References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ......

27
References Aberger M, Otter M (2002) Modeling friction in Modelica with the Lund- Grenoble friction model. Proc 2nd Int Modelica Conf, Oberpfaffenhofen, pp 285–294 Adams G O, Bonnell R D (1968) Computer simulation of fluid power systems. Proc Nat Conf on Fluid Power, accessed via http://www.nfpa.com, pp 169– 182 Adler M (1934) Strömung in gekrümmten Rohren. Zeitschrift für angewandte Mathematik und Mechanik 14(5): 257–275 Afanasyev V V (1968) Variations of the effective areas of diaphragms. In: Aizer- man M A (ed) Pneumatic and hydraulic control systems. Pergamon Press, Ox- ford London Edinburgh New York, pp 311–319 Agel J S, Codina E (1996) Relation between sound pressure level and flow rate parameters of pneumatic silencers. Proc 47th Nat Conf on Fluid Power, Chi- cago, accessed via http://www.nfpa.com Al-Ibrahim A M, Otis D R (1992) Transient air temperature and pressure meas- urements during the charging and discharging processes of an actuating pneumatic cylinder. Proc 45th Nat Conf on Fluid Power, Chicago, accessed via http://www.nfpa.com, pp 233–239 Ams F, Oehrle U (1995) Eigensicheres Piezo-Ventil. Geringer Energieverbrauch und erweiterter Anwendungsbereich. Verfahrenstechnik 29(12): 33–34 Andersen B W (1967) The analysis and design of pneumatic systems. John Wiley & Sons, New York London Sydney Andersson S B, Bévengut G, Eckersten J, Ek G, Kalldin B (eds) (1975) Atlas Copco Air Compendium. Atlas Copco AB, Stockholm anon. (1956) ARCA 01065 pneumatic positioner - Technical description. ARCA- Regler GmbH, Tönisvorst anon. (1962) VDI/VDE-Richtlinie 2173 Strömungstechnische Kenngrößen von Stellventilen. Verein Deutscher Ingenieure, Düsseldorf anon. (1975) ISO 2533 Standard-Atmosphere. International Organization for Standardization, Genéve anon. (1984) ISO 2787 Rotary and percussive pneumatic tools – Performance tests. International Organization for Standardization, Genéve anon. (1985a) ISO 6432 Pneumatic fluid power – Single rod cylinders – 10 bar (1.000 kPa) series – Bores from 8 to 25 mm – Mounting dimensions. Interna- tional Organization for Standardization, Genéve anon. (1985b) ISO 5598 Fluid power systems and components – Vocabulary. In- ternational Organization for Standardization, Genéve

Transcript of References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ......

Page 1: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

References

Aberger M, Otter M (2002) Modeling friction in Modelica with the Lund-Grenoble friction model. Proc 2nd Int Modelica Conf, Oberpfaffenhofen, pp285–294

Adams G O, Bonnell R D (1968) Computer simulation of fluid power systems.Proc Nat Conf on Fluid Power, accessed via http://www.nfpa.com, pp 169–182

Adler M (1934) Strömung in gekrümmten Rohren. Zeitschrift für angewandteMathematik und Mechanik 14(5): 257–275

Afanasyev V V (1968) Variations of the effective areas of diaphragms. In: Aizer-man M A (ed) Pneumatic and hydraulic control systems. Pergamon Press, Ox-ford London Edinburgh New York, pp 311–319

Agel J S, Codina E (1996) Relation between sound pressure level and flow rateparameters of pneumatic silencers. Proc 47th Nat Conf on Fluid Power, Chi-cago, accessed via http://www.nfpa.com

Al-Ibrahim A M, Otis D R (1992) Transient air temperature and pressure meas-urements during the charging and discharging processes of an actuatingpneumatic cylinder. Proc 45th Nat Conf on Fluid Power, Chicago, accessedvia http://www.nfpa.com, pp 233–239

Ams F, Oehrle U (1995) Eigensicheres Piezo-Ventil. Geringer Energieverbrauchund erweiterter Anwendungsbereich. Verfahrenstechnik 29(12): 33–34

Andersen B W (1967) The analysis and design of pneumatic systems. John Wiley& Sons, New York London Sydney

Andersson S B, Bévengut G, Eckersten J, Ek G, Kalldin B (eds) (1975) AtlasCopco Air Compendium. Atlas Copco AB, Stockholm

anon. (1956) ARCA 01065 pneumatic positioner - Technical description. ARCA-Regler GmbH, Tönisvorst

anon. (1962) VDI/VDE-Richtlinie 2173 Strömungstechnische Kenngrößen vonStellventilen. Verein Deutscher Ingenieure, Düsseldorf

anon. (1975) ISO 2533 Standard-Atmosphere. International Organization forStandardization, Genéve

anon. (1984) ISO 2787 Rotary and percussive pneumatic tools – Performancetests. International Organization for Standardization, Genéve

anon. (1985a) ISO 6432 Pneumatic fluid power – Single rod cylinders – 10 bar(1.000 kPa) series – Bores from 8 to 25 mm – Mounting dimensions. Interna-tional Organization for Standardization, Genéve

anon. (1985b) ISO 5598 Fluid power systems and components – Vocabulary. In-ternational Organization for Standardization, Genéve

Page 2: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

298 References

anon. (1985c) Druckluftmotoren laufen trocken. VDI Nachrichten 39(19): 38anon. (1989) ISO 6358 Pneumatic fluid power – Components using compressible

fluids – Determination of flow-rate characteristics. International Organizationfor Standardization, Genéve

anon. (1996a) Das A und O der Endlagendämpfung. AB Rexroth Mecman, Stock-holm

anon. (1996b) Air braking equipment for towed vehicles in accordance with coun-cil directive 71/320/ EEC. Diagrammatic views and description of brakingsystems and air braking equipment. WABCO Fahrzeugbremsen GmbH, Han-nover

anon. (1998) ISO 4414 Pneumatic fluid power – General rules relating to systems.International Organization for Standardization, Genéve

anon. (1999) Control valve handbook. 3rd ed. Fisher Controls International, Inc.,Marshalltown, Iowa

anon. (2000a) ISO/DIS 8778 Pneumatic fluid power – Standard reference atmos-phere. International Organization for Standardization, Genéve

anon. (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressureregulators and filter-regulators – Part 1: Main characteristics to be included inliterature from suppliers and product-marking. International Organization forStandardization, Genéve

anon. (2000c) ISO 6953-2 Pneumatic fluid power – Compressed air pressureregulators and filter-regulators – Part 2: Test methods to determine the maincharacteristics to be included in literature from suppliers. International Or-ganization for Standardization, Genéve

anon. (2000d) Know How in Pneumatics – components catalogue. Rexroth Mec-man, Hannover

anon. (2000e) C4 Katalog im PDF-Format. SMC Pneumatik GmbH, Egelsbachanon. (2000f) Japanese Industrial Standard JIS B 8390 Pneumatic fluid power –

Components using compressible fluids – Determination of flow-rate charac-teristics. Translated and published by Japanese Standards Association, Tokyo

anon. (2001a) ISO 10099 Pneumatic fluid power – Cylinders – Final examinationand acceptance criteria. International Organization for Standardization,Genéve

anon. (2001b) ISO 12238 Pneumatic fluid power – Directional control valves –Measurement of shifting time. International Organization for Standardization,Genéve

anon. (2003) Technische Information Prozessmodul SPEEDy. Kuhnke GmbH,Malente

anon. (2004a) ISO 15552 Pneumatic fluid power – Cylinders with detachablemountings, 1.000 kPa (10 bar) series, bores from 32 mm to 320 mm – Basic,mounting and accessories dimensions. International Organization for Stan-dardization, Genéve

anon. (2004b) Product service life at Festo. Brochure 906.FIF. Festo AG & Co,Esslingen

anon. (2005) High-Speed – gewußt wie. Ölhydraulik und Pneumatik o+p49(9): 538–540

Page 3: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

299

anon. (2006a) Dymola – Multi-engineering modeling and simulation. Accessedvia http://www.Dynasim.com

anon. (2006b) Modelica portal. Accessed via http://www.modelica.org/http://www.modelica.org/

library/PneuLibAraki K, Chen N (1999) Pressure versus flow characteristics of a diaphragm type

pneumatic pressure control proportional valve. Proc 4th JHPS Int Symp onFluid Power, Tokyo, pp 413–418

Araki K, Tanahashi T, Nishimura M (1982) Measurement of the friction forces ofpneumatic cylinders. Proc 5. Aachener Fluidtechnisches Kolloquium, Aachen,vol 3, pp 55–74

Araki K, Yumuro A, Chen N, Ishino Y (1993) Static characteristics of a pneu-matic pressure control proportional valve with nozzle-flapper mechanism.Proc 2nd JHPS Int Symp on Fluid Power, Tokyo, pp 719–72

Atherton P D, Uchino K (1998) New development in piezo motors and mecha-nism. Proc Actuator 98, Bremen, pp 164–169

Backé W, Ohligschläger O (1989) A model of heat transfer in pneumatic cham-bers. The Journal of Fluid Control 20: 61–78

Backé W, Bialas V, Egberts M (1974) Untersuchungen über das dynamische Ver-halten pneumatischer Stellantriebe. Forschungsberichte des Landes Nord-rhein-Westfalen Nr. 2434, Westdeutscher Verlag, Opladen

Baehr H D, Schwier K (1961) Die thermodynamischen Eigenschaften der Luft imTemperaturbereich zwischen minus 210 Grad C und plus 1250 Grad C bis zuDrücken von 4500 bar. Springer, Berlin Göttingen Heidelberg

Bala H, Giesen N, Schmidtke W (1986) Positionierbare Pneumatikantriebe mitgroßer Variantenvielfalt. Ölhydraulik und Pneumatik o+p 30(11): 843–846

Balje O E (1981) Turbomachines, a guide to design, selection, and theory. Wiley,New York

Ballard R L (1974) The dynamic characteristics of pneumatic actuator and valvesystems. Ph.D. thesis, University of Bath

