Session Payload Subsystems
Embed Size (px)
Transcript of Session Payload Subsystems

Taller de Diseño de Picosatélites (CUBESATS) Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierray Estaciones de Tierray Estaciones de Tierray Estaciones de Tierra
Session 3Session 3Payload & SubsystemsPayload & Subsystemsy yy y
J M l d l CJ M l d l C M d R iM d R iJuan Manuel del CuraJuan Manuel del CuraDirector de Director de ProyectoProyecto, SENER, SENER
DptoDpto. . VehículosVehículos AerospacialesAerospaciales, ,
Mercedes RuizMercedes RuizIngenieraIngeniera de de SistemasSistemas, SENER, SENER
[email protected]@sener.es
ETSIA. UPMETSIA. [email protected]@sener.es
1Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

ContentContent
• Picosat=Picodesign?g• System Engineering process• Main elements of a mission/spacecraftp• System drivers • Picosat payloadsp y• Picosat subsystems
– Attitude and Orbit Control– Data Handling – Communications– ThermalThermal– Structure– Propulsion
2Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
– Power

WarningWarning
• Terminologygy– Acronisms– English terms
• Too many slides– Adaptable presentation
Out of focus– Out of focus
• Ackowledgements
3Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Picosat=Picodesign?Picosat=Picodesign?
4Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Picosat=Picodesign?Picosat=Picodesign?
5Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Picosat=Picodesign?Picosat=Picodesign?
Y Chaser
Z IBDMTarget
Z IBDMChaser
Y IBDMChaser
XIBDM
Z TargetX Chaser
Z Chaser
X IBDMTargetY IBDM
Target
IBDMChaser
X Target
g
Y Target
6Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Picosat=Picodesign?Picosat=Picodesign?
• Main differencesMain differences– Learning process– Standard equipment– Some decissions predetermined– Organisation– Schedule
7Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Picosat=Picodesign?Picosat=Picodesign?
XIXI IVIVProf. Nakasuka
Program Director
Prof. Nakasuka
Program Director XIXI--IVIV
Y.Tsuda
Project Manager
Y.Tsuda
Project Manager
CCElectronicsElectronics CommunicationCommunication PowerPower StructureStructure EnvironmentEnvironment Ground Seg.Ground Seg.
AAU CubesatAAU CubesatY.ArikawaY.TsudaN.MiyamuraS.Ishikawa
Y.ArikawaY.TsudaN.MiyamuraS.Ishikawa
T.ItoY.KatoT.EishimaS.Ukawa
T.ItoY.KatoT.EishimaS.Ukawa
N.SakoT.EishimaY.ArikawaS.Ukawa
N.SakoT.EishimaY.ArikawaS.Ukawa
N.MiyamuraT.ItoS.Ogasawara
N.MiyamuraT.ItoS.Ogasawara
P.SeoN.SakoK.KanairoK.Muramatsu
P.SeoN.SakoK.KanairoK.Muramatsu
S.OgasawaraY.TsudaT.MurakamiY.Oda
S.OgasawaraY.TsudaT.MurakamiY.OdaS.Ishikawa
T.MurakamiE.HwanK.Kanairo
S.IshikawaT.MurakamiE.HwanK.Kanairo
S.UkawaS.IhikawaY.KuwataT.Yamamoto S.Ganryu
S.UkawaS.IhikawaY.KuwataT.Yamamoto S.Ganryu
S.UkawaR.FunaseS.Hori
S.UkawaR.FunaseS.Hori
K.MuramatsuK.Muramatsu Y.OdaI.IkedaY.OdaI.Ikeda
8Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

System Engineering ProcessSystem Engineering Process
0Mission
Analysis,Needs
AFeasibility
BPreliminaryDefinition
CDetailed
Definition
DProduction/
Ground QualificationTesting
EUtilization
FDisposal
ESA
Identifiedg
MDR PRR PDR CDR AR
Pre- A B C D E
A Phase AAdvanced
Studies
PreliminaryAnalysis
Definition Design Development Operations
MCR MDR PDR CDR ORR DR
NA
SA
C C O
Pre-Milestone
0Concept
Exploration
IDemonstration
IIEngineering andManufacturing
Production andDeployment
Operations andSupport
III
DoD
0 Needs AnalysisConcept Dev.
andValidation
Development
0 SRR PDR CDR1 2
3
D
9Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

