Power Tran

download Power Tran

of 44

Transcript of Power Tran

  • 7/29/2019 Power Tran

    1/44

    ECE 442 Power Electronics 1

    Bipolar Junction Transistors (BJT)

    NPN PNP

  • 7/29/2019 Power Tran

    2/44

    ECE 442 Power Electronics 2

    BJT Cross-Sections

    NPN PNP

    Emitter

    Collector

  • 7/29/2019 Power Tran

    3/44

    ECE 442 Power Electronics 3

    Common-Emitter NPN Transistor

    Forward bias the BEJ

    Reverse bias the CBJ

  • 7/29/2019 Power Tran

    4/44

    ECE 442 Power Electronics 4

    Input Characteristics

    Plot IB as f(VBE, VCE)

    As VCE increases,

    more VBE required to

    turn the BE on so thatIB>0.

    Looks like a pn

    junction volt-ampere

    characteristic.

  • 7/29/2019 Power Tran

    5/44

    ECE 442 Power Electronics 5

    Output Characteristics

    Plot IC as f(VCE, IB)

    Cutoff region (off) both BE and BC

    reverse biased Active region

    BE Forward biased

    BC Reverse biased

    Saturation region (on) both BE and BC

    forward biased

  • 7/29/2019 Power Tran

    6/44

    ECE 442 Power Electronics 6

    Transfer Characteristics

  • 7/29/2019 Power Tran

    7/44

    ECE 442 Power Electronics 7

    Large-Signal Model of a BJT

    KCL >> IE = IC + IB

    F = hFE = IC/IB

    IC = FIB + ICEO

    IE = IB(1 + F) + ICEO

    IE = IB(1 + F)

    IE = IC(1 + 1/F)

    IE = IC(F + 1)/F

  • 7/29/2019 Power Tran

    8/44

    ECE 442 Power Electronics 8

    (1 ) ( 1)

    111

    1 1

    E B C

    CF FE

    B

    C F B CEO

    E B F CEO B F

    FE C C

    F F

    C F E

    F FF F

    F F

    I I I

    Ih

    II I I

    I I I I

    I I I

    I I

  • 7/29/2019 Power Tran

    9/44

    ECE 442 Power Electronics 9

    Transistor Operating Point

    B BEB

    B

    CE CC C

    C C

    CE CC C C

    V VI

    RV V

    I

    R RV V I R

  • 7/29/2019 Power Tran

    10/44

    ECE 442 Power Electronics 10

    DC Load Line

    VCC

    VCC/RC

  • 7/29/2019 Power Tran

    11/44

    ECE 442 Power Electronics 11

    BJT Transistor Switch

    B BEB

    B

    CE CC C C

    CE CB BE

    CB CE BE

    V VI

    R

    V V I R

    V V VV V V

  • 7/29/2019 Power Tran

    12/44

    ECE 442 Power Electronics 12

    BJT Transistor Switch (continued)

    CC CE CC BE CM

    C C

    CMBM

    F

    V V V V I

    R R

    II

  • 7/29/2019 Power Tran

    13/44

    ECE 442 Power Electronics 13

    BJT in Saturation

    ( )CC CE sat

    CS

    C

    CSBS

    F

    B

    BS

    CSforced

    B

    V VI

    R

    I

    I

    IODF

    II

    I

  • 7/29/2019 Power Tran

    14/44

    ECE 442 Power Electronics 14

    Model with Current Gain

  • 7/29/2019 Power Tran

    15/44

    ECE 442 Power Electronics 15

    Miller Effect

    vbe vceiout

  • 7/29/2019 Power Tran

    16/44

    ECE 442 Power Electronics 16

    Miller Effect (continued)

    ( ) ( )

    [1 ] [1 ]

    [1 ]

    out cb be ce cb be be

    out cb be cb be

    cb cb

    d di C v v C v Av

    dt dt d d

    i C A v C A vdt dt

    C C A

  • 7/29/2019 Power Tran

    17/44

    ECE 442 Power Electronics 17

    Miller Effect (continued)

    Miller Capacitance, CMiller= Ccb(1 A)

    since A is usually negative (phase inversion),

    the Miller capacitance can be much greater

    than the capacitance Ccb

    This capacitance must charge up to the

    base-emitter forward bias voltage, causing

    a delay time before any collector currentflows.