Baoren L, Zhuangyun L (1997) Study on adaptive control for a pneumatic positionservo system. Advances in Modelling and Control 49: 21–28

Barber A (1997) Pneumatic Handbook. 8th edn. Elsevier Advanced Technology,Oxford

Barker H F (1976) Design of a state observer for improving the response of a lin-ear pneumatic servo-actuator. Proc Int Conf on Hydraulics, Pneumatics andFluidics in Control and Automation, Toronto, pp 43–56

Barth H-J (1978) Druckluft-Drehkolbenmotoren – Analyse und Berechnung. Ha-bilitation thesis, Technische Hochschule Clausthal

Barth H-J (1994) Einfache Kennzeichnung und Berechnung von Druckverlustenin der Pneumatik. Ölhydraulik und Pneumatik o+p 38(9): 564–569

Barth H-J (2000) Ungekühlte Druckluft für optimale Energienutzung in derPneumatik. Ölhydraulik und Pneumatik o+p 44(5): 304–306

Barth H-J (2003) Wie kalt wird ausströmende Druckluft? Ölhydraulik und Pneu-matik o+p 47(1): 43–46

anon. (2006c) Modelica portal – PneuLib. Accessed via

References

Page 4: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

300 References

Bauer F (2002) Maßnahmen und Methoden zur Flexibilisierung pneumatischerGreifsysteme. Doctoral dissertation, Rheinisch-Westfälische TechnischeHochschule Aachen

Beater P (1999) Entwurf hydraulischer Maschinen. Springer, Berlin HeidelbergNew York

Beater P (2000) Modeling and digital simulation of hydraulic systems in designand engineering education using Modelica and HyLib. Proc Modelica Work-shop 2000, Lund, pp 33–40

Beater P (2003) Endlagendämpfung pneumatischer Zylinder. Ölhydraulik undPneumatik o+p 47(3): 163–167

Beater P (2004) Modelling and control of pneumatic vane motors. InternationalJournal of Fluid Power 5(1): 7–16

Becker R J, Mueller J G (1993) Electronically controlled turbine-driven airstartermotor. Proc Int Truck and Bus Meeting and Exposition, Detroit, Michigan,SAE Technical Paper Series 933064

Belforte G, Raparelli T (1997) Friction analysis of pneumatic semi-rotary actua-tors. Tribology Transactions 40: 57– 62

Belforte G, D’Alfino N, Raparelli T (1989) Experimental analysis of frictionforces in pneumatic cylinders. The Journal of Fluid Control 20(1): 42–60

Belforte G, Carello M, D’Alfio N (1995a) Effects of geometry on flow in noncon-ventional pneumatic valves. Proc 9th World Congress on Theory of Machinesand Mechanisms IFToMM, pp 2680–2685

Belforte G, Carello M, D’Alfio N (1995b) Study of digital pneumatic valves ge-ometry. Proc 4th Scandinavian Int Conf on Fluid Power, Tampere, pp 467–480

Belforte G, Gastaldi L, Sorli M (1998) Properties and mechanical performance ofPZT actuators. Proc Actuator 98, Bremen, pp 313–317

Belforte G, Manuello Bertetto A, Liu S, Mazza L (1999) Wear and failure analysisin pneumatic cylinders under radial load. Proc 11th Int Sealing Conf, Dresden,pp 317–330

Belforte G, Mattiazzo G, Mauro S (2000) Design criteria for flow proportionalcontrol valves. Proc FLUCOME 2000, Sherbroke (QC)

Belforte G, Sorli M, Gastaldi L (2002) Experimental and numerical analysis onbimorph piezo-actuators. Proc Actuator 2002, Bremen, pp 417–420

Belforte G, Raparelli T, Mazza L, Trivella A (2005) Analysis, design, and com-parison of different types of pistons for sealless pneumatic cylinders andvalves. Tribology Transactions 48(3): 377–388

Benchabane S, Lecerf J P, Bonis P M (1994) Economic measurement of ISOpneumatic coefficients. Proc 11. Aachener Fluidtechnisches Kolloquium,Aachen, pp 131–141

Benedict R P (1971) Generalized contraction coefficient of an orifice for subsonicand supercritical flow. Trans ASME – Journal of Basic Engineering93(6): 99–120

Beresowez G T, Dimitrijew W N, Nadshafow E M (1958) Über die zulässigenVereinfachungen bei der Berechnung pneumatischer Regler. Feinwerktechnik62(5): 159–167

Page 5: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

301

Berninger J F (2002) Comparing ISO sonic flow to ANSI Cv in pneumatic direc-tional control valves. Proc 49th Nat Conf on Fluid Power, Las Vegas, Nevada,pp 153–160

Bharath S, Nakra B C, Gupta K N (1990) Mathematical model of a railway pneu-matic brake system with varying cylinder capacity effects. Trans ASME –Journal of Dynamic Systems, Measurement, and Control 112(9): 456–462

Bialas V (1973) Ein Beitrag zur Klärung des Verhaltens von Pneumatikzylindern.Doctoral dissertation, Rheinisch-Westfälische Technische Hochschule Aachen

Bideaux E, Scavarda S (2000) Pneumatic pipes – experimental and simulation ap-proach. Proc Bath Workshop on Power Transmission and Motion ControlPTMC 2000, Bath, pp 157–169

Bowns D E, Ballard R L (1972) Digital computation for the analysis of pneumaticactuator systems. Proc Instn mech Engrs 186: 881–889

Brann R P (1966) Linear analysis of a pneumatic differential actuator with posi-tion feedback for prosthesis control. Control 8: 428–430

Brassart P, Scavarda S (1997) Modelling a pneumatic braking system. Proc 5thScandinavian Int Conf on Fluid Power, Linköping, pp 353–362

Brower W B (1990) Theory, tables, and data for compressible flow. HemispherePublishing, New York Washington Philadelphia London

Brower W B, Eisler E, Filkorn E J, Gonenc J, Plati C, Stagnitti J (1993) On thecompressible flow through an orifice. Trans ASME – Journal of Fluids Engi-neering 115: 660–664

Brückner W (1967) Die Hauptabmessungen nichtumsteuerbarer Druckluft-Lamellenmotoren mit radialer Lamellenanordnung für niedrigen spezifischenLuftverbrauch. Doctoral dissertation, Bergakademie Freiberg

Burrows C R (1969) Effect of position on stability of pneumatic servomechanism.Proc Instn mech Engrs – Part C Journal Mechanical Engineering Science11: 615–616

Burrows C R, Webb C R (1966) Use of root loci in design of pneumatic servo-motors. Control 8: 423–427

Burrows C R, Peckham R G (1977) Dynamic characteristics of a pneumatic flap-per valve. Proc Instn mech Engrs – Part C Journal Mechanical EngineeringScience 19(3): 113–121

Caldwell D G, Mecrano-Cerda G A, Goodwin M (1995) Control of pneumaticmuscle actuator. IEEE Control Systems 15: 40–48

Carello M, Ivanov A, Mazza L (2006) Experimental and theoretical methods toevaluate the pressure losses in air distribution lines. International Journal ofFluid Power 7(2): 5–9

Cellier F E (1992) Ordinary differential equation models: Numerical integration ofinitial-value problems. In: Atherton D P, Borne P (eds) Concise encyclopaediaof modelling & simulation. Pergamon Press, Oxford New York Seoul Tokyo

Çengel A (1997) Introduction to thermodynamics and heat transfer.Irwin/McGraw-Hill, Boston Burr Ridge Dubuque Madison New York

Chadwick T H, Brady P L (1957) New design concepts for high pressure pneu-matics systems. Proc 13th Nat Conf on Fluid Power, accessed viahttp://www.nfpa.com, pp 232–251

References

Page 6: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

302 References

Champagne R P, Boyle S J (1996) Optimizing valve actuator parameters to en-hance control valve performance. ISA Transactions 35: 217–223

Chen M F (1995) Zustandsgrößengenerierung und ihre Rückführung bei fluid-technischen Positionierantrieben. Doctoral dissertation, Rheinisch-Westfälische Technische Hochschule Aachen

Chen N, Araki K (1995) Pressure versus flow characteristics of a pneumatic pres-sure control proportional valve with diaphragms. Proc 4th Scandinavian IntConf on Fluid Power, Tampere, pp 453–466

Cheng M P, Pourmovahed A, Griffith A M (1993) Comparison of electric andpneumatic power tools – Part I: Mechanical characteristics and cost. SAETrans – Journal of Passenger Cars 102(6): 2271–2285

Cherry C, Gibbons M, Ronayne J (1974) The origins of the air-turbine dentalhandpiece. British Dental Journal 136(6): 469–472

Chillari S, Guccione S, Muscato G (2001) An experimental comparison betweenseveral pneumatic position control methods. Proc 40th IEEE conf on decisionand control, vol 2, pp 1168–1173

Cho S, Fiedler M, Rüdiger F, Helduser S (2006) Virtual-design-model-based pres-sure-tracking control of high-dynamic pneumatic valves using a sliding modecontroller combined with a proportional-integral-derivative scheme. ProcInstn mech Engrs – Part I Journal of Systems and Control Engineering220(5): 353–365

Choi S B, Yoo J K (2004) Pressure control of a pneumatic valve system using apiezoceramic flapper. Proc Instn mech Engrs – Part C Journal MechanicalEngineering Science 218: 83–91

Chou C-P, Hannaford B (1996) Measurement and modeling of McKibben pneu-matic artifical muscle. IEEE Transactions on Robotics and Automation12(1): 90–102

Colin S, Bonnet A, Caen R (1996) A new high supply pressure pneumatic flapper-nozzle with linear behaviour. Trans ASME – Journal of Dynamic Systems,Measurement, and Control 118(6): 259–266

Coughran M T (2003) Dynamic air consumption of control valves. measurement +control 36(8): 235–238

Crnojevic C, Roy G, Bettahar A, Florent P (1997) The influence of the regulatordiameter and injection nozzle geometry on the flow structure in pneumaticdimensional control systems. Trans ASME – Journal of Fluid Engineering119(9): 609–615

