Skript zur Vorlesung Fluidmechanik

174
Skript zur Vorlesung Fluidmechanik Prof. Dr.-Ing. Peter R. Hakenesch Version 2.1

Transcript of Skript zur Vorlesung Fluidmechanik

Page 1: Skript zur Vorlesung Fluidmechanik

Skript zur Vorlesung Fluidmechanik

Prof. Dr.-Ing. Peter R. Hakenesch

Version 2.1

Page 2: Skript zur Vorlesung Fluidmechanik
Page 3: Skript zur Vorlesung Fluidmechanik

i ___________________________________________________________________ Inhalt 1 Einleitung ........................................................................................................... 1

1.1 Allgemeines .............................................................................................................. 1 1.2 Historische Entwicklung ............................................................................................ 2 1.3 CFD als Entwurfswerkzeug ...................................................................................... 2 1.4 Strömungssimulation in Windkanälen....................................................................... 5 1.5 Gliederung der Fluidmechanik .................................................................................. 6 1.6 Begriffsdefinitionen ................................................................................................... 7

1.6.1 Fluid .................................................................................................................... 7 1.6.2 Stationäre und instationäre Strömung, quasistationäre Strömung ..................... 7 1.6.3 Stromlinie und Bahnkurve ................................................................................... 7 1.6.4 Stromfaden und Stromröhre ............................................................................... 8 1.6.5 Ideale und Reale Fluide ...................................................................................... 8

1.7 Klassifizierung von Strömungen ............................................................................... 9 1.7.1 Einteilung von Strömungen als Funktion der Reibung ........................................ 9 1.7.2 Einteilung von Strömungen als Funktion der Kompressibilität .......................... 10 1.7.3 Einteilung von Strömungen als Funktion der Machzahl .................................... 11 1.7.4 Zusammenfassung der einzelnen Geschwindigkeitsbereiche .......................... 17

1.8 Einteilung der Fluide nach Fließverhalten .............................................................. 17 2 Hydrostatik ........................................................................................................18

2.1 Grundlagen ............................................................................................................. 18 2.1.1 Physikalische Eigenschaften der Flüssigkeiten und Gase ............................... 18 2.1.2 Kompressibilität von Gasen und Flüssigkeiten ................................................. 19 2.1.3 Druckeinheiten .................................................................................................. 20 2.1.4 Hydrostatischer Druck ...................................................................................... 20 2.1.5 Hydrostatisches (Pascal'sches) Paradoxon ...................................................... 21 2.1.6 Verbundene Gefäße (kommunizierende Röhren) ............................................. 22 2.1.7 Saugwirkung ..................................................................................................... 24 2.1.8 Statischer Auftrieb (Prinzip des Archimedes) ................................................... 26 2.1.9 Oberflächenspannung und Kapillarwirkung ...................................................... 28 2.1.10 Viskosität ....................................................................................................... 34

2.2 Druckmessung ........................................................................................................ 37 2.2.1 Druckbegriffe .................................................................................................... 37 2.2.2 Druckmessung in einem Kessel mittels U-Rohr Manometer ............................ 38 2.2.3 Berücksichtigung des hydrostatischen Drucks in einem Kessel ....................... 39 2.2.4 Differenzdruckmessung .................................................................................... 39 2.2.5 Berücksichtigung des Temperatureinflusses .................................................... 40 2.2.6 Berücksichtigung der Luftfeuchte ..................................................................... 40 2.2.7 Drucksonden ..................................................................................................... 41 2.2.8 Schrägrohrmanometer ...................................................................................... 41

2.3 Druckkräfte auf Begrenzungsflächen ..................................................................... 43 2.3.1 Druckkraft auf eine ebene, horizontale Fläche ................................................. 43 2.3.2 Druckkraft auf eine geneigte Fläche ................................................................. 43 2.3.3 Druckkräfte auf gekrümmte Begrenzungsflächen ............................................. 45 2.3.3.1 Einfach gekrümmte (abwickelbare) Flächen ................................................. 45 2.3.3.2 Beliebig gekrümmte (nicht abwickelbare) Flächen ........................................ 47 2.3.4 Stabilität ............................................................................................................ 48 2.3.4.1 Stabilität schwebender Körper ...................................................................... 48 2.3.4.2 Stabilität schwimmender Körper ................................................................... 49

2.4 Fluide unter Beschleunigung .................................................................................. 51 2.4.1 Niveauflächen ................................................................................................... 51 2.4.2 Gleichförmig horizontal beschleunigter Behälter .............................................. 51 2.4.3 Rotierende Flüssigkeiten .................................................................................. 51

Page 4: Skript zur Vorlesung Fluidmechanik

ii ___________________________________________________________________ 3 Aerostatik ..........................................................................................................56

3.1 Atmosphäre der Erde ............................................................................................. 56 3.1.1 Die Erdatmosphäre als Wärmekraftmaschine .................................................. 56 3.1.2 Aufbau der Erdatmosphäre ............................................................................... 57

3.2 Abhängigkeit des Luftdrucks von der Höhe ............................................................ 59 3.2.1 Luftdruck ........................................................................................................... 59 3.2.2 Kräftegleichgewicht an einem Volumenelement ............................................... 59

3.3 Internationale Standardatmosphäre (ISA) .............................................................. 62 3.3.1 Temperaturverteilung der Standardatmosphäre ............................................... 62 3.3.2 Definitionen der Höhe ....................................................................................... 65

4 Strömung von Fluiden .....................................................................................70

4.1 Grundbegriffe .......................................................................................................... 70 4.1.1 Allgemeine Beschreibung des Strömungsfeldes .............................................. 70 4.1.2 Stationäre und instationäre Strömungen .......................................................... 70 4.1.3 Bahnlinie und Stromlinie ................................................................................... 71 4.1.4 Stromröhre, Stromfaden, Stromfläche .............................................................. 72

4.2 Kontinuitätsgleichung ............................................................................................. 73 4.3 Energieerhaltungssatz ............................................................................................ 74

4.3.1 Satz von Bernoulli ............................................................................................. 74 4.3.2 Euler-Gleichung ................................................................................................ 80 4.3.3 Verlustfreie Rohrströmung - Anwendung der Bernoulli-Gleichung ................... 82 4.3.4 Ausfluss aus Gefäßen und Behältern - verlustfrei ............................................ 84 4.3.5 Ausfluss aus Gefäßen und Behältern unter Überdruck - verlustfrei ................. 84 4.3.6 Ausfluss aus Behältern mit scharfkantigen Öffnungen ..................................... 86 4.3.7 Ausfluss aus Behältern in ruhendes Wasser .................................................... 86 4.3.8 Ausströmen von Fluiden aus Behältern in die Atmosphäre .............................. 87 4.3.9 Verlustbehaftetes Ausfließen aus einem Behälter ............................................ 88

4.4 Strömung mit Energietransport ............................................................................... 89 4.4.1 Strömungen unter Berücksichtigung von Arbeit und Verlusten ........................ 89 4.4.2 Turbine .............................................................................................................. 92 4.4.3 Pumpe und Gebläse ......................................................................................... 93

4.5 Modellgesetze ........................................................................................................ 94 4.5.1 Simulationsproblematik ..................................................................................... 94 4.5.2 Kennzahlen ....................................................................................................... 94 4.5.3 Reynoldszahl .................................................................................................... 96

4.6 Grenzschichttheorie ................................................................................................ 98 4.6.1 Grenzschicht ..................................................................................................... 98 4.6.2 Verdrängungsdicke * der Grenzschicht .......................................................... 98 4.6.3 Grenzschicht an der längs angeströmten ebenen Platte .................................. 99 4.6.4 Transition ........................................................................................................ 101

4.7 Widerstand von Körpern ....................................................................................... 104 4.7.1 Formen des Widerstands ................................................................................ 104 4.7.2 Reibungswiderstand ....................................................................................... 105 4.7.3 Druckwiderstand ............................................................................................. 108 4.7.4 Induzierter Widerstand .................................................................................... 115 4.7.5 Interferenzwiderstand ..................................................................................... 118 4.7.6 Gesamtwiderstand .......................................................................................... 119

4.8 Kugelumströmung ................................................................................................ 122 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) .................. 122 4.8.2 Reibungsbehaftete Umströmung der Kugel .................................................... 122

4.9 Zylinderumströmung ............................................................................................. 127 4.9.1 Ideale reibungsfreie Strömung (Potentialströmung) ....................................... 127 4.9.2 Reibungsbehaftete Umströmung eines Zylinders ........................................... 127

Page 5: Skript zur Vorlesung Fluidmechanik

iii ___________________________________________________________________

4.10 Rohrströmung ....................................................................................................... 129 4.10.1 Laminare Rohrströmung ............................................................................. 129 4.10.2 Turbulente Rohrströmung ........................................................................... 129 4.10.3 Rohrreibungswiderstand ............................................................................. 130 4.10.4 Rohrreibungszahl ..................................................................................... 131

4.11 Widerstandsbeiwert für zusätzliche Einbauten in Rohren .................................... 134 4.11.1 Widerstand infolge von Ablösung ................................................................ 134 4.11.2 Querschnittserweiterung (Diffusor) ............................................................. 135 4.11.3 Querschnittsverengung (Düse) ................................................................... 138 4.11.4 Durchflussmessung mit genormten Drosselgeräten (DIN EN ISO 5167).... 140 4.11.5 Krümmer - Richtungsänderung ................................................................... 141 4.11.6 Eintrittsverluste ............................................................................................ 142 4.11.7 Verlustziffern von Formstücken und Einbauten (Zusammenfassung) ...... 143

5 Impulssatz .......................................................................................................147

5.1 Newton’sche Axiome ............................................................................................ 147 5.2 Stromröhre und Stromfaden ................................................................................. 148 5.3 Impuls ................................................................................................................... 148 5.4 Stationäre Fadenströmung durch einen raumfesten Kontrollraum ....................... 149 5.5 Kräfte auf ein Fluid im Kontrollraum ..................................................................... 150 5.6 Unterscheidung von drei Klassen von Anwendungsfällen .................................... 151 5.7 Impulssatz für mehrere Ein- und Austrittsflächen ................................................. 152 5.8 Anwendungsprinzip des Impulssatzes.................................................................. 153

6 Drallsatz ..........................................................................................................157

6.1 Drallerhaltung bzw. Drehimpulserhaltung ............................................................. 157 6.2 Anwendung des Drallsatzes auf Strömungsmaschinen ....................................... 163

Page 6: Skript zur Vorlesung Fluidmechanik

iv ___________________________________________________________________ Nomenklatur Lateinische Bezeichnungen A [m²] Fläche a [m/s²] Beschleunigung a [m/s] Schallgeschwindigkeit c [m/s] Geschwindigkeit cp [-] Druckbeiwert cp [J/kgK] spez. Wärme bei konst. Druck cv [J/kgK] spez. Wärme bei konst. Volumen D [1/s] Schergefälle F [N] Kraft, Schub Fr [-] Froude-Zahl Ec [-] Eckert-Zahl Eu [-] Euler-Zahl Fo [-] Fourier-Zahl g [m/s²] Gravitationskonstante H [m] Höhe, Förderhöhe h [m] Höhe H [J] Enthalpie h [J/kg] spez. Enthalpie I [m4] Flächenträgheitsmoment I [Ns] Impuls

I [N] Impulsstrom Kn [-] Knudsen-Zahl k [m] Rauigkeit L [Nms] Drall

L [Nm] Drallstrom l [m] Länge M [-] Machzahl M [-] Metazentrum M [Nm] Moment m [kg] Masse m [kg/s] Massestrom n [-] Lastvielfaches n [-] Polytropenexponent P [W] Leistung Pe [-] Péclet-Zahl Pr [-] Prandtl-Zahl p [Pa] Druck Q [J] Wärme q [J/kg] spez. Wärme

Q [J/m²] Wärmestrom

q [W/m²] spez. Wärmestrom

R [J/kgK] spez. Gaskonstante (Luft: RLuft = 287,05 J/kgK) Re [-] Reynoldzahl r [m] Radius S [-] Strouhalzahl S [J/K] Entropie s [J/K kg] spez. Entropie T [K] Temperatur T [s] Umlaufzeit

Page 7: Skript zur Vorlesung Fluidmechanik

v ___________________________________________________________________ Tu [-] Turbulenzgrad t [s] Zeit T [s] Umlaufzeit U [J] innere Energie U [m] Umfang u [J/kg] spez. innere Energie u, v, w [m/s] Geschwindigkeiten in x, y, z-Richtung V [m³] Volumen V [m/s] Geschwindigkeit v [m³/kg] spezifisches Volumen W [N] Widerstand W [J] Arbeit w [J/kg] spez. Arbeit We [-] Weber-Zahl Y [m²/s²] spez. Förderarbeit x, y, z [m] Ortskoordinaten Griechische Bezeichnungen [rad, Grad] Anstellwinkel K [-] Kontraktionszahll [rad, Grad] Schiebewinkel [m³/kgs²] Gravitationskonstante, Erde = 6,6710-11 [m] Grenzschichtdicke [-] Expansionszahl [-] Wirkungsgrad [%] Relative Luftfeuchte [-] Verustziffer [-] Isentropenexponent [-] Kraftmaßstabsfaktor [m] mittlere freie Weglänge [W/mK] Wärmeleitfähigkeit [-] Längenmaßstabsfaktor [-] Rohrreibungszahl [-] Ausflusskoeffizient [Pas] dynamische Viskosität [m²/s] kinematischen Viskosität [-] Zeitmaßstabsfaktor [-] Kreiszahl [-] Druckverhältnis [kg/m³] Dichte [W/m²K4] Stefan-Boltzmann-Konstante, = 5,669710-8 [N/m] Kapillarspannung [Pa] Schubspannung [rad] Winkelgeschwindigkeit [-] Verlustbeiwert

Page 8: Skript zur Vorlesung Fluidmechanik

vi ___________________________________________________________________ Indizes Größe auf die ungestörte Strömung bezogen 0 Größe auf Meeresniveau bezogen 0 Totalgröße Diss dissipiert d Dampf F Fluid f feucht K Körper M Modell O Original p Druck R Reibung S Flächenschwerpunkt s isentrope Zustandsänderung t Totalgröße trocken V Verlust W Wand Symbole Nabla-Operator Laplace-Operator proportional

Page 9: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 1 ___________________________________________________________________ 1 Einleitung

1.1 Allgemeines

Fluidmechanik ist die Wissenschaft von den Gesetzen der Bewegung und des Kräftegleichgewichtes der ruhenden und bewegten Flüssigkeiten (Hydrodynamik) und Gase (Thermodynamik, Gasdynamik, Aerodynamik). Sie ist ein Teilgebiet der Technischen Mechanik und somit Teil der angewandten Physik. Die genaue Bezeichnung dieser Wissenschaft lautet Mechanik flüssiger Körper oder Fluidmechanik, wobei unter dem Begriff "flüssiger Körper" dünnflüssige, tropfbare Flüssigkeiten und Gase zu verstehen sind. Da im Deutschen ein Oberbegriff für tropfbare Flüssigkeiten und Gase fehlt, hat man dafür nach DIN 5492 den Begriff "Fluid" bzw. “Fluide“ vorgeschlagen. Im Englischen wird die Bezeichnung "fluid" als Oberbegriff für Flüssigkeiten und Gase, also ein nichtfestes Kontinuum, verwendet. Der Begriff "Strömungsmechanik", wird aus historischen Gründen sehr häufig parallel verwendet, umfasst jedoch streng genommen nicht die Wissenschaft von den Gesetzmäßigkeiten ruhender Flüssigkeiten und Gase, d.h. der Hydrostatik bzw. Aerostatik. Verglichen mit der Massenpunktdynamik, die oft schon gute Einblicke in reale Vorgänge gibt, ist die Strömungslehre wesentlich komplexer. Das Momentanbild einer Planetenbewegung lässt sich z.B. durch die Koordinaten des Schwerpunktes S, dessen Geschwindigkeit w und Beschleunigung a darstellen oder durch das 3. Gesetz von Kepler:

Gl. 1-1: 231822

3

103634

sm,.constm

T

r S

Das Momentanbild der Umströmung eines Körpers hingegen erfordert die Kenntnis der Geschwindigkeiten und Drücke nicht eines einzigen Massepunktes, sondern theoretisch unendlich vieler Punkte im Raum, aus denen das Druck- und Geschwindigkeitsfeld bestimmt wird.

Abb. 1-1: Zum Vergleich Massenpunktdynamik – Fluidmechanik

Das Versuchswesen nimmt in der Fluidmechanik eine weit wichtigere Rolle ein als in der Festkörpermechanik. In der Fluidmechanik stehen meist nicht so sehr die bewegten Teilchen als vielmehr die ruhenden oder gleichförmig bewegten umströmten Körper im Mittelpunkt des Interesses, z.B. Landfahrzeuge oder Luftfahrzeuge. Allerdings gewinnen numerische, also computergestützte Verfahren (CFD computational fluid dynamics) zunehmend an Bedeutung. Simulation im Windkanal wird mehr und mehr durch Computer-Simulationen ergänzt.

Page 10: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 2 ___________________________________________________________________

1.2 Historische Entwicklung

Bis zum 17. Jahrhundert war die Strömungsmechanik durch eine ausschließlich experimentelle Arbeitsweise gekennzeichnet. Im 17.- 18. Jahrhundert setzte die Entwicklung der theoretischen Strömungsmechanik ein und erst seit ca. 1960, mit der Verfügbarkeit der ersten leistungsfähigen elektronischen Rechner begann die Entwicklung der numerischen Strömungsmechanik. Die drei Elemente Experiment, Theorie und CFD sind jedoch nicht als isolierte, getrennt einzusetzende Werkzeuge zu verstehen, sondern als sich gegenseitig ergänzende Verfahren. Wobei jedes einzelne Verfahren unterschiedliche Stärken und Schwächen aufweist. Somit kann CFD als Bindeglied zwischen theoretischen und experimentellen Verfahren eingestuft werden.

Abb. 1-2: CFD als Bindeglied zwischen Experiment und Theorie

Das Hauptaugenmerk für viele Anwendungen liegt in der Regel in der Ermittlung der Druckverteilung an der Oberfläche des umströmten Körpers und den daraus resultierenden Kräften und Momenten auf den Körper. Diese sind erforderlich zur Bestimmung der Auslegungslasten für die Struktur und der Bestimmung der aerodynamischen Parameter, z.B. Auftrieb und Widerstand. Die Bedeutung der Fluidmechanik zeigt sich z.B. in der Vorausberechnung der Antriebsleistung für Fahrzeuge Auslegung von Pumpen- und Kompressorleistungen für in Rohrleitungen transportierte

Fluide im Maschinenbau und in der Verfahrenstechnik Bereitstellung der Grundlagen für den Entwurf von Gleitlagern, Strömungsmaschinen

(Kreiselpumpen, Ventilatoren, Kompressoren, Dampf-, Gas- und Wasserturbinen) Dazu ist es jedoch häufig erforderlich das gesamte, den Körper beeinflussende Strömungs-feld zu kennen. Hier bieten sich neben einer reinen theoretischen Analyse oder einfachen Handbuchmethoden, unterschiedliche Vorgehensweisen an. Entweder die Durchführung von Modellversuchen im Wind- oder Wasserkanal oder eine numerische Analyse mit Hilfe von CFD-Methoden. Die Durchführung von Flug- oder Fahrversuchen ist naturgemäß erst in späteren Phasen des Entwicklungsprozesses möglich.

1.3 CFD als Entwurfswerkzeug

Seit ca. 1970 wird CFD erfolgreich zur Berechnung zweidimensionaler Strömungen, z.B. bei Profilen eingesetzt. Als effizientes Entwurfswerkzeug zur Berechnung dreidimensionaler Strömungen entwickelte sich CFD seit ca. 1990. In Abb. 1-3 ist die Druckverteilung an der Oberfläche eines Flugzeugs in Form von Isobaren, d.h. Linien gleichen Drucks, dargestellt.

Experiment Theorie

CFD

Page 11: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 3 ___________________________________________________________________

Abb. 1-3: Eulerrechnung zur cp –Verteilung an einer F20 (M = 0,95, = 8°), [ 1]

Üblicherweise wird hierbei nicht der statische Druck pW an der Wand, sondern die dimensionslose Form des Druckbeiwerts cp verwendet.

Gl. 1-2: 2

2

c

ppc W

p

Durch CFD-Verfahren lassen sich nicht nur die Strömungsverhältnisse an der Oberfläche des Körpers bestimmen, sondern es erfolgt eine Berechnung des gesamten Strömungs-feldes in der Umgebung des Körpers. Somit lassen sich auch Wirbelstrukturen im Nahfeld des umströmten Körpers darstellen. Für die Flügelschnitte a-f sind in Abb. 1-4 Vergleiche zwischen den Ergebnissen aus numerischer Berechnung und experimentellen Ergebnissen aus dem Windkanal aufgetragen.

Page 12: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 4 ___________________________________________________________________

Abb. 1-4: Darstellung der Isobaren (cp-Verteilung), [ 1]

Page 13: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 5 ___________________________________________________________________

1.4 Strömungssimulation in Windkanälen

Bei der Entwicklung von Fluggeräten ist man bereits in einer sehr frühen Phase des Entwurfsprozesses auf eine möglichst genaue mathematische Beschreibung des aerodynamischen und flugmechanischen Verhaltens des Flugzeugs angewiesen. Dies ist erforderlich sowohl zur Überprüfung der projektierten Flugleistungen als auch zur Auslegung des Flugreglers. Trotz der zunehmenden Bedeutung von numerischen Entwurfswerkzeugen (CFD), stellt der experimentelle Ansatz, d.h. die Erstellung eines aerodynamischen Modells auf der Basis von Windkanaldaten, noch das grundlegende Entwurfswerkzeug dar. In der Regel ist es jedoch nicht möglich ein Flugzeug über seinen gesamten Geschwindig-keitsbereich in Originalgröße unter echten Flugbedingungen zu testen. Lediglich im Nieder-geschwindigkeitsbereich existieren einige Versuchsanlagen, die über eine entsprechend große Messstrecke verfügen um Flugzeuge im Originalmaßstab untersuchen zu können, z.B. NASA AMES 80 x 120 ft Niedergeschwindigkeitswindkanal mit einer maximalen Strömungs-geschwindigkeit von 100 kts bzw. 51 m/s oder NASA AMES 40 x 80 ft mit einer maximalen Strömungsgeschwindigkeit von 300 kts bzw. 153 m/s.

Abb. 1-5: NASA Ames 80 x 120 ft Niedergeschwindigkeitswindkanal

Aufgrund des mit der Geschwindigkeit quadratisch zunehmenden Energiebedarfs zur Aufrechterhaltung einer kontinuierlichen Umströmung des zu untersuchenden Körpers, werden Windkanaluntersuchungen daher häufig an geometrisch ähnlichen, jedoch maßstäblich verkleinerten Modellen durchgeführt. Dabei spielt es prinzipiell keine Rolle ob das Modell sich durch die ruhende Luft bewegt oder ob ein Fluid sich um ein ruhendes Modell bewegt. Der erforderliche Energieaufwand zur Simulation einer transsonischen Strömung (0,8 < M < 1,2) wird an dem in Abb. 1-6 dargestellten Windkanalmodell eines Kampfflugzeugs im Maßstab 1:15 deutlich. Die während des Versuchs kontinuierlich durchströmte Messstrecke des Windkanals beträgt 2,4 m x 2,4 m. Zur Gewährleistung dieser Versuchsbedingungen ist jedoch ein Leistungsbedarf von 70 MW abzudecken. Allein aus Kostengründen sind Versuchsanlagen, die die Simulation von Strömungsfeldern um Luftfahrzeuge in Original-größe ermöglichen würden, in diesem Geschwindigkeitsbereich kaum zu realisieren.

Page 14: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 6 ___________________________________________________________________

Abb. 1-6: Eurofighter-Modell (Maßstab 1:15), TWT CALSPAN Buffalo NY, USA

1.5 Gliederung der Fluidmechanik

Fehler!

Abb. 1-7: Gliederung der Fluidmechanik

(Rheologie: Wissenschaft der nicht-NEWTONschen Fluide z.B. Zahnpasta, flüssiger Beton)

Unterschall

Rheologie Fluidmechanik

Hydromechanik Mechanik der Gase

Hydro-statik

Hydro-dynamik

Hydraulik Aerostatik Aero-dynamik

Gas-dynamik

inkompressibel kompressibel

transsonisch Überschall

Hyperschall Verdünnte Gase

Page 15: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 7 ___________________________________________________________________ 1.6 Begriffsdefinitionen

1.6.1 Fluid

Im Gegensatz zum Festkörper verformt sich ein Fluid unter dem Einfluss einer Schub-spannung ständig weiter.

Abb. 1-8: Verformung eines Fluids zu unterschiedlichen Zeitpunkten t0, t1 und t2

Weitere Annahme: Kontinuumshypothese, d.h. Masse ist stetig über das Volumen verteilt

1.6.2 Stationäre und instationäre Strömung, quasistationäre Strömung

Zustandsgrößen im Strömungsfeld (Geschwindigkeit, Druck, Dichte, Temperatur) bleiben über den betrachteten Zeitraum konstant (stationär) oder können sich zeitlich ändern (instationär). In Abhängigkeit von dem Beobachtungssystem können instationäre Systeme in stationäre Systeme überführt werden, die Verwendung eines mit dem Körper mitbewegtes Beobachtungssystem nimmt die Strömung als stationär war, z.B. flugzeugfestes Koordinatensystem. Sehr langsam ablaufende Veränderungen werden als quasistationär bezeichnet.

1.6.3 Stromlinie und Bahnkurve

Abb. 1-9: Stromlinie und Bahnkurve, [ 13]

Page 16: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 8 ___________________________________________________________________ Die Bahnkurve beschreibt die Flugbahn, d.h. die Kurve auf der sich ein einziges Fluidteilchen bewegt. Optisch lässt sich die Bahnkurve z.B. durch die (farbliche) Markierung des zu beobachteten Teilchens und die Beobachtung über einen längeren Zeitraum t-2 < t < t2 vermessen. Die Stromlinie stellt eine Momentaufnahme des gesamten Strömungsfeldes dar. Optisch lässt sich die Stromlinie durch die (farbliche) Markierung mehrerer Teilchen und die Beobachtung über einen sehr kurzen Zeitraum vermessen, z.B. durch die photographische Aufnahme des Strömungsfeldes mit einem einzigen Photo, jedoch einer Belichtungszeit, die so gewählt wird, dass alle Teilchen einen sehr kurzen, aber dennoch sichtbaren Weg zurück-legen. Dieser zurückgelegte Weg erscheint aufgrund der endlichen Belichtungszeit als Strich auf der Aufnahme, der wiederum dem Geschwindigkeitsvektor der markierten Teilchen entspricht. Die Stromlinie ist somit die Kurve in einem Strömungsfeld, die zu einem bestimmten Zeitpunkt t0 mit der Richtung der Geschwindigkeitsvektoren übereinstimmt, d.h. die Geschwindigkeitsvektoren der zu einer Stromlinie gehörenden Fluidteilchen bilden die Tangenten der Stromlinie.

1.6.4 Stromfaden und Stromröhre

Abb. 1-10: Stromfaden und Stromröhre

Stromfaden: Gesamtheit aller Stromlinien, die durch die Fläche A1 verlaufen Stromröhre: Gesamtheit aller Stromlinien, die durch eine geschlossene Kurve K verlaufen

1.6.5 Ideale und Reale Fluide

Ein Ideales Fluid wird durch zwei Eigenschaften gekennzeichnet: - Inkompressibilität, d.h. die Dichte ist an jeder Stelle gleich - Reibungsfreiheit, d.h. es erfolgt keine Umwandlung mechanischer Energie durch Reibung in Wärme (vgl. auch Potentialströmung) Bei realen Fluiden treten infolge der Reibung Schubspannungen in Strömungsrichtung auf, es erfolgt eine Umwandlung mechanischer Energie in Wärme, d.h. es wird Reibungs-

Page 17: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 9 ___________________________________________________________________ arbeit verrichtet. Dies führt zur Ausbildung einer sog. Grenzschicht in Wandnähe fester Körper und Ablösungen der Grenzschicht im Nachlaufbereich.

1.7 Klassifizierung von Strömungen

Strömungen lassen sich nach unterschiedlichen Kriterien klassifizieren - Unterscheidung entsprechend der Körpergeometrie, d.h. in zwei- oder dreidimensionale Strömungen - Unterscheidung nach der Stärke des Kompressibilitätseinflusses d.h. entsprechend der Anström-Machzahl - Reibungseffekte (Viskosität).

1.7.1 Einteilung von Strömungen als Funktion der Reibung

Ein wesentliches Merkmal von realen Strömungen besteht darin, dass infolge der freien Bewegung der Moleküle Masse, Impuls und Energie von einem Ort zu einem anderen Ort im Fluid transportiert werden können. Diese Molekularbewegung ist die physikalische Ursache für die sog. Transportvorgänge, d.h. Massestrom, Reibung und Wärmeübertragung. Reale, mit Reibungseffekten behaftete Strömungen werden als reibungsbehaftet oder viskos bezeichnet. Strömungen, bei denen der Einfluss der Transportphänomene als gering betrachtet werden kann, werden als reibungsfrei bezeichnet. Die Unterschiede zwischen reibungsfreier und reibungsbehafteter Strömung lassen sich am Beispiel unterschiedlicher Geschwindigkeitsprofile in der Grenzschicht darstellen Reibungsfreie Strömung Die Geschwindigkeit entspricht auch direkt an der Wand noch der Geschwindigkeit der freien Anströmung c Reibungsbehaftete Strömung Die Geschwindigkeit nimmt an der Wand den Wert Null an (Haftungsbedingung).

Abb. 1-11: Geschwindigkeitsprofile in reibungsfreier und reibungsbehafteter Strömung

Für praktische Anwendungen lässt sich für viele Bereiche das Strömungsfeld in einen reibungsbehafteten Anteil in der Nähe der Körperoberfläche (Grenzschicht) und in einen reibungsfreien Anteil außerhalb der Grenzschicht aufteilen. Für schlanke Körper oder Profile, die bei kleinen Anstellwinkeln angeströmt werden, lassen sich durch diese Vereinfachung Stromlinien und Druckverteilungen relativ gut berechnen.

c c

Page 18: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 10 ___________________________________________________________________

Abb. 1-12: Reibungsbehaftete Grenzschicht, reibungsfreie Außenströmung

Ablösung bei reibungsbehafteter Strömung Wird der Anstellwinkel des in Abb. 1-12 skizzierten Profils erhöht, so kann bei Überschreiten eines Grenzwinkels die Strömung der Kontur nicht mehr weiter folgen und die Grenzschicht löst an der Oberseite des Profils ab und es bildet sich hinter der Ablösestelle ein Ablöse- oder Totwassergebiet. Solch ein abgelöstes Strömungsgebiet lässt sich nicht mehr als reibungsfreie Strömung vereinfachen. Eine ähnliche Situation liegt z.B. hinter einem quer angeströmten Zylinder vor.

Abb. 1-13: Strömungsablösung bei Kugel und Zylinder

1.7.2 Einteilung von Strömungen als Funktion der Kompressibilität

Strömungen für die die Dichte als konstant angenommen werden kann, z.B. Flüssigkeiten, werden als inkompressibel bezeichnet, Strömungen mit einer veränderlichen Dichte, z.B. Gase, werden als kompressibel bezeichnet. Die Annahme einer konstanten Dichte für Flüssigkeiten stellt lediglich eine (gute) Näherung dar, dies führt jedoch zu einer starken Vereinfachung in der Berechnung der Strömungsparameter. Obwohl Luft in der Realität ein kompressibles Fluid darstellt, kann ohne nennenswerten Fehler bei kleineren Geschwindigkeiten, d.h. bis ca. M = 0,3 die Annahme einer konstanten Dichte getroffen werden. In Bodennähe (H = 0) entspricht dies einer Fluggeschwindigkeit von ca. c = 100 m/s bzw. 360 km/h, also dem Geschwindigkeitsbereich von Segelflugzeugen oder kleineren einmotorigen Sportflugzeugen. Unter der Annahme der Inkompressibilität können die Strömungsbedingungen entlang einer Stromlinie somit mittels der Bernoulli-Gleichung ermittelt werden.

Gl. 1-3: .2

1 2 constcp

reibungsbehaftete Grenzschicht

reibungsfreie Außenströmung

Strömungsablösung

Strömungsablösung

Totwassergebiet

Strömungsablösung

Page 19: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 11 ___________________________________________________________________ Für kompressible Strömungen liefert diese einfache Gleichung jedoch keine brauchbaren Ergebnisse mehr. Definition der Kompressibilität Wird der Druck p an einem Volumenelement v um den Betrag dp erhöht, so wird das Volumenelement v um den Betrag dv komprimiert. Die Kompressibilität wird beschrieben durch

Gl. 1-4: dp

dv

v

1

Die Kompressibilität stellt eine Stoffgröße dar und beträgt z.B. für Wasser T = 510-10 m²/N und für Luft T = 510-5 m²/N bei p = 1 bar. Mit dem spezifischen Volumen v

Gl. 1-5: 1

m

Vv

ergibt sich für die Kompressibilität

Gl. 1-6: dp

d

1

d.h. eine Änderung des Drucks dp bewirkt in Abhängigkeit von der Größe der Kompressibilität eine Änderung der Dichte d

Gl. 1-7: dpd

Als Unterscheidungskriterium zwischen kompressibler und inkompressibler Strömung ist es üblich eine relative Dichteänderung von 05.0d anzusetzen.

1.7.3 Einteilung von Strömungen als Funktion der Machzahl

Stromlinien kennzeichnen die Tangenten an die lokalen Geschwindigkeitsvektoren im Strömungsfeld. Jedem Punkt in dem Strömungsfeld können die Größen Druck p, Temperatur T, Dichte und Geschwindigkeit V zugeordnet werden. Zusätzlich kann jedem Punkt noch die lokale Schallgeschwindigkeit c zugeordnet werden. Somit ergibt sich analog zur Definition der Machzahl M der freien Anströmung, also die Strömungsgeschwindigkeit c bezogen auf die Schallgeschwindigkeit a

Gl. 1-8:

a

cM

die Definition der lokalen Machzahl M im Strömungsfeld

Gl. 1-9: a

cM

Unterschallströmung Die reine Unterschallströmung ist dadurch gekennzeichnet, dass im gesamten Strömungsfeld für die lokale Machzahl M 1 gilt. Ein wichtiges Kriterium der reinen Unterschallströmung besteht darin, dass sich Druckänderungen auch entgegen der Strömungsrichtung ausbreiten können.

