Selective Methane Oxidation on Zeolite Stabilized Copper ... · PDF fileSelective Methane...

154
TECHNISCHE UNIVERSITÄT MÜNCHEN Department Chemie Lehrstuhl für Technische Chemie II Selective Methane Oxidation on Zeolite Stabilized Copper Oxide Clusters Sebastian Grundner Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. K.-O. Hinrichsen Prüfer der Dissertation: 1. Univ.-Prof. Dr. J. A. Lercher 2. Univ.-Prof. Dr. K. Köhler 3. Prof. M. Tromp, Ph.D. (Univ. Amsterdam, Niederlande) Die Dissertation wurde am 21.12.2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 26.01.2016 angenommen.

Transcript of Selective Methane Oxidation on Zeolite Stabilized Copper ... · PDF fileSelective Methane...

  • TECHNISCHE UNIVERSITT MNCHEN

    Department Chemie

    Lehrstuhl fr Technische Chemie II

    Selective Methane Oxidation on Zeolite

    Stabilized Copper Oxide Clusters

    Sebastian Grundner

    Vollstndiger Abdruck der von der Fakultt fr Chemie der Technischen Universitt

    Mnchen zur Erlangung des akademischen Grades eines

    Doktors der Naturwissenschaften (Dr. rer. nat.)

    genehmigten Dissertation.

    Vorsitzender: Univ.-Prof. Dr. K.-O. Hinrichsen

    Prfer der Dissertation: 1. Univ.-Prof. Dr. J. A. Lercher

    2. Univ.-Prof. Dr. K. Khler

    3. Prof. M. Tromp, Ph.D. (Univ. Amsterdam,

    Niederlande)

    Die Dissertation wurde am 21.12.2015 bei der Technischen Universitt Mnchen

    eingereicht und durch die Fakultt fr Chemie am 26.01.2016 angenommen.

  • Dedicated to Lei

  • The most exciting phrase to hear in science, the one that heralds new discoveries, is

    not 'Eureka!' but 'That's funny...'

    Isaac Asimov

  • Statutory Declaration

    I declare that I have authored this thesis independently, that I have not used

    other than the declared sources/resources, and that I have explicitly marked all

    material which has been quoted either literally or by content from the used

    sources. At the end of each chapter all collaborators are listed and their specific

    contribution is addressed. Published content of this thesis is clearly marked at

    the beginning of each chapter and reused according to the terms of the

    publisher. The content and structure of Chapter 2 and 3 vary significantly from

    the corresponding publications. Chapter 4 is not publication-based. Therefore,

    this thesis is not cumulative.

    ,

  • i

    Acknowledgements

    After more than four years, I am finally submitting my thesis. With a feeling of

    relief I remember all the people who supported me in one way or another. It

    was a difficult time, but nevertheless interesting with a steep learning curve.

    First, I want to thank my supervisor Prof. Johannes Lercher. The scientific

    discussions with you showed me the way. With your deep knowledge of

    science and your sharp intellect, you taught me how to do good science,

    revealed misleading hypotheses as such and brought me back on the right

    track. Thank you for your trust and your guidance!

    I am very grateful to Dr. Maricruz Sanchez-Sanchez for supervising me. With

    your scientific knowledge, your excellent writing skills and your polite way of

    communication you have a major contribution to this thesis. Thank you for

    revising my thesis and manuscripts in such an accurate and efficient way.

    Special thank goes to Monica Markovits for introducing me to the lab and

    teaching me all kind of experimental procedures in a very patient way. I want to

    thank my collaborators Dr. Guanna Li, Dr. Evgeny Pidko and Dr. Jiri Dedecek

    for fruitful discussions and successful cooperation in the EU NEXT-GTL project.

    I would further like to thank Prof. Moniek Tromp and Prof. Andreas Jentys for

    their input in XAS analysis. Xaver Hecht helped a lot with technical problems.

    Thank you also for your support to Bettina Federmann, Steffi Seibold, Uli

    Sanwald, Andreas Marx and Martin Neukamm.

    All students who worked with me are acknowledged for their experimental

    contribution, especially Wanqiu Luo for her good work throughout her Masters

    Thesis. The big office was always a fun place with a lot of nice people and

    chats. I want to thank my office mates Edith Berger, Sebastian Eckstein,

    Andreas Ehrmaier, Christian Grtner, Claudia Himmelsbach, Lou Yu, Liu

    Yuanshuai and Liu Yue for all their kindness and help. I want to thank my class

    mates who joined TC2, especially Sebastian Foraita, Elisabeth Hanrieder and

    Stanislav Kasakov for help and distraction at work. A special thanks to my

    friend Tobias Berto for discussions and support in all kind of situations. Thank

  • ii

    you to all current and former group members that are not listed above, I am

    grateful to all of you for a pleasant working atmosphere and your help.