Croser P, Ebel F (1999) Pneumatik - Grundstufe. 2nd edn. Springer, Berlin Hei-delberg NewYork

Csanady G T (1964) Theory of turbomachines. McGraw-Hill, New YorkCundiff J S (2001) Fluid power circuits and controls – Fundamentals and applica-

tions. CRC Press, Boca Raton New York Washington DCCzinki A (2001) Konstruktion, Aufbau und Regelung servopneumatischer Robo-

terhände. Doctoral dissertation, Rheinisch-Westfälische Technische Hoch-schule Aachen

D'Alfio N, Ferraresi C (1988) Analysis of the air flow through pressure regulators.Proc XIth Int Conf on Fluidics, Jablonna, pp 84–91

Page 7: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

303

Daerden F, Lefeber D (2001) The concept and design of pleated pneumatic artifi-cial muscles. International Journal of Fluid Power 2(3): 41–50

Daser E (1969) Das Reaktionsmoment hochtouriger Lamellenmotoren, seine Mes-sung und Bedeutung für die Auslegung der Motoren. Doctoral thesis, Tech-nische Universität Clausthal

Davis S, Caldwell D G (2006) Braid effects on contractile range and friction mod-eling in pneumatic muscle actuators. The International Journal of RoboticsResearch 25(4): 359–369

Denker K (1987) Pneumatisches Regelventil als Stellglied in der Automa-tisierungstechnik. Ölhydraulik und Pneumatik o + p 31(3): 244–246

Det F, Scavarda S, Richard E (1989) Simulated and experimental study of charg-ing and discharging of a cylinder by using an electro-pneumatic servovalve.Proc 1st JHPS Int Symp on Fluid Power, Tokyo, pp 321–328

Dixon S L (1978) Fluid mechanics, thermodynamics of turbomachinery. 3rd edn.Pergamon Press, Oxford

Dunn A L, Heydinger J, Rizzoni G, Guenther D A (2003) Empirical models forcommercial vehicle brake torque from experimental data. Proc SAE WorldCongress, Detroit, Michigan, pp 257–268, SAE Paper No. 2003-01-1325

Dyson J E, Darvell B W (1993) The development of the dental high-speed air tur-bine handpiece – Part 1 and 2. Australian Dental Journal 38(1): 49–58 and38(2): 131–143

Dyson J E, Darvell B W (1999a) Flow and free running speed characterization ofdental air turbine handpieces. Journal of Dentistry 27(7): 465–477

Dyson J E, Darvell B W (1999b) Torque, power and efficiency characterization ofdental air turbine handpieces. Journal of Dentistry 27(8): 573–586

Eby W R (2005) Feasibility analysis of a powered lower-limb orthotic for the mo-bility impaired user. Master thesis, University of Waterloo. Accessed viahttp://etd.uwaterloo.ca/etd/wreby2005.pdf

Eckersten J (1975a) Simplified flow calculations for pneumatic components. In:Andersson S B, Bévengut G, Eckersten J, Ek G, Kalldin B (eds) Atlas CopcoAir Compendium. Atlas Copco AB, Stockholm, pp 183–192

Eckersten J (1975b) Pneumatic transmission of signals. In: Andersson S B,Bévengut G, Eckersten J, Ek G, Kalldin B (eds) Atlas Copco Air Compen-dium. Atlas Copco AB, Stockholm, pp 211–218

Elmqvist H (1978) A structured model language for large continuous systems.Ph.D. thesis, Lund Institute of Technology

Elmqvist H, Boudaud F, Broenink J, Brück D, Ernst T, Fritzson P, Jeandel A, Jus-lin K, Klose M, Mattsson S E, Otter M, Sahlin P, Tummescheit H, Vanghe-luwe H (1997) Modelica – A unified object-oriented language for physical

http://www.Modelica.org/documents/

Eschmann R (1992) Reibkräfte an Pneumatikdichtungen. Proc 10. Aachener Flu-idtechnisches Kolloquium, Aachen, pp 49–69

Eschmann R (1994) Modellbildung und Simulation pneumatischer Zylinderan-triebe. Doctoral dissertation, Rheinisch-Westfälische Technische HochschuleAachen

References

systems – version 1 September 1997. accessed via

Page 8: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

304 References

Esposito A (2000) Fluid power with applications. 5th edn. Prentice Hall Interna-tional Inc., Upper Saddle River, New Jersey

Falkman, H (1975a) Flow of gases in pipes. In: Andersson S B, Bévengut G, Eck-ersten J, Ek G, Kalldin B (eds) Atlas Copco Air Compendium. Atlas CopcoAB, Stockholm, pp 149–192

Falkman, H (1975b) Compressed air distribution. In: Andersson S B, Bévengut G,Eckersten J, Ek G, Kalldin B (eds) Atlas Copco Air Compendium. AtlasCopco AB, Stockholm, pp 473–494

Falkman H (1975c) The motor process. In: Andersson S B, Bévengut G, EckerstenJ, Ek G, Kalldin B (eds) Atlas Copco Air Compendium. Atlas Copco AB,Stockholm, pp 125–148

Fasol K H, Jörgl H P (1979) Zur Modellbildung und Simulation instationärerRohrströmungen. Regelungstechnik rt 27(12): 387–393

Fernandez R, Woods R L (2000) The use of helium gas for high-performance ser-vopneumatics. Proc 48th Nat Conf on Fluid Power, Chicago, IL, accessed viahttp://www.nfpa.com, pp 431–439

Ferraresi C, Giraudo P, Quaglia G (1994) Non-conventional adaptive control of aservopneumatic unit for vertical load positioning. Proc 46th Nat Conf on FluidPower, Anaheim, accessed via http://www.nfpa.com, pp 319–333

Ferraresi C, Franco W, Manuello Bertetto A (1999) Straight fibres pneumaticmuscle: an actuator with high traction force. Proc 6th Scandinavian Int Confon Fluid Power, Tampere, pp 787–798

Feuser A (1983) Ein Beitrag zur Auslegung ventilgesteuerter Vorschubantriebe imLageregelkreis. Doctoral dissertation, Universität Erlangen-Nürnberg

Fiedler M, Helduser S, Rüdiger F (2005) Virtual design of high dynamic pneu-matic valves. Proc Power Transmission and Motion Control PTMC, Bath, pp255–265

Figliolini G, Almondo A, Sorli M (2004) Modelling and experimental validationof a pneumatic servo-solenoid valve. Proc Power Transmission and MotionControl PTMC, Bath, pp 85–98

Fleischer H (1995) Manual of pneumatic system operation. McGraw-Hill, NewYork San Francisco Washington

Fok S C, Ong E K (1995) Position control and repeatability of a pneumatic rodlesscylinder system for continuous positioning. Robotics and Computer IntegratedManufacturing 15: 365–371

Fox R W, McDonald A T, Pritchard P J (2004) Introduction to fluid mechanics.6th edn. John Wiley and Sons, Inc., Hoboken, NJ

French M, Ramirez A C (1996) Towards a comparative study of quarter-turnpneumatic valve actuators. Proc Instn Mech Engrs 210: 543–552

Fritzson P A (2004) Principles of object-oriented modeling and simulation withModelica 2.1. IEEE Press, Piscataway, NJ

Frühauf F, Jäker K P, Siemensmeyer H (1983) Rechnergestützte Positionierungeines Pneumatikzylinders mit Magnetventilen. Ölhydraulik und Pneumatiko+p 27(5): 359–363

Fujita T, Kagawa T, Takeuchi M (1994) Disturbance characteristics of controlvalve positioner. Proc FLUCOME’94, Toulouse, pp 847–852

Page 9: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

305

Fujita T, Jang J, Kagawa T, Takeuchi M (1996) Dynamics of pneumatic cylindersystems. Proc 3rd JHPS Int Symp on Fluid Power, Yokohama, pp 259–264

Fujita T, Tokashiki L R, Kagawa T (1999) Stick-sip motion in peumatic clindersdriven by meter-out circuit. Proc 4th JHPS Int Symp on Fluid Power, Tokyo,pp 131–136

Funk J E, Robe T R (1970) Transients in pneumatic transmission lines subjectedto large pressure changes. Int J mech Sci 12: 245–257

Gerts E V, Gerts M E (1999) Selection of the parameters of a reversible pneumaticactuator. Journal of Machinery Manufacture and Reliability 6: 1–6

Gidlund P L (1977) Auslegung pneumatischer Schaltungen – Sizing pneumaticcomponents. Proc Internationale Fachtagung zur Systemschau “Antreiben –Steuern – Bewegen”, Hannover, pp 240–261

Goedecke W D (1980) Möglichkeiten zur Steuerung und Regelung pneumatischerAntriebe. Proc 4. Aachener Fluidtechnisches Kolloquium, Aachen, pp 3–24

Gödert H (1995) Der geregelte Pneumatikantrieb – eine interessante Alternative.Ölhydraulik und Pneumatik o+p 39(5): 397–400

Gödert H (2001) Pneumatisches Proportional-Druckregelventil mit digitaler On-board-Elektronik. Ölhydraulik und Pneumatik o+p 45(6): 429–433

Göttert M (2004) Bahnregelung servopneumatischer Antriebe. Shaker Verlag,Aachen

Göttert M, Neumann R (1997) Genaue Bahnregelung für servopneumatische An-triebe. Proc II. Deutsch-Polnisches Seminar “Innovation und Fortschritt in derFluidtechnik”, Warschau, pp 34–53

Goldfarb M, Celanovic N A (1997) A lumped parameter electromechanical modelfor describing the nonlinear behavior of piezoelectric actuators. Trans ASME– Journal of Dynamic Systems, Measurement, and Control 119: 478–485

Goodman R B (1997) A primer on pneumatic valves and controls. Krieger Pub-lishing Company, Malabar, Florida

Goodson R E, Leonard R G (1972) A survey of modeling techniques for fluid linetransients. Trans ASME – Journal of Basic Engineering 94(2): 474–482