Page 20: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 12 ___________________________________________________________________ Transsonische Strömung Bei einem transsonischen Strömungsfeld können Unterschall- (M < 1) und lokale Überschallströmung (M 1) im betrachteten Strömungsgebiet gleichzeitig auftreten, z.B. infolge von Übergeschwindigkeiten am Tragflügel bei einer freien Anströmmachzahl von M 1. Die Grenze für das erste Auftreten von Überschallgebieten ist abhängig von den verwendeten Profilen und liegt bei heute üblichen Transsonikprofilen bei ca. M = 0,8, kann jedoch bei entsprechend dicken Profilen bereits bei M = 0,65 liegen. Während die Beschleunigung vom Unterschall zum Überschall in einem stetigen Prozess verläuft, erfolgt die Verzögerung vom Überschall zurück zum Unterschall in einem unstetigen Prozess, gekennzeichnet durch einen Verdichtungsstoß. Kennzeichen eines transsonischen Strömungsgebiets ist somit das gleichzeitige Vorliegen von Unterschall- als auch Überschallgebieten, z.B. hinter einem abgelösten Stoß an der Profilnase. Generell wird der Machzahlbereich 0,8 M 1,2 als Transsonikbereich bezeichnet.

Abb. 1-14: Verdichtungsstöße und kritische Machzahl an einem Profil, [ 5], [ 8]

Bedeutung der kritischen Machzahl als kennzeichnende Größe der Kompressibilität Infolge des lokalen Auftretens von Überschallgebieten bilden sich lokale Verdichtungsstöße, die stromabwärts zu stoß-induzierten Ablösungen, verbunden mit einer starken Zunahme des Druck- bzw. Formwiderstands führen.

Abb. 1-15: Widerstandsanstieg bei Überschreiten der kritischen Machzahl, [ 2]

Page 21: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 13 ___________________________________________________________________

Abb. 1-16: Schlierenaufnahme eines Projektils: Ernst Mach 1888, [ 14]

Überschallströmung Das Kennzeichen der reinen Überschallströmung besteht darin, dass im gesamten Strömungsfeld für die lokale Machzahl M 1 gilt. Ein weiteres wichtiges Kriterium der reinen Überschallströmung besteht darin, dass sich Druckänderungen nicht mehr entgegen der Strömungsrichtung, sondern nur noch stromabwärts auswirken können.

Abb. 1-17: Mach’scher Kegel in einer Überschallströmung, [ 5], [ 8]

Hyperschallströmung Auch für den Übergang von der Überschall- zur Hyperschallströmung existiert keine scharf definierte Grenze. Eingebürgert hat sich eine Machzahl der freien Anströmung von M 4,5 - 5. Charakteristische Eigenschaften einer Hyperschallströmung sind die eng an der Körper-oberfläche anliegen Stöße und die infolge der starken Temperaturerhöhung hinter dem Verdichtungsstoß auftretenden chemischen Prozesse, d.h. Dissoziation mit späterer Rekombination sowie die Bildung von Plasma. In diesem Geschwindigkeitsbereich lässt sich die Annahme, Luft als ideales Gas zu betrachten, nicht länger aufrechterhalten.

M

1sin

Page 22: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 14 ___________________________________________________________________

Abb. 1-18: Verdichtungsstoß an einer Rampe bei M = 36

Abb. 1-19: Modell des Raumtransporters Sänger mit Oberstufe Horus, H2K DLR Köln

Bedingt durch das hohe Temperaturniveau treten in Hyperschallströmungen zwei Gruppen von chemisch-physikalischen Phänomen auf. Zum einen werden mit zunehmender Temperatur die inneren Freiheitsgrade der Moleküle angeregt, Dissoziations- und Ionisationseffekte treten auf und zum anderen kommt es zu chemischen Wechselwirkungen zwischen der Grenzschicht und der Oberfläche des Flugkörpers. Die Katalyzität der Oberfläche bildet bei wiederverwendbaren Systemen, z.B. Space Shuttle, eine schwer zu quantifizierende Größe, da sich die Katalyzität des Thermalschutzsystems mit zunehmender Anzahl der Flüge erhöht.

Abb. 1-20: Space Shuttle (Rockwell) und chemische Reaktion beim Wiedereintritt, [ 9]

Page 23: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 15 ___________________________________________________________________ Die Abweichung des Verhaltens von Luft vom dem Verhalten eines idealen Gases, das sich im chemischen Gleichgewicht befindet ist in Abb. 1-21 dargestellt. Berechnet wurden die Staupunkttemperaturen bei unterschiedlichen Wiedereintrittsgeschwindigkeiten in einer Höhe von H = 52 km.

Abb. 1-21: Staupunkttemperaturen und chemische Reaktionen von Luft, [ 3]

Abb. 1-22: Verhalten von Luft im Vergleich zu dem Verhalten des idealen Gases:

ideales Gas:

TRvp

Page 24: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 16 ___________________________________________________________________ Strömung verdünnter Gase Alle bisherigen Betrachtungen gingen von der Strömung als Kontinuum aus. Insbesondere in großer Höhe, d.h. ab ca. 70 km, lässt sich diese Annahme nicht länger aufrechterhalten. Die Strömung stellt sich als freie Molekülströmung dar, die dadurch gekennzeichnet ist, dass aufgrund der geringen Dichte fast keine Kollisionen mehr zwischen den einzelnen Molekülen stattfinden. Kontinuumströmung Bei einer Kontinuumströmung sind noch genügend Molekülkollisionen möglich um alle chemischen Reaktionen nach einem Verdichtungsstoß wieder in ein Gleichgewicht zu bringen. Sinkt die Anzahl der Kollisionen unter eine kritische Grenze, so befindet sich die Strömung in einem chemischen Nicht-Gleichgewicht. Zur Unterscheidung der unterschiedlichen Strömungsbereiche bei der Betrachtung verdünnter Gase, lässt sich die Knudsen-Zahl Kn einführen, die das Verhältnis der mittleren freien Weglänge der Moleküle zu einer charakteristischen Länge lref des umströmten Körpers beschreibt. Die mittlere freie Weglänge ergibt sich zu

Gl. 1-10: Tk

m

2

und die Knudsenzahl Kn

Gl. 1-11: refl

Kn

In Abhängigkeit von der Knudsen-Zahl lassen sich bei verdünnten Gasen drei unter-schiedliche Strömungsbereiche unterscheiden: - Kn 10-2 : Es liegt eine Kontinuumströmung vor. - 10-2 Kn 5:

Die Strömung beginnt vom Kontinuumsverhalten abzuweichen, d.h. Stoßwellen weisen eine endliche Dicke auf und in der Grenzschicht kommt es zu Gleitströmungen, d.h. ähnlich wie im theoretisch reibungsfreien Fall, wird an der Wand die Geschwindigkeit in der Grenzschicht nicht zu Null. Stoßwelle und Grenzschicht fallen zusammen.

- Kn 5:

Es liegt eine freie Molekülströmung, es kommt kaum noch zu Molekülkollisionen, Stoßwellen und Grenzschichten sind nicht mehr eindeutig definiert.

Page 25: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Einleitung 17 ___________________________________________________________________

1.7.4 Zusammenfassung der einzelnen Geschwindigkeitsbereiche

Abb. 1-23: Stromlinien und Mach-Linien als Funktion der Machzahl

1.8 Einteilung der Fluide nach Fließverhalten

´

Unterschall Transsonikbereich Transsonikbereich Überschall Hyperschall

.constdz

dc .const

dz

dc

dz

dc

c

c Das Ziehen einer Platte mit konstanter Geschwindigkeit c

über ein Fluid in einem konstanten Abstand z zur Wand erfordert eine Zugkraft F, die ein Maß für die Verschiebbarkeit der Fluidteilchen gegeneinander dar-stellt. Der Proportionalitätsfaktor wird als dynamische Viskosität bezeichnet. Scherspannung

Gl. 1-12: dz

dc

Scherkraft

Gl. 1-13: dz

dcAF

Abb. 1-24: Unterscheidung von Fluiden nach Fließverhalten

Page 26: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 18 ___________________________________________________________________ 2 Hydrostatik

2.1 Grundlagen

2.1.1 Physikalische Eigenschaften der Flüssigkeiten und Gase

Zustandsgrößen beschreiben den thermodynamischen Zustand eines Stoffes, z.B. durch Druck p, Temperatur T und Dichte bzw. spez. Volumen 1v . Thermodynamische Zustandsgrößen für Reinstoffe, (z.B. H2O) können in Abhängigkeit von zwei Zustandsgrößen beschrieben werden, z.B. durch Tpvv , , vpTT , und Tvpp , . Im thermodynamischen Gleichgewicht können nicht beliebig viele Phasen gleichzeitig vorliegen. Für Fluide (Flüssigkeiten und Gase) sind zwei Zustandsgrößen zur Bestimmung des Gleichgewichtszustands entsprechend der Gibbs'sche Phasenregel ausreichend

Gl. 2-1: PKf 2

f Anzahl der Freiheitsgrade K Anzahl der Systemkomponenten P Anzahl der Phasen

Zustandsgrößen sind über Zustandsgleichungen miteinander gekoppelt, z.B. über die Zustandsgleichung des idealen Gases (ideale Gasgleichung)

Gl. 2-2: TRvp

bzw. über die kalorischen Zustandsgleichungen

Gl. 2-3: .constp

p dT

dhc

Gl. 2-4: .constv

v dT

duc

Abb. 2-1: Zustandsdiagramm eines generischen Stoffes

Page 27: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 19 ___________________________________________________________________ 2.1.2 Kompressibilität von Gasen und Flüssigkeiten

Generell ist die Dichte ist eine Funktion von Druck und Temperatur, d.h. es gilt Tp, , dies gilt für alle Stoffe, d.h. Gase als auch Flüssigkeiten und Festkörper. Definition der Kompressibilität Betrachtet man ein kleines Volumenelement v, so wirkt an allen Seiten der Druck p. Wird der Druck p um den Betrag dp erhöht, so wird das Volumenelement v um den Betrag dv komprimiert. Die Kompressibilität wird beschrieben durch

Gl. 2-5: dp

dv

v

1

In Abhängigkeit von der bei der Kompression über die Systemgrenze übertragenen Wärmemenge ändert sich jedoch die Gastemperatur. Unter der Annahme einer Kompression bei konstanter Temperatur, lässt sich die isotherme Kompressibilität definieren als

Gl. 2-6: T

T p

v

v

1

Nimmt man jedoch einen Kompressionsprozeß an, bei dem keine Wärme über die Systemgrenze übertragen wird (adiabate Zustandsänderung) und bei dem Reibungseffekte vernachlässigt werden (isentrope Zustandsänderung), so lässt sich die isentrope Kompressibilität definieren als

Gl. 2-7: s

s p

v

v

1

Die Kompressibilität stellt eine Stoffgröße dar und beträgt z.B. für Wasser T = 510-10 m²/N und für Luft T = 510-5 m²/N bei p = 1 bar. Mit der Definition des spezifischen Volumens v

Gl. 2-8: 1

v

ergibt sich für die Kompressibilität

Gl. 2-9: dp

d

1

d.h. eine Änderung des Drucks dp bewirkt in Abhängigkeit von der Größe der Kompressibilität eine Änderung der Dichte d

Gl. 2-10: dpd

Als Unterscheidungskriterium zwischen kompressibler und inkompressibler Strömung ist es üblich eine relative Dichteänderung von 05.0d anzusetzen. Strömungen, für die die Dichte als konstant angenommen werden kann, z.B. Flüssigkeiten, werden als inkompressibel bezeichnet und bilden den Schwerpunkt der Vorlesung Fluidmechanik bzw. technische Strömungsmechanik. Strömungen mit einer veränderlichen Dichte, z.B. Gase, werden als kompressibel bezeichnet und werden hier nicht eingehend behandelt. Eine ausführliche Diskussion dichteveränderlicher Fluide findet sich jedoch in der Vorlesung Aerodynamik, unter dem Kapitel Gasdynamik. Wie später noch gezeigt wird, führt die Annahme einer konstanten Dichte zu einer starken Vereinfachung in der Berechnung der Strömungsparameter.

Page 28: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 20 ___________________________________________________________________ Vereinfachung für Gase Obwohl Luft in der Realität ein kompressibles Fluid darstellt, kann ohne nennenswerten Fehler bei kleineren Geschwindigkeiten, d.h. bis ca. M = 0,3 die Annahme = const. getroffen werden. In Bodennähe (H = 0, p = 1013 hPa) entspricht dies einer Strömungs-geschwindigkeit bzw. Fluggeschwindigkeit von ca. c = 100 m/s bzw. 360 km/h, also dem Geschwindigkeitsbereich von schnellen Landfahrzeugen, Segelflugzeugen oder kleineren einmotorigen Sportflugzeugen. Unter der Annahme einer konstanten Dichte können die Strömungsbedingungen entlang einer Stromlinie somit mittels der Bernoulli-Gleichung ermittelt werden:

Gl. 2-11: .2

1 2 constcp

Für kompressible Strömungen liefert diese einfache Gleichung jedoch keine brauchbaren Ergebnisse mehr

2.1.3 Druckeinheiten

Generell sind für Drücke die Einheit Pa zu verwenden, insbesondere in der Meteorologie ist jedoch die Einheit hPa = 100 Pa üblich, da dies der älteren Bezeichnung mbar entspricht.

Einheit Multiplikationsfaktor SI - Einheit Pa = N/m² 1 Pa hPa = mbar 102 Pa MPa 106 Pa bar 105 Pa atm 1,01325105 Pa mm Wassersäule = mm WS 9,80665 Pa mm Quecksilber = mm Hg = Torr (760 mmHg = 1 atm)

133,32 Pa

psi = lb/in² (1 in = 25.4 mm) 6894,757 Pa psf = lb/ft² (1 ft = 12 in = 0,3048 m) 47,88 = 6894,757/144 Pa

Tab. 2-1: Druckeinheiten

2.1.4 Hydrostatischer Druck

Druck ist eine ungerichtete Größe, d.h. das Druckfeld stellt ein Skalarfeld dar. Im Gegensatz zu einem Vektorfeld, z.B. einem Geschwindigkeitsfeld. Die resultierende Druckkraft wirkt immer senkrecht auf die Oberfläche.

Abb. 2-2: Kräftebilanz an einer Flüssigkeitssäule

FG

Page 29: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 21 ___________________________________________________________________ Für das Kräftegleichgewicht an einer Flüssigkeitssäule in z-Richtung gilt:

Gl. 2-12: 0,, uDGoD FFF

Gl. 2-13: 00 ApgAhAp

Gl. 2-14: 00 pghp

Für den statischen Druck p in der Tiefe h folgt für = const.:

Gl. 2-15: ghpp 0

Dies ist das sog. hydrostatische bzw. fluidstatische Grundgesetz _________________________________________________________________________

Üb. 2-1: Berechnung des Drucks am Boden in einem nach oben offenen, mit Wasser

gefüllten Behälters geg.: T = 12 °C (Wassertemperatur h = 10 m (Füllhöhe) p0 = 1 bar (Luftdruck) _________________________________________________________________________

2.1.5 Hydrostatisches (Pascal'sches) Paradoxon

Gemäß dem fluidstatischen Grundgesetz ghpp 0 bestimmt sich der Druck über die

Höhe h der darüber befindlichen Flüssigkeitssäule Kraft auf den Boden eines Gefäßes wird ausschließlich von der Höhe der darüber

befindlichen Flüssigkeitssäule und nicht von der Form des Gefäßes bestimmt Gleiche Grundfläche A bedeutet gleiche Kraft F, d.h. ApF

Abb. 2-3: Pascal’sches Paradoxon

Page 30: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 22 ___________________________________________________________________

2.1.6 Verbundene Gefäße (kommunizierende Röhren)

Für ein System aus verbundenen Gefäßen oder Röhren folgt aus der Gleichgewichts-bedingung der Kräfte in z-Richtung: Ist das System mit einer Flüssigkeit gleicher Dichte befüllt, so befinden sich die

Oberflächen auf gleicher Höhe Ist das System mit zwei sich nicht mischenden Flüssigkeiten unterschiedlicher Dichte

gefüllt, so ergeben sich unterschiedliche Spiegelhöhen z1 und z2

Abb. 2-4: Kommunizierende Gefäße

Die Druckbilanz auf der linken Seite (1-1) ergibt

Gl. 2-16: ghghpp b 20111

Für die rechte Seite (2-2) folgt

Gl. 2-17: ghghpp b 20222

wegen 21 pp folgt daraus

Gl. 2-18: ghghpghghp bb 20222011

Gl. 2-19: 2

1

1

2

h

h

Für ein System, das mit einer Flüssigkeit gleicher Dichte befüllt ist, d.h. 21 folgt daraus

Gl. 2-20: 21 hh

Page 31: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 23 ___________________________________________________________________ Aus dem Prinzip der kommunizierenden Gefäße lässt sich das Arbeitsprinzip einer hydraulischen Presse ableiten

Abb. 2-5: Hydraulische Presse

Die Kräftebilanz am Kolben (1) ergibt

Gl. 2-21: 11011 FApAp 1

101 A

Fpp

Die Kräftebilanz am Kolben (2) ergibt

Gl. 2-22: 22022 FApAp 2

202 A

Fpp

mit dem hydrostatisches Grundgesetz hgzzgpp 2112 folgt

Gl. 2-23: hgA

Fp

A

Fp

1

10

2

20

Gl. 2-24: hgA

F

A

F

1

1

2

2

Aufgrund der hohen Drücke in Hydrauliksystemen kann der hydrostatische Druckanteil hg häufig vernachlässigt werden.

_________________________________________________________________________

Üb. 2-2: Hydraulische Presse mit reibungs- und gewichtsfreien Kolben

Page 32: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 24 ___________________________________________________________________ 1. Welche Kraft F1 ist am Kolben (1) aufzuwenden, um die Masse m = 2000 kg mit dem Kolben (2) anzuheben? 2. Wie groß ist der Druck p2 am Boden des Kolben (2) 3. Wie groß ist der Fehler bei Anwendung der Näherungslösung? _________________________________________________________________________

2.1.7 Saugwirkung

Das Arbeitsprinzip einer Saugpumpe leitet sich aus dem fluidstatischen Grundgesetz ghpp 0 und dem Prinzip kommunizierender Röhren ab

Abb. 2-6: Saugpumpe

Druckbilanz in der Ansaugstrecke (1-1)

Gl. 2-25: ghHpp SabsS ,1

Druckbilanz für die offene Seite (2-2)

Gl. 2-26: ghpp b 2

wegen 21 pp folgt

Gl. 2-27: bSabsS pgHp ,

Daraus ergibt sich für die Ansaughöhe

Gl. 2-28: g

p

g

ppH uSabsSb

S

,,

Page 33: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 25 ___________________________________________________________________ Maximale Ansaughöhe Die maximale Ansaughöhe wird begrenzt durch den Dampfdruck der angesaugten Flüssigkeit. Bei Unterschreiten des temperaturabhängigen Dampfdrucks geht die angesaugte Flüssigkeit von der flüssigen in die gasförmige Phase über. Der erzielbare Saugdruck pS,abs, der die maximale Ansaughöhe definiert, wird also begrenzt von dem Dampfdruck pDa der Flüssigkeit und dem herrschenden Luftdruck pb .

Abb. 2-7: Dampfdruckkurve HDa = f(T) von Wasser

Die Bedingung zur Erzielung der maximalen Ansaughöhe lautet: Saugdruck > Dampfdruck, d.h. DaabsS pp ,

Die maximale, theoretische Ansaughöhe ergibt sich bei DaabsS pp ,

Gl. 2-29: DabDabDab

thS HHg

p

g

p

g

ppH

,

Die tatsächliche Ansaughöhe HS liegt jedoch immer etwas unter der theoretisch maximalen Höhe HS,th d.h. thSS HH ,

Page 34: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 26 ___________________________________________________________________

Üb. 2-3: Berechnung der Ansaughöhe einer Pumpe

TemperaturT [°C]

Dichte [kg/m³]

DampfdruckpDa [bar]

DampfdruckhöheHDa [mWS]

0 999,8 0,006 0,065 1000,0 0,009 0,09

10 999,6 0,012 0,1220 998,2 0,024 0,2430 995,6 0,042 0,4340 992,2 0,074 0,7550 988,0 0,123 1,2560 983,2 0,198 2,0270 977,7 0,311 3,1780 971,3 0,473 4,8290 965,3 0,700 7,14

100 958,3 1,013 10,33

Tab. 2-2: Dampfdruckkurve HDa = f(T) von Wasser

Temperatur T = 20°C Luftdruck pb 1 bar = 105 Pa _________________________________________________________________________

2.1.8 Statischer Auftrieb (Prinzip des Archimedes)

Erstes dokumentiertes historisches Beispiel für ein zerstörungsfreies Prüfverfahren: Überprüfung des Goldanteils in der Krone des König Hieron II von Syrakus

Abb. 2-8: Archimedes (285 – 212 BC)

Die scheinbare Gewichtsreduzierung eines in ein Fluid eingetauchten Körpers wird als statischer Auftrieb bezeichnet. Die Ursache besteht in der Druckdifferenz an Ober- und Unterseite des eingetauchten Körpers.

?

Page 35: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 27 ___________________________________________________________________

Abb. 2-9: Statischer Auftrieb

Die Kräftebilanz in horizontaler Richtung ergibt Null, da die Drücke in gleicher Tiefe identisch sind. Die Kräftebilanz in vertikaler Richtung auf die Projektionsfläche dA eines zylindrischen Elements ergibt

Gl. 2-30: dAgzpdF F 101 (Oberseite)

Gl. 2-31: dAgzpdF F 202 (Unterseite)

Die Auftriebskraftkraft dFA lautet

Gl. 2-32: dAgzzdFdFdF FA 1212

Die Gewichtskraft des Körpers dFK lautet

Gl. 2-33: dAgzzdF KK 12

Der archimedische Auftrieb ergibt sich aus der Integration der Kräfte dFA über das gesamte Körpervolumen VF

Gl. 2-34: FF

V

FFA VgdVgFF

Resultierende Gesamtkraft = Gewicht des verdrängten Fluids - Gewicht des Körpers

Gl. 2-35: KF

dV

K

dV

FKA dmdmgdAzzgdAzzgdFdFdF

KF

1212

Die Integration der Kräfte dF über das gesamte Körpervolumen V ergibt

Gl. 2-36: 0!

KFKKFF

V

KK

V

FF mmgVVgdVdVgFKF

Page 36: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 28 ___________________________________________________________________

Üb. 2-4: Um wieviel steigt der Meeresspiegel, wenn das arktische Eis abtaut?

geg.:

3920 mkgEis 31025 mkgMeerwasser

_________________________________________________________________________

2.1.9 Oberflächenspannung und Kapillarwirkung

2.1.9.1 Teilchenkräfte

Teilchenkräfte bilden den Sammelbegriff für Masseanziehungskräfte bei Molekülen und Atomen. Festkörper bilden eine Gitterstruktur mit sehr großen Molekularkräften. Fluide weisen im Gegensatz zu Festkörpern keine Gitterstruktur auf, wodurch die Molekularkräfte deutlich geringer sind als bei Festkörpern. Dies führt zu einer leichteren Verschiebbarkeit der Teilchen innerhalb von Fluiden im Vergleich zu Festkörpern. Teilchenkräfte bestimmen die Form der freien Oberfläche eines Fluids. Unterschieden wird zwischen Kohäsionskräften, d.h. Kräfte zwischen gleichartigen Teilchen in der gleichen Phase und Adhäsionskräften, d.h. Kräfte zwischen verschiedenartigen Teilchen in unterschiedlichen Phasen.

2.1.9.2 Begriffsdefinitionen

Adhäsion: Wirkung zwischen fester/fester und fester/flüssiger Phase Adsorption: Wirkung zwischen fester/gasförmiger Phase; es erfolgt eine Anlagerung von

Gasen oder Dämpfen an der Oberfläche fester Körper Absorption: Aufnahme von Gasen oder Dämpfen in Flüssigkeiten oder Feststoffen Mit dem Begriff der Absorption eng verbunden ist das Henry-Gesetz1 , welches besagt: Die in Flüssigkeiten gelöste Gasmenge nimmt mit steigendem Druck und/oder sinkender Temperatur zu. Dieser Zusammenhang lässt sich häufig bei lang anhaltenden Hochtemperaturperioden im Sommer an Gewässern beobachten, wenn infolge der ansteigenden Wassertemperatur der Sauerstoffgehalt im Wasser abnimmt und dadurch ein Fischsterben ausgelöst wird.

1 engl. Physiker u. Chemiker (1774 - 1836)

Page 37: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 29 ___________________________________________________________________

2.1.9.3 Grenzflächenspannung

Randwinkel <90°: Adhäsion > Kohäsion (Wasser/Glas) Randwinkel >90°: Kohäsion > Adhäsion (Quecksilber/Glas)

Abb. 2-10: Grenzflächenkräfte

Teilchenkräfte treten an den Trennflächen verschiedener Stoffe oder Phasen in Erscheinung und bilden sog. Grenzflächenkräfte. Moleküle in der Grenzschicht erfahren durch Kohäsionskräfte eine resultierende Kraft F nach innen und die Grenzfläche wirkt wie eine dünne Membran (Bsp. Wasserläufer; Eigengewicht ist kleiner als die Oberflächenspannung) Benetzungsformen - Gas/Gas: Keine Grenzflächen infolge Durchmischung, keine Grenzflächenkräfte - Gas/Flüssigkeit: Kohäsionskräfte der Flüssigkeit sind dominierend, Kapillarspannung - Gas/Festkörper: Festkörper bestimmt alleine durch seine Form die Grenzfläche - Flüssigkeit/Festkörper: (1) Kohäsion > Adhäsion (Randwinkel >90°) nichtbenetzendes Fluid

(hydrophob), zusammengezogene, kugelförmige Oberfläche (2) Kohäsion < Adhäsion (Randwinkel <90°) benetzendes Fluid (hydrophil) - Flüssigkeit/Flüssigkeit: Verhalten ähnlich dem von Gasen, keine Grenzflächen

Abb. 2-11: Benetzungsformen als Funktion des Randwinkels

Oberflächenaktive Substanzen Die Oberflächenspannung kann durch unterschiedliche Faktoren beeinflusst werden, wie etwa Verunreinigungen oder waschaktive Substanzen, die zu einer starken Reduzierung der Oberflächenspannung führen. Ebenso bilden Alkohole und Fettsäuren durch hydrophile (COOH-Gruppe) und hydrophobe (CH3-Gruppe) Anteile eine monomolekulare Schicht zwischen Wasser- und Luftmolekülen welche die Oberflächenspannung reduziert.

H2O Hg

Page 38: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 30 ___________________________________________________________________ Tropfengröße und Dosierung Insbesondere bei medizinischen Anwendungen wird häufig eine mittlere Tröpfchengröße zur Dosierung von Medikamenten verwendet. Die Tropfengröße selbst wird durch Dichte und Oberflächenspannung der Fluide bestimmt. Zur Bestimmung der Tropfengröße können unterschiedliche Verfahren, wie z.B. Stalagmometer, Kapillar- oder Ringmethode verwendet werden.

2.1.9.4 Kapillarität

Grenzflächenspannung bzw. Kapillarspannung Die intermolekularen Anziehungskräfte heben sich, mit Ausnahme einer dünnen Schicht (<10-9 m) an der freien Oberfläche, im Inneren des Fluids auf. Daraus resultiert ein Spannungszustand an der Oberfläche und die freie Oberfläche versucht einen Minimalwert anzunehmen um den Spannungszustand zu minimieren. Der Krümmungsdruck pK wird definiert durch

Gl. 2-37:

21

11

KKK rrdA

dFp

Gl. 2-38:

m

N

Länge

Kraft !

Abb. 2-12: Krümmungsdruck

Einfluss der Oberflächenform auf den Krümmungsdruck pK Ebene Oberfläche: 21 KK rr

Gl. 2-39: 0Kp

Kugelkalottenförmige Oberfläche: KKK rrr 21

Gl. 2-40: K

K rp

2

Zylinderförmige Oberfläche: 21 , KKzylK rrrr

Gl. 2-41: K

K rp

Page 39: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 31 ___________________________________________________________________ Kapillarwirkung

Abb. 2-13: Kapillarwirkung

Kapillaraszension (z.B. Wasser im Glasrohr) Die Steighöhe eines Fluids in einem Rohr ergibt sich aus Kräftegleichgewicht zwischen Adhäsionskräften und dem Gewicht der angehobenen Flüssigkeit. Kapillardepression (z.B. Quecksilber im Glasrohr) Der abgesenkte Spiegel ergibt sich aus Kräftegleichgewicht zwischen Adhäsionskräften und dem Gewicht der abgesenkten Flüssigkeit

Tab. 2-3: Randwinkel für unterschiedliche Materialpaarungen

Der Zusammenhang zwischen Randwinkel und Krümmungsradius ergibt sich aus

Gl. 2-42: W

K

Rr

cos

Anhebung bzw. Absenkung zK ergibt sich aus dem Krümmungsdruck pK

Gl. 2-43: gzp FKK

Anhebung bzw. Absenkung zK

Gl. 2-44: gDrg

zF

W

KFK

cos42 D = Rohrdurchmesser

Gewichtskraft = Kapillarkraft

Gl. 2-45:

Dgz

DF4

2

mittlere Anhebung bzw. Absenkung z

Stoffpaarung Randwinkel W [grd]Wasser oder Äthylalkohol/Glas 0 Alkohol/Plexiglas < 10 Wasser/Plexiglas 80 Quecksilber/Glas 140 Wasser/Lotusblatt 160

Page 40: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 32 ___________________________________________________________________

Gl. 2-46: gD

zF

4

Fluide (T = 20°C) [N/m] Luft - Quecksilber Wasser Ethanol Ethylether Öl

0,470 0,073 0,025 0,016 0,028

Wasser - Quecksilber Öl Ethanol

0,380 0,020 0,002

Tab. 2-4: Kapillarspannungen

Abb. 2-14: Mittler Kapillarsteighöhen z

2.1.9.5 Bestimmung der Oberflächenspannung

Tropfenmethode (Stalagmometer) Fließt eine Flüssigkeit langsam aus einer Kapillare bilden sich bei konstanter Temperatur Tropfen gleicher Größe. Die Oberflächenspannung ist der Dichte der Flüssigkeit direkt und der Anzahl n der Tropfen umgekehrt proportional. Ein Stalagmometer besitzt zwischen zwei Eichmarken ein bestimmtes Volumen. Die Kalibrierung des Geräts erfolgt anhand einer Flüssigkeit mit bekannter Oberflächenspannung (z. B. Wasser).

Abb. 2-15: Stalagmometer

_________________________________________________________________________

Page 41: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 33 ___________________________________________________________________ Üb. 2-5: Bestimmung der Oberflächenspannung von 2-Methylpropanol

Aus einem Stalagmometer flossen bei T = 20°C n = 405 Tropfen 2-Methylpropanol aus. Die Dichte der Flüssigkeit betrug ρ = 0,9477 g/cm3. Wie groß ist ihre Oberflächenspannung , wenn mit dem gleichen Gerät n(H2O) = 137 Tropfen Wasser von 20°C gezählt wurden? _________________________________________________________________________ Kapillarmethode

Für eine Glaskapillare mit dem Radius r, in der eine Flüssigkeit aufsteigt gilt: Gewichtskraft der Flüssigkeitssäule = Tragkraft durch die Oberflächenspannung

Abb. 2-16: Kapillarmethode

Gl. 2-47: rghr 22

Gl. 2-48: 1

2

mN

ghr

_________________________________________________________________________

Üb. 2-6: Bestimmung der Oberflächenspannung von Wasser bei 18°C

Berechnung des Radius r der Kapillare mittels einer eingewogenen Quecksilbersäule geg.: T = 18°C (Temperatur) mHg = 1,297 g (Einwaage an Quecksilber in der Kapillare) lHg = 5,40 cm (Fadenlänge des Quecksilbers in der Kapillare) Hg = 13,595 g/cm3 = 13,95103 kg/m³ (Dichte)

hH2O = 19,85 mm (Mittelwert für die Höhe der Wassersäule) _________________________________________________________________________ Ring- oder Bügelmethode Ein Aluminiumring mit einer scharfen Schneide wird über drei Fäden an einem Kraftmesser befestigt. Beim Herausziehen aus dem Fluid hebt die Schneide eine dünne ringförmige Flüssigkeitsschicht aus der Wasseroberfläche.

Page 42: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 34 ___________________________________________________________________

Messwerte F1 = Gewichtskraft des Ringes in Luft F2 = Gewichtskraft vor dem Abreißen r = Radius des Ringes Oberflächenspannung σ

Gl. 2-49: 2212

r

FF

Abb. 2-17: Ringmethode

Der Faktor 2 in Gl. 2-49 im Nenner ergibt sich aus der Kapillarspannung an den Berührungs-linien oben am Ringrand/Flüssigkeit und unten an Flüssigkeit/Flüssigkeit. _________________________________________________________________________

Üb. 2-7: Bestimmung der Oberflächenspannung von H2O mittels Ringmethode

T = 25°C m = 4,910 g (Masse des Ringes) F2 = 7,51210-2 N (Zugkraft vor dem Abreißen) d = 60 mm (Durchmesser des Ringes)

_________________________________________________________________________

2.1.10 Viskosität

Definition nach DIN 1342 Eigenschaft fließfähigen Systems bei der Verformung eine mechanische Spannung aufzunehmen, die von der Verformungsgeschwindigkeit abhängt, bzw. Schub- oder Tangentialspannung ist die Ursache für die im Fluid hervorgerufene Verformungs-geschwindigkeit. Viskosität ist eine Stoffgröße und stellt ein Maß für die Verschiebbarkeit der Fluidteilchen gegeneinander dar. Newton'sches Fluidreibungsgesetz Herleitung über Plattenzugversuch: Zwischen ruhender und bewegter Wandfläche bildet sich ein Geschwindigkeitsgefälle, das bei kleinen Schichtdicken linearisiert werden kann.