  • 7/29/2019 Power Tran

    18/44

    ECE 442 Power Electronics 18

    Saturating a BJT

    Normally apply more base current than

    needed to saturate the transistor

    This results in charges being stored in the

    base region

    To calculate the extra charge (saturating

    charge), determine the emitter current

    1cse B BS BS BS I

    I I ODF I I I ODF

  • 7/29/2019 Power Tran

    19/44

    ECE 442 Power Electronics 19

    The Saturating Charge

    The saturating charge, Qs

    ( 1)s s e s BSQ I I ODF storage time constantof the

    transistor

  • 7/29/2019 Power Tran

    20/44

    ECE 442 Power Electronics 20

    Transistor Switching Times

  • 7/29/2019 Power Tran

    21/44

    ECE 442 Power Electronics 21

    Switching Times turn on

    Input voltage rises from 0 to V1

    Base current rises to IB1

    Collector current begins to rise after the

    delay time, td

    Collector current rises to steady-statevalue ICS

    This rise time, trallows the Millercapacitance to charge to V1

    turn on time, ton = td + tr

  • 7/29/2019 Power Tran

    22/44

    ECE 442 Power Electronics 22

    Switching Times turn off

    Input voltage changes from V1 toV2

    Base current changes toIB2

    Base current remains atIB2 until theMiller capacitance discharges to zero,

    storage time, ts

    Base current falls to zero as Millercapacitance charges toV2, fall time, tf

    turn off time, toff= ts + tf

  • 7/29/2019 Power Tran

    23/44

    ECE 442 Power Electronics 23

    Charge Storage in Saturated BJTs

    Charge storage in the Base Charge Profile during turn-off

  • 7/29/2019 Power Tran

    24/44

    ECE 442 Power Electronics 24

    Example 4.2

  • 7/29/2019 Power Tran

    25/44

    ECE 442 Power Electronics 25

    Waveforms for the Transistor Switch

    VCC = 250 VVBE(sat) = 3 V

    IB = 8 A

    VCS(sat) = 2 V

    ICS = 100 A

    td = 0.5 s

    tr= 1 s

    ts = 5 stf= 3 s

    fs = 10 kHz

    duty cycle k = 50 %

    ICEO = 3 mA

  • 7/29/2019 Power Tran

    26/44

    ECE 442 Power Electronics 26

  • 7/29/2019 Power Tran

    27/44

    ECE 442 Power Electronics 27

    Power Loss due to IC for ton = td + tr

    During the delay time, 0 t td

    Instantaneous Power Loss

    Average Power Loss

    0 0

    1( )

    (250 )(3 )(10 )(0.5 ) 3.75

    d dt tCC CEO

    d c CC CEO s d

    d

    V IP P t dt dt V I f t

    T T

    P V mA kHz s mW

    ( )

    ( ) (250 )(3 ) 0.75c CE C CC CEO

    c

    P t v i V I

    P t V mA W

  • 7/29/2019 Power Tran

    28/44

    ECE 442 Power Electronics 28

    During the rise time, 0 t tr

    ( )

    ( )

    ( )

    max

    ( )

    ( )

    ( ) ( )

    ( )( )

    ( ) @

    2[ ]

    c CE c

    CSc CC ce sat CC

    r r

    ce sat CC c CS CSCC ce sat CC

    r r r r

    c m

    r CCm

    CC ce sat

    P t v i

    ItP t V V V t

    t t

    V VdP t I Itt V V V

    dt t t t t

    P t P t tt V

    tV V

  • 7/29/2019 Power Tran

    29/44

    ECE 442 Power Electronics 29

    2

    max

    ( )

    2

    max

    (1 )(250 ) 0.5042[250 2 ]

    4[ ]

    (250 ) (100 ) 63004[250 2 ]

    m

    CC CS

    CC CE sat

    s Vt sV V

    V IPV V

    V AP WV V

  • 7/29/2019 Power Tran

    30/44

    ECE 442 Power Electronics 30

    Average Power during rise time

    ( )

    0

    1( )

    2 3

    (250 ) (2 250 )(10 )(100 )(1 )