Graham J E (1965) Pneumatic cushioning. February 3, 1965 Machinery (London),pp 264–266

Graham R G (1981) Turbine air motors shed their high-cost image. Machine De-sign 53(11): 93–98

Grassl H (1981) Pneumatische Schwingungsdämpfung – Theorie und Anwendun-gen. Reihe H, Ingenieurwissenschaften. Schweizer Buchagentur, Bern

Guenther R, Perondi E C, DePieri E R, Valdiero A C (2006) Cascade controlledpneumatic positioning system with LuGre model based friction compensation.J of the Braz Soc of Mech Sci & Eng 28(1): 48–57

Güvenc L, Srinivasan K (2000) Modeling and parameter identification of a pneu-matic constant force device. Turk J Engin Environ Sci 24: 383–399

Haack S (1991) Theoretische und experimentelle Untersuchungen zur Aussage-fähigkeit strömungstechnischer Kenngrößen an ausgewählten Strukturenpneumatischer Steuerventile. Doctoral dissertation, Pädagogische HochschuleErfurt/Mühlhausen

References

Page 10: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

306 References

Haaland S E (1983) Simple and explicit formulas for the friction factor in turbu-lent pipe flow. Trans ASME – Journal of Fluids Engineering 105(3): 89–90

Haden D (1980) Rolling diaphragm air cylinders. OEM Design 78(Nov): 78–79Hahn H (2000) Nichtlineare Regelung eines servopneumatischen Antriebs. Auto-

matisierungstechnik at 48(3): 140–150Haller R, Latino F (1996) Design considerations and future trends in pneumatics

and electropneumatic systems. Proc 47th Nat Conf on Fluid Power, Chicago,accessed via http://www.nfpa.com

Han B, Fujita T, Kagawa T, Kawashima K, Cai M (1999) Flow rate coefficientmeasurement by using pressure discharge velocity of pneumatic RC circuit.Proc 4th JHPS Int Symp on Fluid Power, Tokyo, p 143–148

Han Wee Ng, Alleyne A (2000) Modeling and bumpless learning control of posi-tion and pressure for an electropneumatic actuator. Proc Fluid Power Systems& Technology 2000, Orlando, Florida, pp 7–8

Han B J, Kawashima K, Fujita T, Kagawa T (2001) Flow rate characteristicsmeasurement of pneumatic valves by pressure response. Proc 5th Int Conf onFluid Power Transmission and Control, Hangzhou, pp 200–204

Hansson C (1975) Rotary air motors. In: Andersson S B, Bévengut G, Eckersten J,Ek G, Kalldin B (eds) Atlas Copco Air Compendium. Atlas Copco AB,Stockholm, pp 329–362

Hantke P (2003) Wasserhydraulik im Bergbau – Entwicklung eines piezo-betätigten Vorsteuerschaltventils. Ölhydraulik und Pneumatik o+p 47(6): 424-–430

Hehn A H (1995) Fluid power troubleshooting. 2nd edn. Marcel Dekker, Inc.,New York Basel Hong Kong

Heinen R (1976) Elektropneumatischer Servoantrieb. Proc 2. Aachener Fluidtech-nisches Kolloquium, Aachen, pp 159–187

Hennig H (1977) Warum vereisen Pneumatikanlagen? msr 20(6): 335–358Hennig H (1979) Zeit- und Bewegungsverhalten pneumatischer Linearantriebe.

Proc 3. Fachtagung Hydraulik und Pneumatik, Dresden, pp 257–272Hennig H (1982) Dimensionierung pneumatischer Übertragungsleitungen. msr

25(4): 198–204Henningson G (1975) Linear motors. In: Andersson S B, Bévengut G, Eckersten J,

Ek G, Kalldin B (eds) Atlas Copco Air Compendium. Atlas Copco AB,Stockholm, pp 360–390

Henri P D, Hollerbach J M, Nahvi A (1998) An analytical and experimental in-vestigation of a jet pipe controlled electropneumatic actuator. IEEE Trans RobAutonm 14(4): 601–611

Heras de las S (2001) A new experimental algorithm for the evaluation of the truesonic conductance of pneumatic components using the characteristic unload-ing time. International Journal of Fluid Power 2(1): 17–24

Heras de las S (2003) Improving gas dynamic models for pneumatic systems. In-ternational Journal of Fluid Power 4(4): 47–56

Hesse S (2003) The fluidic muscle in application. Blue digest on automation.Festo AG & Co. KG, Esslingen

Page 11: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

307

Hippe P (1988) Digitale Regelung eines pneumatischen Linearantriebs mit schal-tendem Stellglied. Proc 8. Aachener Fluidtechnisches Kolloquium, Aachen,pp 67–84

Hong Y-S (1986) Berechnung, Verbesserung und Weiterentwicklung von Propor-tionalmagneten als elektromechanischer Signalumformer für Proportional-ventile. Doctoral dissertation, Rheinisch-Westfälische Technische HochschuleAachen

Hougen J O, Martin O R, Walsh R A (1963) Dynamics of pneumatic transmissionlines. Control Engineering 10(9): 114–117

Howe R E (2004) Five myths of pneumatic motion control. Hydraulics and pneu-matics 36(9): 36–38

Hübl W, Giesen N (1996) Pneumatische Türantriebe. Ölhydraulik und Pneumatiko+p 40(3): 196–201

Hullender D A, Woods R L (1985) Modeling of fluid control components. ProcInt Conf on Global Techniques, University of Texas at Arlington, pp 608–619

Iberall A S (1950) Attenuation of oscillatory pressures in instrument lines. Journalof the Research of the National Bureau of Standards 45: 85–108

Ikebe Y, Nakada T (1974) On a piezoelectric flapper type servovalve operated bya pulse-width-modulated signal. Trans ASME – Journal of Dynamic Systems,Measurement, and Control 96(1): 88–94

Ikeo S, Zhang H, Takahashi K, Sakurai Y (1993) Simulation of pneumatic sys-tems using BGSP (Bond Graph Simulation Program). Proc 6th Bath Int FluidPower Workshop, Bath, pp 80–94

Inoue K (1988) Rubbertuators and applications for robots. In: Bolles R and Roth B(eds) Robotics Research. 4th Int Symp, MIT Press, pp 57–63

Ioannidis I (1987) Servopneumatische Drehantriebe für Lageregelungen. Doctoraldissertation, Rheinisch-Westfälische Technische Hochschule Aachen

Istók B, Szente V, Vad J (2003) Behavior of a pneumatic pressure regulator valveunder leakage circumstances. Proc 2nd Int Conf on Heat Transfer, Fluid Me-chanics and Thermodynamics HEFAT, Victoria Falls, Zambia

Itoh K, Machiyama T, Mori H, Outo E (1989) An experimental study on compari-son between two methods (steady flow method & discharging method) oftesting effective area of solenoid valve. Proc 1st JHPS Int Symp on FluidPower, Tokyo, pp 297–304

Jebar H S (1977) Design of pneumatic actuator systems. Ph.D. thesis, Universityof Nottingham

Jebar H S, Lichtarowicz A, Roylance T F (1975) Thermodynamic analysis ofcharging processes. Proc 4th BHRA Fluid Power Symp, Sheffield, pp 1–17

Jebar H S, Roylance T F, Lichtarowicz A (1978) Nomogram methods for the de-sign of pneumatic cylinder systems. Proc 5th Int Fluid Power Symp, ppA.4.47

Jelali M, Kroll A (2002) Hydraulic servo-systems – modelling, identification andcontrol. Springer, London Berlin Heidelberg New York

Jeschke N (1968) Untersuchung der Stopfbuchsenreibung an Stellventilen mitpneumatischem Membranantrieb. Regelungstechnische Praxis rtp 10(3): 105–108

References

Page 12: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

308 References

Jiménez A F, García J P (2004) Compressible bench flow adaptions to the experi-mental characterization of pneumatic components. Application to the determi-nation of flow-rate characteristics of a Festo MPYE-5-3/8-010-B proportionalvalve. Proc 3rd FPNI Ph.D. Symp, Terrassa

Kaasa G-O, Chapple P J, Lie B (2004) Modeling of an electro-pneumatic cylinderactuator for nonlinear and adaptive control, with application to clutch actua-tion in heavy-duty trucks. Proc 3rd FPNI Ph.D. Symp, Terrassa

Kagawa T, Shimizu M (1988) Heat transfer effect on the dynamics of pneumaticRC circuit. Proc FLUCOME’88, Sheffield, pp 498–502

Kagawa T, Fujita T, Takeuchi M (1995) Dynamic response and simulation modelof pneumatic pipe system. Proc 8th Bath Int Fluid Power Workshop – Designand Performance, Bath, pp 286–298

Kagawa T, Cai M L, Fujita T, Takeuchi M (2000a) Energy consideration and tem-perature measurement of pneumatic cylinder actuating system. ProcFLUCOME 2000, Sherbroke (QC)

Kagawa T, Tokashiki L R, Fujita T, Sakaki K, Makino F (2000b) Accurate posi-tioning of a pneumatic servosystem with air bearings. Proc Bath Workshop onPower Transmission and Motion Control PTMC 2000, Bath, pp 257–268

Kage K, Kawagoe S, Matsuo K, Tanaka H, Hasegawa I (1985) Attenuation of ex-pansion waves in a pipe of railway’s pneumatic brake system. ProcFLUCOME’85, Tokyo, pp 137–142

Kajima T, Kawamura Y (1995) Development of a high-speed solenoid valve: in-vestigation of solenoids. IEEE Transactions on Industrial Electronics 42: 1–8

Kajima T, Nakamura Y, Sonoda K (1992) Development of a high-speed solenoidvalve: investigation of the energizing circuits. Proc 1992 Int Conf on Indus-trial Electronics, Control, Instrumentation and Automation, San Diego, Cali-fornia, pp 564–569

Kanai E, Sawada T, Tanahashi T, Ando T (1985) Dynamic characteristics ofpneumatic transmission lines. Proc FLUCOME’85, Tokyo, pp 123–128