System Engineering ProcessSystem Engineering Process
10Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

System Engineering ProcessSystem Engineering Process
11Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
From ”Understanding Space” by Jerry Jon Sellers

System Engineering ProcessSystem Engineering Process
Specifications
SimulationDesign Testing
Analysis
Delivery
12Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

System Engineering ProcessSystem Engineering Process
C
SystemsEngineering
Control Theory
Digital ElectronicsEngineering
Sensors and ActuatorsTecnology
Power Electronics
SoftwareEngineering
Tecnology
StructureTechnology
DynamicSimulation
DevelopmentMethodology
Thermal
MechanismTechnology
PropulsionTechnology
StandardsAnd Norms
TechnologyCommunicationTechnology
Mission
13Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
Analyst

System Engineering ProcessSystem Engineering Process
14Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

System Engineering ProcessSystem Engineering Process
CONCEPT EXPLORATION DETAILED DEVELOPMENT
RequirementsGeneration(Users and
Very
Broad Performance
ObjectivesRequirements
PRODU(
Operators)needs
j
Studies Prototyping Design & Test
UCTION
AcquisitionManagement(Developers)
Alternative
Concepts
Concept
SelectionStable Design
AND
D
Resource Requirements and Constraints
DEVELO
Planning,Programming,And Budgeting
(Sponsors)
Affordability
GoalsConstraints Firm Unit Costs
PMENT
15Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Mission ElementsMission Elements
SubjectCommand, Control and
Communications
Subject
MISSIONCONCEPT
Orbits and constellationsMission OperationsMission Operations
G d l t
16Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
Ground elementSpace elementLaunch element

Spacecraft ElementsSpacecraft Elements
17Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Spacecraft ElementsSpacecraft Elements
18Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Spacecraft ElementsSpacecraft Elements
ACSSensor(s)
PayloadSensor
StructurePower
PWR5V
OBCDebug I/FRS422 RS232
( )
Analog orDigital I/F
Power
Com1MainDC-DC1
ROM TX TNC TXRX TNC
TX
OBC
OBC
Serial Synchronous RS422Clock and Data
RS422, RS232JTAG
Com2DC-DC3 OBC
OBC
Analog SW
TLM
TLMDC-DC2
COM
Para
llel B
us
ACS
Analog I/F
OBCRX TNC
CW Gen
RX
CWCharge Circuit
uSWFlight Pin
CMD
TLMACK
PCDU
ACSActuator
BatteryImportant Analog Sensors
Digital Sensors Antenna Latch
Solar Cell
Flight Pin PWR5V
.......
Regulated voltage outputs
SolarPanel(s)
Sensors
Analog Sensors
Antenna Latch
Battery
19Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

System DriversSystem Drivers
•Size•On orbit Weight
•Definition of the Preliminary Mission Concept•Definition of the Subject Characteristics•On-orbit Weight
•Power•Data rate•Communications
j•Determination of Orbit and Constellation Characteristics•Determination of the Payload Size and •Communications
•Pointing•Number of S/C•Altitude
Performance•Selection of the Mission Operations Approach•Design of the S/CS f f SAltitude
•Coverage•Scheduling•Operations
•Selection of the Launcher and Transfer System•Determination of Logistics, Deployment, replenishment and disposalC t E ti tiOperations •Cost Estimation
20Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Payload Design and sizingPayload Design and sizing
•The payload is the combination of hardware and software that interacts with the subject to accomplish the mission objectives.
Spacecraft Mission Payload Example
Communications• Full‐duplex broadband•Message broadcast• Personal comm
• Transceiver• Transmitter• Transceiver
•Milstar, Intelsat•DirecTV, GPS• Iridium
Remote Sensing• Imaging • Imagers and cameras • Landsat, Space Telescope• Intensity measurement• Topographic mapping
• Radiometers• Altimeters
• SBIRS early warning,• Chandra, TOPEX/Poseidon
Navigation• Ranging • Nav signal
• Transceiver• Clock and transmitter
• TDRS• GPS, GLONASSg ,
Weapons• Kinetic Energy•Directed Energy
•Warhead•High‐Energy weapon
• Brillant peebles concept• Space‐based Laser concept
In Situ Science• Crewed• Robotic
• Physical and life sciences• Sample collection/return
• Space Shuttle, Mir•Mars Sojourner, LDEF
Other•Microgravity Manufacturing• Space power
• Physical plant and raw materials• Solar collector, converter and transmitter
• Space Shuttle• SPS
21Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
• Resource utilisation•Tourism• Space burial
• Lunar soil collector and processor•Orbital hotel• Remains container
• Lunar Base• Various• Pegasus