Gl. 2-50: dz

dcAF x

Page 43: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 35 ___________________________________________________________________ Tangentialspannung (auch: Scher- oder Schubspannung)

Abb. 2-18: Plattenzugversuch

Die Scherkraft F bezogen auf die Plattenfläche A ergibt Tangentialspannung

Gl. 2-51: dz

dc

A

F x

Der Gradient dzdcD x wird auch als Schergefälle bezeichnet.

Reibungsverhalten verschiedener Fluide

Abb. 2-19: Reibungsverhalten verschiedener Fluide

Newton'sche Fluide Bezeichnung für alle Fluide, die sich entsprechend dem Newton'schen Fluidreibungsgesetz verhalten, d.h. einen konstanten Proportionalitätsfaktor (= dynamische Viskosität) auf-weisen. Fluide mit dilatantem (= dehnbarem) Verhalten Die Scherspannung, d.h. Viskosität steigt progressiv mit wachsendem Schergeschwindig-keitsgefälle, z.B. bei Klebstoffen oder nassem Sand. Bei geringen Schergeschwindigkeiten wirkt das Wasser im Sand als Gleitmittel, bei einer Erhöhung der Geschwindigkeit reißt der Wasserschmierfilm ab und Sand reibt gegen Sand, wodurch die Scherspannung ansteigt.

Page 44: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Grundlagen 36 ___________________________________________________________________ Pseudoplastisches (strukturviskoses) Verhalten Die Scherspannung steigt degressiv mit wachsender Schergeschwindigkeit, z.B. in Schmelzen, Dispersionen mit länglichen Partikeln, die zuerst ineinander verhakt sind und sich mit zunehmender Scherbewegung ausrichten, wodurch der Widerstand nachlässt. Plastisches Verhalten (Bingham-Fluide) Bis zum Erreichen eines Schwellwertes entspricht das Verhalten dem eines Festkörpers, bei Überschreiten der charakteristischen Scherspannung beginnt der Stoff, ähnlich einem Newton'schen Fluid zu fließen, z.B. Honig, Wachs, Teer, Fette.

Page 45: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Druckmessung 37 ___________________________________________________________________

2.2 Druckmessung

2.2.1 Druckbegriffe

Abb. 2-20: Druckdefinitionen

Die Zustandsgröße Druck ist immer auf ein Referenzniveau bzw. auf einen Referenzdruck bezogen. In Abhängigkeit von dem verwendeten Bezugsniveau lassen sich unterschiedliche Drücke definieren. Absolutdruck pabs gegenüber Vakuum

Gl. 2-52:

0

Vakuumabs ppp

Relativdruck prel, d.h. Druck gegenüber dem Luftdruck p0 , Überdruck oder Unterdruck

Gl. 2-53: ghppp ffabsrelG 0,

Überdruck (hf > 0), Flüssigkeitssäule wird im Manometer nach oben gedrückt Unterdruck (hf < 0), Flüssigkeitssäule wird im Manometer nach unten gedrückt Differenzdruck p, Differenz zwischen zwei Drücken p1 und p2

Gl. 2-54: 21 ppp

Page 46: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Druckmessung 38 ___________________________________________________________________

2.2.2 Druckmessung in einem Kessel mittels U-Rohr Manometer

Bestimmung des Kesseldrucks pG in der Höhe der Anschlussstelle Kräftegleichgewicht im Rohr:

Gl. 2-55: ghpghp ffgGG 0

Gl. 2-56: ghghpp gGffG 0

bei fG gilt

Gl. 2-57: ghpp ffG 0

Abb. 2-21: U-Rohr Manometer

Die Messergebnisse werden nur geringfügig durch die Kapillarität im Rohr beeinflusst, sofern der Rohrdurchmesser des Manometers entsprechend groß gewählt wird. _________________________________________________________________________

Üb. 2-8: Einfluss der Kapillarität in einem Quecksilber U-Rohr Manometer

D = 6 mm (Rohrinnendurchmesser) W = 140 grd (Randwinkel Hg/Glas) T = 20°C (Temperatur) Hg/H20 = 0,380 N/m (Grenzflächenspannung) Hg/Luft = 0,470 N/m (Grenzflächenspannung)

_________________________________________________________________________

Page 47: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Druckmessung 39 ___________________________________________________________________

2.2.3 Berücksichtigung des hydrostatischen Drucks in einem Kessel

Die Änderung des hydrostatischen Drucks ist in der Regel bei Gasen über die Behälterhöhe vernachlässigbar. Der Druck im Kessel kann näherungsweise über die Höhe als konstant angenommen werden. Dies gilt jedoch nicht für Flüssigkeiten.

Abb. 2-22: Hydrostatischer Druck in einem Kessel

Druck im Kessel auf der Höhe hx

Gl. 2-58: gxpp fLx

Druckgleichgewicht im Manometer bei h2

Gl. 2-59: ghpgyp Hgfx 0

Gl. 2-60: gyghpp fHgx 0

2.2.4 Differenzdruckmessung

Die Druckdifferenz 21 ppp ergibt sich aus der Druckgleichgewicht bei A-A

Gl. 2-61: hghgphgp Hgff 2211

Gl. 2-62: hghhgpp Hgf 1221

Gl. 2-63: hgp fHg

Abb. 2-23: Differenzdruckmessung

f

Hg

Page 48: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Druckmessung 40 ___________________________________________________________________ Bei geringen Geschwindigkeiten (M < 0,3) kann bei Gasen die Dichte gegenüber der Flüssigkeit im Manometer vernachlässigt werden, d.h. Gl. 2-63 vereinfacht sich zu:

Gl. 2-64: hgp Hg

Hierbei wird implizit die Annahme getroffen, dass im Rohr eine quasi-eindimensionale Strömung vorliegt, d.h. die Strömungsparameter ändern sich hauptsächlich in und nicht quer zur Strömungsrichtung. Der Wanddruck pw entspricht dem statischen Druck in der Strömung.

2.2.5 Berücksichtigung des Temperatureinflusses

Die temperaturbedingte Volumenänderung der Flüssigkeit im Manometer, z.B. Quecksilber ist bei Druckmessungen zu berücksichtigen.

T°C 0 10 20 30 kg/m³ 13595 13570 13546 13521

Tab. 2-5: Dichte von Quecksilber als Funktion der Temperatur

Länge der Quecksilbersäule bei T = 0°C

Gl. 2-65: T,LL T 40 108111

LT [mm Hg] Länge bei Raumtemperatur T [°C]

Näherungsbeziehung zur Temperaturkorrektur der Quecksilbersäule

Gl. 2-66: 80

TLL T

2.2.6 Berücksichtigung der Luftfeuchte

Ab einer relativen Luftfeuchte von > 50% ist der Einfluss der Feuchte auf die spezifische Gaskonstante R, die in die Berechnung der Luftdichte eingeht zu berücksichtigen, d.h. der Wert der spezifischen Gaskonstante von trockener Luft Rt ist entsprechend Gl. 2-68 zu korrigieren, wobei Rf die um die relative Luftfeuchte korrigierte spezifische Gaskonstante von Luft darstellt.

Gl. 2-67: TR

p

f

Gl. 2-68:

p

p,

,

R

R

p

p

RR

d

d

td

tf

377301

05287

11

mit KkgJ,Rt 05287 spez. Gaskonstante von trockener Luft

KkgJRd 461 spez. Gaskonstante von Wasserdampf

relative Luftfeuchte

dp Sättigungsdampfdruck von Wasser in Luft

p Luftdruck

Page 49: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Druckmessung 41 ___________________________________________________________________ Der Sättigungsdampfdruck von Wasser in Luft pd kann für die vorliegende Temperatur T entweder einer Dampftafel entnommen oder über die Magnus2-Formel berechnet werden.

Gl. 2-69: Pae,p T,

T,

d

2241

504317

213611 , T [°C] Lufttemperatur

2.2.7 Drucksonden

Abb. 2-24: Drucksonden

Wanddruckmessung Statische Drucksonde Pitot-Sonde, Prandtl-Rohr

statischKWand ppp ppstatisch ppstatisch

ghpp FWand ghpp Fstatisch dynttotalPitot ppppp

Bei inkompressiblen Strömungen lässt sich aus dem dynamischen Druck pdyn, d.h. der Differenz aus Totaldruck pt und statischem Druck p

Gl. 2-70: 2

2cqppp tdyn

die Strömungsgeschwindigkeit c bestimmen

Gl. 2-71: hgppc Ft

2

2

2.2.8 Schrägrohrmanometer

Weiterentwicklung des U-Rohr Manometers, Neigung des Messschenkels führt zu einer Aufweitung der Skala, entsprechend sin, maßgebend ist lediglich die Differenz h in den Spiegelhöhen.

Gl. 2-72: glghpp MM sin21

Abb. 2-25: Schrägrohrmanometer

2 H. G, Magnus (1802-1870), dt. Physiker und Chemiker

Page 50: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik - Druckmessung 42 ___________________________________________________________________ Üb. 2-9: Geschwindigkeitsmessung mittels Schrägrohrmanometer und Prandtl-Rohr

Ein Schrägrohrmanometer ist an ein Prandtl-Rohr in der Messstrecke eines Windkanals angeschlossen. Abgelesene Werte am Schrägrohrmanometer: l = 100 mm (Länge der aufgestiegenen Messflüssigkeit) M = 800 kg/m³ (Dichte der Messflüssigkeit, Alkohol) = 30 grad (Neigungswinkel des Manometers) Tageswerte im Labor: p = ..720 mm Hg (Luftdruck) T = 24°C (Lufttemperatur) = ....70 % (relative Feuchte) Berechnen Sie für diese Bedingungen die Strömungsgeschwindigkeit in der Messstrecke des Windkanals, wenn sich die Druckdifferenz am Manometer entsprechend Abb. 2-25 aus p1 (Gesamtdruck) und p2 (statischer Druck) ergibt. _________________________________________________________________________

Page 51: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Druckkräfte auf Begrenzungsflächen 43 ___________________________________________________________________

2.3 Druckkräfte auf Begrenzungsflächen

Abb. 2-26: Druckkräfte auf Begrenzungsflächen, [ 10]

Betrachtet wird im Folgenden ein Behälter, der bis zur Höhe H mit einem Fluid der Dichte gefüllt ist und an dessen Oberflächen und Außenseiten der Umgebungsdruck po herrscht.

2.3.1 Druckkraft auf eine ebene, horizontale Fläche

Die Druckkraft auf die Bodenplatte ergibt sich aus der Bilanz aus hydrostatischem Druck und Umgebungsdruck.

Gl. 2-73: AHgFFF aiB

2.3.2 Druckkraft auf eine geneigte Fläche

Hydrostatische Kraft dF auf ein Flächenelement dA in der Tiefe h, mit cos yh

Gl. 2-74: dAygdApygpdAphphdFh

coscos 000

Gl. 2-75: A

dAygF cos

Schwerpunktsabstand yS der Fläche A bezogen auf die x-Achse

Gl. 2-76: A

S dAyA

y1

Resultierende Druckkraft auf die geneigte Fläche A

Gl. 2-77: AygF S cos

Mit der Tiefe hS des Flächenschwerpunkts S

Gl. 2-78: SS yh cos

Gl. 2-79: AphpAhgAygF SSS 0cos

Page 52: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Druckkräfte auf Begrenzungsflächen 44 ___________________________________________________________________ Die resultierende Kraft auf die Fläche A ergibt sich aus dem hydrostatischen Druck der im Flächenschwerpunkt S herrscht

Gl. 2-80: SS hgphp 0

Druckpunkt D Mit Ausnahme einer horizontalen, ebenen Fläche verteilt sich der Druck nicht konstant über die Fläche A. Dies hat zur Folge, dass der Kraftangriffspunkt oder Druckpunkt, nicht im Flächenschwerpunkt liegt. Die Druckpunktkoordinate yD ergibt sich aus dem Momenten-gleichgewicht bezüglich der x-Achse.

Gl. 2-81:

xI

AA dFA

D dAygdAygydFyyF 2coscos

Ix: Flächenträgheitsmoment der Fläche A in Bezug auf die x-Achse Der Abstand yD des Druckpunktes D von der Flüssigkeitsoberfläche ergibt sich aus Gl. 2-77 eingesetzt in Gl. 2-81.

Gl. 2-82: xDS IgyAyg coscos

Mit dem Steiner‘schen Satz AyII SSxx 2 , wobei ISx das Flächenträgheitsmoment der

Fläche A in Bezug auf eine Achse durch den Flächenschwerpunkt S, parallel zur x-Achse beschreibt, ergibt sich für die Koordinate yD des Druckpunktes D

Gl. 2-83: SS

Sx

S

SSxD y

Ay

I

Ay

AyIy

2

Abstand e zwischen Flächenschwerpunkt S und Druckpunkt D der Fläche A (in y-Richtung)

Gl. 2-84: 0

Ay

Iyye

S

SxSD

Druckpunkt liegt immer tiefer als der Schwerpunkt Momentengleichgewicht bezüglich y-Achse liefert Druckpunktkoordinate xD

Gl. 2-85: Ay

IxdAyxgdAygxdFxxF

S

xyD

I

AA dFA

D

xy

coscos

Ixy: Zentrifugalmoment der Fläche A in Bezug auf x,y-System Hat die belastete Fläche A eine Symmetrieachse parallel zur y-Richtung, so liegt der Druckpunkt D auf dieser Symmetrieachse im Abstand e unter dem Schwerpunkt S Sonderfall: Senkrechte ebene Fläche hy ,0 Kraft auf die senkrechte Wand

Gl. 2-86: AhgF S

Abstand Druckpunkt zu Flächenschwerpunkt

Page 53: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Druckkräfte auf Begrenzungsflächen 45 ___________________________________________________________________

Gl. 2-87: Ah

Ihhe

S

SxSD

Allgemein gilt: Druckkräfte auf geneigte oder senkrechte Flächen sind unabhängig vom absoluten Flüssigkeitsvolumen, lediglich die Füllhöhe ist maßgebend (vgl. hydrostatisches Paradoxon). _________________________________________________________________________

Üb. 2-10: Kraft auf eine Absperrklappe

geg.: hS1 = 5 m D = 1 m = 30 grad = 103 [kg/m³ H = 7 m B = 10 [m ges. 1. Kraft F1 auf die Absperrklappe? 2. Lage des Kraftangriffspunktes von F1? 3. Drehmoment der Klappe bezüglich x-x? 4. Klappenlagerung bei x-x oder y-y? 5. Kraft F2 auf die linke Wand? 6. Lage des Kraftangriffspunktes von F2?

_________________________________________________________________________

2.3.3 Druckkräfte auf gekrümmte Begrenzungsflächen

2.3.3.1 Einfach gekrümmte (abwickelbare) Flächen

Abb. 2-27: Druckkräfte auf abwickelbare Flächen, [ 10]

Page 54: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Druckkräfte auf Begrenzungsflächen 46 ___________________________________________________________________ Hydrostatische Kraft dF am Element dA

Gl. 2-88: dAhgdF

Gl. 2-89: xx dAhgdAhgdF sin

Gl. 2-90: hh dAhgdAhgdF cos

Die Druckbelastung ergibt sich aus der Projektion des belasteten Flächenelements senkrecht zur betrachteten Kraftrichtung. Horizontale Kraftkomponente Fx für die durch die Kurve 1-2-3-4 beschriebene Fläche

Gl. 2-91:

xSxxSx

A

xx AphpAhgdAhgFx

0

hSx: Abstand des Flächenschwerpunktes Sx der Projektionsfläche Ax zur Oberfläche Die Projektionsfläche Ax ergibt sich aus der Projektion von 1-2 zu 1'-2', horizontale Druck-kräfte von 2-3 heben sich gegen 3-4 auf und liefern keinen Beitrag. Das Momentengleich-gewicht an Ax ergibt den Angriffspunkt Dx der Kraft Fx :

Gl. 2-92: xSx

SySxDxx Ah

Ihhe

ISy: Axiales Flächenträgheitsmoment der Fläche Ax bezüglich einer zur y-Achse parallelen Achse durch den Schwerpunkt Sx der Projektionsfläche Ax

Vertikale Kraftkomponente Fh für die durch die Kurve 1-2-3-4 beschriebene Fläche entspricht der Gewichtskraft des über der Kurve 1-2-3-4 befindlichen (realen oder fiktiven) Fluidvolumens, unabhängig davon ob sich in dem Volumen Verdrängungskörper (Kurve 5-6-7-8) befinden oder nicht, ergibt sich die vertikale Kraftkomponente Fh zu

Gl. 2-93:

VgdAhgFhA

hh

Da die Gewichtskraft des Fluidvolumens V im Masseschwerpunkt SF angreift, verläuft die vertikale Kraftkomponente Fh durch den Schwerpunkt SF des oberhalb der bedrückten Fläche liegenden Volumens. Die Gesamtkraft F ergibt sich aus horizontaler und vertikaler Komponente Fx, und Fh

Gl. 2-94: h

xFhx F

FFFF arctan,22

Page 55: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Druckkräfte auf Begrenzungsflächen 47 ___________________________________________________________________ Aufdruckkraft Fh'

Abb. 2-28: Aufdruckkraft auf einen eingetauchten Körper, [ 10]

Das Flächenelement dA' wird in der Tiefe h durch die Druckkraft dF' belastet. Die vertikale Komponente dFh' ergibt sich aus der Höhe der Flüssigkeitssäule über der belasteten Fläche dAh'

Gl. 2-95: VdgAdhgFddF

hdA

h

coscos

Die Aufdruckkraft Fh' senkrecht nach oben ergibt sich aus der Gewichtskraft des fiktiven Volumens V' über der belasteten Fläche 9-10. Die Wirkungslinie verläuft durch den Masseschwerpunkt SF'.

Gl. 2-96: VgFh

2.3.3.2 Beliebig gekrümmte (nicht abwickelbare) Flächen

Abb. 2-29: Druckkräfte auf beliebig gekrümmte Flächen, [ 10]

Page 56: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Druckkräfte auf Begrenzungsflächen 48 ___________________________________________________________________ Die Druckbelastung einer beliebig gekrümmten Fläche lässt sich durch Projektion der gekrümmten Flächen in die h-y-Ebene bzw. h-x-Ebene auf ein ebenes Problem zurückführen und die Projektionsflächen werden analog zu einer senkrechten Wand behandelt. Horizontale Kraftkomponenten Fx, Fy Die Kraft auf die senkrechte Wand ergibt sich aus dem hydrostatischen Druck im Flächen-schwerpunkt multipliziert mit der Projektionsfläche Ax bzw. Ay.

Gl. 2-97: xSxx AhgF und ySyy AhgF

Gl. 2-98:

x

A

x

Sx A

dAh

h x

und

y

A

y

Sy A

dAh

h y

Gl. 2-99: xSx

Syx Ah

Ie

und

ySy

Sxy Ah

Ie

Gl. 2-100 xSx

yhDx Ah

Iy

und

ySy

xhDy Ah

Iy

Vertikale Kraftkomponente Fh Kraft ergibt sich aus dem realen oder fiktiven Fluidvolumen V zwischen der Fläche und der Fluidoberfläche. Wirkungslinie der Gewichtskraft Fh verläuft durch den Masseschwerpunkt SF des Volumens V

Gl. 2-101: VgFh

2.3.4 Stabilität

2.3.4.1 Stabilität schwebender Körper

FG > FA: Abtauchen FG = FA: Schwimmen FG < FA: Auftauchen SK Masseschwerpunkt des Körpers SF Masseschwerpunkt des verdrängten Fluids

Abb. 2-30: Stabilität eines schwebenden Körpers

Die Linie, die durch den Masseschwerpunkt des Körpers SK und durch den Masseschwer-punkt des verdrängten Fluids SF führt, wird als Schwimmachse bezeichnet. Ein stabiles Gleichgewicht erfordert, dass SK unterhalb von SF liegt.

Page 57: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Druckkräfte auf Begrenzungsflächen 49 ___________________________________________________________________ 2.3.4.2 Stabilität schwimmender Körper

Ausgangslage

FG Gewichtskraft des Körpers, greift im

Körperschwerpunkt SK an FA Gewichtskraft des verdrängten Fluids, greift im Schwerpunkt SF des verdrängten Fluids an

Abb. 2-31: Schwimmender Körper - Ausgangslage

Auslenkung aus der Gleichgewichtslage

Abb. 2-32: Schwimmender Körper - Auslenkung aus der Gleichgewichtslage

Wird der schwimmende Körper aus der Gleichgewichtslage ausgelenkt, so verbleibt der Körperschwerpunkt SK auf seiner Position. Das Volumen des verdrängten Fluids VF bleibt gleich, ändert aber seine Form, wodurch sich der Schwerpunkt des verdrängten Volumens von SF auf SF' verschiebt. Die in den beiden Schwerpunkten angreifenden Kräfte FA und FG liegen nun nicht mehr auf der gleichen Wirkungslinie. In dem in Abb. 2-32 skizzierten Beispiel bildet sich ein aufrichtendes Moment. Der Schnittpunkt von Schwimmachse und Auftriebskraft FA wird als Metazentrum M bezeichnet. Die sog. metazentrische Höhe hM beschreibt den Abstand des Metazentrums von dem Körperschwerpunkt SK

Gl. 2-102: eV

Ih

FM 0

Wobei I0 das Trägheitsmoment der Schwimmfläche darstellt. Stabilitätsbedingung Ein eigenstabiles Verhalten, d.h. ein selbständiges Zurückkehren in die Ausgangslage nach einer Auslenkung infolge einer Störung, z.B. Welle, wird durch die metazentrische Höhe hM definiert. stabil: 0,0 ahm , indifferent: 0mh , instabil: 0,0 ahm

Page 58: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Druckkräfte auf Begrenzungsflächen 50 ___________________________________________________________________ Stabilitätsverhalten verschiedener Schiffstypen

Abb. 2-33: Stabilität unterschiedlicher Schiffstypen in Abhängigkeit von Beladung, [ 10]

Aufrichtender Hebelarm a über Krängungswinkel 1 Seenotrettungskreuzer, 23m 2 Seenotrettungsboot, 8,3m 3 Patrouillenboot, 38m 4 Motoryacht 4a 100% Vorräte 4b 25% Vorräte 5 Containerschiff, 1100 Container zu 14t 6 Gorch Fock 6a unter Segel, 100% Vorräte, 70 Mann in den Rahen, 200 an Deck 6b Rumpf ohne Aufbauten

_________________________________________________________________________

Üb. 2-11: Stabilität eines Schiffsrumpfes

Der eingetauchte Bereich entspricht einer zylindrischen Halbellipse mit der Gesamtlänge L Gesucht ist die maximale Lage des Körperschwerpunkts über der Wasseroberfläche bis Instabilität eintritt

_________________________________________________________________________

Page 59: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Fluide unter Beschleunigung 51 ___________________________________________________________________

2.4 Fluide unter Beschleunigung

2.4.1 Niveauflächen

Die Verbindungsfläche aller Punkte mit gleichem Druck in einem Fluid wird als Niveaufläche (Isobarenfläche) bezeichnet. Niveauflächen bilden sich immer senkrecht zu den vorliegenden Massekräften (Gravitation, Trägheit). Freie Oberflächen von Flüssigkeiten werden durch den Umgebungsdruck belastet und bilden ebenfalls Niveauflächen, d.h. an jeder freien Ober-fläche eines Fluids herrscht immer ein Druckgleichgewicht zwischen dem Druck an der Oberfläche des Fluids und dem Umgebungsdruck. Wirkt als einzige Kraft nur die Gravitation auf das Fluid, so stellt sich als Niveaufläche eine horizontale Ebene, bzw. Kugelfläche (Ozean) ein. Zusätzliche Trägheitskräfte bewirken eine Verschiebung der Niveaufläche.

2.4.2 Gleichförmig horizontal beschleunigter Behälter

Abb. 2-34: Horizontal beschleunigter Behälter

Der Spiegel der freien Oberfläche steht immer senkrecht zum resultierenden Beschleunig-ungsvektor. Der Neigungswinkel des Flüssigkeitsspiegels gegenüber der Horizontalen ergibt sich aus dem Verhältnis der Trägheitskräfte zur Gewichtskraft.

Gl. 2-103: g

a

gdm

adm

aftGewichtskr

raftTrägheitsk

tan

2.4.3 Rotierende Flüssigkeiten

Abb. 2-35: Rotierender Behälter mit Flüssigkeit

Page 60: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Fluide unter Beschleunigung 52 ___________________________________________________________________ Rotiert ein Gefäß mit konstanter Winkelgeschwindigkeit um seine Hochachse, so sinkt der Spiegel zur Mitte hin ab. Die resultierende Kraft am Element dm ergibt sich aus Zentrifugalbeschleunigung dFT und Erdbeschleunigung dFG

Gl. 2-104: 2 rdmdFT

Gl. 2-105: gdmdFG

Der Winkel der Tangente an die Oberfläche berechnet sich aus dem Verhältnis der Beschleunigungskräfte

Gl. 2-106: rggdm

rdm

dF

dF

dr

dz

G

T

22

tan

Die Parabelform der Oberfläche ergibt sich aus der Abhängigkeit der Zentrifugalbeschleunig-ung vom Rotationsradius r. Bestimmung der Form der freien Oberfläche z = z(r) Aus

Gl. 2-107: rgdr

dz

2

tan

folgt

Gl. 2-108: drrg

dz 2

Die Integration von zmin bis zmax

Gl. 2-109:

r

zrr

z

z

drrg

dzminmin

2

ergibt für eine Rotation um die Symmetrieachse mit 0min zr

Gl. 2-110: 22

min 2r

gzrz

Die maximale Steighöhe zmax am Rand, d.h. bei Rzr max ergibt sich aus Gl. 2-110

Gl. 2-111: 22

minmax 2R

gzz

Das Volumen eines Rotationsparaboloids entspricht dem halben Volumen des einhüllenden Zylinders, d.h.

Gl. 2-112: ZylinderParaboloidRot VV 2

1.

und damit lässt sich Gl. 2-111 auch schreiben als

Gl. 2-113: 22

min0minmax 22 R

gzzzz

Page 61: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Fluide unter Beschleunigung 53 ___________________________________________________________________ Mit

Gl. 2-114: 22

0min 4R

gzz

ergibt sich aus Gl. 2-110 die Form der freien Oberfläche bei einer Rotation um die Symmetrieachse

Gl. 2-115 :

2

1

2

22

2

0 R

rR

gzrz

Druck auf den Behälterboden

Abb. 2-36: Rotierender Behälter mit Flüssigkeit

Der Druck auf den Behälterboden ergibt sich zu

Gl. 2-116:

rz

R

rR

gzgprzgprp

2

1

2

22

2

000

Die parabolische Druckzunahme nach außen ist insbesondere für radial durchströmte Strömungsmaschinen von Bedeutung, z.B. bei Radialverdichtern. Druck im Inneren des Behälters Die Druckzunahme in der Ebene A-A zwischen 1 und 2 beträgt (Abb. 2-36)

Gl. 2-117: 1212 zzgpp

mit

Gl. 2-118: min2

1

2

1 2zr

gz

, min2

2

2

2 2zr

gz

folgt

Page 62: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Fluide unter Beschleunigung 54 ___________________________________________________________________

Gl. 2-119: 21

22

2

12 2rrpp

Mit der Umfangsgeschwindigkeit ru folgt

Gl. 2-120: 21

2212 2

uupp

Rotierende Flüssigkeit mit Deckel3

Abb. 2-37: Rotierender Behälter mit Deckel

Das Kräftegleichgewicht in vertikaler Richtung wird in jedem Punkt der Ebene A-A durch die darüber liegende Flüssigkeitssäule hergestellt, d.h. der Deckel ersetzt in der Kräftebilanz das Fluidvolumen VA . Die Kraft FD auf Deckel entspricht somit dem Gewicht des Volumens VA .

Gl. 2-121: AD VggmF

Das Volumen VR eines Rotationskörpers, der durch die Rotation einer Kurve r(z) um die z-Achse entsteht, wird beschrieben durch

Gl. 2-122: dzzrVz

z

R 2

1

2

Die Berechnung des fiktiven Volumens VA ergibt sich somit zu

Gl. 2-123: RRZylinderA VzzRVVV 122

3 Es ist zu beachten, dass der Deckel mit einer Belüftung versehen sein muss, d.h. der Luftdruck unterhalb und oberhalb des Deckels muss gleich sein

z1

z2 p0

p0

Page 63: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Hydrostatik – Fluide unter Beschleunigung 55 ___________________________________________________________________

Üb. 2-12: Zentrifuge

D = 32 cm (Innendurchmesser) z0 = 8 cm (Füllhöhe) Bei welcher Drehzahl n erreicht der Flüssigkeits-spiegel den Behälterboden? Wie hoch steigt die Flüssigkeit in diesem Fall an der Wand des Behälters?

_________________________________________________________________________

Üb. 2-13: Zentrifuge mit belüftetem Kolben

In eine mit der Drehzahl n = 1 s-1 rotierende Zentrifuge wird ein reibungsfrei dichtender Kolben K gesetzt. Der Kolben besitzt in der Mitte eine Belüftungsbohrung, d.h. an der Oberseite und an der nicht benetzten Unterseite des Kolbens herrscht der gleiche Luftdruck p . Berechnen Sie die Masse mK des Kolbens, wenn dieser auf einer Höhe z1 = 1,0 m von der rotierenden Flüssigkeit getragen wird. Behälterradius: R = 1,0 m Füllstand bei = 0: z0 = 0,2 m Dichte der Flüssigkeit: FL = 10³ kg/m³ Umgebungsluftdruck: p = 105 Pa

r

R

z

K

p

p

z1

Page 64: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Aerostatik – Atmosphäre der Erde 56 ___________________________________________________________________ 3 Aerostatik

3.1 Atmosphäre der Erde

3.1.1 Die Erdatmosphäre als Wärmekraftmaschine

Die Atmosphäre der Erde ist in ein ständigen Veränderungen unterworfenes dynamisches System, eine Art Wärmemaschine [ 11], der auf der sonnenzugewandten Seite durch Absorption von Sonnenstrahlung Wärme zugeführt und auf der sonnenabgewandten Seite Wärme durch Abstrahlung entzogen wird. Infolge der Erdrotation ändern sich die Strahlungsverhältnisse auf der Erdoberfläche permanent. Eine weitere Komplikation der Verhältnisse, im Vergleich zu einer einfachen Wärmekraftmaschine im thermodynamischen Sinn, ergibt sich aus der asymmetrischen Verteilung von Meer und Landmassen auf der Erdoberfläche, da diese auch unterschiedliche Absorptions- und Emissionseigenschaften aufweisen. Zusammensetzung der Luft Die Atmosphäre selbst besteht aus einer Mischung unterschiedlicher Gase, deren Zusammensetzung jedoch über die Höhe relativ konstant bleibt. Hauptbestandteil bildet mit ca. 78% Stickstoff, gefolgt von ca. 21% Sauerstoff, weitere Komponenten bilden Wasserdampf, Kohlendioxid, Ozon und in sehr geringen Mengen Edelgase wie z.B. Argon und Neon, vgl. Tab. 3-1. Die chemische Zusammensetzung von Luft ist bis in sehr große Höhen nahezu konstant, während Druck und Temperatur eine Höhenabhängigkeit aufweisen.

Tab. 3-1: Chemische Zusammensetzung der Erdatmosphäre

Gas Volumenprozent Temperatur [°C] Wasserdampf [g/m³] Stickstoff N2 78,09 -20 1,0 Sauerstoff O2 20,95 -10 2,3 Argon Ar 0,93 0 4,9 Kohlendioxid CO2 0,03 (schwankt) 10 9,3 Neon Ne 0,0018 20 17,2 Helium He 0,0005 30 30 Krypton Kr 0,0001 Wasserstoff H2 0,00005 Xenon Xe 0,000008 Ozon O3 0,00001 (schwankt)

Page 65: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Aerostatik – Atmosphäre der Erde 57 ___________________________________________________________________

3.1.2 Aufbau der Erdatmosphäre

Abb. 3-1: Aufbau der Erdatmosphäre, [ 11]

Eine feste Grenze existiert in der Höhe nicht; stattdessen erfolgt ein kontinuierlicher Übergang in den interplanetarischen Raum. Die untersten und im Sinne der Flugzeug-aerodynamik interessantesten Schichten, bilden die Troposphäre und Stratosphäre. Der Übergang zwischen diesen beiden Schichten erfolgt vergleichsweise diskontinuierlich und die Trennungsschicht (Tropopause) liegt in unseren Breiten bei ca. 10 km Höhe und in den Tropen bei ca. 17 – 18 km. Veränderungen in der Atmosphäre, also das Wettergeschehen, spielen sich vorwiegend in der untersten Schicht, der Troposphäre ab. In der Troposphäre selbst spielt der Bereich in Bodennähe, die so genannte Reibungsschicht bis in 500 – 1000 m über dem Boden eine besondere Rolle, da hier die Atmosphäre von den Verhältnissen an der Erdoberfläche beeinflusst wird. Die Höhe der Tropopause ist nicht nur eine Funktion des geographischen Breitengrades, sondern unterliegt auch jahreszeitlichen Schwankungen. Der für das Wettergeschehen relevante Anteil der Atmosphäre bildet im Vergleich zum Erddurchmesser nur eine hauchdünne Schale, d.h. alle Hauptströmungen der Luft erfolgen horizontal. Vertikalbewegungen können demgegenüber nur eine vergleichsweise geringe Geschwindigkeit aufweisen, haben jedoch eine besondere Relevanz bei Vorgängen, wie Wolkenbildung und Niederschlag in seinen unterschiedlichen Formen. Die größten Höhenunterschiede der Tropopause treten entlang der Bänder maximaler Windgeschwindigkeiten (jet streams) auf. Oberhalb der Tropopause befindet sich bis zu einer Höhe von ca. 50 km die Stratosphäre. Nahm bis zum Erreichen der Tropopause die Lufttemperatur noch mit ca. 6.5 K/1000m ab, so stellt sich in der Stratosphäre anfangs eine isotherme Schicht ein um anschließend ab einer Höhe von ca. 20 km wieder anzusteigen. Der Temperaturanstieg innerhalb der oberen Stratosphäre ist auf die starke Absorption des UV-Anteils im Sonnenlicht durch Ozon zurückzuführen. Der Ozongehalt erreicht in der Stratosphäre in einer Höhe zwischen 20 – 25 km sein Maximum.

