Some control considerations for ferromagnetic materials › trelat › GDT › confs ›...

54
EDS Ferromagnetism Micromagnetism Control Γ-convergence Hysteresis Assymptotic Temperature EDP Multi-scales Magnetostatic Monte-Carlo It ˆ o Some control considerations for ferromagnetic materials St´ ephane Labb ´ e Joseph Fourier University, Jean Kuntzmann Laboratory. Groupe de Travail Contrˆ ole, LJLL – 13 f´ evrier 2015 St´ ephane Labb ´ e (Joseph Fourier University), Ferromagnetism,

Transcript of Some control considerations for ferromagnetic materials › trelat › GDT › confs ›...

Page 1: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

EDSFerromagnetismMicromagnetism

Control

Γ-convergenceHysteresisAssymptotic

Temperature

EDP

Multi-scalesMagnetostaticMonte-Carlo

Ito

Some control considerations forferromagnetic materials

Stephane Labbe

Joseph Fourier University, Jean Kuntzmann Laboratory.

Groupe de Travail Controle, LJLL – 13 fevrier 2015

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 2: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan Modeling of ferromagnetic materials

Physical principles

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 3: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Ferromagnetic materialsFerromagnetic materials Modeling of ferromagnetic materials

Physical principles

Characterization

Remanent magnetization.

A critical temperatures separating linear andnon-linear behavior.

Microstructures and domain formation.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 4: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Ferromagnetic materialsFerromagnetic materials Modeling of ferromagnetic materials

Physical principles

Aimantation rémanente

Température

Comportement non linéaire Comportement linéaire

Température de Curie

Characterization

Remanent magnetization.

A critical temperatures separating linear andnon-linear behavior.

Microstructures and domain formation.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 5: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Ferromagnetic materialsFerromagnetic materials Modeling of ferromagnetic materials

Physical principles

Characterization

Remanent magnetization.

A critical temperatures separating linear andnon-linear behavior.

Microstructures and domain formation.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 6: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Ferromagnetic materialsFerromagnetic materials Modeling of ferromagnetic materials

Physical principles

Characterization

Remanent magnetization.

A critical temperatures separating linear andnon-linear behavior.

Microstructures and domain formation.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 7: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Several scalesSeveral scales Modeling of ferromagnetic materials

Physical principles

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 8: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Analogical and numerical experimentsAnalogical and numerical experiments Modeling of ferromagnetic materials

Physical principles

0 2 4 6 8 10 12

1

2

3

4

5

6

7

8

9

10

11

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 9: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Not so easy to control...Not so easy to control... Modeling of ferromagnetic materials

Physical principles

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 10: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Several scalesSeveral scales Modeling of ferromagnetic materials

Physical principles

atomic scale: every thing visible, modeling

via DFT.

microscopic scale: atom kernels are assimilated to punctualcharges bearing a magnetic moment

Mescopic scale: matter is modeled as continuous,ferromagnetic behavior are observable.

Macroscopic scale: ferromagnetic behaviors

are no more observable.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 11: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Several scalesSeveral scales Modeling of ferromagnetic materials

Physical principles

atomic scale: characteristic time ofthe spin-orbit interactions

Larmor scale: characteristic of themagnetic moment precession

dynamic scale: characteristic timeof the equilibrium relaxation

adiabatic scale: slow dynamic of equilibrium states

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 12: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan Modeling of ferromagnetic materials

The microscopic scale

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 13: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Microscopic modelMicroscopic model Modeling of ferromagnetic materials

The microscopic scale

GivenR the periodic net Z3, we setRε = εR andRε,Ω = Rε ∩ Ω.

Static

Atom kernels are seted in a cristalline configuration : Rε,Ω,

Magnetic moment beared by dirach measures : (µx )x∈Rε,Ω , avec µ =∑

x∈Rε,Ω

µx δx ,

Electromagnetic interactions: Maxwell system in void.

Heisenberg interaction energy: EHeis(µ) = −A∑

x∈Rε,Ω,y∈V(x)

µx · µy .

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 14: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Microscopic modelMicroscopic model Modeling of ferromagnetic materials

The microscopic scale

Dynamic

Quasi instantaneous minimization of the local Heisenberg energy.

Larmor precesion :

∀x ∈ Rε,Ω,dµx

dt= −γµx ∧ H(µ)(x),

where H(µ)(x) is the electromagnetic files at point x generated by µ augmented by the externalfield.

Heisenberg interactions can be modeled by introduction of an heuristic dissipation term.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 15: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan Modeling of ferromagnetic materials

The micromagnetic model

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 16: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Basis of micromagnetism (1)Basis of micromagnetism (1) Modeling of ferromagnetic materials

The micromagnetic model

Thermodynamical description of ferromagnetic materials: Micromagnetism, W.F. BROWN, in the60’s.