    Last but not least I want to thank my family. My parents supported me

    tremendously in every possible way during the last thirty years. Without you the

    way to get a PhD would have been much tougher. Danke Mama und Papa fr

    alles, was ihr in den vergangenen dreiig Jahren fr mich getan habt! Now is

    the time to thank the most special persons in my life. Lei, thank you for all your

    support, encouragement and love! Thank you Ferdi, for always succeeding in

    cheering me up! You two are the sunshine in my life.

    Sebastian

    December 2015

  • iii

    Abbreviations

    Angstrom

    AAS Atomic absorption spectroscopy

    BAS Brnsted acid site

    BET Brunauer-Emmett-Teller

    DFT Density functional theory

    EPR Electron paramagnetic resonance

    eV Electronvolt

    EXAFS Extended X-ray absorption fine structure

    g Gram

    h Hour

    IR Infrared

    K Kelvin

    kJ Kilojoule

    ml Millilitre

    min Minute

    MOR Mordenite

    X-MR X-membered ring with X being the number of TO4 in the ring

    mol Micromole

    TEM Transmission electron microscopy

    TOF Turnover frequency

    TPD Temperature programmed desorption

    UV-vis Ultraviolet-visible

    wt.% Weight percent

    XANES X-ray absorption near edge structure

    XAS X-ray absorption spectroscopy

    ZSM-5 Zeolite Socony Mobile-5

  • iv

    Abstract

    Copper oxide clusters stabilized in the micropores of zeolites have been found

    to selectively oxidize methane to methanol. The synthesis of a catalyst with

    homotopic trinuclear copper oxide clusters was achieved via ion exchange and

    oxidation. The steric and chemical environments of these clusters

    characterized by combinations of physicochemical measurement were critical

    to activate and convert methane. While the absence of water was critical for

    methane oxidation, the presence of water was required to realize its desorption.

    The presence of water reorganizes the Cu2+ cations requiring high

    temperatures to allow formation of the copper-oxide trimer clusters.

    Kurzzusammenfassung

    Zeolithmikroporen stabilisieren Kupferoxidcluster, die selektiv Methan zu

    Methanol oxidieren. Die Synthese von homotopen trinuklearen

    Kupferoxidclustern erfolgte mittels Ionenaustausch und Oxidation. Die sterische

    und chemische Umgebung der Cluster, die durch eine Kombination

    physikochemischer Messungen charakterisiert wurde, ist entscheidend fr die

    Aktivierung und Umsetzung von Methan. Whrend die Abwesenheit von

    Wasser wesentlich fr die Oxidation von Methan ist, ist die Gegenwart von

    Wasser fr die Desorption erforderlich. The Gegenwart von Wasser fhrt zur

    Reorganisation der Cu2+-Kationen, was hohe Temperaturen fr die Bildung des

    trinuklearen Kupferoxidclusters erfordert.

  • v

    Table of Contents

    1 General Introduction ................................................................................. 1

    1.1 Methanol Economy ............................................................................... 1

    1.2 Commercial Route for the Conversion of Methane to Methanol .......... 2

    1.2.1 Reforming ....................................................................................... 2

    1.2.2 Methanol Synthesis ........................................................................ 2

    1.3 Selective Partial Oxidation of Methane to Methanol ............................. 4

    1.4 Zeolites ................................................................................................. 8

    1.4.1 Structure of Zeolites ....................................................................... 8

    1.4.2 Nature of Acid Sites ...................................................................... 11

    1.4.3 Distribution and Siting of Framework Al ....................................... 12

    1.5 Catalysis on Copper Exchanged Zeolites ........................................... 17

    1.5.1 Catalytic Decomposition of Nitrogen Oxides ................................ 17

    1.5.2 C-H Bond Activation ..................................................................... 18

    1.6 Scope of the Thesis ............................................................................ 21

    1.7 References ......................................................................................... 23

    2 Single-Site Trinuclear Copper Oxygen Clusters in Mordenite for ...........

    Selective Conversion of Methane to Methanol ..................................... 28

    2.1 Abstract ............................................................................................... 28

    2.2 Introduction ......................................................................................... 29

    2.3 Results and Discussion ....................................................................... 30

    2.3.1 Preparation of a Single-Site Copper Oxygen Cluster ................... 30

    2.3.2 Siting of Copper in Mordenite ....................................................... 31

    2.3.3 Testing of Activity for Selective Oxidation of Methane .................. 37

    2.3.4 Spectroscopic Characterization .................................................... 39