Karam J T, Franke M E (1967) The frequency response of pneumatic lines. TransASME – Journal of Basic Engineering 90(6): 371–378

Kastner L J, Williams T J, Sowden R A (1964) Critical-flow nozzle meter and itsapplication to the measurement of mass flow rate in steady and pulsatingstreams of gas. Proc Instn mech Engrs – Part C Journal Mechanical Engi-neering Science 6(1): 88–98

Kawakami Y, Akao J, Kawai S, Machiyama T (1988) Some considerations on thedynamic characteristics of pneumatic cylinders. The Journal of Fluid Control19(2): 22–36

Kawakami Y, Takeda R, Kawai S (1991) Some considerations on the generalized

San Francisco, California, pp 543–548Kawashima K, Ishii Y, Funaki T, Kagawa T (2004) Determination of flow rate

characteristics of pneumatic solenoid valves using an isothermal chamber.Trans ASME – Journal of Fluids Engineering 126(2): 273–279

Kayihan A, Doyle F J III (2000) Friction compensation for a process controlvalve. Control engineering practice 8(7): 799–812

FLUCOME’91,conditions for high-speed driving of pneumatic cylinders. Proc

Page 13: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

309

Kentschke T (2004) Druckluftmaschinen als Generatorantrieb in Warm-luftspeichern. Doctoral dissertation, Technische Universität Clausthal

Kim D S, Lee W H, Lee M C (2003) Design and experiment of the direct drive-type pneumatic servo valve. Proc Workshop Power Transmission and MotionControl PTMC 2003, Bath, pp 349–356

King T, Pozzi M, Manara A (2000) Piezoactuators for “real world” applications –Can they deliver sufficient displacement? Power Engineering Journal14(3): 105–110

Kirshner J M, Katz S (1975) Design theory of fluidic components. AcademicPress, New York San Francisco London

Koenig B, Ohligschläger O (1989) Ein “intelligenter” elektropneumatischer Stel-lungsregler. Automatisierungstechnische Praxis atp 31(8): 367–373

Kohl A (1973) Fluidische Leitungsdiskontinuitäten, Verzweigungen und ihre An-wendung in Filterschaltungen. Doctoral dissertation, Rheinisch-WestfälischeTechnische Hochschule Aachen

Kollmann E (1968) Wirkung wesentlicher Nichtlinearitäten auf die Stabilität undden statischen Fehler von Stellungsreglern. Automatik pp 379–383

Kolvenbach H (1990) Drehschieber-Servoventile für die Pneumatik. Proc 9.Aachener Fluidtechnisches Kolloquium, Aachen, pp 61–75

Kolvenbach H (1991) Drehschieber-Servoventile für die Pneumatik. Ölhydraulikund Pneumatik o + p 35(1): 43–47

Ko cielny J M, Syfert M, Barty M (1999) Fuzzy-logic fault diagnosis of indus-trial process actuators. Int J Appl Math and Comp Sci 9(3): 653–66

Künzel O (1970) Das Übertragungsverhalten pneumatischer Leitungen. Doctoraldissertation, Technische Hochschule München

Kukulka D J, Benzoni A, Mollendorf J C (1994) Digital simulation of a pneumaticpressure regulator. Simulation 63(4): 252–266

Lai J-Y, Menq C-H, Singh R (1990) Accurate position control of a pneumatic ac-tuator. Trans ASME – Journal of Dynamic Systems, Measurement, and Con-trol 112(12): 734–739

Latino F (1996) Air servo positioning systems, single and multiple axis. Proc 47thNat Conf on Fluid Power, Chicago, accessed via http://www.nfpa.com

Lebig H (1971) Das Durchflußvermögen von Pneumatik-Ventilen. Ingenieur di-gest – Part 1: 10(11): 59–63, Part 2: 10(12): 75–79

Lee S-Y, Blackburn J F (1952) Contributions to hydraulic control: 1 Steady-stateaxial forces on control-valve pistons. Trans ASME 74(8): 1005–111

Leonhard A, Helduser S, Rüdiger F (2006) CFD simulation and experimentalvisualisation of transient flow in pneumatic seated valves. Proc 5th Interna-tional Fluid Power Conference, Aachen, pp 97–108

Leufgen M (1988) Auslegung und Untersuchung geeigneter elektromechanischerWandler für stetige elektropneumatische Ventile. Proc 8th Aachener Fluid-technisches Kolloquium, Aachen, pp 261–278

Leufgen M (1992) Pneumatische Positionierantriebe – Komponenten und System-verhalten. Doctoral dissertation, Rheinisch-Westfälische Technische Hoch-schule Aachen

References

Page 14: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

310 References

Leufgen M, Lü Y (1991) Pneumatischer Positionierantrieb mit Schaltventilen. Öl-hydraulik und Pneumatik o+p 35(2): 127–132

Lequesne B (1987) Finite element analysis of a constant force solenoid for fluidflow control. Proc IEEE Industrial Applications Society Meeting, pp 46–51

Lin X, Spettel F, Scavarda S (1996) Modeling and test of an electropneumatic ser-vovalve controlled long rodless actuator. Trans ASME – Journal of DynamicSystems, Measurement, and Control 118: 457–462

Liu Y T, Higuchi T (2001) Precision positioning device utilizing impact force ofcombined piezo-pneumatic actuator. IEEE/ASME Transactions on Mecha-tronics 6(4): 467–473

Lichtarowicz A, Duggins R K, Markland E (1965) Discharge coefficients for in-compressible non-cavitating flow through long orifices. Proc Instn mechEngrs – Part C Journal Mechanical Engineering Science 7(2): 210–219

Lloyd S G (1968) Guidelines for the use of positioners and boosters. Instrumenta-tion Technology 50–54

Louis R J, Logan E (1976) Experimental investigation of flow-induced forces inpneumatic spool valves. Technical Briefs. Trans ASME – Journal of DynamicSystems, Measurement, and Control 98(9): 316–318

Lu Y X, Hong Z (1988) Study on optimization of electro-pneumatic servo controlsystem. Proc FLUCOME’88, Sheffield, pp 295–299

Lü Y (1992) Elektropneumatische Positionierantriebe mit schnellen Schaltven-tilen. Doctoral dissertation, Rheinisch-Westfälische Technische HochschuleAachen

MacBain J A (1985) Solenoid simulation with mechanical motion. Int Journal forNumerical Methods in Engineering 21: 13–18

Mäkinen E, Virvalo T, Mattila J (1993) A model of on/off-valves for controlledpneumatics. Proc 3rd Scandinavian Int Conf on Fluid Power, Linköping,vol 1, pp 423–434

Manuello Bertetto A, Berretta A (1994) An innovative rod-less cylinder designwith electromagnetic coupling for linear transport systems. Proc Nat Conf onFluid Power, Anaheim, accessed via http://www.nfpa.com

Manuello Bertetto A, Mazza L, Pastorelli S, Raparelli T (2002) A model of con-tact forces in pneumatic motor vanes. Meccanica 36: 691–700

Maré J C, Geider O, Colin S (2000) An improved dynamic model of pneumaticactuators. International Journal of Fluid Power 1(2): 39–47

Matthys L, Marchetti P B (1980) Precise pneumatic positioning with diaphragmair cylinders. Machine Design 52(9): 80–83

Mattsson S E, Olsson H, Elmqvist H (2000) Dynamic selection of states in Dy-mola. Proc Modelica workshop 2000, Lund, pp 61–67

McCloy D, Martin H R (1963) Some effects of cavitation and flow forces in theelectro-hydraulic servomechanism. Proc Instn Mech Engrs vol 178, pt 1, no21, 1963–64

Merritt H E (1967) Hydraulic control systems. John Wiley & Sons, New YorkMetzner H (1993) Pneumatik-Dichtungen. In: Ebertshäuser H (ed) Dichtungen für

die Fluidtechnik. Vereinigte Fachverlage, Mainz

Page 15: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

311

Miyata K, Hanafusa H (1988) Compensation and velocity control for high speedpositioning of pneumatic cylinders. Proc FLUCOME'88, Sheffield, pp 290–294

Miyata K, Yokota S-I, Hanafusa H (1991) Control of pneumatic drive systems byusing PCM valves. Proc FLUCOME'91, San Francisco, California, pp 373–378

Mo J P T (1989) Analysis of compressed air flow through a spool valve. ProcInstn Mech Engrs 203: 121–131

Monsen J (2000) In the flow with control valves. Chemical processing 63(3): 45–52

Moore P R (1986) Pneumatic motion control systems for modular robots. Ph.D.thesis, University of Loughborough

Müller R (1998) Pneumatics. Theory and applications. Omega Fachliteratur, Dit-zingen and Delta Press Ltd., Berkhamsted Herts

Münzer N, Müller-Lohmeier K (2004) Environmentally induced damage to pneu-matic tubing – causes, mechanisms and forms of manifestation. Proc 4th IntFluid Power Conf, Dresden, vol 2, pp 395–404

Muijtjens R (1998) Praktisches Positionieren mit pneumatischen Linearantrieben.Ölhydraulik und Pneumatik o+p 42(7): 473–476

Mundry S M (2002) Zustandsüberwachung an Prozessventilen mit intelligentenStellungsreglern. Shaker, Aachen

Murrenhoff H (1999) Grundlagen der Fluidtechnik – Teil 2: Pneumatik. Institutfür fluidtechnische Antriebe und Steuerungen, Aachen

Murrenhoff H (2002) Innovative designs and control circuits for proportionalvalves. Proc Nat Conf on Fluid Power, Las Vegas, Nevada, accessed viahttp://www.nfpa.com, pp 691–701

Murtaza M A, Garg S B L (1989) Brake modelling in train simulation studies.Proc Instn mech Engrs – Part F Journal of Rail and Rapid Transit 203: 87–95

Nabi A, Wacholder E, Dayan J (2000) Dynamic model for a dome-loaded pressureregulator. Trans ASME – Journal of Dynamic Systems, Measurement, andControl 122(6): 290–297

Neermann G (1989) In Paris kommt die Druckluft ins Haus. Ölhydraulik undPneumatik o+p 33(6): 522–524