Payload Design and sizingPayload Design and sizing
•Selection of payload objectives•Payload performance objectivesPayload performance objectives
•Conduct subject trades•Subject definition and performance thresholds
•Develop the payload operations conceptE d t d t f ll i i h d ti d•End-to-end concept for all mission phases and operating modes
•Determine required payload capability to meet mission objectives•Required payload capability
•Identification of candidate payloadsp y•Initial list of potential payloads
•Estimation of the candidate payloads capabilities and characteristics•Assessment of each candidate payloads
•Evaluation of the candidate payloads and selection of the baseline•Evaluation of the candidate payloads and selection of the baseline•Preliminary payload definition
•Assessment of the life-cycle cost and operability of the payload and mission•Revised payload performance requirements constrained by cost or architecture li it tilimitations
•Identification of the payload-derived requirements•Derived requirements for related subsystems
•Documentation and iteration
22Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
•Baseline payload design

Payload Examples Payload Examples -- AAUAAU
•Missions sucess criterias • That the involved students have achievedThat the involved students have achieved
some useful knowledge of space technology. • That communication is establised with the
satellite and housekeeping information is retrieved.
• Take and download any picture. • Test ACS performance. • Take pictures of certain locations on earthTake pictures of certain locations on earth. • Take pictures of celestrial objects and
experiment with the various subsystems.
23Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Payload Examples Payload Examples –– CANXCANX--11
Technology demonstration mission• Training next generation of space engineersTraining next generation of space engineers• Color and monochrome CMOS imager to be
used as star, moon and horizon sensor• Testing performance of a custom-built OBC• GPS receiver• Active magnetic control system• Data collection of GaAs solar cells and
Honeywell magnetometerHoneywell magnetometer
24Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Payload Examples Payload Examples –– CANXCANX--11
25Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Payload Examples Payload Examples –– CANXCANX--11
Main objectives:•Establish bus component design for pico satellitesEstablish bus component design for pico satellites•Reduce the total development cost by using commercialoff-the-shelf (COTS) components
•Educational•Separation mechanismCUTE-I missions:1) Communication mission 2) Sensing mission2) Sensing mission 3) Deployment mission
26Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Payload Examples Payload Examples –– DTUSatDTUSat
Main objectives:•Bird-tracking missionBird-tracking mission•On orbit demonstration of a CCD camera (PICOCAM)•On orbit demonstration of a MEMS sun sensor
27Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

Payload Examples Payload Examples –– PharmaSatPharmaSat
Main objectives:•Provide life support such as sugars the yeast can consume and environmentalProvide life support, such as sugars the yeast can consume, and environmental control, such as temperature, for yeast growth in 48 independent micro-wells;
•Administer three groups of growing yeast with an antifungal agent at three distinct dosage levels, and one control yeast group with no antifungal dosage;
• Track the yeast population density and health in each microwell before, during and after administering the antifungal by using an optical density sensor and Alamar Blue, an agent that turns the yeast varying shades of blue and pink as they consume the sugars;consume the sugars;
• Transmit the yeast population and health data, and PharmaSat’s system status data to Earth for analysis;
• Measure and determine the effect microgravity has on yeast resistance to an antifungal agent.
28Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS SubsystemAOCS Subsystem
Objectives:Objectives:i l h h i l f i f b h bi d i d•It implements the three typical functions for both orbit and attitude:–Navigation–Guidance–Control
•To maintain the orbit parameters•To perform all orbit operations in all mission phases including•To perform all orbit operations in all mission phases, including
–Parking orbit operations–Orbit Transfer–Orbit Maintenance or Station‐Keeping
•To determine spacecraft attitude•To define the spacecraft attitude referenceTo define the spacecraft attitude reference•To control the spacecraft attitude fulfilling pointing requirements•To perform the spacecraft angular momentum management
29Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
•To perform all required manouvres