Page 66: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Aerostatik – Atmosphäre der Erde 58 ___________________________________________________________________ Die Obergrenze der Stratosphäre wird durch die Stratopause gebildet. Das nun folgende Höhenband von 50 – 80 km, die Mesosphäre ist durch einen negativen Temperaturgradienten mit zunehmender Höhe gekennzeichnet und der Luftdruck hat sich auf 1 - 0.01 HPa reduziert. Nach der Mesosphäre folgt die Ionosphäre oder Thermosphäre bis in ca. 800 km Höhe, die infolge von ionisierten Schichten (E-Schichten oder Heaviside-Schichten) Radiowellen reflektieren und dadurch Überreichweiten erzeuge können. Oberhalb von 800 km erreicht man die Exosphäre, die den Übergang von der Atmosphäre zum interplanetaren Raum bildet. Von besonderem Interesse in dieser Schicht ist der so genannte Van-Allen-Strahlengürtel, der den Hauptteil der kosmischen Strahlung (Gamma-Strahlung) abschirmt. Bemannte Raumfahrtmissionen außerhalb dieses Schutzgürtels, also auch bereits kurze Missionen zu Mond oder Mars, beinhalten dadurch ein immenses Risiko der gesundheit-lichen Schädigung infolge hoher Strahlungsbelastung. Einfluss der Luftfeuchtigkeit Der Wasserdampfanteil in der Atmosphäre ist abhängig von Lufttemperatur und der relativen Feuchte. Insbesondere die spez. Gaskonstante R unterliegt einem Feuchteeinfluss

Gl. 3-1:

p

pR

RS

LufttrockeneLuftfeuchte

377.0

1

Tab. 3-2: Sättigungsdruck von Luft

T [°] 0 5 10 15 20 25 30 35 40 45 50 55 60 pS [Pa] 611 872 1227 1704 2337 3166 4241 5622 7375 9582 12340 15740 19920

Page 67: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Aerostatik – Atmosphäre der Erde 59 ___________________________________________________________________

3.2 Abhängigkeit des Luftdrucks von der Höhe

3.2.1 Luftdruck

Bei inkompressiblen Fluiden ( = const.) wie z.B. Wasser, kann von einer linearen Druck-änderung in Abhängigkeit von der Höhe bzw. Tiefe ausgegangen werden. Bei kompressiblen Fluiden ( ≠ const.) z.B. Luft, trifft diese lineare Abhängigkeit nicht mehr zu. Hier ändert sich der Druck exponentiell mit der Höhe. Der Luftdruck p [Pa = N/m²] entspricht einer Kraft F, die eine Fläche von A = 1 m² durch die darüber befindliche Luftsäule der Höhe h erfährt

Gl. 3-2: hgA

ghA

A

gV

A

gm

A

Fp

wobei z der vom Boden nach oben gerichtet in Koordinatenrichtung entspricht

Gl. 3-3 zghgp

3.2.2 Kräftegleichgewicht an einem Volumenelement

Das Kräftegleichgewicht in z-Richtung an einem Volumenelement der Dicke dz lautet

Gl. 3-4: 02,1, Gpp FFF

Gl. 3-5: 0 gdmdAdppdAp

mit der Masse dzdAdm folgt

Gl. 3-6: 0 gdzdAdAdppdAp

Gl. 3-7: 0 gdzdAdAdp

Gl. 3-8: dzgdp

Abb. 3-2: Kräftebilanz am Fluidelement

Dieser Gleichung wird als hydrostatische Grundgleichung bezeichnet und gilt für kompressible als auch für inkompressible Fluide.

Page 68: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Literatur 60 ___________________________________________________________________ Polytrope (allgemeine) Zustandsänderung Unter der Annahme einer polytropen Zustandsänderung

Gl. 3-9: .constvp n , mit 1

v und n = Polytropenexponent

lautet die Abhängigkeit des Drucks von der Dichte

Gl. 3-10:

n

p

p

00

bzw. für die Dicht gilt

Gl. 3-11: n

p

p1

0

0

11

wobei der Polytropenexponent n die Art der Zustandsänderung beschreibt: n = 1: Isotherme Zustandsänderung n = : Adiabate Zustandsänderung (Luft = 1,4) Zustandsgleichung des idealen Gases

Gl. 3-12: 0

00 TR

p

0

0

0

1

p

TR

Einsetzen der Zustandsgleichung des idealen Gases (Gl. 3-12) in Gl. 3-11 ergibt

Gl. 3-13: n

pp

TR

p

p

p

TRnn

n

110

0

1

0

0

01

Hydrostatische Grundgleichung

Gl. 3-14: dzgdp

Aus der hydrostatischen Grundgleichung folgt

Gl. 3-15: dp

gdz

1

Daraus folgt die lineare Differentialgleichung

Gl. 3-16: n

pp

TR

dp

gdznn 11

0

0

bzw.

Gl. 3-17: dpppg

TRdz nnn

1

11

0

0

Gl. 3-18:

p

pn

p

pn

k

nn

z

z p

dpk

p

dp

pg

TRdz

000

1110

0

Wobei der Index „0“ den Ausgangspunkt der Berechnung bezeichnet.

Page 69: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Literatur 61 ___________________________________________________________________ In Abhängigkeit davon ob es sich um eine nicht-isotherme (n 1) Temperaturschichtung, z.B. in der Troposphäre oder eine isotherme (n = 1) Temperaturschichtung, z.B. im unteren Bereich der Stratosphäre handelt, muss das Integral in Gl. 3-18 unterschiedlich ausgewertet werden. Nicht-isotherme Temperaturschichtung (n 1)

Gl. 3-19:

p

p

n

np

p n

pn

nk

p

dpk

00

1

1 1

Gl. 3-20:

n

nn

np

p n

ppn

nk

p

dpk

1

0

1

1 10

Ersetzen der Konstanten k

Gl. 3-21:

n

nn

n

nnpp

n

n

pg

TRzz

1

0

1

10

00 1

Gl. 3-22:

11

1

0

00

n

n

p

p

n

n

g

TRzz

Gl. 3-23: 1

000

11

n

n

zzTR

g

n

n

p

p

Gl. 3-24: 0

0

0

11

T

zz

R

g

n

n

T

T

Gl. 3-25: R

g

n

n

dz

dT

1

Gl. 3-26: 1

1

0

0

0

1

n

T

zz

dz

dT

Isotherme Temperaturschichtung (n = 1)

Gl. 3-27: 0

1 ln00

p

pk

p

dpk

p

dpk

p

p

p

p n

Gl. 3-28: 0

0

0

zzTR

g

ep

p

Gl. 3-29: 0

0

0

zzTR

g

e

Page 70: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Internationale Standardatmosphäre 62 ___________________________________________________________________

3.3 Internationale Standardatmosphäre (ISA)

Die Normatmosphäre (DIN 5450 bzw. seit 1975 DIN ISO 2535) basiert auf jahreszeitlich und geographisch gemittelten Messwerten für Druck, Dichte und Temperatur und dient als Normierungssystem zur Auslegung und Vergleich von Flugleistungen. Berücksichtig werden unterschiedlichen Temperaturgradienten für unterschiedliche Höhenbereiche.

3.3.1 Temperaturverteilung der Standardatmosphäre

288,150

216,6511

216,6520

228,6532

270,6547

270,6552

252,6561

180,6579

180,6588

0

10

20

30

40

50

60

70

80

90

170 190 210 230 250 270 290 310T [K]

H [

km

]

Abb. 3-3: Temperaturverteilung der Standardatmosphäre

Page 71: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Internationale Standardatmosphäre 63 ___________________________________________________________________ Höhenbereiche mit linear veränderlicher Temperatur

Höhe H [km] Temperaturgradient a [K/km] 0 < H < 11 -6,5 20 < H < 32 +1,0 32 < H < 47 +2,8 52 < H < 61 -2,0 61 < H < 79 -4,0

Tab. 3-3: Temperaturgradienten für unterschiedliche Höhenbereiche

Gl. 3-30: AAh hhaTT

Gl. 3-31: Ra

g

A

hAh T

Tpp

0

Gl. 3-32:

10

Ra

g

A

hAh T

T

Höhenbereiche mit isothermer Schichtung

Höhe [km]11 < H < 20 47 < H < 52 79 < H < 88

Tab. 3-4: Höhenbereiche mit konstanter Temperatur

Gl. 3-33: .constTT Ah

Gl. 3-34: A

h

hhTR

g

Ah epp

0

Gl. 3-35: A

h

hhTR

g

Ah e

0

Die höhenabhängige Berechnung von Druck, Dichte und Temperatur erfolgt mit den in Tab. 3-5 angegebenen Temperaturgradienten a und Anfangswerten ()A nach ISA.

h [m] hA [m] TA [K] a [K/m] pA [Pa] A [kg/m³] 0 - 11103 0 288,15 -6,510-3 101325 1,2250 11103 - 20103 11103 216,65 0,0 22632 0,3639 20103 - 32103 20103 216,65 +1,010-3 5475 0,0880 32103 - 47103 32103 228,65 +2,810-3 868 0,0132 47103 - 52103 47103 270,65 0,0 111 0,0014 52103 - 61103 52103 270,65 -2,010-3 59 0,0008 61103 - 79103 61103 252,65 -4,010-3 18 0,0002 79103 - 88103 79103 180,65 0,0 1 1,910-5

Tab. 3-5: Anfangswerte und Temperaturgradienten nach ISA

Page 72: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Internationale Standardatmosphäre 64 ___________________________________________________________________ Höhe h [m]

Temperatur T [K]

Temperaturgradienta [K/m]

Druck p [Pa]

Dichte [kg/m³]

Schallgeschwindigkeit c [m/s]

0 288,15 -6,510-3 101325 1,2250 340

Tab. 3-6: Werte der Standard-Atmosphäre (ISA) für h = 0 (MSL)

Ausgehend von der Temperaturverteilung in der Atmosphäre lassen sich folgende weitere Parameter berechnen: Schallgeschwindigkeit Die temperatur- und somit höhenabhängige Schallgeschwindigkeit a kann für ideale Gase als reine Temperaturfunktion beschrieben werden

Gl. 3-36: TRa

mit der spezifischen Gaskonstante R (RLuft = 287,05 [J/kgK]

Gl. 3-37: vp ccR

und dem Isentropenexponent (Luft = 1,4)

Gl. 3-38: v

p

c

c

Machzahl

Gl. 3-39: a

cM

Wärmeleitfähigkeit

Gl. 3-40:

Km

W

,T

T,

T

,

12

513

104245

106481512

Viskosität Die dynamische Viskosität [Pas] von Luft lässt sich näherungsweise nach der Sutherlandformel als Funktion der Temperatur berechnen.

Abb. 3-4: Temperaturabhängigkeit der dynamischen Viskosität

Page 73: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Internationale Standardatmosphäre 65 ___________________________________________________________________ dynamische Viskosität

Gl. 3-41: sPa,T

T,

,

4110104581

516

kinematische Viskosität

Gl. 3-42:

s

m 2

Reynoldszahl

Gl. 3-43:

refref lclc

Re

3.3.2 Definitionen der Höhe

Die umgangssprachliche Bezeichnung Höhe, also der Abstand eines Punktes zum Boden, erfordert im Sinne der Fluidmechanik eine genauere Beschreibung. Möglich sind unterschiedliche Definitionen, z.B. - geometrische Höhe - absolute Höhe - geopotentielle Höhe - Druckhöhe - Temperaturhöhe - Dichtehöhe Geometrische Höhe hG Abstand eines Punktes über dem Meeresspiegel, z.B. Höhenangaben in Landkarten

Abb. 3-5: Geometrische Höhe, Höhenlinien

Page 74: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Internationale Standardatmosphäre 66 ___________________________________________________________________ Absolute Höhe ha Abstand eines Punktes zum Erdmittelpunkt, r = Erdradius (Mittlerer Äquatorradius rE = 6378 km)

Gl. 3-44: rhh Ga

Geopotentielle Höhe h Die quadratische Änderung der Gravitation mit dem Abstand zum Erdmittelpunkt

Gl. 3-45:

2

0

2

0

Ga hr

rg

h

rgg

wird bei der geopotentiellen Höhe h berücksichtigt

Gl. 3-46: GG

hhr

rh

Druckhöhe Einfache Höhenmesser in Flugzeugen arbeiten in der Regel als barometrische Höhen-messer, d.h. es wird der statische Luftdruck außerhalb des Flugzeugs gemessen und daraus eine Höhe ermittelt. Die Druckhöhe beschreibt somit die Zuordnung eines Luftdrucks p(h) zu einer Höhe h.

Abb. 3-6: Barometrischer Höhenmesser

Page 75: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Internationale Standardatmosphäre 67 ___________________________________________________________________

Abb. 3-7: Höhenmessereinstellungen

Die Druckhöhe entspricht in der Regel nicht der geometrischen Höhe, wird jedoch zur Staffelung des Flugverkehrs nach so genannten Flugflächen FL (flight levels) verwendet.

Gl. 3-47: ftFLH 100

z.B. FL120 entspricht einer geometrischen Höhe von 12000 ft = 3658 m, sofern der reale Luftdruck auf Meeresniveau bezogen p0 = 1013,25 hPa beträgt. Alle Höhenangaben werden bei diesem Verfahren auf den Standarddruck auf Meeresniveau (QNH4) von p0 = 1013,25 hPa bezogen. Da in der Regel der Luftdruck jedoch nicht dem Standarddruck entspricht, gibt diese Höhenmessereinstellung eine von der geometrischen Höhe abweichende Flughöhe an. Die Flugzeuge bewegen sich dadurch auf Flächen konstanten Drucks, nicht auf einer konstanten geometrischen Höhe. Dies hat jedoch den Vorteil, dass eine gleichbleibende relative Höhenstaffelung des Flugverkehrs gewährleistet wird. Die Umrechnung des aktuellen Luftdrucks (QFE) auf der Flugplatzhöhe h auf den Luftdruck bezogen auf Meeresniveau (QNH) erfolgt mittels

Gl. 3-48: hPahbQFEQNH aa1

mit

1902612,080665,9

0065,005,287

gRa

5

0,

0, 10417168,815,288

25,10130065,0

a

hISA

ahISA

T

pb

4 Die Bezeichnungen QNH und QFE stammen noch aus der Morsezeit, wobei allen wetterrelevanten Informationen ein Q vorangestellt wurde. NH steht im Englischen für normal height, also Meeresniveau und FE für field elevation, also Platzhöhe.

Page 76: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Internationale Standardatmosphäre 68 ___________________________________________________________________

QNH [hPa] statischer Luftdruck bezogen auf Meeresniveau QFE [hPa] statischer Luftdruck auf Flugplatzhöhe h [m] Flugplatzhöhe R [J/kg] spez. Gaskonstante von Luft bei eine relativen Feuchte = 0 [K/m] Temperaturgradient in der Troposphäre nach ISA g [m/s2] Erdbeschleunigung auf der Höhe h = 0 pISA, h=0 [hPa] Luftdruck entsprechend ISA auf der der Höhe h = 0 TISA, h=0 [K] Temperatur entsprechend ISA auf der der Höhe h = 0

Abb. 3-8: Flugflächen

Temperaturhöhe Zusätzlich zum statischen Druck wird die statische Temperatur außerhalb des Flugzeugs gemessen. Bis zu einer Höhe von 11 km lässt sich dieser gemessenen Temperatur über die Standardatmosphäre ebenfalls eindeutig eine Höhe zuordnen. Das wäre die so genannte Temperaturhöhe, hat jedoch für technische Anwendung keine Relevanz. Dichtehöhe Die Dichtehöhe ergibt sich über die Zustandsgleichung des idealen Gases aus den gemessenen Werten für Druck und Temperatur. Die Dichthöhe wird insbesondere zur Berechnung der Flugleistungen, insbesondere der Startstrecke verwendet. Näherungsformel zur Berechnung der Dichtehöhe

Gl. 3-49: mTTQNH,hh ISA,hhDichte 4010251013

mit h [m] = Platzhöhe QNH [hPa] = Luftdruck bezogen auf MSL Th = aktuelle Temperatur am Platz Th,ISA = Temperatur am Platz bei ISA-Bedingungen

Vom Hoch ins Tief - das geht schief

Page 77: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Internationale Standardatmosphäre 69 ___________________________________________________________________

Üb. 3-1: Gasballon mit Heliumfüllung

geg.: DBallon = 6 m RHe = 2078 J/kgK mHülle = 20 kg mKorb = 10 kg Die Hülle des Ballons ist vollständig flexibel 1. Berechnen Sie die Nutzlast, die der Ballon bei einem Start auf der Höhe h = 0 unter ISA-Bedingungen heben kann 2. Welchen Durchmesser hat der Ballon in einer Höhe h = 12 km unter ISA-Bedingungen

_________________________________________________________________________

Üb. 3-2: Auslegung einer Druckkabine

Die Druckkabine eines Flugzeugs soll für einen konstanten Kabineninnendruck ausgelegt werden, der einer Höhe von h = 2400 m entspricht. Die maximale Flughöhe beträgt FL400. Welcher Differenzdruck p lastet auf der Kabine

a) Bei ISA-Bedingungen? b) Bei einem Luftdruck auf MSL von p0 = 1000 hPa und einer Temperatur auf MSL

von T0 = 35°C?

Page 78: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Grundbegriffe 70 ___________________________________________________________________

c, p, T,

A

A

4 Strömung von Fluiden

4.1 Grundbegriffe

4.1.1 Allgemeine Beschreibung des Strömungsfeldes

Ein Strömungsfeld lässt sich allgemein beschreiben durch das Geschwindigkeitsfeld tzyxcc ,,,

, welches ein Vektorfeld darstellt und durch die skalaren Größen Druck

tzyxpp ,,, , Dichte tzyx ,,, und Temperatur tzyxTT ,,, . Zur Lösung des Gleichungssystems existieren 6 Gleichungen: - Drei Bewegungsgleichungen (drei Komponenten) - Kontinuitätsgleichung - Energiesatz - Thermische Zustandsgleichung Bei idealen Flüssigkeiten existiert keine Temperaturabhängigkeit der Zustandsgrößen. Für ideale Gase müssen aus dem Wertetripel Tp ,, lediglich immer nur zwei bekannt sein.

4.1.2 Stationäre und instationäre Strömungen

Strömungen lassen sich in Abhängigkeit von dem zeitlichen Verhalten der Zustandsgrößen V, p, T und in stationäre und instationäre Strömung unterteilen.

stationär

Gl. 4-1: 0dt

d

dt

dT

dt

dp

dt

dc

quasistationär

Gl. 4-2: 0dt

d

dt

dT

dt

dp

dt

dc

Instationär

Gl. 4-3: 0,0,0,0 dt

d

dt

dT

dt

dp

dt

dc

Abb. 4-1: Zustandsgrößen in einer Strömung

Eine kontinuierliche Rohrströmung bei der keine zeitliche Änderung des Massestroms oder der Temperatur vorliegt entspricht einer stationären Strömung. Eine instationäre Strömung würde z.B. bei dem Ausfluss einer Flüssigkeit aus einem Behälter entsprechen. Der Massestrom m und die Ausflussgeschwindigkeit V ändern sich in Abhängigkeit von dem Füllstand h entsprechend der Torricelli'schen Ausflussgleichung. Die dabei erreichte Ausflussgeschwindigkeit c entspricht der Geschwindigkeit, die in Fluidelement bei einem freien Fall aus der gleichen Höhe h erreichen würde.

Gl. 4-4: hgc 2

Abb. 4-2: Instationäre Strömung

c

Page 79: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Grundbegriffe 71 ___________________________________________________________________ 4.1.3 Bahnlinie und Stromlinie

Eine Bahnlinie beschreibt die Kurve, die ein Fluidelement zu unterschiedlichen Zeitpunkten ( ntttt ,....,, 10 ) durchläuft. Die Sichtbarmachung erfolgt z.B. durch Zugabe von Schwebe-

teilchen in die Strömung und mittels einer photographischen Aufnahme bei der innerhalb der Belichtungszeit die Teilchen das betrachtete Strömungsfeld vollständig durchqueren. Die Bahnlinie entspricht also der Flugbahn eines Teilchens.

Abb. 4-3: Wasserkanalaufnahme von NACA 64A015, = 0° [ 14]

Eine Stromlinie schmiegt sich tangential an die Geschwindigkeitsvektoren eines Strömungs-feldes an. Die Sichtbarmachung erfolgt z.B. durch Zugabe von Schwebeteilchen in die Strömung und mittels einer photographischen Aufnahme mit einer Belichtungszeit, die so gewählt wird, dass dabei die Teilchen in dem betrachteten Strömungsfeld nur eine kurze Strecke zurücklegen (Momentaufnahme). Das Strömungsfeld lässt sich durch eine Kurvenschar veranschaulichen, die in jedem Punkt den zughörigen Geschwindigkeitsvektor tangieren.

Abb. 4-4: Stromlinien eines Strömungsfeldes

Der Abstand zwischen zwei Stromlinien kann beliebig dicht, ähnlich der Staffelung von Höhenlinien in einer Wanderkarte, zueinander definiert werden. Über die Stromlinien hinweg kann kein Masseaustausch stattfinden, d.h. zwischen zwei Stromlinien liegt immer ein konstanter Massestrom vor. Aufgrund der Bedingung eines konstanten Massestroms zwischen den Stromlinien führt (bei Unterschallströmungen) eine Stromlinienverdichtung, also eine Querschnittsverengung, zu einer Strömungsbeschleunigung und eine Stromlinien-erweiterung bewirkt eine Strömungsverzögerung. Stromlinien können keine Unstetigkeits-stelle (Knick) oder Überschneidungen aufweisen. Dies gilt für alle Arten von Iso-Linien, also z.B. Isobaren oder Isochoren. Überschneidungen von Iso-Linien in einem Strömungsfeld würde bedeuten, dass man einem Fluidteilchen zum gleichen Zeitpunkt am gleichen Ort z.B. mehrere unterschiedliche Geschwindigkeiten oder Drücke zuordnen könnte.

Page 80: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Grundbegriffe 72 ___________________________________________________________________ Bei stationären Strömungen fallen Bahnkurven und Stromlinien zusammen.

Abb. 4-5: Stromlinie und Bahnlinie, [ 13]

4.1.4 Stromröhre, Stromfaden, Stromfläche

Die Zusammenfassung aller Stromlinien, die durch eine Eintrittsfläche A im Raum treten, wird als Stromröhre bezeichnet. Bei der Annahme einer eindimensionalen Strömung innerhalb der Stromröhre, d.h. die Strömungsgrößen ändern sich nur in Strömungsrichtung und verhalten sich quer zu Strömungsrichtung konstant, können die Strömungsgrößen auf einer einzigen Stromlinie konzentriert angenommen werden. Diese repräsentative Stromlinie entspricht einer Stromröhre mit infinitesimalem Querschnitt dA und wird als Stromfaden bezeichnet. Die umhüllende Mantelfläche der Stromröhre wird als Stromfläche bezeichnet, wobei der Massestrom nur durch Ein- bzw. Austrittsfläche A1 und A2 stattfindet.

Abb. 4-6: Stromröhre, Stromfaden und Stromfläche, [ 13]

Page 81: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Kontinuitätsgleichung 73 ___________________________________________________________________

4.2 Kontinuitätsgleichung

Wird eine Stromröhre von einem Fluid mit einer mittleren Geschwindigkeit c im Querschnitt A durchströmt, so bildet das Volumenelement dV, welches um die Strecke ds bewegt wird, den

VolumenstromV . Bei kleinen Querschnitts-änderungen in Strömungsrichtung kann die Querschnittsänderung dA im Vergleich zur Verschiebung ds in Strömungsrichtung vernachlässigt werden, d.h. 0dAs .

Abb. 4-7: Stromröhre - Kontinuitätsgleichung

Volumenstrom

Gl. 4-5: dsAdAsdsAsAddV

Gl. 4-6: smcAdt

dsA

dt

dVV 3

Massestrom Der Massestrom dtdmm ergibt sich aus

Gl. 4-7:

dt

dV

dt

dV

dt

Vd

dt

dm

Gl. 4-8: VVm

Für stationäre Strömungen, d.h. 0 vereinfacht sich Gl. 4-8 zu

Gl. 4-9: skgAcVm

Masseerhaltungssatz Da bei stationären Strömungen die Masse im betrachteten Kontrollvolumens konstant bleibt und innerhalb der Stromröhre der Massestrom nur durch die Ein- bzw. Ausrittsfläche A1 und A2 möglich ist, muss in jedem beliebigen Querschnitt Ai der Stromröhre gelten

Gl. 4-10: .22211121 constAcAcmm

Differenzieren von Gl. 4-10 ergibt die differentielle Form der Kontinuitätsgleichung

Gl. 4-11: .constAcm

Gl. 4-12: 0 Acdmd

Page 82: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Kontinuitätsgleichung 74 ___________________________________________________________________

Gl. 4-13: Ac

dcAdAcdAc

10

Gl. 4-14: 0c

dc

A

dAd

_________________________________________________________________________

Üb. 4-1: Rohrverzweigung eines Abwasserrohrs

geg.: D1 = D2 = 100 mm

1V = 42,4 m³/h

32 :VV = 2:1

c3 = c1 ges.: D3 Durchmesser Abzweigungsrohr c2 Geschwindigkeit im Querschnitt 2

_________________________________________________________________________

4.3 Energieerhaltungssatz

4.3.1 Satz von Bernoulli

Der Energieerhaltungssatz lässt sich aus der thermodynamischen Betrachtung eines offenen, durchströmten Systems am Beispiel eines Strömungsprozesses mit Austausch von Wärme und Arbeit herleiten. Betrachtet werden hierbei lediglich die Energie- und Massenströme, die die Systemgrenze überschreiten, sowie die Änderungen der Energie im Inneren des Systems. Eine Kenntnis der technischen Abläufe innerhalb der Systemgrenzen ist nicht erforderlich.

Abb. 4-8: Strömungsprozeß mit Austausch von Wärme und Arbeit

Luft

Zapfluft EnteisungKerosin Zapfluft Kabinendruck

Abgas

Systemgrenze

zum abab qm ,

zuB qm , 1Lm

elw

abL qm ;2

Page 83: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 75 ___________________________________________________________________ Die Energiebilanz über die Systemgrenze ergibt den ersten Hauptsatz der Thermodynamik für offene stationär durchströmte Systeme

Gl. 4-15:

12

21

22121212 2

1zzgcchhmPQ

bzw. bezogen auf die Masse des strömenden Mediums, d.h. den Massestrom m

Gl. 4-16:

gienSystemenernergienTransporte

t zzgcchhwq 1221

221212,12 2

1

Wärme Q12 und Arbeit W12 stellen dabei die sog. Transportenergien dar, d.h. Energien, die über die Systemgrenze transportiert werden. Die Enthalpie H, sowie die kinetische und potentielle Energien Ekin und Epot stellen Systemenergien dar, das sind Energien, die sich innerhalb der Systemgrenze ändern. Bei reibungsbehafteten, also allen in der Realität ablaufenden Prozessen ist noch die Dissipationsenergie EDiss als zusätzliche Transportgröße zu berücksichtigen. In der Regel werden die Energieterme auf die Systemmasse m und Energieströme und Leistungen auf den Massestrom m bezogen und als spezifische Größen bezeichnet. Transportgrößen Wärme JQ12

spez. Wärme

kg

J

m

Qq 12

12

Wärmestrom

W

s

JQ12

spez. Wärmestrom

kg

J

m

Qq

12

12

Arbeit JW12

spez. Arbeit

kg

J

m

Ww 12

12

Leistung

W

s

JP

spez. Leistung

kg

J

m

Pw

12

12

Dissipationsenergie JEDiss

spez. diss. Energie

kg

J

m

Ee diss

diss

Systemgrößen kinetische Energie Jcc

mEkin

21

2212, 2

spez. kin. Energie

kg

J

m

Ee kin

kin12,

12,

potentielle Energie JzzgmEpot 1212, spez. pot. Energie

kg

J

m

Ee pot

pot12,

12,

Enthalpie JVpUH spez. Enthalpie

kg

J

m

Hh

innere Energie JTcmU v

spez. innere Energie

kg

J

m

Uu

Druckenergie JVp

spez. Druckenergie

kg

J

m

Vpvp

Tab. 4-1: Energie und Leistungsgrößen

Page 84: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 76 ___________________________________________________________________ Enthalpie: Summe aus innerer Energie U und Druckenergie pV

Gl. 4-17: VpUH

bzw. spez. Enthalpie h

Gl. 4-18: vpum

Hh

Kalorische Zustandsgleichungen zur Beschreibung der inneren Energie und Enthalpie

Gl. 4-19: dvv

udT

T

udu

T

c

v

v

spez. isochore Wärmekapazität cv

Gl. 4-20: vTcT

uc v

vv ,

Gl. 4-21: dpp

hdT

T

hdh

T

c

p

p

spez. isobare Wärmekapazität cp

Gl. 4-22: pTcT

hc p

pp ,

Innere Energie und Enthalpie fester und flüssiger Phasen Für inkompressible Fluide, d.h. = const. bzw. v = const. gilt

Gl. 4-23: cdT

duTcTc vp

Änderung der spez. inneren Energie u

Gl. 4-24: 1212 TTcTuTu

Änderung der spez. Enthalpie h

Gl. 4-25: 112121122 ,, vppTTcpThpTh

Innere Energie und Enthalpie idealer Gase

Gl. 4-26: TcdT

duc vv

Gl. 4-27: dTTcdu v

Gl. 4-28: 1

2

12

T

T

v dTTcuu

Page 85: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 77 ___________________________________________________________________

Gl. 4-29: TcdT

dhc pp

Gl. 4-30: dTTcdh p

Gl. 4-31: 1

2

12

T

T

p dTTchh

Da die Temperaturabhängigkeit bei den spezifischen Wärmen cp und cv gleich ist, entfällt die Temperaturabhängigkeit bei der Berechnung der spezifischen Gaskonstante R aus der Differenz der beiden spezifischen Wärmen, d.h. bei idealen Gasen ist R keine Funktion der Temperatur.

Gl. 4-32: RTcTc vp

Innere Energie und Enthalpie bei konstanten Werten für cp und cv

Gl. 4-33: 1212 TTcuu v

Gl. 4-34: 1212 TTchh p

Erster Hauptsatz der Thermodynamik für ein offenes System

Gl. 4-35:

gienSystemener

potkin

nergienTransporte

Disst heeewq 1212,12,12,12

Gl. 4-36:

ieDruckenergspezu

v

ee

Disst ppvTTczzgccewq

potkin

.

1212122

12

212,12

1212,12,

2

1

Gl. 4-37:

Enthalpiespezee

Disst hhzzgccewq

potkin

.

12122

12

212,12

12,12,

2

1

Bernoulli-Gleichung Je nach Anwendungsfall kann die Bernoulli-Gleichung durch Berücksichtigung einzelner Terme aus dem ersten Hauptsatz hergeleitet werden. Mögliche Vereinfachungen können in der Vernachlässigung folgender Terme bestehen

- kein Wärmefluss über die Systemgrenze, (adiabates System): q12 = 0 - keine technische Arbeit über die Systemgrenze: wt,12 = 0 - keine Reibung an der Systemgrenze, (reibungsfreies System): ediss = 0 - konstante Temperatur im System, (isothermes System): T1 = T2 - kein Höhenunterschied zwischen Zustand (1) und (2): z1 = z2

Zusätzliche weitere Vereinfachungen gelten für ein stationär durchströmtes System, d.h.

.constm und ein inkompressibles Fluid, d.h. .const und führen den ersten Hauptsatz in den Satz von Bernoulli über.

Page 86: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 78 ___________________________________________________________________

Gl. 4-38: 12122

12

22

10 ppvzzgcc

Allgemein gilt: Die Energie längs eines Stromfadens ist konstant Unterschiedlichen Schreibweisen der Bernoulli-Gleichung Energieform

Gl. 4-39: .