Notations

Magnetic domain: Ω, open in R3

Unit sphere: S2

Magnetization: m, vector fields of Ω, whose values are in S2

Energy functional: E defined on H1(Ω,R3) with values in R

Equilibrium State: element of H1(Ω,S2) which minimizes E

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 17: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Basis of micromagnetism (2)Basis of micromagnetism (2) Modeling of ferromagnetic materials

The micromagnetic model

Energy functional E

E : H1(Ω,S2) −→ R is defined by

E(m)=A2

∫Ω|∇m|2 +

12

∫R3|Hd (m)|2 −

∫Ω

m · Hext

Hd (m): Demagnetizing field solution of the following equation (where m is an extension of m by 0in R3):

curl(Hd ) = 0 in D′(R3,R3)div(Hd ) = −div(m) in D′(R3,R3).

Hext : Zeeman, models the action of an external field (independant of m).

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 18: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Basis of micro micromagnetismBasis of micro micromagnetism Modeling of ferromagnetic materials

The micromagnetic model

Dynamic: the Landau-Lifchitz system.

Landau et Lifchitz

∂m∂t

= −m ∧ H(m)− αm ∧ (m ∧ H(m)),

H(m) is the effective field.

H(m) = −dedm

, with E(m) =

∫Ω

e(m)dx .

Hypothesis: ϕ(m) = K2 (|m|2 − (m · u)2)

where u is in L∞(R3,S2).

Champ effectif

H(m) = A4m+Hd (m)+K (m.u)u+Hext ,

Some remarks:

Equilibrium states verify ‖H(m) ∧m‖0,Ω = 0.

For an autonomous external field, the energy of system’s solutions is decreasing.

The magnetization modulus is preserved overall the domain.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 19: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan Modeling of ferromagnetic materials

Link between scales

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 20: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

The static caseThe static case Modeling of ferromagnetic materials

Link between scales

µ, minimizer of the energy under constraint

EHeis(µ) +∫R3 |Hd (µ)|2 dx

m, minimizer of the energy under constraint

A∫

Ω |∇m|2 dx +∫R3 |Hd (m)|2 dx

ε

Ω

Γ-converge,H1(Ω,R3)

ε→ 0

Rε,Ω = εZd ⋂Ω

m ∈ H1(Ω; S2).

B. Bidegaray, Q. Jouet and S. Labbe, Static ferromagnetic materials: from the microscopic to the mesoscopic scale,Communications in Contemporary Mathematics, 2013.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 21: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

The dynamic caseThe dynamic case Modeling of ferromagnetic materials

Link between scales

Development of a particular notion of Gamma Convergence: convergence of trajectories.

Static results induces dynamical results: notion of gradient flows (see for example works by E. Sandierand S. Serfaty in the Ginzburg Landau context).

Work in progress with H. Pajot and B. Rufini.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 22: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan One particle

The stochastic model

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 23: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

ProblemProblem One particle

The stochastic model

Goal: to point out temperature like effects.

Tool: introduction of a stochastic perturbation.

What we want to emphazise :

quantifiable thermal effects,

hysteric phenomenas.

The deterministic model: Find µ(t), de R+ in S2, such that

dµdt = −µ ∧ Hext − αµ ∧ (µ ∧ Hext ),

The question: how to introduce the stochastic perturbation in the system preserving its structuralproperties?P. Etore, S. Labbe et J. Lelong, Hysteretic behavior of a stochastic nano particle, Journal of Differential Equations,2014.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 24: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

The model: the studied EDSThe model: the studied EDS One particle

The stochastic model

Given (Ω,F , (Ft )t>0,P) a filtered probabilist space and W standard Brownian process adapted to thefiltration (Ft )t>0 and valued in IR3. We set

dYt = −µt ∧ (b dt + ε dWt )− αµt ∧ µt ∧ (b dt + ε dWt )

µt = Yt|Yt |

Y0 = y ∈ S2,

We remark that the process µt preserves the structural properties of the deterministic model:

preservation of the modulus in time,

combination of to movements who, in the determinist case, are deriving from an hamiltoniandynamic of one and purely dissipative one for the other.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 25: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan One particle

Results

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 26: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Some propertiesSome properties One particle

Results

Proposition

When the pari of processes (Y , µ) is solution of the EDS we have

d |Yt |2 = 2ε2(α2 + 1)dt

so, |Yt | is deterministic.

Comes from the Ito formula.

We introduce h(t) = |Yt |h(t) =

√2ε2(α2 + 1)t + 1.

Then, we are able to define an EDS for µt · b

d(µt · b) = −(µt · b)h′(t)h(t)

dt −α

h(t)

((µt · b)2 − |b|2

)dt

−ε

h(t)

(− L(µt )b + α((µt · b)µt − b)

)· dWt

where L(x) is the edge by x operator.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 27: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Long time behaviorLong time behavior One particle

Results

The EDS for µt .b allows us to determine the long time behavior of the main EDS.

Lemma

supt

∫ t

0

1h(u)

(− µu ∧ b + α((µu · b)µu − b)

)· dWu <∞ a.s.