Neff J A (1966) Timing with air. Proc Nat Conf on Fluid Power, accessed viahttp://www.nfpa.com, pp 93–98

Németh H (2004) Nonlinear modelling and control for a mechatronic protectionvalve. Ph.D. thesis, Budapest University of Technology and Economics

Nguyen N-T, Wereley S T (2002) Fundamentals and applications of microfluidics.Artech House, Boston London

Nguyen T (1987) Verhalten servopneumatischer Zylinderantriebe im Lageregel-kreis. Doctoral dissertation, Rheinisch-Westfälische Technische HochschuleAachen

Nguyen T (1996) Proportional- und Servotechnik in der Pneumatik. Ölhydraulikund Pneumatik o+p 40(1): 45–48

References

Page 16: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

312 References

Nguyen T, Mauentöbben R (1993) Leckagefreies und robustes Servoventil für diePneumatik. Proc 9. Fachtagung Hydraulik und Pneumatik, Dresden, pp 473–485

Nichols N B (1962) The linear properties of pneumatic transmission lines. ISATransactions (1): 5–14

Noritsugu T (1986) Development of PWM mode electro-pneumatic servomecha-nism. Part II: Position control of a pneumatic cylinder. The Journal of FluidControl 17(2): 7–31

Noritsugu T (1987) Electro-pneumatic feedback speed control of a pneumaticmotor. Part I: With an electro-pneumatic proportional valve. The Journal ofFluid Control 17: 17–37

Noritsugu T, Wada T (1989) Adaptive variable structure control of pneumaticallyactuated robot. Proc 1st Int Symp on Fluid Power, Tokyo, pp 435–442

Ohligschläger O (1988) Pneumatische Ventile – Beschreibung und Vermessung.Ölhydraulik und Pneumatik o+p 32(9): 614–620

Ohligschläger O (1990) Pneumatische Zylinderantriebe – thermodynamischeGrundlagen und digitale Simulation. Doctoral dissertation, Rheinisch-Westfälische Technische Hochschule Aachen

Ohmer M, Neumann R (2004) Pneumatik vs. Elektrik. A&D Kompendium Auto-mation and Drives 2004, accessed via http://www.aud24.net, pp 202–204

Olsson H (1996) Control systems with friction. Doctoral dissertation, Lunds Uni-versitet, Department of Automatic Control

Pantring D (1996) Verfahren zur Berechnung der Durchflußkennlinie pneuma-tischer Druckregelventile. Doctoral dissertation, Universität Dortmund

Parker G A, White D E (1977) Modeling the steady-state characteristics of a sin-gle-state pneumatic pressure regulator. Fluidics Quaterly 9(2): 23–45

Pasieka L (1991) Untersuchungen zur Temperatur- und Energieverteilung inpneumatischen Arbeitszylindern unter den besonderen Aspekten von Tem-peraturgradienten und Wirkungsgraden. Doctoral dissertation, PädagogischeHochschule Erfurt/Mühlhausen

Paul A K, Mishra J K, Radke M G (1994) Reduced order sliding mode control forpneumatic actuator. IEEE Transactions on Control Systems Technology2(3): 271–276

Paulsen P (1989) Pneumatische Proportional-Druckregelventile und -Wegeventile.Drucklufttechnik 8(7–8): 50–52

Pawlak A M, Nehl T W (1988) Transient finite element modeling of solenoid ac-tuators: the coupled power electronics, mechanical, and magnetic field prob-lem. IEEE transactions on magnetics 24 (1): 270–273

Perry J A (1949) Critical flow through sharp-edged orifices. Trans ASME71(10): 757–764

Petersen E (1982) Anti-Blockiersystem für Nutzfahrzeuge. Proc 5. Aachener Flu-idtechnisches Kolloquium, Aachen, vol 3, pp 183–199

Pinches M J, Callear B J (1999) Power pneumatics. Prentice Hall, London NewYork Toronto Sydney

Pott H (1995) Mikropneumatik: Pneumatische Kennwerte und Systemverhalten.Ölhydraulik und Pneumatik o+p 39(2): 114–122

Page 17: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

313

Pourmovahed A, Otis D R (1990) An experimental thermal time-constant correla-tion for hydraulic accumulators. Trans ASME – Journal of Dynamic Systems,Measurement, and Control 112(3): 116–121

Prest P, Vaughan N D (1987) Drive circuits of pulse width modulated valves. ProcInt Conf on Fluid Power, Tampere, Finland, pp 217–225

Pu J (1988) Advancements in the programmable motion control of pneumaticdrives for robots and other flexible machines. Ph.D. thesis, LoughboroughUniversity

Pu J, Weston R H (1988) Position control of pneumatic drives and the use oflearning methodologies. Proc 8th Int Symp on Fluid Power, Birmingham, pp169–198

Pu J, Wong C B, Moore P R (1995) An investigation into the profile following ca-pability of servo-controlled air motors. Proc 4th Scandinavian Int Conf onFluid Power, Tampere, Finland, pp 545–555

Pugi L, Malvezzi M, Allotta B, Banchi L, Presciani P (2004) A parametric libraryfor the simulation of a Union Internationale des Chemins de Fer (UIC) pneu-matic braking system. Proc Instn mech Engrs – Part F Journal of Rail andRapid Transit 218(2): 117–132

Purdue D R, Wood D, Townsley M J (1969) The design of pneumatic circuits.Fluid Power International pp 27–36

Pyötsiä J (1991) A mathematical model of a control valve. Doctoral dissertation,University Helsinki

Quaglia G, Sorli M (2001) Air suspension dimensionless analysis and design pro-cedure. Vehicle System Dynamics 35(6): 443–475

Quaglia G, Guala A (2003) Evaluation and validation of an air spring analyticalmodel. International Journal of Fluid Power 4(2): 43–54

Radgen P, Blaustein E (2001) Compressed air systems in the European Union.Energy, emissions, savings potential and policy actions. LOG_X VerlagGmbH, Stuttgart

Raparelli T, Bertetto A M, Mazza L (1997) Experimental and numerical study offriction in an elastomeric seal for pneumatic cylinders. Tribology International30(7): 547–552

Raymond E T, Chenoweth C C (1993) Aircraft flight control actuation system de-sign – Alternate command systems. Society of Automotive Engineers, Inc.,Warrendale PA

Reethof G (1955) The analog computer as a design tool in the study of a velocity-control hydraulic system. Proc 11th Nat Conf on Industrial Hydraulics, Chi-cago

Reid J, Stewart C D (1988) A review of critical flow nozzles for the mass flowmeasurement of gases. Proc FLUCOME’88, Sheffield, pp 454–457

Renn J C, Lin T I (2001) Research on a pneumatic proportional pressure controlvalve using the CFD analysis. Journal of the Chinese Society of MechanicalEngineers 22(5): 443–50

Reynolds W C, Kays W M (1958) Blowdown and charging processes in a singlegas receiver with heat transfer. Trans ASME 80: 1160–1168

References

Page 18: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

314 References

Reynolds D B, Repperger D W, Phillips C A, Bandry G (2003) Modeling the dy-namic characteristic of pneumatic muscle. Annals of Biomedical Engineering31: 310–317

Richer E, Hurmuzlu Y (2000) A high performance pneumatic force actuator sys-tem. Part 1 – Nonlinear mathematical model. Trans ASME – Journal of Dy-namic Systems, Measurement, and Control 122(3): 416–425

Rockstroh M, Hofmann B (1996) Über digitale elektro-pneumatische Stel-lungsregler zur Positionierung von Regelventilen. Proc 28. Kraftwerkstech-nisches Kolloquium und 6. Kolloquium Meßtechnik für Energieanlagen,Dresden, pp 113–122

Rogers G, Mayhew Y (1992) Engineering thermodynamics – work and heat trans-fer. 4th edn. Longman, Harlow

Rohner P, Smith G (1989) Pneumatic control for industrial automation. JohnWiley & Sons, Brisbane New York Singapore Chichester Toronto

Roth P (1972) Zum dynamischen Verhalten des Stellungsregelkreises. Rege-lungstechnik und Prozeß-Datenverarbeitung 20(3): 101–108

Ruppelt E (2003) Druckluft Handbuch. 4th edn. Vulkan, EssenRusterholz R (1986) Vergleich verschiedener Regelkonzepte für die Auslegung

pneumatischer Servoantriebe. Proc 7. Aachener Fluidtechnisches Kolloquium,Aachen, pp 157–178

Rusterholz R, Widmer U (1985) Grundlagenbetrachtungen zur Auslegung pneu-matischer Servoantriebe. Ölhydraulik und Pneumatik o+p 29(10): 757–761and 29(11): 814–816

Sanville F E (1971) A new method of specifying the flow capacity of pneumaticfluid power valves. Proc 2nd Fluid Power Symp, Guildford, pp 37–47

Sbahi A (1992) Druckluft-Lamellenmotor. Doctoral dissertation, TechnischeHochschule Zwickau

Scavarda S (1993) Some theoretical aspects and recent developments in pneumaticpositioning systems. Proc 2nd JHPS Int Symp on Fluid Power, Tokyo, pp 29–48

Schaedel H (1968) Theoretische und experimentelle Untersuchungen an Leitungenund konzentrierten Bauelementen der Fluidik. Doctoral dissertation,Rheinisch-Westfälische Technische Hochschule Aachen

Schillings K (1993) Neue Antriebe und Regelungverfahren für servopneumatischeHandhabungsgeräte. Ölhydraulik und Pneumatik o+p 37(3): 200–208

Schillings K (2000) Servopneumatische Antriebssysteme und Handhabungsgeräte.Shaker, Aachen

Schmidt E (1963) Einführung in die technische Thermodynamik. 10th edn.Springer, Berlin Göttingen Heidelberg

Schneider D (1976) Temperaturverhalten fluidischer Netzwerke. Doctoral disser-tation, Rheinisch-Westfälische Technische Hochschule Aachen