    2 3

    42.33

    rt

    CE sat CC CCr c s CS r

    r

    r

    V VVP P t dt f I t

    T

    V V VP kHz A s

    P W

  • 7/29/2019 Power Tran

    31/44

    ECE 442 Power Electronics 31

    Total Power Loss during turn-on

    0.00375 42.33 42.33375

    42.33

    on d r

    on

    on

    P P P

    P W

    P W

  • 7/29/2019 Power Tran

    32/44

    ECE 442 Power Electronics 32

  • 7/29/2019 Power Tran

    33/44

    ECE 442 Power Electronics 33

    Power Loss during

    the Conduction Period

    ( )

    ( ) ( )

    0 0

    0

    ( ) 100

    ( ) 2( ) (100 )(2 ) 200

    1

    ( )

    (2 )(100 )(10 )(48.5 ) 97

    n n

    n

    c CS

    CE CE sat

    c c CE

    t t

    n c CE sat CS s CE sat CS s n

    n

    t t

    i t I A

    v t V V P t i v A V W

    P P t dt V I f dt V I f tT

    P V A kHz s W

  • 7/29/2019 Power Tran

    34/44

    ECE 442 Power Electronics 34

  • 7/29/2019 Power Tran

    35/44

    ECE 442 Power Electronics 35

    Power Loss during turn off

    Storage time

    ( )

    ( )

    ( ) ( )

    0 0

    0

    ( ) 100

    ( ) 2

    ( ) (2 )(100 )

    ( ) 200

    1 ( )

    (2 )(100 )(10 )(5 ) 10

    s s

    s

    c CS

    CE CE sat

    c CE c CE sat CS

    c

    t t

    s c CE sat CS s CE sat CS s s

    s

    t t

    i t I A

    v t V V

    P t v i V I V A

    P t W

    P P t dt V I f dt V I f tT

    P V A kHz s W

  • 7/29/2019 Power Tran

    36/44

    ECE 442 Power Electronics 36

  • 7/29/2019 Power Tran

    37/44

    ECE 442 Power Electronics 37

    Power Loss during Fall time0

    ( ) 1 , 0

    ( ) , 0

    ( ) 1

    ( ) 11 0

    3( ) @ 1.5

    2 2

    (250 )(100 )

    4 4

    f

    c CS CEO

    f

    CCCE CEO

    f

    c CE c CC CS

    f f

    c CC CS

    f f f

    f

    c m

    CC CS m

    t t

    ti t I I

    t

    Vv t t I

    t

    t tP t v i V I

    t t

    dP t V I tt

    dt t t t

    t sP t P t s

    V I V AP

    6250W

  • 7/29/2019 Power Tran

    38/44

    ECE 442 Power Electronics 38

    Power Loss during Fall time (continued)

    0

    ( )

    1( )

    6

    (250 )(100 )(3 )(10 ) 1256

    6

    10 125 135

    ftCC CS f s

    f c

    f

    CC f

    off s f CS s s CE sat

    off

    V I t f P P t dt

    T

    V A s kHz P W

    V t

    P P P I f t V

    P W

  • 7/29/2019 Power Tran

    39/44

    ECE 442 Power Electronics 39

  • 7/29/2019 Power Tran

    40/44

    ECE 442 Power Electronics 40

    Power Loss during the off time

    0

    0( )

    ( )

    ( ) (250 )(3 ) 0.75

    1

    (250 )(3 )(10 )((50 5 3) )

    0.315

    o

    o

    CE CC

    c CEO

    c CE C CC CEO

    t

    o CC CEO CC CEO s o

    o

    o

    t tv t V

    i t I

    P t v i V I V mA W

    P V I dt V I f tT

    P V mA kHz s

    P W

  • 7/29/2019 Power Tran

    41/44

    ECE 442 Power Electronics 41

    The total average power losses

    42.33 97 135 0.315

    274.65

    T on n off o

    T

    T

    P P P P P

    P

    P W

  • 7/29/2019 Power Tran

    42/44

    ECE 442 Power Electronics 42

    Instantaneous Power for Example 4.2

  • 7/29/2019 Power Tran

    43/44

    ECE 442 Power Electronics 43

    BJT Switch with an Inductive Load

  • 7/29/2019 Power Tran

    44/44

    ECE 442 Power Electronics 44

    Load Lines