons> 1.23 eV theoritically> 1.6 eV practically

Suitable thermodynamicpotential to achieveoverall water splitting

Stability against corrosion

Limited material meets all the requirements!

Page 9: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Nanostructures for solar water splitting II

• Brief review• Advantages and disadvantages• Material designs and nanostructural architecture

Page 10: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Advantages of nanostructured Photoelectrodes and photocatalysts

• Shorten carrier collection pathways• Improve light distribution• Quantum size confinement• Potential determining ions• Surface area‐enhanced charge transfer

Page 11: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

1. Shorten carrier collection pathway

Mean free diffusion length LD: diffusion constant𝜏: lifetimeq: dimension factor

(q=2, 4, 6 for one‐, two‐, or three‐dimensional diffusion)

• Intrinsic semiconductors: Le > Lh• Doping: concentration of the majority carriers ↗

lifetime and diffusion length of the minority carriers ↘

d ~ Le and Lh

L2 = qDτ

Page 12: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

2. Improve light distributionThe ability of a material to absorb light is determined by the Lambert BeerLaw and the wavelength‐dependent absorption coefficient α.

The light penetration depth l = α‐1 refers to the distance after which the lightintensity is reduced to 1/e of the original value.

Light loss by reflection Light scattering to improve distribution

Fe2O3 α‐1 = 118 nm @ λ = 550 nmCdTe α‐1 = 106 nm @ λ = 550 nmSi          α‐1 = 680 nm @ λ = 510 nm

T = I/I0 = e‐αl

Page 13: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

3. Quantum size confinement

The dependence of semiconductor energetics on particle size

Rates for charge transfer and water electrolysis ↗

Page 14: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

4. Potential determine ions (PDIs)

nanostructures + Potential determine ions → external electric fields on surface → nanomaterial interior electric fields → local energe c structure

The band edge potential of nanomaterials, and resulting functions, including interfacial charge transfer can be controlled with PDIs.

Page 15: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

5. Surface area‐enhanced charge transfer

• Larger specific surface area of nanomaterials promotes charge transfer across the interfaces (solid‐solid and solid‐liquid)

• Water redox reactions can occur at low overpotential

Page 16: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Disadvantages of nanostructured Photoelectrodes and photocatalysts

• Increased surface recombination• Lower absorbed photon flux• Slow inter‐particle charge transfer

Page 17: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

1. Increased surface recombination

Major loss mechanism:

• Bulk recombination

• Depletion‐region recombination

• Surface state recombination

• Electron tunneling through the barrier

• Electron tunneling over the barrier

• Electron collection by back contact• Hole collection by redox coupling

Page 18: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

2. Lower absorbed photon flux

Increased surface roughness a lower flux per unit area ofexposed semiconductor

Page 19: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

3. Slow inter‐particle charge transport

• In nanocrystalline films, charge carriers move by diffusion instead of drift

• Charge transport is (much) slower than in bulk

Page 20: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Photosynthesis and nanostructures for solar water splitting II

• Brief review• Advantages and disadvantages• Material designs and nanostructured architecture

Page 21: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Material designs and nanostructured architecture to improve photoelectrochemical activity

Light absorption

Page 22: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Absorbance of single bandgap photo‐active materials

1. Branched (nano)structure

2. Band structure modification: doping• Homo‐ and inhomogeneous doping• Shift of the absorption edge toward longer wavelengths

Page 23: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

1. Branched structure: 1D structural unit

Mean free diffusion length LEffective charge separation 

and large surface areaL2 = qDτ

Page 24: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Branched 1D structure

• High surface area• Excellent light‐trapping• Efficient charge 

separation

TiO2 branched nanorods

Page 25: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

2. Band structure modification by inhomogeneous dopingDecrease bandgap and shift the absorption to visible region is a strategy to increase solar energy conversion efficiency (visible light has a large fraction of solar spectrum). Doping (N or C) into wide bandgap materials (TiO2 or ZnO).