Schneider E (1994) Optimierung pneumatisch angetriebener Schraubwerkzeuge.Doctoral dissertation, Rheinisch-Westfälische Technische Hochschule Aachen

Scholz D, Schabbel U (1987) Regelungskonzept für Bahnsteuerungen mit Druck-luft-Lamellenmotoren. Ölhydraulik und Pneumatik o+p 31( 9): 688–692

Page 19: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

315

Scholz D, Mostert E (1988) Geschwindigkeitsgeregelte servopneumatische Zylin-derantriebe. Ölhydraulik und Pneumatik o+p 32(1): 45–52

Scholz D, Schwenzer R (1992) Schnelles pneumatisches Proportionalventil mitintegrierter Elektronik für die breite Anwendung. Proc 10. Aachener Fluid-technisches Kolloquium, Aachen, pp 129–140

Schramm H (1983) Die Hydraulik stand Pate - Einsatzbereiche eines pneuma-tischen Proportional-Druckregelventils. Fluid 17(3): 76–77

Schroeder L E, Singh R (1993) Experimental study of friction in a pneumatic ac-tuator at constant velocity. Trans ASME Journal of Dynamic Systems, Meas-urement, and Control 115(9): 575–577

Schulte H F (1961) The characteristics of the McKibben artifical muscle. ProcApplication of external power in prosthetics and orthotics, National Academyof Science – National Research Council, Washington, DC, pp 95–115

Schultz A (2004) Transient simulation of pneumatic valve solenoids with themethods of finite elements. Proc 3rd FPNI Ph.D. Symp, Terrassa

Schwarz A, Hoffmann B, Schumann D, Rockstroh M, Streubel S (1990) ZumAufbau elektrisch-pneumatischer Stellungsregler mit Mikrorechner für Mem-branstellantriebe. Proc 8. Fachtagung Hydraulik und Pneumatik, ORSTA,vol 1, pp 93–100

Schwenzer R (1983) Entwurf und Auslegung servopneumatischer Antriebsrege-lungen. Doctoral dissertation, Rheinisch-Westfälische Technische HochschuleAachen

Sesmat S, Scavarda S (1996) Static characteristic of a three way electropneumaticservovalve. Proc 12. Aachener Fluidtechnisches Kolloquium, Aachen, pp643–652

Sethson K M R (1993) Identifying the dynamics of fast response solenoid valves.Proc 3rd Scandinavian Int Conf on Fluid Power, Linköping, pp 271–287

Shearer J L (1954) Continuous control of motion with compressed air. Ph.D. the-sis, Massachusetts Institute of Technology

Shen X (2006) Exploiting natural characteristics of pneumatic servo-actuationthrough multi-input control. Ph.D. thesis, Vanderbilt University, Nashville,

db/available/etd-03312006-100035/unrestricted/Dissertation_ShenX.pdf

Shoukat Choudhury M A A, Thornhill N F, Shah S L (2005) Modelling valvestiction. Control engineering practice 13: 641–658

Song B (2002) Robust nonlinear control design via convex optimization and itsapplication to fault tolerant longitudinal control of vehicles. Ph.D. thesis, Uni-versity of California, Berkeley, accessed viahttp://vehicle.me.berkeley.edu/Publications/AVC/bsson_phdthesis.pdf

Sorli M, Pastorelli S (1999) Design analysis of a force controlled pneumatic ac-tuator. Proc 6th Scandinavian Int Conf on Fluid Power, Tampere, pp 861–871

Sorli M, Figliolini G, Pastorelli S (2001) Dynamic model of a pneumatic propor-tional pressure valve. Proc IEEE/ASME Int Conf on Advanced IntelligentMechatronics, Como, pp 630–635

Spanner K (2000) Breakthrough in piezo actuator application. Proc 7th Int Confon New Actuators, Bremen, pp 236–241

References

Tennessee, accessed via http://etd.library.vanderbilt.edu/ETD-

Page 20: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

316 References

Stecki J S, Davis D C (1986) Fluid transmission lines – distributed parametermodels. Part 1: A revision of the state of the Art. Proc Instn Mech Engrs200: 215–228. Part 2: Comparison of models. Proc Instn Mech Engrs200: 229–236

Stenning A (1954) An experimental study on two-dimensional gas flow throughvalve-type orifices. ASME paper no 54 – A – 45

Stephan K, Lucas K (1979) Viscosity of dense fluids. Plenum Press, New YorkLondon

Stewart H L, Jefferis F D (1955) Hydraulic and pneumatic power for production –How air and oil equipment can be applied to the manual and automatic opera-tion of production machinery of all types with numerous existing installationsexplained in step-by-step circuit analyses. The Industrial Press, New York

Stoll K (1999) Pneumatik–Anwendungen – Kosten senken mit Pneumatik. 3rdedn. Vogel, Würzburg

Strauss J C, Augustine D C, Johnson B B, Linebarger R N, Sanson F J (1967) TheSCI continuous system simulation language (CSSL). Simulation IX(6):281–303

Stribeck R (1903) Die wesentlichen Eigenschaften der Gleit- und Rollenlager.Mitteilungen über Forschungsarbeiten. Verein deutscher Ingenieure 7: 1–47

Subramanian S C, Darbha S, Rajagopal K R (2004) Modeling the pneumatic sub-system of an S-cam air brake system. Trans ASME – Journal of DynamicSystems, Measurement, and Control 126(1): 36–46

Taft C K, Herrick B M (1981) A proportional piezoelectric electro-fluidic pneu-matic valve design. Trans ASME – Journal of Dynamic Systems, Measure-ment, and Control 103(12): 361–365

Takemura F, Pandian S R, Nagase Y, Mizutani H, Hayakawa Y, Kawamura S(2000) Improvement of vane-type pneumatic motors and trial of hybridpneumatic/electric motors. Proc 2000 Japan – USA Flexible Automation Con-ference, July 23–26, Ann Arbor, Michigan, pp 393–400

Taubitz G (1978) Experimentelle Untersuchung und Modellbildung eines elek-trisch-pneumatischen Ventilstellungsregelkreises. Doctoral dissertation, Uni-versität Erlangen-Nürnberg

Teichmann O E (1957) Analysis and design of air motors. Product Engineering28(2): 167–178

Thompson P A, Arena C C (1975) Prediction of the critical massflow and relatedproblems in the flow of real gases. ASME Paper 75 – FE 12

Tiller M (2001) Introduction to physical modeling with Modelica. Kluwer Aca-demic Publishers, Boston Dordrecht London

Tokhi M O, Al-Miskiry M, Brisland M (2001) Real-time control of air motorsusing a pneumatic H-bridge. Control Engineering Practice 9: 449–457

Tondu B, Lopez P (2000) Modeling and control of McKibben artificial muscle ro-bot actuators. IEEE control systems magazine 20(2): 15–38

Tormen A (1998) Turbo-Banane verändert die Schleifwelt. Schweizer Maschi-nenmarkt 43: 42–44

Tsai D H, Cassidy E C (1961) Dynamic behavior of a simple pneumatic pressurereducer. Trans ASME – Journal of Basic Engineering 83: 253–264

Page 21: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

317

Tustin A (1947) The effects of backlash and of speed-dependent friction on thestability of closed-cylce control systems. IEE Journal 94: 143–151

Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer, BostonDordrecht London

Ulne A, Wase J (2000) Konventionelle und digitale Stellungsregler – einLeistungsvergleich aus anwendungsspezifischer Sicht. Industriearmaturen8(4): 353–356

Ulrich R D, Wirtz D P, Nunn R H (1969) Transient heat transfer in closed con-

Upchurch E R, Vu H V (2000) Modeling a pneumatic turbine speed control sys-tem. Trans ASME – Journal of Dynamic Systems, Measurement, and Control122(1): 222–226

Vaughan N D, Gamble J B (1996) The modeling and simulation of a proportionalsolenoid valve. Trans ASME – Journal of Dynamic Systems, Measurement,and Control 118(3): 120–125

Virvalo T (1989) Designing a pneumatic position servo system. Power interna-tional, pp 141–147

Virvalo T (1993) Pressure and position control with electropneumatic on/offvalves. Proc 3rd Int Conf on Fluid Power '93 ICFP, Hangzhou, pp 489–494

Virvalo T (1995a) Modelling and design of a pneumatic position servo system re-alized with commercial components. Doctoral dissertation, Tampere Univer-sity of Technology

Virvalo T (1995b) Improving the use of the stroke of a pneumatic servo cylinder.Proc 4th Scandinavian Int Conf on Fluid Power, Tampere, pp 528–544

Virvalo T, Mäkinen E (1999) The influence of the supply line pressure on the per-formance of a pneumatic position servo system. Proc 4th JHPS Int Symp onFluid Power, Tokyo, pp 149–154

Völker B (1999) Stetige Pneumatikventile mit minimierter Ansteuerleistung.Doctoral dissertation, Rheinisch-Westfälische Technische Hochschule Aachen

Voss M (2002) Betriebsverhalten und Parameter-Ermittlung pneumatischer End-lagendämpfungen. Diploma thesis, Fachhochschule Südwestfalen, Soest, un-published.