2

2

constEVpzgmc

mgieGesamtener

ges

ieDruckenergEnergieepotentiellEnergiekinetische

Division von Gl. 4-39 durch V ergibt die Druckform

Gl. 4-40: .2

2 constV

Epzgc ges

Division von Gl. 4-40 durch g ergibt die Höhenform

Gl. 4-41: .2

2

constg

pz

g

c

Zusammensetzung der Energieanteile in einem offenen, durchströmten System (reibungsfrei), ohne Zu- bzw. Abfuhr von Arbeit oder Wärme

Abb. 4-9: Zusammensetzung der Energieanteile in einem offenen System

Page 87: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 79 ___________________________________________________________________ Zusammenfassung - Darstellungsformen der Bernoulli-Gleichung dynamischer Anteil

potentieller Anteil

statischer Anteil

Gesamtenergie, -druck bzw. -höhe

spezifische Energiegleichung

2

2c

hg

p

.consteges

2

2

s

m

kg

mN

Druckgleichung

2

2c

hg

p

.constpges

Pam

N2

Höhengleichung

g

c

2

2

h

gp

.consthges

m

Tab. 4-2: Unterschiedliche Schreibweisen der Bernoulli-Gleichung

_________________________________________________________________________

Üb. 4-2: Stationär durchströmte Gasturbine

Ein- und Austrittsebene der Turbine liegen auf gleiche Höhe

Isentrope Expansion von 14049 m³/h Heißgas von bar,p 9181 auf bar,p 0212

Turbineneintrittsquerschnitt 21 019420 m,A

Turbinenaustrittsquerschnitt 22 43060 m,A

Turbineneintrittstemperatur CT 9801

spez. Gaskonstante KkgJ,R 1287

Isentropenexponent 341,

spez. Wärmekapazitäten cp, cv = const.

ges.: spez. technische Arbeit wt,12 Wellenleistung P

T1, p1, z1, A1

(1) (2) 1m

2mP, wt,12

T2, p2, z2, A2

Page 88: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 80 ___________________________________________________________________ Üb. 4-3 Verlustfrei durchströmtes Rohrsystem Berechnen Sie für das verlustfrei durchströmte Rohrsystem an den Positionen (1)-(4) jeweils

den dynamischen Druck 22 cq , potentiellen Druck zg , statischen Druck p, und den

Gesamtdruck pges. Der Gesamtdruck im Querschnitt (4) beträgt pges = 10,85bar _________________________________________________________________________

4.3.2 Euler-Gleichung

Eine weitere Möglichkeit zur Herleitung der Bernoulli-Gleichung ergibt sich aus einer Kräftebilanz an einem Volumenelement des Stromfadens unter folgenden Annahmen:

- keine Berücksichtigung der thermischen

Energie - keine Berücksichtigung der inneren

Energie - keine Reibung

Abb. 4-10: Kräftebilanz an einem Fluidelement in Strömungsrichtung

c

(1) (2) (3) (4)

s/kgm 2002

1m

z = 0

z z1 = 100 m d1 = 0,3 m

z2 = 50 m d2 = 0,1 m

z3 = 60 m d3 = 0,1 m

z4 = 20 m d4 = 0,2 m

= 103 kg/m³

Page 89: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 81 ___________________________________________________________________ Kräftebilanz in Stromrichtung

Gl. 4-42: dt

dcdmadmdFdFdF pm

Am Fluidelement angreifende Gewichtskraft in Strömungsrichtung

Gl. 4-43: ds

dzgdmdFdF gm cos

mit

Gl. 4-44: ds

dzcos

Druckkraft dFp

Gl. 4-45: SSSp dAdpdAdppdApdF

Masse des Elements dm

Gl. 4-46: dsdAdm S

Flächenelement

Gl. 4-47: ds

dmdAS

Gl. 4-48: dm

ds

ds

dmdp

ds

dzgdm

dt

dcdmdF

Gl. 4-49: 1

dpdzgdt

dcds

mit

Gl. 4-50: cdt

ds

Gl. 4-51: dpdzgdcc1

Gl. 4-52:

.1

2

1 2 constpzgc

Druckform der Bernoulli-Gleichung

Gl. 4-53: .2

2 constpzgc

Page 90: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 82 ___________________________________________________________________

4.3.3 Verlustfreie Rohrströmung - Anwendung der Bernoulli-Gleichung

Venturi-Rohr

Messung des Volumenstroms V in Leitungen mit Hilfe von Druckmessstellen an der Zuströmseite (1) und im engsten Querschnitt (2). Die Querschnittsverengung bewirkt eine Erhöhung der Geschwindigkeit, d.h. 12 cc Annahmen - Reibungsfreie Strömung, d.h. eDiss = 0 - Eindimensionale Strömung, d.h. keine Änderung der Strömungsgrößen über den Querschnitt - Horizontale Anordnung, z(1) = z(2), d.h. epot = 0 - Inkompressible Strömung, d.h. es gilt .21 const

Abb. 4-11: Venturi Rohr

Ausgehend von der Druckform der Bernoulli-Gleichung

Gl. 4-54: .2

2 constpzgc 22

2211

21 22

pzgcpzgc

folgt aufgrund der horizontalen Versuchsanordnung, d.h. z(1) = z(2), dass die potentielle Energie verschwindet, d.h. epot = 0 und die Bernoulligleichung vereinfacht sich zu

Gl. 4-55: .2

2 constpc

bzw.

Gl. 4-56: 22

212

1 22pcpc

Volumenstrom V

Gl. 4-57: .constcAV

bzw.

Gl. 4-58: 2211 cAcAV

Statische Druckdifferenz aus der Manometermessung

Gl. 4-59 hgpp Fl 12

Geschwindigkeit im Querschnitt (1)

Gl. 4-60 2211 cAcA

c1 c2

Fl

Page 91: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 83 ___________________________________________________________________ bzw.

Gl. 4-61: 1

221 A

Acc

eingesetzt in die vereinfachte Bernoulli-Gleichung

Gl. 4-62:

2

22 22

21

2

1

222

pcp

A

Ac

Gl. 4-63: 2

122

2

2

1

222

ppc

A

Ac

Gl. 4-64: 2

1 12

2

1

222

pp

A

Ac

Gl. 4-65:

2

1

2

212

1

2

A

A

ppc

ergibt sich der Volumenstrom V unter der Annahme einer verlustfreien Strömung

Gl. 4-66:

22

1

2

2122

1

2A

A

A

ppAcV

_________________________________________________________________________

Üb. 4-3: Venturi-Rohr, Durchflussmessung bei verlustfreier Strömung (Luft)

geg.: d1 = 150 mm d2 = 100 mm Luft = 1,225 kg/m³ p1 - p2 = 250 mmWS ges.: Volumenstrom V

_________________________________________________________________________

Page 92: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 84 ___________________________________________________________________

4.3.4 Ausfluss aus Gefäßen und Behältern - verlustfrei

Aus der allgemeinen Druckform der Bernoulli-Gleichung für den Stromfaden von (1) nach (2)

Gl. 4-67: 222

2112

1 22pzgcpzgc

ergibt sich mit z1 = h1, z2 = 0 p1 = p0 (freie Oberfläche) p2 = p0 (Freistrahl) Aus der Kontinuitätsgleichung .constAcm folgt bei konstanter Dichte für die Geschwindigkeiten

Gl. 4-68: 1

221 A

Acc

Abb. 4-12: Ausfluss aus einem Behälter Eingesetzt in die Bernoulli-Gleichung

Gl. 4-69: 02

201

2

1

222 22

pcphgA

Ac

ergibt sich für die Ausflussgeschwindigkeit c2

Gl. 4-70: 2

1

2

12

1

2

A

A

hgc

Unter der Annahme, dass A1 >> A2, das entspricht c1 0, also einem konstanten Wasserspiegel (1), vereinfacht sich die Beziehung zu

Gl. 4-71: 12 2 hgc (Torricelli‘sche Ausflussgleichung)

4.3.5 Ausfluss aus Gefäßen und Behältern unter Überdruck - verlustfrei

Aus der allgemeinen Druckform der Bernoulli-Gleichung für den Stromfaden von (1) nach (2)

Gl. 4-72: 222

2112

1 22pzgcpzgc

ergibt sich mit z1 = h1, z2 = 0 p1 = p1ü + p0 p2 = p0 (Freistrahl) und analog zu dem offenen Behälter 1221 AAcc

Abb. 4-13: Ausfluss aus einem Behälter unter Überdruck

A2

1

Page 93: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 85 ___________________________________________________________________ eingesetzt in die Bernoulli-Gleichung

Gl. 4-73: 02

2101

2

1

222 22

pcpphgA

Ac ü

ergibt sich für die Ausflussgeschwindigkeit c2

Gl. 4-74: 2

1

2

11

2

1

22

A

A

phgc

ü

Unter der Annahme, dass A1 >> A2, das entspricht c1 0, also einem konstanten Wasserspiegel (1), vereinfacht sich die Beziehung zu

Gl. 4-75: Üphgc 112

22

_________________________________________________________________________

Üb. 4-4: Ausfluss aus einem Behälter unter Überdruck - verlustfrei

geg.: P1Ü = 1 bar h1 = 2 m d2 = 2 cm H2O = 1000 kg/m³ ges.: c2, V

_________________________________________________________________________

Üb. 4-5: Ausfluss aus einem Benzinschlauch unter Überdruck - verlustfrei

geg.: P1Ü = = 4 bar h2 = 0.2 m d1 = 10 mm d2 = 2 mm Benzin = 780 kg/m³ ges.: c2 Ausströmgeschwindigkeit

c2

c2

Page 94: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 86 ___________________________________________________________________

4.3.6 Ausfluss aus Behältern mit scharfkantigen Öffnungen

Alle bisherigen Betrachtungen gingen immer von einem Ausfluss durch gerundete Düsen aus, d.h. der Strahlquerschnitt Astr entspricht dem Düsen- oder Lochquerschnitt AL. Bei dem Ausfluss durch eine scharfkantige Bohrung wäre die Strömung infolge der Umlenkung gezwungen die Kante (Radius r = 0) mit einer theoretisch unendlich großen Geschwindigkeit (c2 = ) zu umströmen. Da die Strahlgeschwindigkeit c2 in der Ausströmöffnung nicht ganz erreicht wird, muss sich der Strahlquerschnitt verringern um die Forderung nach einem konstanten Massestrom noch zu erfüllen. Das Flächenverhältnis von Lochbohrung zu Strahlquerschnitt wird als Kontraktionszahl bezeichnet.

Kontraktionszahl

Gl. 4-76: 1L

Str

A

A

Näherungswert für lange Spalte (ebene Strömung) und runde Ausströmöffnungen:

Gl. 4-77: 61102

,

Abb. 4-14: Ausfluss aus scharfkantiger Öffnung

Für gut ausgerundete Ausströmöffnungen gilt für die Kontraktionszahl 1

4.3.7 Ausfluss aus Behältern in ruhendes Wasser

Beim Ausströmen von Fluiden in ein ruhendes Fluid stellt sich die gleiche Strahlkontraktion wie beim Ausströmen in die freie Atmosphäre ein. Der scharf umrissene Strahl vermischt sich jedoch nach kurzer Entfernung mit dem ruhenden Fluid und die kinetische Energie wird durch Reibung in Wärme umgewandelt. Aufgrund des reibungsbehafteten Durchmischungs-vorgangs nach dem Ausströmen ist die Bernoulli-Gleichung nur zwischen den Punkten (1) und (2) erfüllt, nicht jedoch zwischen (2) und (3).

Druckform der Bernoulli-Gleichung (1) - (2)

Gl. 4-78: 222

2112

1 22pzgcpzgc

Mit A1 >> A2, das entspricht c1 0 (konstanter Pegel) p1 = p0 0232 phhgp z1 = h1 z2 = h2

Abb. 4-15: Ausfluss in ein ruhendes Fluid

eingesetzt in die Bernoulli-Gleichung

Gl. 4-79: 23022

201 2hhgphgcphg

Page 95: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 87 ___________________________________________________________________ ergibt sich für die Austrittsgeschwindigkeit

Gl. 4-80: 312 2 hhgc

4.3.8 Ausströmen von Fluiden aus Behältern in die Atmosphäre

Beim Ausströmen von Gasen in die freie Atmosphäre stellt sich wie bei Flüssigkeiten eine Strahlkontraktion ein. Kurz nach dem Ausströmen erfolgt eine turbulente Durchmischung mit der Umgebung. Am Strahlrand wird dem Strahl der Umgebungsdruck p0 aufgeprägt.

Abb. 4-16: Ausströmen von Gasen in die Atmosphäre

Freistrahlbedingung Da der Strahlrand eine Niveaufläche darstellt, d.h. der Druck am Rand des Fluides entspricht immer dem Umgebungsdruck, wird der der Druck der Umgebung dem austretenden Strahl aufgeprägt. In Abhängigkeit von dem Umgebungsdruck kann die Strömung entweder über- oder unterexpandieren. Die maximale Aufweitung des Strahls stellt sich beim Ausströmen bei verschwindendem Umgebungsdruck ein, d.h. beim Ausströmen gegen Vakuum. _________________________________________________________________________

Üb. 4-6: Auslegung eines Belüftungssystems

Belüftungsrohr mit scharfkantigen Ausblaslöchern

geg.:

sm,V 370 Luftstrom

mmd 10 Bohrungsdurchmesser

PapÜ 1100 Überdruck im Rohr

321 mkg,Luft Luftdichte

60, Kontraktionszahl

smczu 10 Zuströmgeschwindigkeit

ges.: - Durchmesser des Rohres - Anzahl der Bohrungen im Belüftungsrohr

Page 96: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung von Fluiden - Energieerhaltungssatz 88 ___________________________________________________________________ 4.3.9 Verlustbehaftetes Ausfließen aus einem Behälter

Der theoretisch verlustfreie Ausströmvorgang lässt sich durch die Torricelli’sche Ausfluss-

gleichung hgc th 2,2 beschreiben, wobei h die Höhe des Pegelstands darstellt. Unter

realen Bedingungen ist dieser Vorgang jedoch reibungsbedingt Verlusten unterworfen, d.h. die reale Ausströmgeschwindigkeit c2 im Austrittsquerschnitt wird immer kleiner sein, als die theoretische Geschwindigkeit c2,th. Die reale Austrittsgeschwindigkeit c2 entspricht der Geschwindigkeit, die sich aus der dem um eine (fiktive) Verlusthöhe hV verminderte Höhe des Pegelstands h ergibt.

Gl. 4-81: Vhhgc 22

Die Abminderung der Geschwindigkeit lässt sich durch eine Verlustziffer beschreiben

Gl. 4-82:

h

hh

hg

hhg

c

c VV

th,

2

2

2

2

Der sich einstellende Volumenstrom V ergibt sich mit der Kontraktionszahl zu

Gl. 4-83: 12

*2

A

A

A

A

L

Str

Gl. 4-84: thcAcAV ,22

Kontraktionszahl und Verlustziffer lassen sich zu dem Ausflusskoeffizient zusammenfassen

Gl. 4-85:

Der Volumenstrom kann nun berechnet werden mittels

Gl. 4-86: hgAcAV th 2,2

Technische Ausführungen zur Gewährleistung von verlustminimiertem Ausfließen unter definierten Bedingungen stellen scharfkantige Öffnungen oder sog. BORDA-Mündungen dar.

Abb. 4-17: a) scharfkantige Öffnung b) BORDA-Mündung

Tab. 4-3: DIN 1952: Werte für Blenden und Venturirohre

Öffnung Verlustziffer Kontraktionszahl Ausflusskoeffizient scharfkantig 0,97 0,61 - 0,64 0,59 - 0,62 gerundet 0,97 - 0,99 1 0,97 - 0,99

Page 97: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung mit Energietransport 89 ___________________________________________________________________

4.4 Strömung mit Energietransport

4.4.1 Strömungen unter Berücksichtigung von Arbeit und Verlusten

Sind in einem System Baugruppen enthalten, die Energieformen verändern, z.B. durch Zu- oder Abfuhr von Arbeit (Pumpe, Turbine) oder Wärme (Brennkammer) so sind die entsprechenden Terme im 1. Hauptsatz zu berücksichtigen

- - wt12 spez. Arbeit - - q12 spez. Wärme

Bei einer realen, reibungsbehafteten Strömung muss die dissipierte Energie durch ein Verlustglied berücksichtigt werden, z.B. durch

- eDiss spez. dissipierte Energie - eV spez. Verluste - hV spez. Verlusthöhe - pV Druckverlust

Die Energieform der Bernoulli-Gleichung

Gl. 4-87: .

2

2

constEVpzgmc

mgieGesamtener

ges

ieDruckenergEnergieepotentiellEnergiekinetische

Gl. 4-88: .2

2

constep

zgc

ges

Gl. 4-89:

22

22

11

21 2

1

2

1 pzgc

pzgc

ist um die technische Arbeit wt12 und Verlustterme eV zu erweitern

Gl. 4-90: Vt ep

zgcp

zgcw

22

22

11

2112 2

1

2

1

bzw.

Gl. 4-91: Vt evppzzgccw 12122

12

212 2

1

Verluste können durch eine Verlustziffer erfasst werden und lassen sich unterteilen in Verluste durch Reibung eVR und Verluste infolge von Einbauten eVE

Gl. 4-92: VEVRV eee

Page 98: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung mit Energietransport 90 ___________________________________________________________________ Bezeichnungen für Pumpen und Turbinen Spez. Förderarbeit (Pumpen) Y Die einem Fluid pro kg Flüssigkeit zugeführte mechanische Arbeit wird bei Pumpen als spezifische Förderarbeit Y bezeichnet und entspricht der spezifischen technischen Arbeit wt12 (Thermodynamik). Y [Nm/kg = m²/s²] Totaldruckänderung infolge Arbeit Zusammen mit der Dichte des Fluids berechnet sich die Totaldruckänderung tp im Fluid

aus der Förderarbeit Y

Gl. 4-93: Ypt [Pa]

Förderhöhe H oder HNutz (Pumpe) bzw. Nutzfallhöhe (Turbine)

Gl. 4-94: g

YH [m]

Hydraulische Leistung Ph

Gl. 4-95: HgVYVYmPh [W]

bzw. wegen Y = wt12

Gl. 4-96: HgVwVwmP tth 1212

Pumpenwirkungsgrad P und Turbinenwirkungsgrad T Der Pumpenwirkungsgrad ergibt sich aus der an der Welle zugeführte mechanische Leistung PW und der hydraulischen Leistung Ph, P < 1

Gl. 4-97: W

hP P

P

Bei der Berechnung des Turbinenwirkungsgrads T steht die hydraulische Leistung im

Nenner, T < 1

Gl. 4-98: h

WT P

P

Page 99: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung mit Energietransport 91 ___________________________________________________________________ Die Zusammensetzung der einzelnen Energieanteile bei Zu- bzw. Abfuhr von Arbeit oder Wärme unter Berücksichtigung der Reibungsverluste ist in Abb. 4-18 dargestellt.

Abb. 4-18: Zusammensetzung der Energieanteile in einem offenen System mit Reibung

Zusammenfassung - Strömungen unter Berücksichtigung von Arbeit und Verlusten Spezifische Energiegleichung

Gl. 4-99: dissep

zgc

Yp

zgc

22

221

1

21

22

Höhengleichung

Gl. 4-100: Vhg

pz

g

cH

g

pz

g

c

2

2

221

1

21

22

Druckgleichung

Gl. 4-101: Vt ppzgcppzgc 222

2112

1 2

1

2

1

Page 100: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung mit Energietransport 92 ___________________________________________________________________

4.4.2 Turbine

Energie wird über die Systemgrenze abgeführt,

012 ,twY

Mit den Annahmen - konstanter Umgebungsdruck: p1 = p2 = p0 - keine Strömungsgeschwindigkeit an Ober- und Unterwasserspiegel: c1 = c2 = 0 - Pegelstände: z1 = H1, z2 = 0

Abb. 4-19: Wasserkraftwerk, Turbinenbetrieb

ergibt sich für die allgemeine Höhenform für Strömungen mit Energietransport für den Stromfaden von (1) nach (2)

Gl. 4-102: Vhg

pz

g

cH

g

pz

g

c

2

2

221

1

21

22

Diese vereinfacht sich mit den oben getroffenen Annahmen und Vereinfachungen für die Turbine zu

Gl. 4-103: Vhg

pH

g

pH

00

1

Nutzfallhöhe H = HNutz: Gl. 4-104: 01 VhHH Die zur Energieumwandlung zur Verfügung stehende Nutzfallhöhe HNutz wird also um die Reibungsverluste in Form der Verlusthöhe hV reduziert. Der Betrag von HNutz ist negativ, da Energie aus dem System abgeführt wird. Technische Arbeit 12tw = Y

Gl. 4-105: 012 Nutzt Hgw Druckabfall pt in der Turbine Gl. 4-106: 012 tNutzt wHgp Hydraulische Leistung Phyd. der Turbine

Gl. 4-107: 012 t

tNutzNutzt.hyd pV

pmHgVHgmwmP

Wellenleistung PWelle der Turbine hängt von dem Gesamtwirkungsgrad Turbine < 1 ab

Gl. 4-108: 0 .hydTurbineWelle PP

(1)

(2)

p0

p0

Systemgrenze

wt12 < 0

Page 101: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Strömung mit Energietransport 93 ___________________________________________________________________ 4.4.3 Pumpe und Gebläse

Bei Pumpen oder Gebläsen wird dem System Energie über die Systemgrenze zugeführt, d.h. die übertragene technische Arbeit ist positiv,

012 ,twY

Analog zu den für die Turbine getroffenen Annahmen - konstanter Umgebungsdruck: p1 = p2 = p0 - keine Strömungsgeschwindigkeit an Ober- und Unterwasserspiegel: c1 = c2 = 0 - Pegelstände: z1 = 0, z2 = H2

Abb. 4-20: Wasserkraftwerk, Pumpbetrieb

ergibt sich für die allgemeine Höhenform für Strömungen mit Energietransport für den Stromfaden von (1) nach (2)

Gl. 4-109: Vhg

pz

g

cH

g

pz

g

c

2

2

221

1

21

22

Diese vereinfacht sich mit den oben getroffenen Annahmen und Vereinfachungen für die Turbine zu

Gl. 4-110: Vhg

pHH

g

p

0

20

Förderhöhe H = HNutz: Gl. 4-111: 01 VhHH Die erforderliche Arbeit zur Überwindung der Höhendifferenz H2 erhöht sich also um die Reibungsverluste in Form der Verlusthöhe hV. Der Betrag von HNutz ist positiv, da Energie dem System zugeführt wird. Spezifische technische Arbeit 12tw = Y

Gl. 4-112: 012 Nutzt Hgw Druckanstieg pt in der Pumpe Gl. 4-113: 012 tNutzt wHgp Hydraulische Leistung Phydr. der Pumpe

Gl. 4-114: 012 t

tNutzNutzt.hydr pV

pmHgVHgmwmP

Wellenleistung PWelle der Pumpe hängt von dem Gesamtwirkungsgrad Pumpe < 1 ab

Gl. 4-115: 0

.mech.hydr

.hydr

Pumpe

.hydrWelle

PPP

Systemgrenze

p0

p0

wt12 > 0

(2)

(1)

Page 102: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Grenzschichttheorie 94 ___________________________________________________________________

4.5 Modellgesetze

4.5.1 Simulationsproblematik

Im Rahmen technischer Entwicklungen ist es häufig erforderlich, Aussagen bezüglich des Verhaltens des Endprodukts bereits in einem frühen Entwicklungsstadium zu erhalten. Insbesondere bei Flugzeugentwicklungen sind zur Validierung der im Vorentwurf prognostizierten Flugleistungen und zur Auslegung des Flugreglers bereits in der Vorentwurfsphase Informationen bezüglich des Flugverhaltens erforderlich. In der Regel Jahre bevor der erste Prototyp abheben wird. Neben theoretischen Verfahren, Handbuch-methoden und CFD-Simulation stellt die Strömungssimulation im Windkanal die wichtigste Methode zur Datengewinnung dar. Mit zunehmender Strömungsgeschwindigkeit steigt entsprechend

Gl. 4-116 2

2

1cmEkin

der erforderliche Energieaufwand zur Aufrechterhaltung einer kontinuierlichen Strömung an. Dies bedingt, dass mit zunehmender Strömungsgeschwindigkeit bzw. Machzahl, die Querschnitte der Messstrecken immer kleiner werden und im höheren Machzahlbereich keine kontinuierliche Strömung mehr aufrecht erhalten werden kann und auch die Messzeiten immer kürzer werden, d.h. bis zu einer Größenordnung von ca. 1 Millisekunde. Daher werden in der Regel im Experiment maßstäblich verkleinerte Modelle der Originalausführung verwendet. Versuche mit Modellen in Originalgröße lassen sich in der Regel nur im Niedergeschwindig-keitsbereich (M < 0.4) durchführen. Geeignete Versuchsanlagen die Versuche in einer solchen Größenordnung ermöglichen, existieren z.B. bei NASA Ames oder bei TSAGI bei Moskau.

4.5.2 Kennzahlen

Zur Übertragung der im Experiment gewonnenen Ergebnisse auf die Großausführung müssen beide Strömungsfelder mechanisch ähnlich sein, dies erfordert eine Ähnlichkeit hinsichtlich

- Geometrie - Zeit und - Kraft

Mit den Indizes 'O' für Original und 'M' für Modell gilt für diese drei Basisgrößen:

Geometrie MLL 0

= Längenmaßstab 2 = Flächenmaßstab 3 = Volumenmaßstab ML

L0

Zeit Mtt 0

= Zeitmaßstab

Mt

t0

Kraft MFF 0

= Kräftemaßstab

MF

F0

Tab. 4-4: Dimensionen der Basisgrößen

Daraus ergeben sich die Maßstäbe für die abgeleiteten Größen wie Geschwindigkeit v, Beschleunigung a, und die Massenkräfte.

Page 103: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Grenzschichttheorie 95 ___________________________________________________________________

Geschwindigkeit

M

M

O

O

M

O

t

Lt

L

c

c

Beschleunigung

2

M

O

M

O

M

M

O

O

M

O

t

tc

c

t

ct

c

a

a

Masse

M

O

MM

OO

M

O

v

v

m

m 3

Massenkraft

MM

OO

M

O

am

am

F

F

Tab. 4-5: Dimensionen der abgeleiteten Größen

Die Bedingung für dynamische Ähnlichkeit (Bertrand'sche Bedingungsgleichung) lautet

Gl. 4-117: 2

Liegen im wesentlichen nur Massekräfte vor, so sind die Maßstäbe , und frei wählbar. Die zusätzliche Berücksichtigung der Schwerkraft stellt eine zweite Bedingung dar und erfordert

Gl. 4-118:

1

1

M

O

MM

OO

MM

OO

m

m

gm

gm

am

am

zusätzlich gilt

Gl. 4-119: 21

1

M

O

M

O

g

g

a

a 2

Aufgrund der Proportionalität zwischen Masse, Gewicht und Volumen gilt

Gl. 4-120: 36 63

Dies bedeutet, dass nur ein einziger Maßstab frei gewählt werden kann, während alle anderen festgelegt sind. Soll zusätzlich noch eine dritte Bedingung, z.B. Ähnlichkeit der Reibungskräfte erfüllt werden, so sind die Schubspannungen zwischen Körperoberfläche und Fluid zu berücksichtigen

Gl. 4-121 21

M

M

O

O

M

O

A

FA

F

2

Diese Forderung kann aber wegen 63 nicht erfüllt werden Allgemein gilt: Modellgesetze lassen sich gleichzeitig nur für zwei Arten von Kräften erfüllen

Page 104: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Grenzschichttheorie 96 ___________________________________________________________________ In der Fluidmechanik ergeben sich daraus fünf Modellgesetze, die neben den Massenkräften noch folgende Kräfte berücksichtigen:

Reibungskräfte

Reynolds-Zahl

Re

LcLcRe

Gewichtskräfte

Froude-Zahl

Fr

gL

cFr

2

Druckkräfte

Euler-Zahl

Eu 2c

pEu

Periodendauer

Strouhal-Zahl

Sr

v

df

tc

LSr

Kompressibilität

Mach-Zahl

M

Schall

Strömung

c

cM

Tab. 4-6: Kennzahlen auf der Basis von Massenkräften

[m²/s] = kinematische Viskosität [Pas] = dynamische Viskosität

4.5.3 Reynoldszahl

Zur Abbildung reibungsbehafteter (viskoser) Effekte in einer Strömung, z.B. Reibungs-widerstand, Grenzschichten, Ablöseerscheinungen usw. ist es erforderlich die Reynoldszahl korrekt zu duplizieren. Dies erfordert die Abbildung des Verhältnisses der Reibungskräfte zwischen Fluid und Körperoberfläche zu den Trägheitskräften des strömenden Fluids.

Gl. 4-122: tafReibungskr

raftTrägheitskLcLc

Re

Trägheitskraft

Gl. 4-123: aVamFTr

Für die Anteile der Trägheitskraft, d.h. Volumen V und Beschleunigung a gilt

Gl. 4-124: 3LV

Gl. 4-125: 2t

La

eingesetzt in die Trägheitskraft FTr Gl. 4-123 folgt

Gl. 4-126: 2

22

23

t

LL

t

LLFTr

Mit der Abhängigkeit der Geschwindigkeit c

Gl. 4-127: t

Lc

folgt für die Trägheitskraft FTr

Gl. 4-128: 22 cLFTr

Page 105: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Grenzschichttheorie 97 ___________________________________________________________________ bzw.

Gl. 4-129: 22 cLkFTr

Reibungskraft

Gl. 4-130: dy

dcAAFR

Die Anteile der Reibungskraft verhalten sich entsprechend proportional

Gl. 4-131: 2LA

Gl. 4-132: Ldy

eingesetzt in Gl. 4-130 folgt für die Reibungskraft FR

Gl. 4-133: cLL

cLFR 2

bzw.

Gl. 4-134: cLCFR

Reynolds-Zahl

Gl. 4-135:

cL

C

kcL

C

k

cLC

cLk

F

F

R

Tr

22

Re

Gl. 4-136: .Re constcLcL

M

MM

O

OO

______________________________________________________________________________

Üb. 4-7: Ähnlichkeitsgesetze im Modellversuch

In der Messstrecke eines Wasserkanals befindet sich das Modell eines Autos im Maßstab 1:50 mit einer Länge von 10 cm. Mit welcher Geschwindigkeit bewegt sich das Originalfahrzeug, wenn in diesem Wasserkanalversuch bei einer Strömungs-geschwindigkeit von c = 12 m/s alle viskosen (= reibungsbehafteten) Phänomene vollständig simuliert werden? Kinematische Viskosität von Luft: Luft = 1510-6 m²/s Kinematische Viskosität von Wasser: Wasser = 10-6 m²/s ______________________________________________________________________________

Page 106: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Grenzschichttheorie 98 ___________________________________________________________________ 4.6 Grenzschichttheorie

Einer der Kernpunkte der auf Prandtl5 zurückgehenden Grenzschichttheorie beinhaltet die Aufteilung des Strömungsgebietes in einen wandnahen Bereich, der sogenannten Grenz-schicht, die aufgrund der reibungsbehafteten (viskosen) Fluidbewegung einen starken Geschwindigkeitsgradienten aufweist und einen äußeren Bereich, der Außenströmung, in der eine nahezu reibungsfreie Strömung vorliegt.

4.6.1 Grenzschicht

Bei einer realen Strömung wird das Fluid an der Körperoberfläche reibungsbedingt auf die Geschwindigkeit Null abgebremst (Haftungsbedingung). Als Grenzschicht wird das Übergangsgebiet zwischen Körperoberfläche (c = 0) und freier Anströmung (c = c) bezeichnet, wobei die Dicke der Grenzschicht definiert wird als der Abstand von der Körperoberfläche, an der die Strömung den Wert c,c 990 erreicht hat. Im Gegensatz zur

Geschwindigkeit c bleibt der Druck p in der Grenzschicht senkrecht zur Oberfläche nahezu konstant, d.h. der statische Druck der freien Außenströmung p wird der Grenzschicht aufgeprägt.

4.6.2 Verdrängungsdicke * der Grenzschicht

Da über Stromlinien kein Masse- und Energietransport erfolgen kann, bewirkt das Prinzip der Masseerhaltung, dass eine Strömungsverzögerung eine Stromlinien-erweiterung erzeugt und ebenso eine Strömungs-beschleunigung zu einer Stromlinienverengung führt. Infolge der Geschwindigkeitsverringerung innerhalb der Grenzschicht müssen die Stromlinien in der Grenz-schicht weiter auseinander liegen als in der Außen-strömung. Die daraus resultierende Verdrängungsdicke der Grenzschicht lässt sich über den Masseerhaltungs-satz berechnen. Der Massestrom durch die Stromröhre ist nur durch die Ein- bzw. Austrittsfläche A1 und A2 möglich.

Abb. 4-21: Massestrom durch eine Stromröhre

Somit muss in jedem beliebigen Querschnitt Ai der Stromröhre gelten

Gl. 4-137: .22211121 constAcAcmm

Die Verdrängungswirkung bzw. Versperrungseffekt der Grenzschicht kann als Aufdickung der Wand um die Verdrängungsdicke * der Grenzschicht interpretiert werden.

Gl. 4-138:

dyc

yc

0

* 1

Für eine vollständig laminare Grenzschicht gilt

5 Ludwig Prandtl, dt. Physiker, Göttingen (1875 - 1953)

Page 107: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Grenzschichttheorie 99 ___________________________________________________________________

Gl. 4-139:

3

1731

c

x,* (laminar)

und für die vollständig turbulente Grenzschicht beträgt die Verdrängungsdicke *

Gl. 4-140:

8

1017380 8610

cRe, .

x* (turbulent)

Abb. 4-22: Verdrängungsdicke der Grenzschicht

4.6.3 Grenzschicht an der längs angeströmten ebenen Platte

Die grundlegenden Eigenschaften einer Grenzschicht lassen sich an der Entwicklung der Strömung an einer ebenen Platte herleiten.

Abb. 4-23: Grenzschicht an der längs angeströmten ebenen Platte

Laminare Grenzschicht Der Staupunkt S befindet sich an der Vorderkante der Platte an deren Auftreffen die Stau-punktstromlinie in eine laminare Anlaufstromlinie über und unter der Platte verzweigt. Mit zunehmendem Abstand x zum Staupunkt erfolgt eine Zunahme der laminaren Grenzschicht-dicke entsprechend

c c

c

Page 108: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Grenzschichttheorie 100 ___________________________________________________________________

Gl. 4-141:

c

xx

x

lam

5Re

5 d.h. xlam

Mit wachsender Lauflänge destabilisiert die Strömung und schlägt am Umschlagpunkt (Transitionspunkt) von einer gleichmäßigen laminaren zu einer turbulenten Grenzschicht um. Eine turbulente Grenzschicht hat jedoch nichts mit einer abgelösten Grenzschicht zu tun. Es gilt in der Regel eher das Gegenteil, d.h. eine Strömung mit turbulenter Grenzschicht wird in aller Regel sehr viel länger der Körperkontur folgen als eine Strömung mit laminarer Grenzschicht. Dieser Umschlag erfolgt bei einer sog. kritischen Reynoldszahl. Für Luft gilt näherungsweise Rkrit = 3 - 5105, diese kann in günstigen Fällen aber auch erst bei Rkrit = 3106 liegen. Laminare Unterschicht In direkter Wandnähe bildet sich auch bei turbulenter Grenzschicht aufgrund der geringen Geschwindigkeiten infolge der Haftungsbedingung an der Wand eine laminare (viskose) Unterschicht mit einer Stärke von 0,02 – 0,05turb aus. Die Strömungsverhältnisse im Inneren der viskosen Unterschicht werden von Reibungskräften dominiert und die Dicke der laminaren Unterschicht U beträgt

Gl. 4-142: 7077 ,

'xlam

U Re

Rex' = Re-Zahl gebildet mit der Lauflänge x‘ der turbulenten Grenzschicht Turbulente Grenzschicht Bei voll ausgebildeter Turbulenz werden permanent Fluidteilchen in Drehbewegung versetzt, während andere gleichzeitig wieder abgebremst werden. Die Zufuhr von Energie infolge des Impulsaustauschs mit der Außenströmung bewirkt, dass die turbulente Grenzschicht ein höheres kinetisches Energieniveau aufweist als eine laminare Grenzschicht. Aufgrund der permanenten Durchmischung wird der Parallelbewegung der Strömung noch eine zusätzliche unregelmäßige Quergeschwindigkeit zur Hauptströmungsrichtung überlagert.