𝐼𝑃𝐶𝐸 %1240𝐽λ 𝐼 100%

IPCE: incident‐photon‐to‐current‐conversion efficiency

𝐽: photocurrent density (mA cm‐2)λ: wavelength of incident light (nm)𝐼: intensity of incident light (mW cm‐2)

• Doped with heteroatoms• Decrease band gap• Visible light reactivity

Page 26: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

2. Band structure modification by homogeneous doping

Homogeneous doping of nanomaterials: solid solution

• Nanomaterial dominating• Shifting conduction/valance band• Decreasing band gap

Page 27: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Absorbance of multi‐bandgap photo‐active materials

• Small increase of visible light absorption from branched structures

• Small wavelength shift towards visible light from band modification by doping

• Absorbance over a wide solar spectral region can be further increased using multi‐bandgap materials• Dye sensitization• Quantum dots sensitization

Page 28: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Dye:• Oxidize water• Transfer electrons to semiconductorSemiconductor:• Be sufficiently thick to maximize the adsorption of 

the dye

A PEC cell with a RuP‐sensitized TiO2 photoanode coated with a Nafion film.

• Large light absorption• Visible light activity• Suitable oxidation potential

1. Dye sensitization

Page 29: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

2. Quantum dots sensitizationReplace photosensitive dyes with semiconductor nanocrystals, know as quantum dots (QDs)

CdTe QDs decorated ZnO nanorods

• Tunable absorption spectrum: size‐dependent• Generation of multiple electron‐hole pairs• More suitable solar spectrum

Page 30: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Material designs and nanostructural architecture to improve photoelectrochemical activity

Charge separationand transportation

Page 31: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

1. Hetero‐structures

TiSi2 nanonets:• Highly conductive framework• High surface areaFe2O3:• Thin film and cover the nanonets• Defect‐free by ALD

25 nm Fe2O3 photoanode @ TiSi2 nanonets

• Efficient charge collection• Excellent charge transportation

Page 32: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

2. Co‐catalyst modification

• Promotes electron‐hole pair separation• Excellent charge collection

Metal nanoparticles can be used inphotocatalytic systems as co‐catalystsfor hydrogen and oxygen evolution,where they act as traps of photo‐generated electrons and holes tocollect electrons or holes from thesemiconductors.

ZnO nanorods decorated by Co‐based co‐catalyst

Page 33: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

3. Plasmonic assistance

• Hot ejection: transfer of charge between metal/oxide (“hot” electron‐hole pairs)• Localized surface plasmon resonance: plasmonic induced electromagnetic field

Au nanoparticles decorated TiO2

Page 34: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

When an incident light strikes the surface, localized surface plasmonsare excited. The field enhancement is greatest when the plasmon frequency ωp is in resonance with the radiation (ω = ωp/1.732 for spherical particles). The plasmon oscillations must be perpendicular to the surface.

Localized surface plasmon resonanceElectromagnetic field enhancement

Page 35: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

More light scatteringand lower lightreflection

How does surface plasmonic effect affect the solar watersplitting performance?

Page 36: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

A nanowire array‐based tandem cell to completely split water

Current artificial photosynthesis systems fabricated by National Renewable Energy Laboratory (NREL) show a solar hydrogen conversion efficiency of 12.4%. The theoretical limit of solar‐to‐hydrogen generation has been estimated to be ~30%.

Page 37: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

• Class 1: A general introduction of fundamentals of nano‐structured materials

• Class 2: Structures and properties of nanocrystalline materials• Class 3: Graphene• Class 4: 2D atomic‐thin nanosheets• Class 5: Optical properties of 1D nanostructures and nano‐generator• Class 6: Carbon nanotubes• Class 7: Solar water splitting I: fundamentals• Class 8: Solar water splitting II: nanostructures for water splitting• Class 9: Lithium‐ion batteries: Si nanostructures• Class 10: Sodium‐ion batteries and other ion batteries, and 

Supercapacitors• Class 11: Solar cells• Class 12: Other nanostructures

Page 38: Nanostrukturphysik (Nanostructure Physics) · 2019. 7. 3. · Mean free diffusion length L D: diffusion constant 𝜏: lifetime q: dimension factor (q=2, 4, 6 for one‐, two‐,

Thank you!