AOCS SubsystemAOCS Subsystem
orientación de paneles solaresorientación de paneles solares
control de actitudcontrol de actitud
Main Components (I/VI)Main Components (I/VI)• SENSORS• ACTUATORS• CONTROL ALGORITHMS
controles en carga de pagocontroles en carga de pago
control de potenciacontrol de potencia
• ESTIMATORS• FILTERS• FAILURE MANAGEMENT control de control de t lt l
apunte de antenasapunte de antenas
• MODES MANAGEMENT
ActController System
órbitaórbitacontrol térmicocontrol térmico
Act.Controller System
Sens.Estimator
30Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS SubsystemAOCS Subsystem
Main Components (II/VI)Main Components (II/VI)
disturbancesExample: LEO AOCS
• forces• torques• • Atmosphere
outputsreference
y data
• ... Atmosphere• Solar Radiation• Luni-solar• ...inputs
Act.Controller System
outputsy data
SE ti t
• Position• Attitude• ...
satellite
Sens.Estimator
parameters• Mass• Inertia• Geometry•
31Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
...

AOCS SubsystemAOCS Subsystem
Main Components (III/VI)Main Components (III/VI)
Example: LEO AOCS
• Magnetic torquers• Propulsion
referencey data
p• Reaction Wheels• ...
Act.Controller Systemy data
SE ti t
accesories
Sens.Estimator
• Stellar Sensors• Sun Sensors•
32Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
• gyroscopes• ...

AOCS SubsystemAOCS Subsystem
Main Components (IV/VI)Main Components (IV/VI)
Example: LEO AOCS
• Control Laws• Reconfiguration Logic•• Orbit Reference• Pointing Reference
referenceand data
...g• ...
commands
• Wheels angular rate• Activation times• Intensities• ...
Act.Controller Systemand data
SE ti t
Control Unit
Sens.Estimator
33Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS SubsystemAOCS Subsystem
Main Components (V/VI)Main Components (V/VI)
Example: LEO AOCS
• Orbit Reference• Pointing Reference•
disturbances• forces• torques• • Atmosphere
referencey data
• ...
outputs
... Atmosphere• Solar Radiation• Luni-solar• ...inputs
Act.Controller Systemy data p
SE ti t
Control Unit accesories • Position• Attitude• ...
satellite
Sens.Estimator
34Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS SubsystemAOCS Subsystem
Main Components (VI/VI)Main Components (VI/VI)• ATTITUDEPOSITION • ATTITUDE• Absolute Sensors
– Sun Sensor– Star Trackers
POSITION• Absolute Sensors
– GPSA l – Earth Sensors
– Magnetometer– Gyroscopes
GPS
– Accelerometers– Ground Tracking– Celestial bodies
R l i S – GPS
• Relative Sensors– Laser– Cameras
• Relative Sensors– Laser– Cameras
P d liCa e as
• Actuators– Propulsion– Reaction Wheels
– Pseudolites– Differential GPS
• Actuators– Control Moment Gyros– Momentum Bias– Magnetic Torquers– Solar Sailing
– Propulsion– Solar Sailing– Tethers
35Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
Solar Sailing

AOCS SubsystemAOCS Subsystem
AOCS Design ProcessAOCS Design ProcessO bi Orbit
Solar/magnetic
MissionRequirements
MissionProfile
Orbit Insertion
S/C geometry
OrbitModels
MissionProfile
Definition of control modesDefinition of requirements Quantification of
Disturbance Environment
Selection of AOCS controlby control mode
P/L, Thermaland Power needs
Orbit, PointingDirection
Disturbance Selection and Sizing of
Pointingaccuracy
Orbit
Disturbance Environment
Selection and Sizing of AOCS H/W
S/CDefinition of AOCS
AlgorithmsALLgeometry Orbit
Conditions
Missioni
Lifetime
Pointingdirection
Slew
Algorithms
Iteration and
36Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
Requirements Slewrates
Iteration anddocumentation
ALL

AOCS SubsystemAOCS Subsystem
Main RequirementsMain Requirements
b• Orbit Requirements– To maintain a certain altitude– To maintain a certain inclination– To maintain a certain inclination– To maintain a certain ground track repitibility– To perform orbit transfers– To minimise propellant consumption– To minimise time for some operationsA i d R i• Attitude Requirements– To maintain a certain pointing with respect to an object– To fulfil pointing requirements (Accuracy, range)To fulfil pointing requirements (Accuracy, range)– To fulfill stability requirements (Jitter, Drift)– To perform attitude manoeuvres (Settling time)
37Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS SubsystemAOCS Subsystem
Main Control ModesMain Control Modes• Orbit InsertionOrbit Insertion• Acquisition• NormalNormal• Slew• Contingency
SeparationSeparationSAFESAFE
MODEMODE
• Contingency• Special TRANSFERTRANSFER
MODEMODEUNDOCKINGUNDOCKING
MATEDMATEDMODEMODE
RENDEZRENDEZVOUSVOUS DOCKINGDOCKING
UNDOCKINGUNDOCKINGMODEMODE
VOUSVOUSMODEMODE MODEMODE
COLLISIONCOLLISIONAVOIDANCEAVOIDANCE
O
38Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
MODEMODE

