Physics’1210’ Spring2016’ Prof.’Jang2Condell ...

2
Physics 1210 Spring 2016 Prof. JangCondell Equation Sheet For Exam #3 v avg = x 2 x 1 t 2 t 1 = Δ x Δ t a avg = v 2 v 1 t 2 t 1 = Δ v Δ t a rad = v 2 R = 4π 2 R T 2 x 1 = x 0 + v 0 t + 1 2 at 2 v 1 = v 0 + at v 1 2 = v 0 2 + 2 a( x 1 x 0 ) v = d r dt a = d v dt F = m a w = m g f s μ s N f k = μ k N f = kv f = Dv 2 f spring = kx Work/Energy W = F s = Fs cosθ W = ΔK K = 1 2 mv 2 U spring = 1 2 kx 2 U grav = mgy P = ΔW Δ t = F v F = dU dx Momentum/Impulse p = m v K 1 + U 1 + W other = K 2 + U 2 J = Δ( mv) = F Δt x cm = m i x i m i Angular Motion Kinematics power = τω θ 1 = θ 0 + ω 0 t + 1 2 α t 2 ω 1 = ω 0 + α t ω 2 1 = ω 0 2 + 2α ( θ 1 θ 0 ) τ = I α I = m i r i 2 i I = I cm + Md 2 τ = r × F = rF sin φ ω = d θ dt α = dω dt s = r θ v = r ω a tan = r α a rad = ω 2 r W = ΔK = τ Δθ K rot = 1 2 Iω 2 K tot = 1 2 mv cm 2 + 1 2 I cm ω 2 L = r × p = rmv = Iω ΔL = τ Δt 2π = 360 g = 9.80 m/s 2

Transcript of Physics’1210’ Spring2016’ Prof.’Jang2Condell ...

Page 1: Physics’1210’ Spring2016’ Prof.’Jang2Condell ...

Physics  1210  Spring  2016  

Prof.  Jang-­‐Condell    

Equation  Sheet  For  Exam  #3    

 

vavg =x2 − x1t2 − t1

=ΔxΔ t

aavg =v2 − v1t2 − t1

=ΔvΔ t

arad =v2

R=4π 2RT 2x1 = x0 + v0t + 1

2 at2 v1 = v0 + at v1

2 = v02 + 2a(x1 − x0 )

v = drdt

a = dvdt

F∑ =ma

w =m g fs ≤ µsN fk = µkN f = k v f = Dv2 fspring = −kx

Work/Energy W =

F ⋅ s = Fscosθ

W = ΔK K = 12mv

2 Uspring = 12 kx

2 Ugrav =mgy

P = ΔWΔ t

=F ⋅ v

F = − dUdx

Momentum/Impulse p =mv

K1 +U1 +Wother = K2 +U2

J = Δ(mv) = FΔt xcm =mi∑ xim∑ i

Angular Motion

Kinematics

power = τω

θ1 =θ0 +ω 0 t + 12α t

2 ω1 =ω 0+α t ω 21 =ω0

2 + 2α (θ1 −θ0 )

τ∑ = IαI = miri

2

i∑ I = Icm +Md

2 τ =r ×F = rF sinφ

ω =dθdt

α =dωdt s = rθ v = rω atan = rα arad =ω

2r

W = ΔK = τ Δθ

Krot = 12 Iω

2 K tot = 12mvcm

2 + 12 Icmω

2L = r × p = rmv = Iω ΔL = τ Δt

2π = 360

g = 9.80 m/s2

Page 2: Physics’1210’ Spring2016’ Prof.’Jang2Condell ...

   

Gravity G=6.67×10-11 N m2/kg2

Ug =−GM1M2

rFg =

GM1M2

r2v = Gm1

rT = 2πr

v= 2π r3

Gm1

Fluids p = dF⊥dA

p2 − p1 = −ρg(y2 − y1) p1 + ρgy1 + 12 ρv1

2 = p2 + ρgy2 + 12 ρv2

2

ρ1A1v1 = ρ2A2v2

Periodic Motion f =1 T ω = 2π f

ω =km ω =

gL

ω =mgdI

E = 12mv

2 + 12 kx

2 = 12 kA

2x = Acos(ωt +φ)

x = Ae−(b/2m)t cos( "ω t +φ); "ω =km−b2

4m2

Simple pendulum

Physical pendulum Damped oscillations

Mechanical Waves v = λ f y(x, t) = Acos(kx −ωt) k = 2πλ

v = ωk

v = Fµ f1 =

v2L fn = nf1, (n =1,2,3,…) Pav = 1

2 µFω 2A2

I = P4πr2

I1I2=r22

r12

Waves on a string

Sound

pmax = BkA

v = B ρI = pmax

2

2ρv=

pmax2

2 ρBβ = (10 dB)log I

I0

fn =nv4L, (n =1,3, 5,…)fn =

nv2L, (n =1,2,3,…) fbeat = fa − fb fL =

v+ vLv+ vS

fSOpen pipe Closed pipe

Spring

vesc =2Gm1r