Abb. 4-24: Voll ausgebildete turbulente Grenzschicht an einer ebenen Platte, [ 14]

Aufgrund der permanenten Durchmischung stellt sich bei einer turbulenten Grenzschicht eine völlig andere Geschwindigkeitsverteilung ein als bei einer laminaren Grenzschicht. Der Mittelwert der Geschwindigkeit verteilt sich gleichmäßiger über den Querschnitt und hat

Page 109: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Grenzschichttheorie 101 ___________________________________________________________________

somit einen stärkeren Geschwindigkeitsanstieg dzdcx als im laminaren Fall. Aufgrund des

steileren Geschwindigkeitsgradienten stellt sich wegen dzdcx eine höhere Schub-

spannung und somit ein erhöhter Reibungswiderstand ein. Infolge der besseren Durchmischung ergibt sich ein erhöhter Wärmeübergang als im Vergleich zur laminaren Strömung. Das höhere kinetische Energieniveau der turbulenten Grenzschicht bewirkt auch eine Verzögerung der Ablösung. Die Dicke der turbulenten Grenzschicht turb einschließlich laminarer Unterschicht beträgt

Gl. 4-143: 20

5370

1370 ,

x

x

turb Rex,Re

x,

Rex' = Re-Zahl gebildet mit der Lauflänge x' der turbulenten Grenzschicht

Abb. 4-25: Laminares und turbulentes Geschwindigkeitsprofil

_________________________________________________________________________

Üb. 4-8: Längs angeströmte ebene Platte

geg.: ][50 hkmc , ]sm[,Luft2610115 , 5103kritR

ges.: Lage des Umschlagpunkts

Dicke der Grenzschicht am Umschlagpunkt

_________________________________________________________________________

4.6.4 Transition

Als Transition wird der Umschlag von einer laminaren zu einer turbulenten Strömung bezeichnet. Dieser Vorgang, der sich infolge hoher Reynoldszahlen von alleine einstellen kann (natürliche Transition) oder aber an Stolperstellen erzwungen werden kann (erzwungene Transition) stellt ein Stabilitätsproblem der Strömung dar, welches die Lösung der Grenzschicht-Differentialgleichung erfordert. Eine analytische Lösung gestaltet sich schwierig. Aber auch für numerische Verfahren stellt die Modellierung von Turbulenz und Ablösung ein Problem dar. Lediglich die experimentelle Simulation bei korrekter Reynolds-zahl, z.B. unter kryogenen Versuchsbedingungen, liefert eine korrekte Abbildung der Grenz-schicht, der Turbulenz und des Ablöseverhaltens.

Page 110: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Grenzschichttheorie 102 ___________________________________________________________________ Einflussfaktoren der Transition sind

- Geometrie des umströmten Körpers: Schlankheitsgrad, Zuspitzung - Turbulenzniveau in der Zuströmung - Reynoldszahl

Generell wird eine laminare Grenzschicht als unterkritisch und eine vollständig turbulente Grenzschicht als überkritisch bezeichnet. Bei scharfkantigen Körpern wirkt die Schneide als Stolperstelle, an der Querströmungen erzeugt werden, die zur Turbulenz führen. Erzwungene Transition bei Windkanalversuchen Aufgrund des Modellmaßstabs werden Versuche häufig mit einer niedrigeren Reynoldszahl durchgeführt als die, die sich bei der Originalausführung ergibt. Diese Re-Zahl kann so niedrig sein, dass hierbei keine natürliche Transition erfolgt. Die geometrische Verteilung von laminarer Strömung und turbulenter Strömung auf der Körperoberfläche bestimmt jedoch maßgeblich den Reibungswiderstand und das Ablöseverhalten. Um diese geometrische Verteilung im Versuch abzubilden, wird an einer empirisch ermittelten Stelle, z.B. 5% der Profiltiefe, der Umschlag von laminarer zu turbulenter Grenzschicht durch Stolperstellen, sogenannten Transitionslinien erzwungen. Möglichkeiten zur Transitionsfixierung Im Niedergeschwindigkeitsbereich finden in der Windkanalversuchstechnik als auch im Segelflugbereich Zackenbänder, die quer zur Anströmung aufgeklebt werden, Verwendung. Im Hochgeschwindigkeitsbereich wurde früher Karborund, ein Metallpulver, welches auf den Transitionslinien aufgeklebt wurde verwendet. Nachteilig waren hier insbesondere die schlechte Reproduzierbarkeit sowie die Verunreinigung der Strömung im Windkanal durch abgelöste Karborundteilchen, was bei Windkanälen mit einem geschlossenen Kreislauf zum ’Sandstrahlen’ des Modells führte. Einen wesentlich höheren Grad an Reproduzierbarkeit weisen aufgeklebte Zylinder (dots) auf.

Abb. 4-26: Zackenband am Höhenruder eines Segelflugzeugs (ASH25) zur Transitionsfixierung

Page 111: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Grenzschichttheorie 103 ___________________________________________________________________

Abb. 4-27: Transsitionsfixierung durch dots an einem Hochgeschwindigkeitswindkanalmodell

Abb. 4-28: Erzwingung von Transition durch ’dots’ am Seitenleitwerk eines Modells

Location XR XT

Disc height h

Disc diameter d

Disc spacing x

[mm] [mm] [mm] [mm] [mm]

Wing 23.0 4.2

0.102 1.090 2.54

Canard 4.6 1.5 Fin 10.0 3.0

Nose 38.0 n/a Intake 12.7 n/a

Tip pod 12.7 n/a

Page 112: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 104 ___________________________________________________________________

4.7 Widerstand von Körpern

4.7.1 Formen des Widerstands

In realen, reibungsbehafteten Strömungen erfährt jeder Körper infolge der Druckverteilung an seiner Oberfläche eine resultierende Kraft R, die im zweidimensionalen Fall (Profil) vektoriell in zwei Komponenten aufgeteilt werden kann,

- eine Komponente tangential zur Strömungsrichtung V (= Widerstand W) und - eine Komponente senkrecht zur Strömungsrichtung V (= Auftrieb A)

Die resultierende Kraft R infolge der Anströmung eines Tragflügelprofils lässt sich aufteilen in den Auftrieb A und den Widerstand W, bzw. eine Normalkraft N und eine Tangentialkraft T.

Abb. 4-29: Resultierende Kräfte an einem angeströmte Profil

In einer theoretisch reibungsfreien, zweidimensionalen Strömung (Potentialströmung) erzeugt das gleiche Profil zwar ebenfalls einen Auftrieb A, jedoch keinen Widerstand W (Abb. 4-30), d.h. die Integration der Druckverteilung um das Profil ergibt eine resultierende Kraft A (= Auftrieb), die senkrecht auf der Anströmrichtung V steht, jedoch keine Kraft tangential zur Strömungsrichtung, die dem Widerstand W in Abb. 4-29 entsprechen würde (d’Alembert’-sches Paradoxon).

Abb. 4-30: Resultierende Auftriebskraft in einer ebenen Potentialströmung

Reibung, wie sie in jeder realen Strömung auftritt, ist somit die physikalische Ursache für das Entstehen von Widerstand. Der Gesamtwiderstand eines umströmten Körpers lässt sich in einzelne Anteile zerlegen - Reibungswiderstand (bespülte Oberfläche) - Druck- oder Formwiderstand (Ablösung) - Induzierter Widerstand (Druckausgleich, auch bei reibungsfreier Strömung) - Interferenzwiderstand (Gegenseitige Beeinflussung von Baugruppen) - Wellenwiderstand (Totaldruckverluste infolge von Stößen) - Restwiderstand (Antennen, Anbauten, Bauungenauigkeiten, ...)

V

Page 113: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 105 ___________________________________________________________________ 4.7.2 Reibungswiderstand

Infolge der Rauigkeit an der Körperoberfläche werden die Fluidteilchen an der Oberfläche auf die Geschwindigkeit Null abgebremst (Haftungsbedingung). Ausgehend von der Geschwindigkeit Null an der Körperoberfläche wächst mit zunehmendem Abstand von der Wand die Geschwindigkeit bis zum Wert der freien Anströmung c an. Es bildet sich dadurch ein Geschwindigkeitsgradient in der Strömung senkrecht zur Oberfläche, der sich durch das Auftreten einer Schubspannung manifestiert. Die Stärke der Schubspannung lässt sich über einen Plattenzugversuch ermitteln.

Gl. 4-144: dz

dc

A

F x

Der Proportionalitätsfaktor entspricht der dynamischen Viskosität [Pas]. Der Geschwindig-keitsgradient dzdcx wird als Schergefälle D bezeichnet.

Gl. 4-145: dz

dcD x

Abb. 4-31: Scher- oder Schubspannung bzw. Tangentialspannung

Für parallele Schichtströmungen lässt sich für dünne Schichten die nicht-lineare Geschwindigkeitsverteilung in der Scherschicht linearisieren.

Abb. 4-32: Parallele Schicht- bzw. Scherströmung (Couette6-Strömung)

6 Maurice Frédéric Alfred Couette, frz. Forscher (1858 - 1943)

Page 114: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 106 ___________________________________________________________________ Reibungswiderstandsbeiwert Der Reibungswiderstand eines umströmten Körpers berechnet sich aus der Größe seiner bespülten Oberfläche O und dem Reibungsbeiwert cR, der sich aus der hydraulischen

Beschaffenheit der Oberfläche ergibt sowie dem Staudruck 22 cq .

Gl. 4-146: 2

2cOcW RR

Für eine ebene Platte an der eine laminare Grenzschicht anliegt gilt für den dimensionslosen Reibungsbeiwert cR

Gl. 4-147: Re

,cR

3281

wobei die Reynoldszahl mit der Länge der Platte berechnet wird. Der Reibungsbeiwert bei vollständig turbulenter Grenzschicht der ebenen Platte, d.h. von der Plattenvorderkante liegt eine turbulente Grenzschicht an, beträgt

Gl. 4-148: 5

0740

Re

,cR

Für größere Reynoldszahlen, d.h. ab Re > 107, sollte die Beziehung nach Prandtl-Schlichting verwendet werden

Gl. 4-149: 582

4550,R

Relog

,c

In vielen Fällen liegt erst nach einer laminaren Anlaufstrecke eine turbulente Grenzschicht vor. Die Berücksichtigung der laminaren Anlaufstrecke erfolgt mit Hilfe der Korrekturfaktoren nach Prandtl mit

Gl. 4-150: Re

A

Re

,cR

5

0740

oder

Gl. 4-151: Re

A

Relog

,c ,R 582

4550

Rekrit 3105 5105 106 3106

A 1050 1700 3300 8700

Tab. 4-7: Korrekturfaktoren für laminare Anlaufstrecke

Bei Berücksichtigung der laminaren Anlaufstrecke wird die Reynoldszahl auf die gesamte Plattenlänge bezogen. Die Korrektur erfordert die Berechnung des Umschlagpunktes (Transitionspunkt) von laminarer zu turbulenter Grenzschicht. Einfluss der Rauigkeit auf den Reibungswiderstand Bei einer laminaren Grenzschicht hat die Oberflächenrauigkeit kaum einen Einfluss auf den Reibungswiderstand, da Vertiefungen aufgefüllt werden und das Fluid darüber hinwegströmt. Die Rauigkeit hat jedoch einen starken Einfluss auf die Transition, d.h. der Umschlag von laminarer zu turbulenter Grenzschicht erfolgt bei einer rauen Wand deutlich früher als bei einer glatten Wand.

Page 115: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 107 ___________________________________________________________________ Hydraulisch glatte Oberfläche

Als hydraulisch glatt wird eine Oberfläche definiert, deren maximale Rautiefe k kleiner ist als die laminare Unterschicht und dadurch die Uneben-heiten in der Unterschicht verschwinden. Die relative Rauigkeit k/l entspricht der Rauigkeit k bezogen auf Plattenlänge l

Abb. 4-33: Rautiefe k

Im Experiment können unterschiedliche Rauigkeiten durch Sand unterschiedlicher Körnung simuliert werden, der sog. Sandrauigkeit kS.

Gl. 4-152:

52

621891

.

SR k

llog,,c

für 62 1010

Sk

l

Strömungsbelastete Bauteile, wie z.B. Turbinenschaufeln sollten aus Gründen der Wider-standsminimierung die Forderung nach einer hydraulisch glatten Oberfläche erfüllen. Die zulässige relative Sandrauigkeit hängt von der Reynoldszahl ab, z.B.

Re = 106 kS/l = 10-4 Re = 108 kS/l = 10-6

d.h. mit zunehmender Re-Zahl steigen die Anforderungen an die Oberflächengüte. Die Bedingung für hydraulisch glatte Oberfläche können als Funktion der Re-Zahl definiert werden.

Gl. 4-153: 100Re

zulässigl

k

oder

Gl. 4-154:

ckzulässig

100

Objekt Geschwindigkeit [km/h] [m/s] kin, Viskosität [m²/s] kS,zulässig [mm] Schiff 50

20 14 5.5

1,010-6

1,010-6 0,007 0,020

Flugzeug (H = 0)

600 200 150

167 56 42

15,110-6

15,110-6

15,110-6

0,010 0,025 0,035

Flugzeug (H = 10 km)

600 167 35,310-6 0,020

Gebläse 15 50

15,110-6

15,110-6 0,100 0,030

Wasserturbine 4 10

1,010-6

1,010-6 0,025 0,010

Gasturbine 300-700 40-6010-6 0,005 - 0,020 Dampfturbine 100

200 1,510-6

1610-6 0,0015 0,008

Tab. 4-8: Zulässige Rauigkeiten für hydraulisch glatte Oberflächen

Page 116: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 108 ___________________________________________________________________

Abb. 4-34: Reibungswiderstand der ebenen Platte

4.7.3 Druckwiderstand

Ideale reibungsfreie Strömung In einer Potentialströmung, d.h. einer reibungsfreien idealen Strömung folgen die Stromlinien der Kontur. Zusätzlich zu dem vorderen Staupunkt bildet sich stromabwärts auf der Rück-seite der Platte ein zweiter Staupunkt. Die Gesamtenergie entlang jeder Stromlinie ist konstant und somit ist auch die Bernoulli-Gleichung entlang jeder Stromlinie erfüllt. Diese Umströmung verursacht eine symmetrische Druckverteilung auf der Zuströmseite wie auf der Abströmseite und es kann keine Druckdifferenz zwischen Vorder- und Rückseite entstehen. Da auf beiden Seiten der Platte der gleiche Druck herrscht bildet sich somit auch kein Druckwiderstand.

Abb. 4-35: Potentialströmung um eine ebene Platte

Page 117: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 109 ___________________________________________________________________ Potentialströmungen können in der Natur nicht vorkommen, bilden jedoch aufgrund der einfachen mathematischen Zugänglichkeit eine Möglichkeit Strömungsfelder näherungs-weise gut zu erfassen. Dabei ist jedoch zu beachten, dass diese Näherungslösungen nur angewendet werden können auf Strömungen, die lediglich kleinen Richtungsänderungen unterworfen sind. Sobald größere Krümmungen überwunden werden müssen und die Strömung zur Ablösung von der Kontur neigt, verlieren Potentialverfahren ihre Gültigkeit. Reale reibungsbehaftete Strömung Bei der realen, reibungsbehafteten Strömung um eine ebene Platte verliert die Strömung infolge Reibung auf der Zuströmseite an kinetischer Energie und kann den Druckanstieg an der Plattenrückseite nicht mehr überwinden und bewegt sich in Richtung des geringsten Druckanstiegs. Diese Strömungsablösung erzeugt ein Nachlaufgebiet (Totwasser) auf der Rückseite der Platte. Der Gesamtdruck im Nachlaufgebiet entspricht ungefähr dem der Außenströmung, jedoch ist die Geschwindigkeit höher, wodurch sich ein geringerer statischer Druck als in der Außenströmung einstellt. Dieses Unterdruckgebiet an der Rück-seite bildet eine Kraft entgegen der Fortbewegungsrichtung der Platte, den sog. Druck- oder Formwiderstand WD.

Abb. 4-36: Potentialströmung um eine ebene Platte

Die Entstehung des Druck- oder Formwiderstand WD kann auch durch eine Energiebilanz am Gesamtsystem begründet werden. Infolge der Bewegung der Platte durch ein Strömungs-feld, welches sich zum Zeitpunkt t = t1 in Ruhe befindet, wird das Fluid zum Zeitpunkt t = t2 aus der Ruhe in eine rotatorische Bewegung beschleunigt. Zur Beschleunigung einer Masse muss immer Arbeit verrichtet werden. Diese Arbeit bzw. Energie muss zusätzlich zur Vortriebsleistung des durch das Strömungsfeld bewegten Körpers verrichtet werden und schlägt sich somit negativ als Widerstand in der Bilanz nieder.

Page 118: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 110 ___________________________________________________________________ Prinzip der Strömungsablösung Ablösung tritt immer dann auf, wenn die Strömung einen Druckanstieg in Strömungsrichtung nicht mehr überwinden kann, z.B. bewirken große Richtungsänderungen eine Aufweitung der Stromlinien und somit eine Reduzierung der Geschwindigkeit c, wodurch sich der statische Druck p entsprechend der Bernoulli-Gleichung (Druckform)

Gl. 4-155: .2

2 constpcpt

erhöht. Das Prinzip der Strömungsablösung lässt sich an dem in Abb. 4-37 skizzierten Strömungs-verlauf über eine stark gekrümmt Oberfläche erläutern.

Abb. 4-37: Grenzschichtablösung mit Rückströmgebiet

Bereich B Die Strömungsbeschleunigung infolge des reduzierten Strömungsquerschnitts, erkennbar an der Verengung der Stromlinien, wirkt der reibungsbedingten Verzögerung der Strömung innerhalb der Grenzschicht entgegen und bewirkt, dass die beschleunigte Strömung nicht ablöst. Die maximale Strömungsgeschwindigkeit wird im Punkt G und dadurch gleichzeitig auch das Druckminimum erreicht. Bereich V Die Verzögerung der Außenströmung, erkennbar an der Aufweitung der Stromlinien, führt zu einem Druckanstieg. Da das Fluid aber bereits in der Grenzschicht verzögert wird, muss zur Bewältigung des Massestroms die Grenzschichtdicke weiter zunehmen. Die Geschwindig-keitsverringerung bewirkt aber auch eine Verringerung der kinetischen Energie, wodurch die Strömung anfälliger gegenüber Störungen wird. Der zunehmende Druck bewirkt, dass Fluid-teilchen an der Wand zum Stillstand kommen und nicht in das Gebiet mit höherem Druck vordringen. Im Punkt A weicht die Strömung in Richtung des geringsten Drucks aus und löst sich von der Wand ab. Nach der Ablösung strömen im Wandbereich Fluidteilchen dem Druckgradienten folgend entgegen der Hauptströmungsrichtung und bilden ein Rückströmgebiet, welches die Außen-

Page 119: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 111 ___________________________________________________________________ strömung von der Körperoberfläche abdrängt. Die Unstetigkeitsfläche zwischen Grenzschicht und Außenströmung löst sich aufgrund der Labilität in Einzelwirbel auf. Diese Wirbel-erzeugung bedeutet eine Beschleunigung ruhender Masse in eine Drehbewegung wozu Arbeit verrichtet werden muss, die sich als Druck- oder Formwiderstand in der Bilanz nieder-schlägt. Aufgrund des höheren kinetischen Energieniveaus der turbulenten Grenzschicht im Vergleich zur laminaren Grenzschicht, neigt eine turbulente Grenzschicht weniger zur Ablösung als die laminare Grenzschicht. Zu beachten ist, dass entsprechend der Bernoulli-Gleichung eine Erhöhung der Strömungsgeschwindigkeit immer mit einer Abnahme des statischen Drucks einhergeht und umgekehrt eine statische Druckerhöhung immer an eine Strömungsverzögerung gekoppelt ist, Abb. 4-37.

Abb. 4-38: Stromlinienverlauf bei reibungsfreier Strömung und reibungsbehafteter Strömung

Abb. 4-39: Kriechende Strömung, laminar, c = 1 mm/s, turbulente Strömung, Re = 2000 [ 14]

Page 120: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 112 ___________________________________________________________________ Karman'sche Wirbelstraße7 In Abhängigkeit von Strömungsgeschwindigkeit und Körpergeometrie können bei quer angeströmten Körpern alternierend links- und rechtsdrehende Wirbel an der Rückseite ablösen. Sofern der Wirbelabstand h von der Strömungsachse zum Wirbelabstand L in Strömungsrichtung das Verhältnis 280,Lh bildet, sind solche Wirbelstraßen sehr stabil. Bei quer angeströmten Antennen oder Drähten kann dies zur Bildung eines Pfeiftons führen. Abhilfe schaffen hier Drähte, die spiralförmig um die Antenne gewunden werden, bzw. Metallwendeln, die zur Vermeidung von Resonanzfrequenzen um Kamine angebracht werden können.

Abb. 4-40: Karman'sche Wirbelstraße

Nachlaufdelle Die Beschleunigung eines ruhenden Fluids in eine Rotationsbewegung, z.B. zur Erzeugung einer Wirbelstraße, erfordert die Verrichtung von Arbeit. Dieser Energieaufwand macht sich in einem Geschwindigkeits- bzw. Impulsverlust stromabwärts bemerkbar und wird als Nachlaufdelle bezeichnet. Aus der Vermessung des Geschwindigkeitsfelds (Impulsverlust) stromabwärts eines Körpers mit einem Nachlaufrechen kann auf den Druckwiderstand des Körpers geschlossen werden.

Abb. 4-41: Bestimmung des Druckwiderstands eines Körpers aus dem Impulsverlust

7 Todor Kármán, ungarischer Physiker, 1881 - 1963

Page 121: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 113 ___________________________________________________________________

Druckwiderstand

Gl. 4-156: dSqqWS

D

Abb. 4-42: Nachlaufrechen

Laminare und turbulente Ablösung

Abb. 4-43: Ebene Platte, laminare Ablösung, = 2,5°, Re = 104, [ 14]

Abb. 4-44: Ebene Platte, turbulente Ablösung, = 2,5°,Re = 5104, [ 14]

Abb. 4-45: Zylinder, laminare (oben) und turbulente (unten) Ablösung, [ 14]

Page 122: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 114 ___________________________________________________________________ Bestimmende Größe für den Druckwiderstand ist die Größe und Form des abgelösten Totwassergebiets, d.h. konstruktive Maßnahmen zur Verringerung des Druckwiderstands zielen immer auf eine Verkleinerung des Totwassergebiets ab. Dies ist entweder durch die Zufuhr von kinetischer Energie in die Grenzschicht oder durch das Erzwingen einer Transition von laminarer zu turbulenter Grenzschicht möglich. Eine turbulente Grenzschicht verursacht zwar einen höheren Reibungswiderstand, hat aber aufgrund der größeren kinetischen Energie eine geringere Neigung zur Ablösung als im laminaren Fall. Zusätzlich mit der Verkleinerung des Totwassergebiets und somit einer Verringerung des Druckwider-stands behalten Ruder und Klappen infolge der nun anliegenden Strömung ihre Wirksamkeit, die andernfalls bei abgelöster Strömung verloren geht.

Widerstandsreduzierung durch Verkleinerung des Ablösegebiets Laminare Grenzschicht (unterkritisch), Ablösewinkel α ≈ 70 bis 80° Turbulente Grenzschicht nach Stolperdraht (überkritisch), Ablösewinkel α ≈ 110 bis 120°

Abb. 4-46: Kugel- oder Zylinderumströmung mit prinzipiellem Stromlinien- und Druckverlauf

Page 123: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 115 ___________________________________________________________________

Abb. 4-47: Verzögerung der Ablösung durch Spaltklappen bei Hochauftriebssystemen

4.7.4 Induzierter Widerstand

In einer theoretisch reibungsfreien, zweidimensionalen Strömung um einen Körper (z.B. Profil) ergibt die Integration der Druckkräfte eine resultierende Kraft A (= Auftrieb), die senkrecht auf der Anströmrichtung V steht, jedoch keine Kraft tangential zur Strömungs-richtung, d.h. einen Widerstand W (d'Alembert'sches Paradoxon). Betrachtet man jedoch einen Körper, der dreidimensional umströmt wird, z.B. einen Tragflügel, so stellt sich aufgrund der Druckunterschiede von Ober- zu Unterseite am Rand des Flügels eine Ausgleichströmung quer zur Anströmrichtung ein und es bilden sich an beiden Flügelenden je ein Randwirbel. Die Erzeugung dieser Wirbel erfordert die Verrichtung von Arbeit, da eine Luftmasse aus der Ruhe in eine Drehbewegung beschleunigt wurde, die jedoch zu dem Vortrieb des Flugzeugs keinerlei Beitrag leistet. Die verrichtete Arbeit schlägt sich somit negativ in der Bilanz als induzierter Widerstand nieder. Ein dreidimensionaler Körper erfährt somit auch in einer theoretisch reibungsfreien Strömung einen Widerstand.

Abb. 4-48: Entstehung der freien Wirbel am Tragflügel endlicher Spannweite

Page 124: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 116 ___________________________________________________________________ Bestimmungsgrößen des induzierten Widerstands am Beispiel des Tragflügels Der Beiwert des induzierten Widerstands CWi berechnet sich entsprechend

Gl. 4-157:

2A

Wi

CeC

mit e = Formfaktor, bei idealer, sog. 'elliptischer' Auftriebsverteilung gilt e = 1 = Streckung, Verhältnis von Spannweite b zur Flügelfläche S

Gl. 4-158: S

b2

Der Auftriebsbeiwert ergibt sich aus dem Staudruck 22 cq und der Flügelfläche S zu

:Gl. 4-159 Sc

ACA

22

Eine Minimierung des induzierten Widerstands lässt sich somit durch eine Minimierung des Auftriebs oder eine Maximierung der Flügelstreckung erreichen.

Abb. 4-49: Einfluss der Streckung auf den induzierten Widerstand CWi

Bei Verkehrsflugzeugen liegt der Auftriebsbeiwert im Reiseflug bei ca. CA,Reiseflug 0,5 - 1,0 und bei Start oder Landung aufgrund der deutlich niedrigeren Start- bzw. Landegeschwindigkeit im Vergleich zur Reisefluggeschwindigkeit in einer Größenordnung ca. CA,Start/Landung 5 – 6. Da der Auftriebsbeiwert quadratisch in den induzierten Widerstand und somit die Stärke der erzeugten Wirbelschleppen eingeht, stellen insbesondere Start und Landung die Flugabschnitte dar, in denen Wirbelschleppen mit maximaler Stärke erzeugt werden. Dies ist bei der zeitlichen und räumlichen Staffelung des an- und abfliegenden Verkehrs an Flughäfen zu beachten.

Segelflugzeuge 15 - 30 Sportflugzeuge 6 – 10 Verkehrsflugzeuge 6 - 20 Kampflugzeuge 2 - 5

Page 125: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 117 ___________________________________________________________________

Abb. 4-50: Freie Wirbel am Tragflügel endlicher Spannweite

Abb. 4-51: Wirbelschleppe eine Boeing 747

Page 126: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 118 ___________________________________________________________________ Die durch die Wirbel induzierte Beschleunigung des Strömungsfeldes lässt sich aber auch zur Reichweitenerhöhung bei engen Formationsflügen ausnutzen. Der Tragflügel der Folge-maschine erfährt durch den induzierten Wirbel der Führungsmaschine eine zusätzliche Anströmgeschwindigkeit, die seinen effektiven Anstellwinkel erhöht und somit seinen Gesamtwiderstand verringert. Dieses Verfahren ist allerdings in der Vogelwelt schon lange bekannt und lässt sich insbesondere bei der V-Formation von Zugvögeln gut beobachten.

Abb. 4-52: Widerstandsreduzierung im Formationsflug

4.7.5 Interferenzwiderstand

Die Kombination von Baugruppen führt in der Regel immer zu einer Veränderung der Strömungsverhältnisse des Gesamtsystems, d.h. der Gesamtwiderstand ist häufig größer als die Summe der Einzelwiderstände. Eine Verringerung ist jedoch ebenfalls möglich und basiert auf der Verkleinerung des Ablösegebiets durch geeignete Vorkörper, z.B. beim Windschattenfahren im Radsport, bei Autorennen oder bei Kolonnenfahrten von LKWs.

Abb. 4-53: Strömung am Einzelrohr und am fluchtenden Rohrbündel

Links: Großes Ablösegebiet verursacht hohen Widerstand

Rechts: Widerstandskörper mit Platte: geringerer Gesamtwiderstand

Page 127: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 119 ___________________________________________________________________ Die Reduzierung des aerodynamischen Widerstands cW,aero ist in Abhängigkeit von dem Fahrzeugabstand a in Abb. 4-54 dargestellt.

Abb. 4-54: Reduzierung des aerodynamischen Widerstands bei LKW-Kolonnen, [ 7]

4.7.6 Gesamtwiderstand

Der Gesamtwiderstand eines umströmten Körpers setzt sich zusammen aus der Summe der Einzelwiderstände:

Gl. 4-160: tindDRges WWWWWW Resint

Unter dem Restwiderstand Wrest werden alle Zusatzwiderstände zusammengefasst, die durch Anbauteile oder innere Durchströmung entstehen wie z.B. Radverkleidung, Streben, Spiegel, Kühlluft, Innenbelüftung, Zierleisten etc. Bei Triebwerken tritt zusätzlich noch ein Einlauf-widerstand (spillage drag) auf. Bei bekanntem Widerstandsbeiwert Cw und der Referenzfläche S ergibt sich der Gesamt-widerstand zu

Gl. 4-161: ScCSqCW WW 2

2

Cw - Wert Bei dem Cw – Wert handelt es sich um einen dimensionslosen Beiwert, der von der Geometrie des umströmten Körpers abhängt und alle Widerstandsanteile berücksichtigt, d.h. er beschreibt die 'aerodynamische Güte' des Entwurfs.

Gl. 4-162:

Sc

W

Sq

WCW

2

2

Zur Bestimmung des Beiwerts kann die Bezugsfläche S prinzipiell frei gewählt werden, sofern bei der Umrechnung in Absolutwerte wieder die identische Fläche, bzw. bei Modell-versuchen, die dem Maßstab entsprechend skalierte Fläche verwendet wird. Üblich ist die Verwendung der projizierten Stirnfläche (Automobilbau) oder die projizierte Flügelfläche (Flugzeugbau). Die alleinige Angabe des Cw – Wertes (KFZ-Werbung) erlaubt noch keinen

Page 128: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 120 ___________________________________________________________________ Rückschluss auf den Anteil des aerodynamischen Widerstands am Gesamtwiderstand und damit den Treibstoffverbrauch; hier ist zusätzlich noch die dazugehörige Bezugsfläche S erforderlich. _________________________________________________________________________

Üb. 4-9: Windlast auf einen Kamin

Ein Kamin mit einer Höhe H = 100 m hat am Boden einen Durchmesser d1 = 6 m und an der Spitze einen Durchmesser d2 = 0.5 m. Der Durchmesser ändert sich linear mit der Höhe. Die Windgeschwindigkeit beträgt c = 1,6 m/s. Bei einer Dichte von = 1,234 kg/m³ beträgt die kinematische Zähigkeit der Luft = 1510-6 m²/s. Der Widerstandsbeiwert des Kamins kann im unterkritischen Bereich (Red < 3,5105) mit cw,unter = 1,2 und im überkritischen Bereich mit cw,über = 0,4 abgeschätzt werden. Wie hoch ist unter diesen Bedingungen die resultierende Kraft auf den Kamin? _________________________________________________________________________ Gesamtwiderstand einfacher Körper

Tab. 4-9: Gesamtwiderstand rotationssymmetrischer Körper

Tab. 4-10: Gesamtwiderstand ebener Platten

Rechteckige Platte

b/h 1 2 4 10 18

cW 1.10 1.15 1.19 1.29 1.4 2.01

Page 129: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstand von Körpern 121 ___________________________________________________________________

Tab. 4-11: Gesamtwiderstand rotationssymmetrischer Körper

Page 130: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Kugelumströmung 122 ___________________________________________________________________

4.8 Kugelumströmung

4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung)

Bei geringen Geschwindigkeiten und somit sehr kleinen Re-Zahlen stellt sich auch bei realen Strömungen eine Stromlinienverteilung ein, die näherungsweise der der idealen Potential-strömung entspricht. Solche Strömungen werden als kriechende Strömungen bezeichnet und können z.B. bei dem Fließverhalten von flüssigem Beton, Zahnpasta oder Lavaströmen beobachtet werden. Unter der Annahme einer idealen, reibungsfreien Strömung berechnen sich Geschwindigkeit, Druck und Druckbeiwert als Funktion des Umfangswinkels

Geschwindigkeit auf der Oberfläche cS

Gl. 4-163: sin2

3 ccS

Druckverteilung pS

Gl. 4-164:

2

2 12 c

ccpp S

S

Abb. 4-55: Reibungsfreie Kugelumströmung

Druckbeiwert cp

Gl. 4-165: 2

2

2sin

4

911

2

c

c

c

ppc SS

p

4.8.2 Reibungsbehaftete Umströmung der Kugel

In einer realen, reibungsbehafteten Strömung stellt sich in Abhängigkeit von der Struktur der Grenzschicht ein unterschiedlich großes Ablösegebiet auf der strömungsabgewandten Seite der Kugel ein (vgl. Kap. 4.7.3 Druckwiderstand).

laminare Grenzschicht Ablösung bei ≈ 70° - 80° turbulente Grenzschicht Ablösung bei ≈ 110° - 120°

Abb. 4-56: Reibungsbehaftete Kugelumströmung

Page 131: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Kugelumströmung 123 ___________________________________________________________________ Die Strömungsverhältnisse an einer Kugel werden maßgeblich vom Zustand der Grenz-schicht dominiert. In Abhängigkeit davon ob es ich um eine unterkritische (laminare) oder eine überkritische (turbulente) Grenzschicht handelt, verschiebt sich die Position der Ablösestelle auf der Kugeloberfläche (vgl. Abb. 4-56). Die Lage der Ablösestelle wiederum definiert die Größe des sich daraus ergebenden Totwassergebiets stromabwärts der Kugel, welches wiederum die strömungsphysikalische Ursache für den Druck- bzw. Formwiderstand darstellt. Bei kleinen Reynoldszahlen ( 51071 ,ReD ), d.h. fast vollständig laminarer Umströmung, lässt sich der Widerstandsbeiwert cW der Kugel über unterschiedliche Näherungsformeln abschätzen, wobei die Reynoldszahl mit dem Kugeldurchmesser D berechnet wird.

