QUALIFICATION OF BERYLLIUM POISONING MODELS FOR …

18
MAŁGORZATA WRÓBLEWSKA P. SIRETA P. BLAISE D. BLANCHET A. BOETTCHER | PAGE 1 Munich 11 -15 March 2018 CADARACHE QUALIFICATION OF BERYLLIUM POISONING MODELS FOR MARIA AND JULES HOROWITZ RESEARCH REACTORS

Transcript of QUALIFICATION OF BERYLLIUM POISONING MODELS FOR …

MAŁGORZATA WRÓBLEWSKA

P. SIRETA

P. BLAISE

D. BLANCHET

A. BOETTCHER

| PAGE 1 Munich 11 -15 March 2018

CADARACHE

QUALIFICATION OF BERYLLIUM

POISONING MODELS FOR MARIA

AND JULES HOROWITZ

RESEARCH REACTORS

MARIA REACTOR

| PAGE 2 Munich 11 -15 March 2018

pool type reactor

up to 30MW(th)

moderator: H2O, beryllium

thermal flux 3∙1014 n/cm2 ∙ s

fuel: CERCA, 19.75% enriched

BERYLLIUM

Munich 11 -15 March 2018 | PAGE 3

Atomic weight 9.012

Density 1.85 [g∙cm-3]

σa 0.0011cm-1

diffusion coef. 0.54 cm

moderationg ratio 145

melting point 1287˚C

Coefficient of

linear expansion

11.4∙10-6

cm/cm/˚C

Munich 11 -15 March 2018

BERYLLIUM

| PAGE 4

CODES AND METHODS

DETERMINISTIC CODES

APOLLO2 (CEA France) MOC method; SHEM 281-group energy mesh

MONTE CARLO

TRIPOLI4.10 (CEA France)

SERPENT 2.1.26 (VVT Finland)

Library: JEFF3.1.1

| PAGE 5 Munich 11 -15 March 2018

CALCULATIONS

| PAGE 6 Munich 11 -15 March 2018

Based on REBUS model Z. Marcinkowska

GEOMETRY

APOLLO2, TRIPOLI4.10

SERPENT2

| PAGE 7 Munich 11 -15 March 2018

CALCULATIONS

Cycle burnup calculations SHEM self-shelding

calculations

Flux calculation 1D Pij

Energy mesh cutting

Flux normalization

Saving results

MOC flux in 2D

Setting burnup steps

Self-shelding

Outage calculation

Saving results

burnup calculation

for one cycle

Library initialization

Reactor configuration data

Depletion chains

definition

Media definition

definition

1D Self-shielding geometry

2D geometry

Initial calculations

Configuration data

0

100

200

300

400

500

600

700

ΔK

eff

[p

cm

]

BURNUP [MWd/t]

1/K [pcm] APOLLO2-no-

Be/APOLLO2-Be

0

1

1

2

2

3

3

4

4

5

ΔK

eff

[p

cm

]

BURNUP [MWd/t]

1/K [pcm]

APOLLO2/APOLO2corrected

Munich 11 -15 March 2018 | PAGE 8

APOLLO2 – TRIPOLI4.10

-200

-150

-100

-50

0

50

100

150

ΔK

eff

BURNUP [MWd/t]

1/K [pcm]

SERPENT/APOLO2 corrected

TRIPOLI4/APOLO2 corrected

Munich 11 -15 March 2018 | PAGE 9

APOLLO2 – TRIPOLI4.10

1,90E-01

1,95E-01

2,00E-01

2,05E-01

2,10E-01

2,15E-01

2,20E-01

0 1 2 3 4 5 6

Neu

tro

n f

lux

Fuel number layer

Thermal flux

TRIPOLI4

APOLLO2

σav=1.8E-4

1,96E-01

1,97E-01

1,98E-01

1,99E-01

2,00E-01

2,01E-01

2,02E-01

2,03E-01

0 1 2 3 4 5 6

Neu

tro

n f

lux

Fuel number layer

Fast flux TRIPOLI4

APOLLO2

σav=2.0E-4

Munich 11 -15 March 2018 | PAGE 10

APOLLO2 – TRIPOLI4.10

0,0E+00

1,0E-07

2,0E-07

3,0E-07

4,0E-07

5,0E-07

6,0E-07

7,0E-07

0 5000 10000 15000 20000 25000 30000 35000

ato

mic

den

sit

y [

ato

ms/b

arn

*cm

]

Burnup [MWd/Mg]