AOCS SubsystemAOCS Subsystem
Main AOCS TradesMain AOCS TradesT f bili i
Mission• Type of stabilisation:
– Spin– 3‐axis
P i– Passive
• On‐orbit vs Ground Determination• Sensor selection
Thermal
• Actuator selection• Computer Architecture
Communications
PowerPower
Str ct resPropulsion
39Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
Structures

AOCS SubsystemAOCS Subsystem
Selection of Attitude Control Type (I/III)Selection of Attitude Control Type (I/III)TypeType Pointing OptionsPointing Options Attitude ManeuverabilityAttitude Maneuverability Typical AccuracyTypical Accuracy Lifetime LimitsLifetime LimitsTypeType Pointing OptionsPointing Options Attitude ManeuverabilityAttitude Maneuverability Typical AccuracyTypical Accuracy Lifetime LimitsLifetime Limits
GG Earth LV Very limited ± 5 deg (2 axes) None
GG+MW bias Earth LV Very limited ± 5 deg (3 axes) Wheel bearings
MGT N/S Very limited ± 5 deg (2 axes) Noney 5 g ( )
Spin Inertial Expensive in terms of fuel ± 0.1 deg to ± 1 deg (2 axes)
Fuel
Dual‐Spin Inertial or LV limited by despun platform
Expensive in terms of fuel for Momentum bias
± 0.1 deg to ± 1 deg (2 axes). + Despun
FuelDS bearingsy p p ) p DS bearings
MW Bias LV pointing Expensive in terms of fuel for MW bias
± 0.1 deg to ± 1 deg Fuel, Wheel bearings
Zero Momentum + thrusters
Any No constraints. High rates possible
± 0.1 deg to ± 5 deg Fuelthrusters possible
Zero Momentum + RW
Any No constraints. ± 0.001 deg to ± 1 deg Fuel, Wheel bearings
Zero Momentum + CMG
Any No constraints. High rates possible
± 0.001 deg to ± 1 deg Fuel, Wheel bearingsCMG possible bearings
40Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS SubsystemAOCS Subsystem
Selection of Attitude Control Type (II/III)Selection of Attitude Control Type (II/III)
41Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS SubsystemAOCS Subsystem
Selection of Attitude Control Type (III/III)Selection of Attitude Control Type (III/III)• Mainly dependant on:Mainly dependant on:• Orbit insertion:
– Large impulsePlane changes– Plane changes
– Maintenance
• Payload pointing:Earth pointing– Earth pointing• Gravity gradient for low accuracies• 3‐axis with Earth LV reference
– Inertial pointing– Inertial pointing• Spin• 3‐axis
• Slew rates:• Slew rates:– None/low– Nominal– High
42Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
High