Gl. 4-166: D

W Rec

24

Gl. 4-167: 40424

,ReRe

cDD

W

Gl. 4-168: 23056521

,Re

,

Re

,c

DDW

Abb. 4-57: Widerstandstandsbeiwert einer laminar umströmten Kugel

Der Umschlag von einer laminaren zu einer turbulenten Grenzschicht erfolgt nicht bei einer bestimmten Re-Zahl, sondern in einem Übergangsbereich (kritischer Bereich), sofern die Transition nicht über eine Transitionsfixierung erzwungen wird.

Page 132: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Kugelumströmung 124 ___________________________________________________________________

Abb. 4-58: Widerstandsbeiwert der Kugel bei unter- und überkritischer Anströmung

Bei realen Strömungen wird ein Körper nur selten einer vollständig laminaren Strömung begegnen. Lediglich bei sehr kleinen Reynoldszahlen, Flügen in großen Höhen in der Stratosphäre oder in einem Laminarwindkanal (Eiffelkanal) wäre dies z.B. möglich. Der Verlauf des Widerstandsbeiwerts einer Kugel bei vollständig laminarer Anströmung entspricht der rechten Kurve in Abb. 4-58. Die linke Kurve beschreibt den Verlauf des Widerstandsbeiwertes für den Fall, dass die Strömung bereits vor dem Auftreffen auf die Kugel vollständig turbulent ist. Der signifikant geringere Kugelwiderstand bei vollständig turbulenter Anströmung im Vergleich zur laminaren Anströmung ergibt sich aufgrund der länger anliegenden turbulenten Grenzschicht und dem dadurch kleineren Ablösegebiet auf der stromabgewandten Seite der Kugel (vgl. Abb. 4-56). Der höhere Reibungswiderstand der turbulenten im Vergleich zur laminaren Grenzschicht wirkt sich deutlich geringer auf den Gesamtwiderstand aus, als der höhere Druckwiderstand infolge eines größeren Ablöse-gebiets.

Bei 51071 ,Re bleibt die Strömung trotz 'Stolperdraht' laminar und lässt sich nicht in den

turbulenten Zustand zwingen. In dem Übergangsbereich von 55 100548531071 ,,Re, D wird die kritische Reynoldszahl bei der eine natürliche, also Re-Zahlabhängige Transition stattfindet, per Definition festgelegt auf die Reynoldszahl, bei der der Widerstandsbeiwert den Wert 30,cW erreicht, d.h.

Gl. 4-169: 30,cReRe Wkrit .

Ab einer Reynoldszahl von 5105 DRe erfolgt mit zunehmender Reynoldszahl wieder ein Anstieg des Widerstands. Die Größe des Ablösegebiets verändert sich nicht mehr, d.h. der Druckwiderstand bleibt konstant, der Reibungswiderstand erhöht sich jedoch als Funktion der Reynoldszahl und wird zur dominierenden Größe.

laminare Anströmung

turbulente Anströmung

dc

ReD

Page 133: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Kugelumströmung 125 ___________________________________________________________________ Einfluss einer erzwungenen Transition durch Stolperdraht Die deutliche Reduzierung des Widerstands einer Kugel durch eine erzwungene Transition ist in Abb. 4-59 skizziert.

Abb. 4-59: Einfluss einer erzwungenen Transition auf den Widerstand

Turbulenzfaktor TF Natürliche, d.h. nicht erzwungene Transition ist eine Funktion der Turbulenz der Zuströmung, die sich durch den Turbulenzfaktor TF beschreiben lässt. Dabei wird die kritische Re-Zahl einer theoretisch laminaren Zuströmung mit 510054 ,Rekrit ins Verhältnis gesetzt mit der

Reynoldszahl, bei welcher der Widerstandsbeiwert der Kugel den Wert 30,cW erreicht.

Gl. 4-170:

30

10054laminar 5

,cRe

,

ZuströmungRe

ReTF

Wkritkrit

krit

Würde der Körper eine vollständig laminare Zuströmung erfahren, so ergibt dies einen Turbulenzfaktor von 1TF . Bei einer vollständig turbulenten Zuströmung ergibt sich ein

Turbulenzfaktor von 42,TF . Der Druckbeiwert an der Rückseite der Kugel (= Basisdruck) bei kritischer Re-Zahl ergibt sich zu

Gl. 4-171: 220

2

302

,c

ppc,c pW

Insbesondere bei Windkanalmessungen ist der Turbulenzfaktor zur Bestimmung der realen Reynoldszahl erforderlich. Die mittels der Beziehung

Gl. 4-172:

refMessung

lc Re

für die Versuchsbedingungen berechnete Reynoldszahl geht von einer vollständig laminaren Anströmung aus und ist noch um den Turbulenzfaktor TF zu korrigieren, um das in der Strömung vorliegende Turbulenzniveau zu berücksichtigen.

Gl. 4-173: Messungeff TF ReRe

Page 134: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Kugelumströmung 126 ___________________________________________________________________ Turbulenzgrad Tu Der Turbulenzgrad einer Strömung wird durch die Überlagerung der Strömungsge-schwindigkeit c der freien Anströmung mit Störgeschwindigkeiten wvu ,, in Richtung der drei Koordinatenachsen zyx ,, beschrieben.

Gl. 4-174: 222

3

11wvu

cTu

Diese Störgeschwindigkeiten lassen sich zu einer mittleren Störgeschwindigkeit, oder mittleren Quergeschwindigkeit c zusammenfassen

Gl. 4-175: 222

3

1wvuc

und für den Turbulenzgrad gilt

Gl. 4-176:

c

cTu

Einfluss der Rauigkeit auf den Widerstand Im unterkritischen Bereich hat eine größere Rauigkeit die Wirkung eines Stolperdrahts zur Transitionserzwingung und wirkt sich so insgesamt widerstandsverringernd aus, wohingegen im überkritischen Bereich eine größere Rauigkeit eine Vergrößerung des Widerstands bewirkt. Mit zunehmender Rauigkeit treten drei unterschiedliche Effekte auf

- Die Widerstandsreduzierung infolge der Transition wird immer geringer - Die plötzliche Widerstandsreduzierung nach der Transition erfolgt bei immer

kleineren Reynoldszahlen - Der Widerstand bei turbulenter Grenzschicht steigt immer weiter an

Abb. 4-60: Einfluss der Rauigkeit auf den Widerstand

Page 135: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Zylinderumströmung 127 ___________________________________________________________________

4.9 Zylinderumströmung

4.9.1 Ideale reibungsfreie Strömung (Potentialströmung)

Unter der Annahme einer idealen, reibungsfreien Strömung und eines unendlichen langen Zylinders, d.h. es liegt eine zweidimensionale Strömung vor, ergibt sich für die Geschwindig-keit und die Druckverteilung an der Oberfläche des Zylinders als Funktion des Umfang-winkels Geschwindigkeit an der Oberfläche

Gl. 4-177: sin2 ccS

Druckverteilung an der Oberfläche

Gl. 4-178: 2sin41 pc

4.9.2 Reibungsbehaftete Umströmung eines Zylinders

Die Strömungsverhältnisse an einem quer angeströmten Zylinder gleichen denen an einer Kugel. Die Umfangswinkel an denen sich die Strömung ablöst betragen für eine laminare Grenzschicht (unterkritisch) ca. ≈ 80° und bei einer turbulenten Grenzschicht (überkritisch), ca. ≈ 140°. Im Nachlauf des Zylinders können sich Wirbelsysteme mit alternierender Drehrichtung bilden (Karman'sche Wirbelstraße, Abb. 4-40). Allgemein gilt für quer angeströmte Körper mit großem Dickenverhältnis und deutlichen Unterschieden im Widerstand bei unterkritischer und überkritischer Strömung, dass sich die kritische Reynolds-Zahl mit zunehmender Rauigkeit zu kleineren Werten verschiebt.

Abb. 4-61: Widerstandsbeiwerte von Kugel und Zylinder

Der in Abb. 4-61 skizzierte Verlauf des Zylinderwiderstands als Funktion der Reynoldszahl bezieht sich auf einen theoretisch unendlich langen Zylinder, d.h. es liegt eine zwei-dimensionale Strömung vor. Für quer angeströmte Zylinder oder Prismen lassen sich die die cW - Werte der zweidimensionaler Anströmung durch einen Korrekturfaktor K entsprechend Tab. 4-12 auf eine dreidimensionale Umströmung anpassen.

Page 136: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Zylinderumströmung 128 ___________________________________________________________________

Gl. 4-179:

D

hcK

D

hc WW

Tab. 4-12: Korrekturfaktoren für dreidimensional umströmte Zylinder

_________________________________________________________________________

4-10: Aerodynamischer Widerstand eines Kamins

geg.: c = 40 m/s Windgeschwindigkeit D = 0.25 m Kamindurchmesser H = 8 m Kaminhöhe T = 20 °C Lufttemperatur p = 1020 hPa Luftdruck ges.: Resultierende Kraft F auf den Kamin _________________________________________________________________________

Höhe/Durchmesser h/D Korrekturfaktor

0 < h/D 4 K 0,6

4 < h/D 8 K 0,7

8 < h/D 40 K 0,8

40 < h/D K 1,0

Page 137: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Rohrströmung 129 ___________________________________________________________________

4.10 Rohrströmung

4.10.1 Laminare Rohrströmung

Bei Reynoldszahlen Red < 2320 bildet sich nach einer Anlaufstrecke von ca. dRed,l 060

eine vollständig laminare Strömung, die aufgrund der inneren Reibung ein parabolisches Geschwindigkeitsprofil aufweist. Unter den Annahmen einer stationären, inkompressiblen und horizontalen Strömung ergibt sich folgende Geschwindigkeitsverteilung

Gl. 4-180:

2

max 1R

rcrc

und eine mittlere Strömungsgeschwindigkeit

Gl. 4-181: max2

1ccm

Abb. 4-62: Laminares Geschwindigkeitsprofil einer Rohrströmung

Bei der Betrachtung von Rohrströmungen wird die Reynoldszahl Red generell mit dem Rohr-innendurchmesser d und nicht mit der Rohrlänge L gebildet!

4.10.2 Turbulente Rohrströmung

Bei Reynoldszahlen Red > 2320 bildet sich nach einer Anlaufstrecke von ca. dl 10 eine vollständig turbulente Strömung. Der Hauptströmungsrichtung werden Schwankungs-bewegungen in Längs- und Querrichtung überlagert wodurch die Reibungsverluste erhöht werden.

Geschwindigkeitsverteilung

Gl. 4-182: nk

R

rcrc

1max

k, n = f(Re-Zahl, Rauigkeit)

21 k 6

1

11

1 n

Für ein glattes Rohr, Red = 45000 gilt k = 2, n = 1/7 Mittlere Strömungsgeschwindigkeit bei k = 2, n = 1/7

Gl. 4-183: maxm c,c 8750

Abb. 4-63: turbulentes Geschwindigkeitsprofil einer Rohrströmung

Page 138: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Rohrströmung 130 ___________________________________________________________________ 4.10.3 Rohrreibungswiderstand

Turbulente Rohrströmung liegt vor unter der Bedingung

Gl. 4-184: 2320

dcdcRed , d = Rohrinnendurchmesser

Der Reibungswiderstand an der Rohrwand beträgt

Gl. 4-185: Flächebenetzte

Druckdyn

f LdccOW

.

2

2

Aufgrund der Kontinuitätsbedingung .constAcm muss bei konstantem Rohrquerschnitt A auch die mittlere Strömungsgeschwindigkeit cm konstant bleiben, d.h. Verluste können sich nur in Form von Druckverlusten bemerkbar machen. Die Aufrechterhaltung der Strömung erfordert ein Druckgefälle p oder ein natürliches Gefälle mit der Neigung hV,12/L, wobei hV12 der Druckverlusthöhe und L der Rohrlänge entspricht.

Abb. 4-64: Druckverlust infolge Rohrreibung

Kräftebilanz in Strömungsrichtung

Gl. 4-186: 21 FWF

Gl. 4-187: 2211 ApWAp

mit der Kreisfläche

Gl. 4-188: 4

2

21

dAAA

Gl. 4-189: LdccWppA f 221 2

lautet der Druckverlust p

Gl. 4-190: 2

24 c

d

Lcp f

Mit der Rohrreibungszahl

Gl. 4-191: fc4

c

A

Vc

Page 139: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Rohrströmung 131 ___________________________________________________________________ ergibt sich für den Druckverlust p

Gl. 4-192: 2

2c

d

Lp

Der Druckverlust p lässt sich auch in eine Verlusthöhe h umrechnen. Das entspricht z.B. dem erforderliche Neigungswinkel einer offenen Rinne zur Aufrechterhaltung der Strömung. Zusammen mit dem hydrostatischen Druck

Gl. 4-193: hgp

ergibt sich die Druckverlusthöhe hV

Gl. 4-194: g

c

d

Lhh V

2

2

Mit dem Verlustbeiwert

Gl. 4-195: d

L

lautet die Verlusthöhe hV

Gl. 4-196: g

chV

2

2

oder der Druckverlust p

Gl. 4-197: 2

2cp

Dies gilt für laminare als auch für turbulente Strömungen.

4.10.4 Rohrreibungszahl

Bei Rohrströmungen ergeben sich aufgrund der unterschiedlichen Oberflächenbeschaffen-heit der Innenwand, d.h.

- hydraulisch glatt - Übergang zwischen glatt und rau - vollständig rau

unterschiedliche Werte für die Rohrreibunsgzahl Hydraulisch glatte Rohre Die Bedingung für hydraulisch glatt ist erfüllt, wenn die Dicke der laminaren Unterschicht U in der Grenzschicht größer ist als die absolute Rauigkeit k

Gl. 4-198: 4Uk

absolute Rauigkeit

Gl. 4-199:

Re

8

d

k relative Rauigkeit

Gl. 4-200:

Re

d,U

832 Dicke der laminaren Unterschicht U

Bis zum Erreichen der kritischen Re-Zahl Rekrit = 2320 gilt für die Rohrreibungszahl

Page 140: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Rohrströmung 132 ___________________________________________________________________

Gl. 4-201: Re

64 (Hagen-Poiseuille)

Bei Re-Zahlen größer als Rekrit gilt die empirische Beziehung nach Nikuradse

Gl. 4-202: 8021

,Relog

oder

Gl. 4-203:

5122

1

,Relog

Vereinfachungen nach Blasius für 2300 < Red < 105

Gl. 4-204: 4

31640

dRe

,

oder nach Nikuradse für 2300 < Red < 106

Gl. 4-205: 2370

221000320 ,

dRe

,,

Bei hydraulisch glatten Rohren ist die Rohrreibungszahl ausschließlich eine Funktion der Reynoldszahl. Vollständig raue Rohre Die Bedingung für eine vollständig raue Oberfläche lautet

Gl. 4-206:

Re

200

d

k

Rohrreibungszahl nach Nikuradse

Gl. 4-207: 14121

,k

dlog

oder

Gl. 4-208:

k

d,log 7132

1

Vereinfachung nach Moody

Gl. 4-209: 315000550d

k,.

Bei vollständig rauen Rohren ist die Rohrreibungszahl ausschließlich eine Funktion der Rauigkeit.

Page 141: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Rohrströmung 133 ___________________________________________________________________ Übergangsgebiet zwischen glatt und rau Die Bedingung für das Übergangsgebiet zwischen glatter und rauer Oberfläche lautet

Gl. 4-210: 2008 dRed

k

Rohrreibungszahl nach Colebrook

Gl. 4-211:

dRe

,

d,

klog

512

7132

1

Vereinfachung

Gl. 4-212:

3

61020000100550

dRed

k,

Im Übergangsgebiet ist die Rohrreibungszahl eine Funktion der Reynoldszahl und der Rauigkeit

Abb. 4-65: Moody-Diagramm: Rohrreibungszahl als Funktion der Rauigkeit und Reynoldszahl

Page 142: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 134 ___________________________________________________________________ Hydraulischer Durchmesser dhydr Zur Berechnung der Rohrreibungszahl bei Rohren mit nicht kreisförmigem Querschnitt oder bei Rohren, die nicht vollständig befüllt sind, z.B. bei Abwasserkanälen, wird ein hydraulischer Ersatzdurchmesser dhydr aus der Rohrquerschnittsfläche A und dem benetzten Umfang U berechnet.

Gl. 4-213: U

Adhydr 4

Bei Strömungen in offenen Gerinnen tritt aufgrund des konstanten Umgebungsdrucks kein Druckverlust pV, sondern nur eine Verlusthöhe hV auf, die mit dem hydraulischen Durchmesser des Gerinnes berechnet wird.

Gl. 4-214: g

c

d

L

g

ch

hydrV

22

2

.

2

Abb. 4-66: Offenes Gerinne

In allen zuvor verwendeten Gleichungen, z.B. zur Berechnung der relativen Rauigkeit oder der Reynoldszahl, ist der Rohrdurchmesser d durch den hydraulischen Ersatzdurchmesser dhydr. zu ersetzen.

4.11 Widerstandsbeiwert für zusätzliche Einbauten in Rohren

4.11.1 Widerstand infolge von Ablösung

Neben dem Reibungswiderstand kann bei Rohrströmungen noch ein zusätzlicher Widerstand durch Ablösungen und Verwirbelungen auftreten. Diese werden verursacht durch

- Einbauten, Armaturen, Ventilen, Blenden und Drosselklappen - Richtungsänderungen, Krümmern - Querschnittsveränderungen, stetig und unstetig - Rohrein- und -auslauf

Die Berücksichtigung dieser Verluste erfolgt durch den Verlustbeiwert

Gl. 4-215: 2

12

2c

pV

Druckverlust 12Vp mit der mittleren Strömungsgeschwindigkeit im Rohr c

Gl. 4-216: 212 2

cpV

Verlusthöhe 12Vh mit der mittleren Strömungsgeschwindigkeit im Rohr c

Gl. 4-217: g

chV

2

2

12

Die theoretische Erfassung der Verluste infolge von Rohreinbauten ist nur in Ausnahmefällen möglich. Zur Bestimmung des Verlustbeiwertes bieten sich unterschiedliche Verfahren an

- Empirische Bestimmung der Verlustbeiwerte - Nachrechnung des Druckverlustes infolge von Einbauten aus der Summe der

einzelnen Teilverluste in den einzelnen Abschnitten. Dazu ist jedoch eine Geschwindigkeitsmessung in den einzelnen Abschnitten erforderlich.

Page 143: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 135 ___________________________________________________________________ Mit dem Verlustbeiwert

Gl. 4-218: d

L

ergibt sich für den Druckverlust in einem System, bestehend aus i-Rohrstücken und k-Einbauten

Gl. 4-219:

kkk

ii

i

ii cc

d

Lcp 222

22

Der Druckverlust setzt sich aus dem Anteil infolge der Rohrreibung, berücksichtigt durch die Rohreibungszahl und dem Anteil infolge von Einbauten, berücksichtigt durch den Verlustbeiwert , zusammen.

4.11.2 Querschnittserweiterung (Diffusor)

Während eine Düse zur Strömungsbeschleunigung eingesetzt wird, hat ein Diffusor die umgekehrte Aufgabe. Ein Diffusor wird in Rohrleitungssystemen verwendet um die Strömungsgeschwindigkeit zu reduzieren, d.h. die kinetische Energie zu verringern und gleichzeitig den Druck zu erhöhen (Druckrückgewinn). Anwendungen finden sich z.B. in geschlossenen Windkanälen um nach einer Überschallmessstrecke die Strömung zu verzögern.

Stufendiffusor Die unstetige Querschnittserweiterung bewirkt einen strahlartigen Strömungs-eintritt in das größere Volumen. Die Länge der Mischstrecke kann mit

Gl. 4-220: 210 DLM

abgeschätzt werden. Der Massestrom berechnet sich mit der mittleren Geschwindigkeit im Querschnitt 1 oder 2 zu

Gl. 4-221: 22,11, AcAcm mm

Abb. 4-67: Stufendiffusor

Die am Diffusor angreifenden Kräfte ergeben sich aus den Druckkräften zu

Gl. 4-222: 111, ApFp und 222, ApFp

Gl. 4-223: 121, AApF xW

Die Druckänderung im Stufendiffusor berechnet sich aus der mittleren Geschwindigkeit cm,2 im Querschnitt 2 und den Formfaktoren und

Gl. 4-224: 2,1,12

2,221 mmm cccpp

Formfaktor der energiestromgemittelten Geschwindigkeit Formfaktor der impulsstromgemittelten Geschwindigkeit

(vgl.: Rohreinlaufströmung, Impulssatz)

Page 144: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 136 ___________________________________________________________________

Auflösung des Energiesatzes nach dem Verlustglied 12Vp ergibt

Gl. 4-225:

2

1,

22,

212

1,2112 2 m

mmV

c

ccppp

Einsetzen der Druckänderung 21 pp liefert

Gl. 4-226:

2

1,

22,

212

1,2,1,12

2,212 2 m

mmmmmV

c

cccccp

Gl. 4-227:

2

1,

22,

211,

2,12

1,

22,

22

1,12 222 m

m

m

m

m

mmV

c

c

c

c

c

ccp

mit

Gl. 4-228: 2

1

1,

2,

A

A

c

c

m

m

folgt für die Verlustzahl Verlustzahl des Stufendiffusors

Gl. 4-229: 22

21

222

111

21,

12 22

2A

A

A

A

c

p

m

V

bei vollständig turbulenter Strömung gilt 1, ii und somit für die Verlustzahl

Gl. 4-230:

2

2

1

21,

12 1

2

A

A

c

p

m

V

Wirkungsgrad des Stufendiffusors St Der Wirkungsgrad des Diffusors berechnet sich aus dem Verhältnis des realen Druckanstiegs bezogen auf den Druckanstieg, der sich bei einer isentropen Zustands-änderung, d.h. einer verlustfreien Druckerhöhung mit 012 Vp ergeben würde, (isentrop:

Index s).

Gl. 4-231:

1

22

2,22

1,1

22,22,1,1

12

12

1

22

A

Acc

ccc

pp

pp

mm

mmm

s

St

Druckerhöhung im Stufendiffusor Bei bekanntem Wirkungsgrad lässt sich die Druckerhöhung im Diffusor aus dem Querschnittsverhältnis 21 AA und der mittleren Geschwindigkeit cm,1 im Querschnitt 1 berechnen.

Gl. 4-232:

2

2

121,

2

2

121

21,12 1

22 A

Ac

A

Acpp mStmSt

Page 145: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 137 ___________________________________________________________________

Konischer Diffusor

Im Gegensatz zum Stufendiffusor weist der konische Diffusor eine stetige Querschnitts-erweiterung auf. Auch hier besteht die Aufgabe in einem Druckrückgewinnung aus kinetischer Energie. Der optimale Öffnungswinkel ist eine Funktion des Rohrquerschnitts und beträgt für Kreisquerschnitt 4opt und für Recht-

eckquerschnitte 5opt . Die Formfaktoren

i, i werden zu Eins gesetzt.

Abb. 4-68: Konischer Diffusor

Verlustzahl Diff Die Verlustzahl des Diffusors bezogen auf die Zuströmgeschwindigkeit c1 beträgt

Gl. 4-233: 2

1

12

2c

pVDiff

Diffusorwirkungsgrad Diff Analog zum Stufendiffusor berechnet sich der Wirkungsgrad aus dem Verhältnis des realen Druckanstiegs im Diffusor bezogen auf den isentropen, d.h. d.h. verlustfreien Druckänderung mit 012 Vp , (isentrop: Index s)

Gl. 4-234:

2

1

22

21

22

22

21

122

22

1

12

12

1

1

2

2

c

c

c

c

cc

pcc

pp

ppDiffV

s

Diff

mit der Kontinuitätsgleichung und der Definition für die Verlustzahl Diff folgt

Gl. 4-235: 2

2

11

1

A

A

DiffDiff

oder

Gl. 4-236:

2

2

111A

ADiffDiff

Druckerhöhung im konischen Diffusor

Gl. 4-237:

2

2

12112 1

2 A

Acpp Diff

Page 146: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 138 ___________________________________________________________________ Diffusorwirkungsgrad als Funktion des Öffnungswinkels

Diff Konischer Diffusor St Stufendiffusor Öffnungswinkel

Abb. 4-69: Diffusorwirkungsgrad als Funktion des Öffnungswinkels

4.11.3 Querschnittsverengung (Düse)

Bei Strömungen mit Unterschallgeschwindigkeit bewirkt eine Querschnittsverengung immer eine Erhöhung der Geschwindigkeit und eine Absenkung des statischen Drucks (vgl.

Druckform der Bernoulli-Gleichung: .2 2 constcp ) Stufendüse Die unstetige Querschnittsverengung (1 2*) einer Stufendüse bewirkt eine Strahlkontraktion auf A2*, gefolgt von einer Strahlaufweitung auf A2 (2* 2) Die Kontraktionszahl K

Gl. 4-238: 2

*2

A

AK

Abb. 4-70: Stufendüse

lässt sich bestimmen durch die Regressionsformel

Gl. 4-239:

3

1

2

2

1

2

1

2 5110261013306140

A

A,

A

A,

A

A,,K

Die Verlustzahl infolge Kontraktion und Aufweitung ergibt sich aus der Kontraktionszahl zu

Gl. 4-240:

K

K, 1

51

Totwassergebiet

Page 147: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 139 ___________________________________________________________________ Blende Blenden werden eingesetzt zur Messung von Volumenströmen und zur Druckminderung.

Abb. 4-71: Stromlinienverlauf in einer Blende

Unter der Annahme einer reibungsfreien Durchströmung lautet die Bernoulli-Gleichung

Gl. 4-241: 2,2

*2

211 *

22 scpcp

Aus der Kontinuitätsgleichung ergibt sich der Volumenstrom

Gl. 4-242: *

2,211 * AcAcV s

mit 2*

2 AAK folgt aus dem Volumenstrom

Gl. 4-243: 1

2,21 *

A

Acc Ks

eingesetzt in Bernoulli-Gleichung ergibt sich für die verlustfreie Geschwindigkeit c2,s* im Querschnitt 2*

Gl. 4-244:

*21

2

1

22

,2

2

1

1*

pp

A

Ac

K

s

Die Reibungsverluste können durch die Verlustziffer berücksichtigt werden, d.h. durch das Verhältnis von realer zu reibungsfreier Fließgeschwindigkeit.

Gl. 4-245: *

,2

*2

sc

c

Der Volumenstrom im Querschnitt (2) lautet

Gl. 4-246: *

2,2*

2222 ** AcAcAcV s Kscc *,22

Gl. 4-247:

*21

22

1

22

22

2

1

ppA

A

AAcV

ahlDurchflußz

K

K

Page 148: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 140 ___________________________________________________________________ bzw. mit dem Wirkdruck pW und der Durchflusszahl

Gl. 4-248:

WpAV

22

Der Druckverlust pV,13 zwischen Querschnitt 1 und 3 berechnet sich über die Verlustziffer

Gl. 4-249: 2

31313, 2cpppV

Für Flächenverhältnisse 950050 12 ,AA, lässt sich die Verlustziffer approximieren durch

Gl. 4-250:

5

1

2

4

1

2

3

1

2

2

1

2

1

2 833140634353829349798169855747949418A

A,

A

A,

A

A,

A

A,

A

A,,exp

4.11.4 Durchflussmessung mit genormten Drosselgeräten (DIN EN ISO 5167)

Zur Durchflussmessung existieren Drosselsysteme. Messgrößen sind unabhängig von der konstruktiven Ausführung die statischen Drücke vor und an bzw. hinter dem engsten Querschnitt. Zusätzlich ist die Kenntnis der Querschnitte bzw. Durchmesser erforderlich.

Blende Düse Venturidüse

Abb. 4-72: Konstruktive Ausführungen unterschiedlicher Drosselgeräte

Zur Berechnung des Volumenstroms ist die Durchflusszahl , die Expansionszahl und der sog. Wirkdruck Wp erforderlich.

Gl. 4-251:

WpdV

42

1

Massestrom

Gl. 4-252: 11 Vm

Wirkdruck Wp

Gl. 4-253 21 pppW

Der Einfluss der Kompressibilität, z.B. bei Gasen wird durch die Expansionszahl berücksichtigt, für inkompressible Fluide gilt 1 .

Page 149: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 141 ___________________________________________________________________ Die Durchflusszahl wurde empirisch aus Kalibrierversuchen mit Drosselgeräten bestimmt

Gl. 4-254:

41

Re,

DC

Der Durchflusskoeffizient DC Re, ist wiederum eine Funktion des Verhältnisses Dd , d.h. des Durchmessers d am engsten Querschnitt der Drosselstelle bezogen auf den Rohrdurchmesser. Die Reynoldszahl wird auf den Rohrdurchmesser D bezogen, DcD 1Re . Mit dem Druckverhältnis

Gl. 4-255: 1

2

p

p

und dem Faktor

Gl. 4-256:

8.0

Re

19000

D

A

können Durchflusskoeffizient C und Expansionszahl näherungsweise aus Tab. 4-13 bestimmt werden. Der Faktor vp cc stellt den Isentropenfaktor des Gases dar, z.B. gilt

für Luft: 4.1Luft

Drosselgerät Durchflusskoeffizient C Expansionszahl Blende mit Eckdruckent- nahme

mm,D 1271

306

53

706

82

100063001880

100005210

21600261059610

.

D

.

.

D

ReA,,

Re,

,,,

1

84 193025603510

1

,,,

Düse

1516

1542

14

1000330001750

22620990.

D

.

.