Li-6

MC-5 MCNP

MC-5 APOLLO2

0,0E+00

1,0E-07

2,0E-07

3,0E-07

4,0E-07

5,0E-07

6,0E-07

7,0E-07

0 5000 10000 15000 20000 25000 30000 35000

den

sit

y [

at/

b-c

m]

BURNUP [MWd/t]

Li6

APOLLO2

TRIPOLI

SERPENT

σend=4.5∙10-11

Munich 11 -15 March 2018 | PAGE 11

APOLLO2 – TRIPOLI4.10

0,0E+00

1,0E-07

2,0E-07

3,0E-07

4,0E-07

5,0E-07

6,0E-07

7,0E-07

0 5000 10000 15000 20000 25000 30000 35000

den

sit

y [

at/

b-c

m]

BURNUP [MWd/t]

Li6

APOLLO2-corrected

TRIPOLI

SERPENT

APOLLO- primary

σ=3.33E-11

0,0E+00

1,0E-12

2,0E-12

3,0E-12

4,0E-12

5,0E-12

6,0E-12

7,0E-12

8,0E-12

0 5000 10000 15000 20000 25000 30000 35000

ato

mic

den

sit

y [

ato

ms/b

arn

*cm

]

Burnup [MWd/Mg]

3H

MC-5 APOLLO2

0,0E+00

5,0E-08

1,0E-07

1,5E-07

2,0E-07

2,5E-07

0 5000 10000 15000 20000 25000 30000 35000

den

sit

y [

at/

b-c

m]

BURNUP [MWd/t]

3H

APOLLO2

TRIPOLI

SERPENT

σTend=1.4∙10-11

Munich 11 -15 March 2018 | PAGE 12

APOLLO2 – TRIPOLI4.10

-1,0E-08

4,0E-08

9,0E-08

1,4E-07

1,9E-07

2,4E-07

0 5000 10000 15000 20000 25000 30000 35000

den

sit

y [

at/

b-c

m]

BURNUP [MWd/t]

H3

APOLLO2-corrected

TRIPOLI

SERPENT

APOLLO- primary

σ=7.87E-12

1,0E-21

1,0E-20

1,0E-19

1,0E-18

1,0E-17

1,0E-16

1,0E-15

1,0E-14

0 5000 10000 15000 20000 25000 30000 35000

ato

mic

den

sit

y [

ato

ms/b

arn

*cm

]

Burnup [MWd/Mg]

3He

MC-5 APOLLO2

0,0E+00

1,0E-10

2,0E-10

3,0E-10

4,0E-10

5,0E-10

6,0E-10

7,0E-10

8,0E-10

0 5000 10000 15000 20000 25000 30000 35000

den

sit

y [

at/

b-c

m]

BURNUP [MWd/t]

3He

APOLLO2

TRIPOLI

SERPENT

σTend=6.3∙10-14

Munich 11 -15 March 2018 | PAGE 13

APOLLO2 – TRIPOLI4.10

0,0E+00

1,0E-10

2,0E-10

3,0E-10

4,0E-10

5,0E-10

6,0E-10

7,0E-10

8,0E-10

0 5000 10000 15000 20000 25000 30000 35000

den

sit

y [

at/

b-c

m]

BURNUP [MWd/t]

He3

APOLLO2-corrected

TRIPOLI

SERPENT

APOLLO- primary

σ=2.47E-14

CALCULATIONS

| PAGE 14 Munich 11 -15 March 2018

0,1

0,15

0,2

0,25

0,3

0,35

0 1 2 3 4 5 6

PO

WE

R [

MW

]

FUEL LAYER NUMBER

POWER DISTRIBUTION

TRIPOLI4 APOLLO2

EXPERIMENT

| PAGE 15 Munich 11 -15 March 2018

FUEL ELEMENTS

13 cm

Control rods

Lithium distribution

Middle of the core height

EXPERIMENT AND MEASUREMENTS

| PAGE 16 Munich 11 -15 March 2018

2∙107 n/s

Fission chamber

𝑡𝑝 ≈ 200 [s]

SUMMARY AND CONCLUSION

| PAGE 17 Munich 11 -15 March 2018

What do we know at the moment ?

- Beryllium depletion products in lattice calculations match Monte-

Carlo results

- Measurable effect of poisons accumulation on the reactivity

- Important to include in core calculations

Further steps:

- Developement of core model

- Experiment followed by the model evaluation and corrections

THANK YOU FOR YOUR ATTENTION !!!

Questions?

[email protected]

[email protected]

This work is carried out in the scope of BENICE project, which is supported by the

Polish Ministry of Science and Higher Education, French Atomic Energy Commission in Cadarache

and National Centre for Nuclear Research .

Munich 11 -15 March 2018 | PAGE 18