Wakui T, Hashizume T, Nishijima T (2003) Hysteresis compensation loaded indigital positioner for pneumatic control valve with tightened grand packing.Proc SICE 2003 Annual Conf, Fukui, vol 3, pp 3075–3079

Wakui T, Hashizume T, Nishijima T (2004) Valve hysteresis compensation con-sidering flow conditions for digital valve positioner. Proc SICE 2004 AnnualConf, Sapporo, pp 1507a–1507f

Ward-Smith A J (1979) Critical flowmetering: the characteristics of cylindricalnozzles with sharp upstream edges. Int J Heat & Fluid 1(3): 123–131

Watts G P (1965) The response of pressure transmission lines. Proc 20th AnnualISA Conf and Exhibition, Los Angeles, pp 1–8

Wiedmann P (1979) Über das Durchflußvermögen pneumatischer Komponenten.Ölhydraulik und Pneumatik o+p 23(2): 105–110

References

tainers after gas injection. Trans ASME – Journal of Heat Transfer 91(8):461–463

Page 22: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

318 References

Wikander J (1988) Adaptive control of pneumatic cylinders. Doctoral thesis, Roy-al Institute of Technology, Stockholm

Wilke G (1999) Take control of control valves. Chemical processing 62(11): 59–66

Will D, Ströhl H (eds) (1990) Einführung in die Hydraulik und Pneumatik, 5thedn. Verlag Technik, Berlin

Winckler R, Kramer K (1960) Näherungsweise Berechnung von pneumatischenDüse-Prallplatte-Systemen. Regelungtechnik rt 8(12): 439–446

Winterbone D E, Pearson R J (1999) Design techniques for engine manifolds –wave action methods for IC engines. Professional Engineering Publ., London

Wintergerst S (1950) Die Schwingungsneigung pneumatischer Verstärker und ihreBeeinflussung durch konstruktive Maßnahmen. Die Technik 5: 82–83

Woods R L, Hullender D A, Hsu C H (1985) State variable models for fluidtransmission line dynamics. Proc FLUCOME'85, Tokyo, pp 115–121

Woschni H-G (1965) Einige Untersuchungen zu dem pneumatischen Längen-meßverfahren. Doctoral dissertation, Technische Universität Dresden

Wroten C F (1969) Pneumatic line losses. Machine Design 41(28): 182–185Wünsch D, Mousa M (1987) Verschleißverhalten von schmierungsfrei betrie-

benen Druckluft-Lamellen-Motoren. Antriebstechnik at 26(2): 47– 50Wylie E B, Streeter V L (1993) Fluid transients in systems. Prentice Hall,

Englewood Cliffs, NJXiang F (2001) Block-oriented nonlinear control of pneumatic actuator systems.

Dotoral dissertation, Royal Institute of Technology, StockholmYoung C D (1955) Pneumatic-hydraulic cylinder positioners. Proc Nat Conf on

Fluid Power, accessed via http:\\www.nfpa.com, pp 41–48Yun S, Lee K, Kim H, So H (2005) Development of the pneumatic valve with bi-

morph type PZT actuator. Materials, Chemistry and Physics 97: 1–4Zalmanzon L A, Hardbottle R, Stainthorp F P (1965) Components for pneumatic

control instruments – The static and dynamic characteristics of pneumatic re-sistances, capacitances and transmission lines. Pergamon Press, Oxford Lon-don Edinburgh New York Paris Frankfurt

Zhang H, Oneyama T, Kagawa T, Kuroshita K (2005) Standard proposal on flow-rate characteristics of pneumatic components. Proc 50th Nat Conf on FluidPower, Las Vegas, Nevada, pp 439–450

Zhou H (1995) Intelligence in pneumatic servo positioning axis. Proc 4th Scandi-navian Int Conf on Fluid Power, Tampere, pp 556–568

Page 23: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

Index

actuatorbellows 133–137muscle 140–141piezoelectric 94rack and pinion 145–146Scotch yoke 147–148semi-rotatory 145–149spring-and-diaphragm 271vane 148–149

airatmospheric 8free 2, 10fuse 218motor 151–168properties 8, 10standard conditions 8turbine 168–170

ANR 10area

effectivebellows 134ISO 6358 51

effective cross-sectional 52armature 81artificial muscle 140–141atmospheric pressure 9

bar 10bellows 133–137bend 62–64bimorph bender 94–95Blasius 38bleed nozzle 195buckling of cylinder rod 101brake chamber 139–140

capillary 36, 37causality 287chamber stiffness 20change of state

isentropic 18isobaric 13isothermal 18polytropic 20

choked flow 31circuit

meter-in 241–242meter-out 239–241

closed system 12, 22coefficient of compressibility 51coil 82–84Colebrook’s formula 38compressed air 5

mathematical model 6compressibility factor 8compressible flow 34–35condensation 8conductance

line 58–59sonic 41

connectorlosses 62–63push-in 62push-on 62

continuity equation 27control

gain-scheduling 264hybrid 264position 247–265pressure 202speed 164–168state space 256–264stroke-time 235–237

process control valve 271

Page 24: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

320 Index

critical pressure ratio 31cushion seal 99, 102–104cylinder

duplex 127efficiency 119friction 116–122heat transfer 123–126impact 142–143knocking 142–143leakage 122modelling 112–116multi-position 127–130rodless 130–133

cable 132magnetic 132–133split-seal 130–132

rolling diaphragm 137–139single rod 99stroke cushioning 102–112tandem 129triplex 127

density 5, 10dead volume 115design

air turbine 170bellows 134brake chamber 139cylinder

knocking 143multi-position 128rod 99rodless 130–133rolling diaphragm 138

directional control valve 173–174muscle actuator 140–141non-return valve 186oil cushioning 246pressure control valve

diaphragm 197piston 198

proportional solenoid 85rack-and-pinion 146relief valve 213vane actuator 149vane motor 154, 155

dew point 8diaphragm

charging valve 212–213pressure regulator 196–197process valve 269, 271–273rolling 137–139

digital simulation 281–296directional control valve 171–183

operation 175–181piloted 174poppet 173simulation model 181–183switching time 176–178

discharge coefficient 32dither 87droop 194duty cylce 86dwell time 118Dymola 289, 293–295

efficiencycylinder 119piezo-electric actuation 95–97vane motor 151

elbow 63electro-mechanical converter 81–97energy saving 243–244enthalpy 16equation

balance 284constitutive 284of state 7, 8, 25

expansion ratio 158

flowchoked 31coefficient 53force 228frictional 36function 30gain 224, 227laminar 33, 37orifice 32–35subsonic 31turbulent 33

flow control valve 215–219

Page 25: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

Index 321

flow ratecalculation 41

restrictions 48simplified 49–50

mass 10nominal 52specification for valves 50–54volume 10

fluid 25fluid mechanics 25fluid power 1fluidics 1force balance

in positioner 275in regulator 196–198

forward flow characteristic 193free air 10free discharge 28frequency response

direct control valve 225, 226line 76–79vane motor 167

frictioncylinder 116–122

dynamic 118static 117steady-state 118

factor 37–39FRL unit 193full pressure motor 158

gaindynamic of positioner 274scheduling 264static of positioner 274

gasconstant 8ideal 6law 6

gauge pressure 9

Hagen 37handpiece 169heat transfer 123–126humidity 8hydraulics 1

hysteresis 211

ideal gas 6equation of state 7properties 6

impact energyimpact cylinder 142stroke cushioning 106

incompressible flow 32internal energy 16isobaric process 13isochoric process 11isothermal process 18isotropic process 18

laminar flow 33, 37Laval 31leakage

cylinder 122energy savings 243

linesteady-state loss 55–61frequency response 76–79mathematical model

discretized 65–69frequency domain 76–79resonance peak 79temperature 56–57

linearity 211

Mach number 23mass flow rate 10mathematical analogy 282mathematical model 282McKibben artifical muscle 140–141meter-in 241–242meter-out 239–241microfluidics 5Modelica 288–290modelling

causal 287object-oriented 287

motorcharacteristics 151–153process 160vane 153–168

Page 26: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

322 Index

movingcoil 93magnet 93

nominaldiameter 52flow rate 52

nozzleideal 28–32model 41

nozzel-flapper 272–273

object oriented modelling 286–288observer 248, 263oil cushioning 245open system 22orifice

discharge coefficient 32flow 32–35

compressible 34incompressible 32

overlap 174

Pa 10packing 269–270parallel connection 50piezoelectric

bender 94–95effect 94stack 94

plunger 81pneumatics 1pneumatic timer 217Poiseuille 37polytropic process 20positioner 270–279

analogue electro-pneumatic 276digital 277pneumatic 275

pressure 9absolute 9atmospheric 9critical ratio 31dynamic 9effective 9gain 224, 228

gauge 9ratio 41regulator 193–212static 9total 9

process valve 269pulse-width modulation 86–88PV diagram

constant pressure 15reversible 19vane motor 160

ratiocritical pressure 31of specific heat capacities 19

relative humidity 5relief valve 212–213repeatability 212Reynolds number 38

critical 38

Sanville 41seal

cushioning 102–104viton 101

sensitivity 212series connection 49–50shading coil 82soft start valve 213–214solenoid 81–85

design 81–82dynamics 92proportional 85

sonicconductance 41velocity 23

specific heat capacityconstant pressure 16–17constant volume 11, 13

speedcontrol

cylinders 237–242vane motors 164–168

of sound in air 23spool 174

Page 27: References - Springer978-3-540-69471-7/1.pdf · Copco Air Compendium. Atlas Copco AB, Stockholm ... (2000b) ISO 6953-1 Pneumatic fluid power – Compressed air pressure ... References.

Index 323

standard reference atmospheremeteorological 10technical 5, 8

starting torque 152state reconstruction 263state-space model 256–258stiffness of chamber 20stroke cushioning 102–112St. Venant 30subsonic flow 31sucking coil 93Sutherland’s formula 26–27

thermal time constant 125thermodynamic process 11

constant pressure 13constant temperature 18constant volume 11general 22polytropic 20reversible 18

throttlingcylinder speed 239–241vane motor 164–166

turbomachine 168turbulent flow 33

underlap 189, 191

valveanalogue 222automatic shut-off 218charging 212check 185delay 217directional control 171non-return 185–187non-return override 188normally closed NC 171normally open NO 171one-way flow control 216pilot 172poppet 173port numbering 171pressure regulator 193–212

dome-loaded 199

pressure relief 212–213process control 269proportional directional 221–233quick exhaust 191relief 212shut-off 185–192shuttle 189–190soft-start 213–214switching time 176–178symbols 171–172throttling 215twin pressure 190–191

vane actuator 148–149vane motor

air consumption 165design 155design schemes 154efficiency 151mathematical model 156-164speed control 166–168starting torque 152throttling 164–166

variableacross 284through 284

VDR 84velocity of sound 23viscosity

dynamic 26kinematic 27Sutherland’s formula 26–27temperature dependency 26

voice coil 93volume flow rate 10

Wantzel 30