Re,,

,,

1

1

1

1

1

1

24

42

Venturidüse 54196098580 .,, wie Düse

Tab. 4-13: Durchflusskoeffizient C und Expansionszahl

4.11.5 Krümmer - Richtungsänderung

Verluste durch den Einbau von Krümmern lassen sich aufteilen in Reibungsverluste und Verluste infolge Ablösung, Tabellen berücksichtigen in der Regel nur den Verlust infolge der Ablösung. Reibungsverluste werden durch Ergänzung der Rohrlänge um die gestreckte Krümmerlänge erfasst

Gl. 4-257:

180

rlKrümmer

r = Radius, = Winkel des Rohrbogens

Page 150: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 142 ___________________________________________________________________ Einbauelemente können zur Verlustberechnung durch gerade Rohrstücke ersetzt werden

Gl. 4-258: 2Re 2

cd

Lppp Einbauibungges

mit der zusätzlichen Rohrlänge

Gl. 4-259: dL

folgt für den Druckverlust

Gl. 4-260: 2

2c

d

LLpges

4.11.6 Eintrittsverluste

Abb. 4-73: Rohreinlaufströmung: Geschwindigkeitsprofil (a) und Druckabfall (b)

Die Ausbildung des Geschwindigkeitsprofils in der Einlaufstrecke sL erfordert das Verrichten von Dissipationsarbeit bzw. Dissipationsenergie jsL, beschrieben durch die Verlustzahl sL

Gl. 4-261: 2

2c

jsLsL

turbulent

laminarsL 018.0

333.0

Der Druckverlust für ein gerades Rohrstück der Länge L ergibt sich zu

Gl. 4-262: 21212 2

cD

Ljp sL,V

Page 151: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 143 ___________________________________________________________________ 4.11.7 Verlustziffern von Formstücken und Einbauten (Zusammenfassung)

Querschnittserweiterung - unstetig (Stufendiffusor)

1

2

2

11

A

A

12111

22

21

222

111 22

A

A

A

A

Querschnittserweiterung - stetig (konischer Diffusor)

2

2

111A

ADiffDiff

Querschnittsverengung - unstetig (Stufendüse)

3

1

2

2

1

2

1

2 5110261013306140

A

A,

A

A,

A

A,,K

K

K, 1

51

Querschnittsverengung - unstetig (Blende)

Für 9500501

2 ,A

A, gilt

5

1

2

4

1

2

3

1

2

2

1

2

1

2

833140634353

829349798169

855747949418

A

A,

A

A,

A

A,

A

A,

A

A,,

exp

Page 152: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 144 ___________________________________________________________________ Querschnittsverengung - stetig (Konturdüse)

07500 ,

Querschnittsverengung - stetig (konische Düse)

221

m

mittlere Rohrreibungszahl

5.1

1

2

0.1

1

2

5.0

1

2

5.0

1

2

1

1tan8

A

A

A

A

A

A

A

Am

Richtungsänderung - Rohrbogen, glatt, 5102Re

3...2

opt

K

D

r

Rohrbögen mit Leitblechen 150, Rohrbögen mit profilierten Leitblechen 050,

Page 153: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 145 ___________________________________________________________________

Richtungsänderung - Segment-Krümmer

Richtungsänderung – Rohrknie

Verzweigungen - Stromvereinigung

321 AAA

321 VVV

Verzweigungen – Stromtrennung

321 AAA

321 VVV

rK/D 2 x 45° 3 x 30° 4 x 22,5° 1 0,44 0,42 0,40 2 0,31 0,27 0,24 3 0,35 0,19 0,185 3,25 0,18 4 0,40 0,22 0,19 5 0,45 0,26 0,21 6 0,55 0,29 0,23

3

1

V

V

= 45° 23 13

= 90° 23 13

0,0 0,04 -0,92 0.04 -1.200,2 0,17 -0,38 0.17 -0.400,4 0,19 0 0.30 0.08 0,6 0,09 0,22 0.41 0.47 0,8 -0,17 0,37 0.51 0.72 1,0 -0,54 0,37 0.60 0.91

3

1

V

V

= 45° 32 31

= 90° 32 31

0,0 0,04 0,90 0.04 0.950,2 -0,06 0,68 -0.08 0.880,4 -0,04 0,50 -0.05 0.890,6 0,07 0,38 0.07 0.950,8 0,20 0,35 0.21 1.101,0 0,33 0,48 0.35 1.28

Page 154: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Widerstandswert für zusätzliche Einbauten in Rohren 146 ___________________________________________________________________ Stromtrennung

_________________________________________________________________________

Üb. 4-11: Rohrströmung

Ein Behälter wird über eine Pumpe mit einem

Volumenstrom V versorgt. Das Wasser verlässt den Behälter über ein gekrümmtes Abflussrohr mit einer Gesamtlänge l und einer mittleren Rauigkeit k in die freie Umgebung. Der Wasserspiegel im Behälter bleibt konstant. geg.:

sm,V 331063 , D = 0,0276 m, l = 2 m, a = 1 m, H = 6 m, p0 = 1 bar, k = 10-6 m, E = 0,05, A = 0,05, K = 0,14, = 110-6 m²/s, = 1000 kg/m³

ges.: Das Lüftungsventil ist geöffnet 1. Austrittsgeschwindigkeit c2 2. Berechnen Sie die Rohrreibungszahl im Abflussrohr 3. Wie hoch ist der Wasserspiegel h im Inneren des Behälters? Bei Überschreiten der Pegelhöhe h schließt das Lüftungsventil und bleibt geschlossen. Der

neue Volumenstrom beträgt VV 2 und die neue Pegelhöhe h’ bleibt wieder konstant. 4. Neue Austrittsgeschwindigkeit c2’ 5. Berechnen Sie die Rohrreibungszahl im Abflussrohr 6. Luftdruck im Behälter als Funktion des Pegelstandes bei isothermer Kompression/Expansion 7. Wie hoch ist der Wasserspiegel h’ im Inneren des Behälters? _________________________________________________________________________

Page 155: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Impulssatz 147 ___________________________________________________________________ 5 Impulssatz

5.1 Newton’sche Axiome

Sir Isaac Newton 04.01.1643 - 31.03.1727 (gregorianischer Kalender8) bzw. 25.12.1642 - 20.03.1727 (julianischer Kalender9)

Abb. 5-1: Sir Isaac Newton: 'Philosophiae Naturalis Principia Matheamtica'

Newton formulierte seine drei Axiome 1687 in der 'Philosophiae Naturalis Principia Matheamtica' (Mathematische Grundlagen der Naturphilosophie). Das erste Axiom gilt nur in Inertialsystemen und wurde bereits 1638 von Galileo Galilei aufgestellt. Das zweite Axiom beschreibt das Grundgesetz der Dynamik und das dritte Axiom das Prinzip der mechanischen Wechselwirkung. Erstes newton'sches Axiom: Das Trägheitsprinzip (lex prima) Ein Körper verharrt im Zustand der Ruhe oder der gleichförmigen Translation, solange die Summe aller auf ihn einwirkenden Kräfte Null ist Zweites newton'sches Axiom: Das Aktionsprinzip (lex secunda) Die Änderung der Bewegung einer Masse ist der Einwirkung der bewegenden Kraft proportional und geschieht nach der Richtung derjenigen geraden Linie, nach welcher jene Kraft wirkt Drittes newton'sches Axiom: Das Reaktionsprinzip (lex tertia) Kräfte treten immer paarweise auf. Übt ein Körper A auf einen anderen Körper B eine Kraft aus (actio), so wirkt eine gleichgroße, aber entgegengerichtete Kraft von Körper B auf Körper A (reactio)

8 eingeführt 1583 durch Papst Gregor XIII 9 wurde aufgrund der Abspaltung der anglikanischen Kirche 1534 unter Heinrich VIII zu dieser Zeit noch in England verwendet

Page 156: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Impulssatz 148 ___________________________________________________________________

5.2 Stromröhre und Stromfaden

Den Axiomen Newtons liegt das Prinzip des Stromfadens zugrunde, d.h. Stromlinien werden zu einer Stromröhre (vgl. Kapitel 1.6.4) zusammengefasst. Masse- und Energietransport können lediglich entlang der Stromlinie erfolgen, senkrecht zur Stromlinie sind keine Transportvorgänge möglich. Masse- und Energietransport sind somit nur über die Ein- und Austrittsflächen A1 und A2 zulässig. Werden die Querschnittsflächen A1 und A2 infinitesimal klein, so bleiben die Zustandsgrößen der Strömung c, p, , T konstant. Alle durch die infinitesimalen Querschnittsflächen dA1 und dA2 verlaufenden Stromlinien werden zu einem repräsentativen Stromfaden zusammengefasst (eindimensionale Stromfadentheorie).

Abb. 5-2: Stromröhre und Stromfaden

5.3 Impuls

Die bei Strömungsvorgängen auftretenden Kräfte lassen sich durch den Impulssatz, der auf dem Newton'schen Grundgesetz der Dynamik beruht berechnen.

Gl. 5-1: dt

cmd

dt

cdmamF

Der Impuls I

eines Körpers beschreibt das Produkt aus seiner Masse m und seiner Geschwindigkeit c

Gl. 5-2: cmI

Da es sich bei der Geschwindigkeit c

um einen Vektor handelt, stellt auch der Impuls eine vektorielle Größe dar, der eine Richtung und eine Geschwindigkeit aufweist. Die Änderung des Impulses (bei konstanter Masse) kann nur durch eine Geschwindigkeitsänderung erfolgen und entspricht einer Kraftwirkung

Gl. 5-3:

dt

Id

dt

cmdF

Page 157: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Impulssatz 149 ___________________________________________________________________

5.4 Stationäre Fadenströmung durch einen raumfesten Kontrollraum

Eintrittsebene (1) Austrittsebene (2)

111 cdmId 222 cdmId

Die Impulsänderung dI des Gesamtsystems in einem durchströmten ortsfesten Kontrollraum infolge Zu- und Abstrom der Massenelemente dm1 und dm2 kann beschrieben werden durch die Differenz zwischen dem Impuls in der Eintrittsebene (1) zum Zeitpunkt t = t1 und dem Impuls in der Austrittsebene (2) zum Zeitpunkt t = t1 = t1 + dt.

Gl. 5-4:

12

102012

tItI

IdIIdItItIId

0I

= Gesamtimpuls aller Massenelemente im Kontrollraum

Im Inneren des Kontrollraums befinden sich an den Stellen I und II zur Zeit t1 und t2 unterschiedliche Massenelemente dm, die sich jedoch bei Vorliegen einer stationären

Strömung mit der gleichen Geschwindigkeit bewegen. Dadurch bleibt der Gesamtimpuls 0I

unverändert. Kontinuitätsgleichung

Gl. 5-5: dmdmdm 21 bzw. .constAcmdt

dm

Zeitliche Impulsänderung im System

Gl. 5-6: 121212 ccmcc

dt

dm

dt

IdId

dt

Id

Impulsstrom

Gl. 5-7: NcmIdt

Id

Impulssatz für stationäre Fadenströmung

Gl. 5-8: 1212 ccmIIF

Die Summe aller auf das Fluid im Kontrollraum wirkenden Kräfte ist gleich dem austretendem Impulsstrom abzüglich des eintretenden Impulsstroms.

Page 158: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Impulssatz 150 ___________________________________________________________________ 5.5 Kräfte auf ein Fluid im Kontrollraum

Bei der Berechnung der Kräfte auf ein Fluid in einem Kontrollraum ist zu unterschieden ob der Kontrollraum, d.h. die Stromröhre AM mit dem Außendruck pa beaufschlagt wird (z.B. freigeschnittenes Rohrstück) oder nicht (z.B. Ausströmen aus einem Rohr ins Freie). Freie oder körpergebundene Stromröhre AM ohne Außendruck pa

Abb. 5-3: Stromröhre AM.ohne Außendruck pa

21, pp FF

Druckkräfte auf die Ein- und Austrittsflächen A1, A2

GF

Gewichtskraft des Fluids im Kontrollraum

WF

Von der Stromröhre auf das Fluid ausgeübte Kraft infolge Druck- oder Reibung

SF

Stützkraft, von einem festen Körper innerhalb der Stromröhre auf das Fluid

KF

Körperkräfte = Reaktionskräfte des Fluids, von innen auf die Stromröhre KiF

oder Einbauten KSF

, WKi FF

, SKS FF

, KSKiK FFF

Körpergebundene Stromröhre AM ,die mit dem Außendruck pa beaufschlagt wird

Abb. 5-4: Stromröhre AM.mit Außendruck pa

21, pp FF

Druckkräfte auf die Ein- und Austrittsflächen A1, A2

aF

Druckkraft infolge des Außendrucks pa auf die Stromröhre, ungleich Null, da sie

nur auf die Mantelfläche und nicht die gesamte Oberfläche wirkt

HF

Haltekraft der körpergebundenen Stromröhre, KH FF

KF

Körperkraft des Fluids von innen auf die Stromröhre unter Berücksichtigung des Außendrucks

Page 159: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Impulssatz 151 ___________________________________________________________________ Der Impulssatz unter Berücksichtigung aller Teilkräfte lautet allgemein

Gl. 5-9: 1212 ccmIIF

Für eine freie oder körpergebundene Stromröhre AM, die nicht mit einem Außendruck pa beaufschlagt wird

Gl. 5-10: GSWpp FFFFFccmIIF

211212

bzw. für eine freie oder körpergebundene Stromröhre AM, die mit einem Außendruck pa beaufschlagt wird

Gl. 5-11: GSWpp FFFFFccmIIF

211212

5.6 Unterscheidung von drei Klassen von Anwendungsfällen

(1) Stromröhre ist eine freie Kontrollfläche: Zu bestimmen ist die Reaktionskraft

KSF

auf einen umströmten Körper innerhalb der Stromröhre oder der Körper

ist Teil der Stromröhre

(2) Stromröhre ist teilweise oder vollständig eine körpergebundene Kontrollfläche. Zu bestimmen ist die Reaktionskraft auf die Innenseite des körpergebundenen Teils der Stromröhre und auf evtl. Einbauten

(3) Stromröhre ist teilweise oder vollständig eine körpergebundene Kontrollfläche,

die mit einem Außendruck pa beaufschlagt wird: Zu bestimmen ist die

Reaktionskraft KF

auf die Stromröhre und auf evtl. Einbauten unter

Berücksichtigung der Außendruckkraft aF

(1) Stromröhre ist eine freie Kontrollfläche

Zu bestimmen ist die Reaktionskraft KSF

auf einen umströmten Körper innerhalb der Strom-

röhre oder der Körper ist Teil der Stromröhre

Gl. 5-12: GWppSKSK FFFFccmFFF

2112

Herrscht auf der Stromröhre und in den Ein- und Austrittsflächen A1 und A2 konstanter Druck, z.B. Umgebungsdruck (Freistrahl), so gilt

Gl. 5-13: 021 Wpp FFF

Page 160: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Impulssatz 152 ___________________________________________________________________ (2) Stromröhre ist teilweise oder vollständig eine körpergebundene Kontrollfläche Zu bestimmen ist die Reaktionskraft auf die Innenseite des körpergebundenen Teils der Stromröhre und auf evtl. Einbauten

Gl. 5-14: GppSWKSKiK FFFccmFFFFF

2112

(3) Stromröhre ist teilweise oder vollständig eine körpergebundene Kontrollfläche,

die mit einem Außendruck pa beaufschlagt wird

Zu bestimmen ist die Reaktionskraft KF

auf die Stromröhre und auf evtl. Einbauten unter

Berücksichtigung der Außendruckkraft aF

Gl. 5-15: GppaSWaKSKiK FFFccmFFFFFFF

2112

Gl. 5-16: iaipi AppF

Differenzdruckkraft zum Außendruck pa

Gl. 5-17: KH FF

Haltekraft

5.7 Impulssatz für mehrere Ein- und Austrittsflächen

Sind in einem Kontrollraum mehrere Ein- und/oder Austrittsflächen vorhanden, so ergibt sich die Gesamtkraft aus der Summe der Änderungen der Austrittsimpulse abzüglich der Summe der Eintrittsimpulse zuzüglich der Druckkräfte und der Gewichtskraft des Fluids.

Gl. 5-18:

mn

kGpk

m

jrittEj

n

iAustrittiK FFcmcmF

11int

1

Page 161: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Impulssatz 153 ___________________________________________________________________

5.8 Anwendungsprinzip des Impulssatzes

Das Prinzip zur Berechnung von Kräften an durchströmten Bauteilen soll anhand des in Abb. 5-5 skizzierten Rohrkrümmers verdeutlicht werden. Es handelt sich hierbei um eine körper-gebundene Stromröhre unter Berücksichtigung eines Außendrucks pa.

Abb. 5-5: Rohrkrümmer

Ablauf zur Berechnung der Körperkraft FK bzw. der Haltekraft FH = - FK 1. Skizze des Bauteils 2. Kontrollraum, strichpunktierte Linie 3. Ein- und Austrittsfläche kennzeichnen (1), (2) 4. Koordinatensystem festlegen 5. Winkeldefinition mathematisch positiv definieren (linksdrehend = positiv)

6. Geschwindigkeiten ic

, Druckkräfte piF

, Impulsströme iI

und Gewichtskraft GF

einzeichnen 7. Berechnung von ic

, ip , i und im in Ein- und Austrittsflächen (1), (2) mittels

Kontinuitäts-, Energie- und thermischer Zustandsgleichung 8. Berechnung der Beträge für - Druckkräfte iaipi AppF bzw. iipi ApF

- Gewichtskraft gVF FluidumsKontrollraG

9. Berechnung der Komponenten der Körperkraft KF

( HF

bzw. Haltekraft)

Gl. 5-19:

GGpppKKKx FFFccmFF coscoscoscoscoscos 22111122

Gl. 5-20:

GGpppKKKy FFFccmFF sinsinsinsinsinsin 22111122

Körperkraft HK FF

Gl. 5-21: 22KyKxK FFF

Page 162: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Impulssatz 154 ___________________________________________________________________

Gl. 5-22:

Kx

KyK F

Farctan

_________________________________________________________________________

Üb. 5-1: Rohrkrümmer mit Leitblechen

geg.: mmD 3001

mmD 2002

mmzz 40012 30240 m,V (Krümmervolumen)

grad901

grad452

sm,V 3350 3310

2mkgOH

bar.p 311 (Druck in Eintrittsebene)

bar.pa 01 (Außendruck)

ges.:

1. KF

Körperkraft auf den Krümmer mit Einbauten unter Berücksichtigung des Außendrucks pa ?

2. HF

Haltekraft an den Flanschen?

3.

KF

Körperkraft des Fluids auf Einbauten und innere Krümmerwand ohne Außendruck?

Der Krümmer wird reibungsfrei durchströmt, d.h. FW = 0 _________________________________________________________________________

Page 163: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Impulssatz 155 ___________________________________________________________________ Üb. 5-2: Ebene angeströmte Platte

geg.: Platte wird unter dem Neigungswinkel angeströmt. Potentielle Energien, Reibungskräfte und Massenkräfte können vernachlässigt werden 0GF

ges.: 1. Strahlkraft auf die Platte bei 90 (formelmäßig) 2. Strahlkraft auf die Platte, wenn diese mit u < c1 in Strahlrichtung bewegt wird

_________________________________________________________________________ Üb. 5-3: Dampfturbinenschaufel

geg.:

mmDG 9501

mmDN 5301

mmDG 10202

mmDN 4952

smca 1501

(Axialgeschwindigkeitskomponente) smca 1652

31 1270 mkg,

bar,p 183601

bar,p 1402 ges.: Axialschub axF auf Rotor und Schaufel

im Bereich der Endschaufel _________________________________________________________________________ Üb. 5-4: Windkraftturbine

ges.: 1. Maximale ideale Turbinenleistung PTurb, max 2. Schubkraft auf den Rotor FKx

Page 164: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Impulssatz 156 ___________________________________________________________________ Üb. 5-5: Turboluftstrahltriebwerk

geg.: skgmL 77 Luftmassestrom

skg.mB 134 Brennstoffmassestrom

smc 9852 Strahlaustrittsgeschwindigkeit

kmH 15 Flughöhe

02,M Flugmachzahl ges.: 1. Schubgleichung für ein Einkreis-TL-Triebwerk 2. Schub in der Flughöhe kmH 15 , angepaßte Düse d.h. p2 = pa _________________________________________________________________________ Üb. 5-6: Raketentriebwerk

ges.: Schubgleichung für ein Raketen-Triebwerk _________________________________________________________________________

Page 165: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Drallsatz 157 ___________________________________________________________________ 6 Drallsatz

6.1 Drallerhaltung bzw. Drehimpulserhaltung

Der lineare Impuls I

eines Massepunktes ist definiert durch seine Masse m und seine Geschwindigkeit c

Gl. 6-1: cmI

Für diese punktförmige Masse m ergibt sich mit dem Ortsvektor r

der Drall oder Drehimpuls

L

zu

Gl. 6-2: IrcrmL

Da der Drehimpuls eine Funktion des Ortvektors r

ist, besteht immer eine Abhängigkeit des Dralls von seinem Bezugspunkt.

Analog zur zeitlichen Änderung des Impulses I

bei der sich eine Kraft F

ergibt

Gl. 6-3: dt

IdF

ergibt sich für die zeitliche Änderung des Dralls L

ein Moment M

Gl. 6-4: dt

LdM

d.h. die Summe aller auf die Masse wirkenden Momente bewirkt eine zeitliche Änderung des Dralls. Starrer Körper

Ein starrer Körper kann als ein System einzelner Massepunkte mi betrachtet werden, deren räumlicher Abstand sij zueinander zeitlich konstant bleibt

Gl. 6-5: .constsrr ijji

bzw.

Gl. 6-6: 0dt

dsij

Abb. 6-1: Starrer Körper

Page 166: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Drallsatz 158 ___________________________________________________________________ Starrer Körper in Rotation Die Beschreibung des Bewegungszustandes eines starren Körpers im ruhenden Inertialsystem erfolgt durch den Gesamtdrehimpuls

Gesamtdrehimpuls des starren Körpers

Gl. 6-7:

N

iii IrL

1

mit cmI folgt

Gl. 6-8:

N

iiii crmL

1

Rotiert der Körper mit

um eine feste Achse, z.B. die z-Achse (Abb. 6-2), so gilt für die Geschwindigkeit

ic

des Massepunktes mi

Gl. 6-9: ii rc

Abb. 6-2: Starrer Körper in Rotation

Gesamtdrehimpuls des starren Körpers

Gl. 6-10:

N

iiii

N

iiii rrmcrmL

11

Für eine Rotation um die z-Achse gilt bei einer symmetrischen Masseverteilung

Gl. 6-11:

0

0

0

0

0

i

i

i

i

i

i x

y

z

y

x

r

Gl. 6-12:

220 ii

ii

ii

i

i

i

i

i

ii

yx

zy

zx

x

y

z

y

x

rr

Mit dem senkrechten Abstand ,ir

des Masseelements mi zur Drehachse gilt für den

Drehimpuls für den gesamten Körper

Gl. 6-13:

N

iii rmL

1,

Page 167: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Drallsatz 159 ___________________________________________________________________ Massenträgheitsmoment des starren Körpers Der Ausdruck in Gl. 6-13

Gl. 6-14:

N

iii rmJ

1,

bezeichnet das Massenträgheitsmoment des starren Körpers um seine Drehachse Der Drehimpuls lautet unter Verwendung des Masseträgheitsmoment J

Gl. 6-15:

JrmL

JomentTrägheitsm

N

iii

1,

Bei homogener Massenverteilung gilt für das Massenträgheitsmoment

Gl. 6-16:

Vm

dVrdmrJ 22

Analogie zwischen Impuls und Drehimpuls Aus der Ableitung des Drehimpulses

Gl. 6-17: IrL

nach der Zeit

Gl. 6-18: IrIrdt

Ld

folgt wegen

Gl. 6-19: IrrmcmI

dass Impuls- und Geschwindigkeitsvektor parallel gerichtet sind, d.h.

Gl. 6-20: 0

Ir

und es gilt

Gl. 6-21: IrIrIrdt

Ld

0

Wegen des 2. Newton'schen Axioms gilt

Gl. 6-22: IF

und somit ergibt sich aus der zeitlichen Änderung des Drehimpulses ein Drehmoment

Gl. 6-23: MFrIrdt

Ld

bzw. ein Drehmoment bewirkt eine zeitliche Änderung des Drehimpulses

Page 168: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Drallsatz 160 ___________________________________________________________________

Gl. 6-24: FIdt

Id

(Impulsstrom = Kraft)

und

Gl. 6-25: MLdt

Ld

(Drallstrom = Moment)

Aus der Beziehung Mdt

Ld

folgt, dass der Gesamtdrehimpuls des Systems konstant bleibt,

solange keine äußeren Momente auf das System wirken, d.h.

Gl. 6-26 00 dt

LdM

bzw. .constL

Drehimpulserhaltung bedeutet, dass gilt

Gl. 6-27: .constJL

Eine Veränderung des Trägheitsmoments J bewirkt somit eine Änderung der Drehge-schwindigkeit . Dieser Effekt lässt sich in den unterschiedlichsten Anwendungen beobachten, z.B. beim Eiskunstlauf (Pirouette). Das Anziehen der Arme an die Körperhoch-achse (= Rotationsachse) bewirkt eine Verkleinerung des Masseträgheitsmoments um die Drehachse. Die Forderung nach einem konstanten Gesamtdrehimpuls führt zu einer Erhöhung der Drehgeschwindigkeit.

Gl. 6-28: .2211 constJJ

Gl. 6-29: 1212 JJ

Abb. 6-3: Pirouetteneffekt

Ähnlich verhält sich ein Reckturner, der beim Schwungaufnehmen (Position 1) seinen Körperschwerpunkt durch das Strecken der Beine möglichst weit von der Drehachse (= Reckstange) entfernt und beim Aufschwung durch Anheben der Beine den Schwerpunkts-abstand zur Drehachse reduziert. Da das Masseträgheitsmoment direkt vom Abstand des Körperschwerpunkts zur Drehachse abhängt, hat der Turner in Position (2) ein geringeres Masseträgheitsmoment in Bezug auf die Reckstange und somit aufgrund der Drehimpuls-erhaltung eine erhöhte Drehgeschwindigkeit, die ihn in einer beschleunigten Bewegung um die Reckstange führt.

.2211 constJJ

1212 JJ

Abb. 6-4: Aufschwung am Reck

Page 169: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Drallsatz 161 ___________________________________________________________________ Der Versuch zur Drehimpulserhaltung (Pirouetteneffekt) lässt sich auch leicht mit Hilfe eines drehbaren Bürostuhls und zwei Gewichten nachvollziehen.

Abb. 6-5: Versuch: Drehimpulserhaltung (Physikalisches Institut Universität Dortmund)

Verkleinerung des Trägheitsmoments durch Heranziehen der Gewichte an die Rotations-achse bewirkt eine Erhöhung der Drehgeschwindigkeit der Versuchsperson. Dass es sich beim Drehimpuls um eine vektorielle Größe handelt lässt sich mit dem in Abb. 6-6 dargestellten Versuch mit einem rotierenden Rad nachweisen.

Abb. 6-6: Versuch: Drehimpuls als Vektor (Physikalisches Institut Universität Dortmund)

In Abb. 6-6a wird mittels des Schwungrads ein Drehimpuls erzeugt, die Versuchsperson bleibt in Ruhe. Bei senkrechter Lagerung des Rades, Abb. 6-6b beginnt die Versuchsperson sich um die Hochachse zu drehen, der Gesamtdrehimpuls Lz bleibt nach wie vor gleich Null. Einfluss der Drehimpulserhaltung bei Wetterphänomenen - Tornado Voraussetzung für die Entstehung eines Tornados, z.B. im Mittelwesten der USA, ist das Zusammentreffen trocken-kalter Luftmassen aus Kanada mit feucht-warmen Luftmassen aus dem Golf von Mexiko. Die kalte Luft schiebt sich trotz ihrer größeren Dichte über die warme Luftmasse und es bildet sich eine instabile Schichtung mit großem vertikalem Temperatur-unterschied. Kalte Luft hat eine wesentlich geringere Fähigkeit Feuchtigkeit aufzunehmen als warme Luft und es kommt zur Kondensation des in der Luft enthaltenen Wasserdampfes, was zur Bildung von Wolken mit starkem Niederschlag führt. Durch die Kondensation wird zusätzliche Wärme (Verdampfungsenthalpie) freigesetzt, wodurch es zur Ausbildung einer nach oben gerichteten Luftbewegung kommt. Am Boden bildet die horizontal nachströmende Luft aufgrund der Corioliskraft einen Linkswirbel (Nordhalbkugel) mit einem Durchmesser von lediglich 10-20 Metern. Die große Rotationsgeschwindigkeit im Wirbelkern ergibt sich aufgrund der Drehimpulserhaltung.

Page 170: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Drallsatz 162 ___________________________________________________________________ Infolge der hohen Drehgeschwindigkeiten erzeugen die dadurch auftretenden Zentrifugal-kräfte hohe Unterdrücke im Zentrum des Wirbels (p 50-100 hPa). Die oben liegende Kaltluft wird jetzt infolge des Unterdrucks im Wirbelkern und ihrer größeren Dichte als die unten liegende Warmluft, ähnlich einem Abflussrohr, nach unten gesaugt. Um diesen Wirbel kondensiert die feucht-warmen Luft und es kommt zur Ausbildung des charakteristischen dunklen Rüssels des Tornados. Die destruktive Wirkung eines Tornados ergibt sich insbe-sondere infolge des starken Druckgefälles von 50–100 hPa und den hohen Windgeschwindig-keiten von bis zu 400 km/h.

Abb. 6-7: Tornados über Festland und Meer

_________________________________________________________________________

Üb. 6-1: Versuch zur Drehimpulserhaltung - Tornado in der Wasserflasche

Wasser in der oberen Flasche wird durch eine Anfangsbeschleunigung in eine Rotation mit einer Umfangsgeschwindigkeit rrfc 2 versetzt. geg.: Flasche: R 40 mm = Anfangsradius r 4[mm = Wirbelinnendurchmesser f1 1 s-1 = Anfangsdrehfrequenz

ges.: Rotationsfrequenz f2 im Inneren des Tornados im Flaschenhals _________________________________________________________________________

Page 171: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Drallsatz 163 ___________________________________________________________________

6.2 Anwendung des Drallsatzes auf Strömungsmaschinen

Die Differenz zwischen aus- und eintretendem Drallstrom in einen Kontrollraum entspricht der Summer aller im Kontrollraum auf das Fluid wirkenden Momente

Gl. 6-30: McrcrmLL

112212

Gl. 6-31: crmdt

LdLM

Der Drallstrom entspricht der Drehenergie der Fluidmasse um einen Bezugspunkt. Anwendung des Drallsatzes auf einen mit m durchströmten Schaufelkanal

Summe aller Momente um O

Gl. 6-32: GSWAA MMMMMM

21

Moment infolge von

2,1AM

Druckkräften im Ein- und Austritt

WM

Wandkräften

SM

Stützkräfte an Einbauten

GM

Gewichtskräften

Abb. 6-8: Schaufelkanal

mit

nc Projektion der Geschwindigkeit in die dargestellte Ebene

uc Umfangskomponente der Geschwindigkeit senkrecht auf dem Radius r

Gesucht werden die Drehmomente um eine Bezugsachse durch den Bezugspunkt O. Beiträge werden hierzu lediglich von Geschwindigkeitskomponenten geliefert, die in einer Ebene normal zur Bezugsachse und senkrecht auf dem Radius stehen, d.h. die Umfangs-komponente uc der Geschwindigkeit c.

Unter Vernachlässigung der Gewichtskraft und der Momente im Ein- und Austritt lautet das resultierende Moment zur Bezugsachse, welches auf das Fluid ausgeübt wird

Gl. 6-33: McrcrmMMMMMMMM uuSWGSWAA

1122

00

2

0

1

Das Reaktionsmoment des Fluids KM auf die körpergebundene Fläche der Stromröhre beträgt

Gl. 6-34: 1122 uuK crcrmMM

Page 172: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Drallsatz 164 ___________________________________________________________________ Unter der Annahme einer idealen, reibungsfreien Strömung werden die Momente infolge Reibung an der Wand zu Null, d.h. 0WM . Befinden sich keine Einbauten, z.B. Umlenk-

schaufeln im Strömungskanal, so verschwinden auch die Momente infolge der Stützkräfte, d.h. 0SM und Gl. 6-33 vereinfacht sich wegen 0M zu

Gl. 6-35: 01122 uu crcrm 1122 uu crcr bzw. 2

112 r

rcc uu

Dies entspricht der Gleichung des Potentialwirbels für Ringräume ohne Schaufeln oder für Behälter und Kanäle. Anwendung des Drallsatzes auf das Laufrad einer Strömungsmaschine (Verdichter)

2,1A Ein- und Austrittsebene

2,1 aaT Tangentialebenen zu 2,1A

2,1c Absolutgeschwindigkeiten

2,1 uuc Umfangsgeschwindigkeiten

Gl. 6-36: 2,12,12,1 coscc uu

2,1w Relativgeschwindigkeiten

2,1 mmc Gemittelte Geschwindigkeiten

2,1W Neigungswinkel der Tangentialebenen

Für Axialmaschinen gilt: 02,1W

Für Radialmaschine gilt: 902,1W

und 11 ccn , 22 ccn

Abb. 6-9: Laufrad eines Verdichters

Moment auf das Fluid im Kontrollraum

Gl. 6-37: 1122 umum crcrmM

Übertragene Leistung P12 vom Laufrad auf das Fluid Mit dem mittleren Radius rm bzw. dem mittleren Durchmesser der Stromfläche

Gl. 6-38: 2

mm

Dr bzw.

2

22NG

m

DDD

und der Umfangsgeschwindigkeit u und der Drehzahl n

Gl. 6-39: nDru bzw. nDru mmm

Page 173: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Drallsatz 165 ___________________________________________________________________ ergibt sich für die auf das mit rotierende Laufrad übertragene Leistung P12

Gl. 6-40: 112212 umum crcrmMP

Gl. 6-41: 112212 umum cucumP

Spezifische technische Arbeit wt12 Die Leistung P12 bezogen auf den Massestrom m ergibt die spez. technische Arbeit wt12

Gl. 6-42: 11221212

umumt cucuwm

P

Momente, die von feststehenden Leiträdern auf das Fluid ausgeübt werden Das Leitrad steht fest, d.h. es gilt = 0 und an den Leiträdern wird keine Leistung mit dem Fluid ausgetauscht, d.h. 01212 twP . Das Leitrad nimmt das Reaktionsmoment MM K

auf, welches sich durch Ersetzen der Umfangsgeschwindigkeiten 2,1 uuc in Gl. 6-37 durch die

Absolutgeschwindigkeiten 2,1c am Ein- und Austritt des Leitrades berechnen lässt.

Gl. 6-43: 1122 crcrmM mm (Moment auf das Verdichtergehäuse)

_________________________________________________________________________

Üb. 6-2: Laufrad einer Kreiselpumpe geg.: sm,c 15101

sm,c 05262

801 Winkel zu 1uc

6222 , Winkel zu 2uc

12950 minn

mmDN 701

mmDG 901

mmDN 1742

mmDG 1802

mm,l 542

ges.: (1) Massestrom m durch die Pumpe (2) Drehmoment M und innere Leistungsübertragung P12 vom Rotor auf das Fluid (3) Spezifische technische Arbeit wt12 und geleistete spezifische Strömungsarbeit yt am

Fluid bei einem Gesamtwirkungsgrad von t = 0.7

Page 174: Skript zur Vorlesung Fluidmechanik

Fluidmechanik Literatur 166 ___________________________________________________________________ Literatur

[ 1] Anderson, J. D.: 'Computational Fluid Dynamics', McGraw-Hill Book Company,1995

[ 2] Anderson, J. D.: 'Fundamentals of Aerodynamics', McGraw-Hill Book Company,1985

[ 3] Anderson, J. D.: 'Hypersonic and High Temperatue Gas Dynamics', McGraw-Hill Book Company,1989

[ 4] Böswirth, L.: ’Technische Strömungslehre’, 7. Aufl., Vieweg, Wiesbaden 2007

[ 5] Dubs, F.: 'Hochgeschwindigkeits-Aerodynamik', Birkhäuser Verlag Basel, Stuttgart 1966

[ 6] Herwig, H.: ’Strömungsmechanik’, Springer Berlin, Heidelberg 2002

[ 7] Hucho, W.H.: ’Aerodynamik des Automobils’, 5. Auflage, Vieweg, Wiesbaden 2005

[ 8] Hünecke, K.: 'Modern Combat Aircraft Design', Naval Institute Press, Annapolis, Maryland 1987

[ 9] Koppenwallner, G. 'Fundamentals of Hypersonics: Aerodynamics and Heat Transfer', VKI Short Course Hypersonic Short Course Aerothermodynamics, Von Kármán Institute for Fluid Dynamics, Rhode Saint Genese, Belgium, LS 1984-01, 1984

[ 10] Kümmel, W.: ’Technische Strömungsmechanik’, 3. Aufl., Teubner Wiebaden 2007

[ 11] Liljequist G. H.: ‘Allgemeine Meteorologie’, Vieweg Verlag Braunschweig, 1974

[ 12] Sigloch, H.: ’Technische Fluidmechanik’, VDI Verlag Düsseldorf 1996

[ 13] Truckenbrodt, E.: 'Lehrbuch der angewandten Fluidmechanik', Springer-Verlag, 1983

[ 14] Van Dyke, M: 'An Album of Fluid Motion', The Paraboloic Press, Stanford CA, 1982