AOCS SubsystemAOCS Subsystem
Quantification of disturbance torquesQuantification of disturbance torquesDisturbance Type Parameters Formula
Gravity Gradient Constant (Earth) or cyclic (Inertial)
S/C inertias, orbit altitude
Solar Radiation Cyclic (Earth) or constant (Inertial)
S/C geometry and cog locations, S/C surface properties
M ti Fi ld C li O bit ltit d d i li ti BDT)(cos)1( cgciqA
cFT pss
Ssp
)2sin(23
3 yzg II
RT
Magnetic Field Cyclic Orbit altitude and inclination, Residual S/C magnetic dipole
Aerodynamic Constant (Earth) or cyclic (Inertial)
Orbit altitude and S/C geometry and cog locations,
Uncertainty in cog Unbalanced and unwanted S/C geometry 1 to 3cm
BDTm
)(21 2 cgCAVCT pada
Uncertainty in cog Unbalanced and unwanted torques
S/C geometry 1 to 3cm
Thruster Misalignment “ “ 0.1 to 0.5 deg
Mismatch of thrusters output
“ “ ±5%output
Rotating machinery Stability and accuracy Depending on design can be compensated
Liquid sloshing Torques and variation of cog S/C and tanks geometry Depending on design, can be compensatedp
Dynamics of Flexible Bodies
Resonance and limited bandwidth
S/C geometry Depending on the S/C structure
Thermal Shocks on Flexible Appendages
Attitude disturbance when in eclipse transients
S/C structure Worst with long booms
43Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS SubsystemAOCS Subsystem
Design parameters for selecting the sensorsDesign parameters for selecting the sensors• Decissions to be taken regarding the sensors:
Type– Type– Number– Layout– Sensing combinations
S l d di h f ll i f• Sensors are selected according to the following features:– Pointing Accuracy– Field of View– Redundancies– Location and Orientation– Power– Mass– Data Rate
Sensor Typical Performance Range Mass Range (kg) Power (W)
IMU 0.003deg/hr to 1deg/hr, 1 to 5x10‐6 g/g2
(from 20 to 60g)1 to 15 10 to 200
( g)
Sun sensors 0.005deg to 3 deg 0.1 to 2 0 to 3
Star sensors 1arcsec to 1arcmin 2 to 5 5 to 20
Earth sensors 0.1deg to 1deg (LEO) 1 to 4 5 to 10
44Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
g g ( ) 4 5
Magnetometer 0.5 deg to 3deg 0.3 to 1.2 <1

AOCS SubsystemAOCS Subsystem
Locating the sensors Locating the sensors -- ExamplesExamples+Y
S l A
Star Trackers
+X Z XX +Z
LEO SSO12H –Earth Pointing
Solar Arrays
Earth
Sun+X -Z -X-X +Z
-Y
+Y
S l A
XY
Solar ArraysSun
+X -Z -X-X +ZZ
GTO Equatorial – Sun
Earth
St T kSt T k
45Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
-Y
Pointing at Equinox Star TrackersStar Trackers

AOCS SubsystemAOCS Subsystem
Design parameters for selecting the actuatorsDesign parameters for selecting the actuators• Decissions to be taken regarding the actuators:
T– Type– Number– Layout– Actuation combinationsActuation combinations
• Actuators are selected according to the following features:– Disturbance compensation– Redundancies– Location and Orientation– Power– Mass
Actuator Typical Performance Range Mass Range (kg) Power (W)
Thrusters‐Hot gas 0.5 to 9000N Variable N/A‐ Cold gas <5N Variable N/A
Reaction and Momentum wheels
0.4 to 400 Nms0.01 to 1 Nm
2 to 20 10 to 110
CMG 25 to 500 Nm >10 90 to 150
46Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
CMG 25 to 500 Nm >10 90 to 150
Magnetic Torquers 1 to 4000 Am2 0.4 to 50 0.6 to 16

AOCS SubsystemAOCS Subsystem
Preliminar Sizing of the actuatorsPreliminar Sizing of the actuatorsParameter Simplified equations
Torque from RW for Disturbance rejection
Parameter Simplified equationsThrust force level for external Disturbances
)arg()( factorinMTT DRW L
TF Drejection
Slew torque for RWThrust force level for slew rates (zero‐mometum)
Thrust force level
2)2(tITRW
LIF
hMomentum storage in RW
Momentum storage
Thrust force level for slewing a Momentum‐bias vehicle
Thruster pulse life Derivation of the total number of h l
24PeriodOrbitalTh D
P
LdhF
Momentum storage in MW
Torque from
thruster pulses
Thrust force level for momentum dumping
aD hPT 4
TD D LthF
Magnetic Torquers
Momentum storage in Spinner
dumping
PropellantB
D Lt
gIFtMsp
p
47Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura
p

AOCS Examples AOCS Examples -- AAUAAU
48Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS Examples AOCS Examples -- AAUAAU
49Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS Examples AOCS Examples –– CANXCANX--11
Main characteristics:• Imager pointingImager pointing• Rotating for capturing Earth and stars images• Based on 3 magnetometers• Magnetic torquers as actuators
50Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura

AOCS Examples AOCS Examples –– CUTECUTE--II
Main characteristics:• No attitude controlNo attitude control• Sensing package:
•4-axis gyros•4-axis accelerometers•Sun sensor (CMOS)
• Ground attitude determination
51Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. J.M. del Cura