This lemma is based on the Doob inequality for martingales and gives access to the proof of thetheorem on long time behavior of the solutions

Theorem

µt · b −−−−→t→∞

|b| p.s.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 28: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Convergence speedConvergence speed One particle

Results

We obtain a convergence rate for the L1 norm

Theorem

limt−→∞

E(h(t) ||b| − µt · b|) =ε2(1 + α2)

2α.

We also prove the following corollary based upon the Markov inequality

Corollary

For all 0 < β < 1/2 and η > 0, P(tβ(|b| − µt · b) > η) −→ 0.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 29: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

The hysteresis modelThe hysteresis model One particle

Results

Applied external field obeying to a slow dynamic

bη(t) = (1− 2t η) b ∀t 6 1/η

b(t) = (1− 2t) b ∀t 6 1

EDS for the processes Yt and µt :dYηt = −µηt ∧ (bη(t) dt + ε dWt )− αµηt ∧ µ

ηt ∧ (bη(t) dt + ε dWt )

µηt =Yηt|Yηt |

Yη0 = b

Then, we focus on the process Zηt = Yηtη

which is re-scaled in time. We set ληt =Zηt|Zηt |

.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 30: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

The hysteresis phenomenaThe hysteresis phenomena One particle

Results

We prove that

Theorem

∀t ∈ [0,12

], E(ληt · b) >1√

1 + ε2(1+α2)η

This means that the trajectory of the process ληt · b in expectation goes over 0 strictly when b isvanishing, which is an hysteric behavior.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 31: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan One particle

Illustrations

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 32: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Almost sure convergence of µt · b for µ0 = −b, |b| = 1, ε = 0.1

-1

-0.5

0

0.5

1

0 5 10 15 20

alpha=1.0alpha=0.7alpha=0.5

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 33: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Convergence of 2α√

2ε√

(1+α2)

√t E(|b| − µt .b) pour µ0 = −b, |b| = 1 et ε = 0.1. dashed line: level at 1.

The expectation is computed via a Monte-Carlo method using 100 samples.

0

10

20

30

40

50

0 5 10 15 20

alpha=1.0alpha=0.7alpha=0.5

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 34: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

For α = 1, ε = 0.01 et η = 3.1 10−5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 35: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Zoom near t = 12

-1

-0.5

0

0.5

1

0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 36: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

For α = 1, ε = 0.005 et η = 0.01

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 37: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan One particle

Which noise for which model?

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 38: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Stratonovich versus Ito?Stratonovich versus Ito? One particle

Which noise for which model?

In the case of the Stratonovich integral, equal to the It one up to a finite variation process , the system iswritten as follows

∂µt = −µt ∧ (b∂t + ε∂Wt )− αµt ∧ µt ∧ (b∂t + ε∂Wt ), µ0 ∈ S(R3).

Then, this Stratonovich integral is transformed into an It integral1:

dµt = −A(µt )dt + εA(µt )dWt +12ε2

3∑q=1

3∑j=1

(AjqDj (Aiq))(µt ) dt

Then, µt is solution of the Ito EDS:

dµt = −(A(µt ) + ε2(α2 + 1)µt )dt + εA(µt )dWt .

who implies

d(µt · b)|µt = b|b|

= −ε2(α2 + 1)|b|dt,

1voir Rogers and Williams, V.30

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 39: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Stratonovich versus Ito?Stratonovich versus Ito? One particle

Which noise for which model?

Then, we have

E[µt · b]′ = α(|b|2 − E[(µt · b)2])− ε2(α2 + 1)E[µt · b]

E[µt · b]− E[µ0 · b] e−ε2(α2+1)t = e−ε

2(α2+1)t∫ t

0α(|b|2 − E[(µs · b)2]) e−ε

2(α2+1)s ds

lim supt→+∞

E[µt · b] = − lim inft→+∞

e−ε2(α2+1)t

∫ t

0αE[(µs · b)2]) e−ε

2(α2+1)s ds

lim supt→+∞

E[µt · b] 6 −α

ε2(α2 + 1)lim inft→+∞

E[(µt · b)2]

and similarly, we can show that

lim inft→+∞

E[µt · b] > −α

ε2(α2 + 1)lim supt→+∞

E[(µt · b)2].

So far, the process µt stays on the lower half sphere.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 40: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Differences: stability point of vueDifferences: stability point of vue One particle

Which noise for which model?

ItoAsymptotically stable states remain asymptotically stables.

µt · b → 1, p.s. when t goes to infinity.

StratanovichAsymptotically stable states become stables.∫ t+σ

t(µs · b)ds → β < 1, p.s. when t, σ go to infinity.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 41: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan Net of particles

The deterministic model

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 42: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

A net of par tiles and a lecture head

x

y

z

l

δl

diple magntique

G.Carbou, S. Labbe, C. Prieur and S. Agarwall Control of a network of magnetic ellipsoidal samples. MathematicalControl and Related Fields, 2011.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 43: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan Net of particles

Stable configurations

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 44: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Theorem

There exists γ0 > 0 (form parameter of the net) such that

Vl3≤ γ0 , (3.1)

There exists ν0 > 0, et c > 0 such that, for every pertinent configuration m0 associated to ε (m0i = εi ~e2

pour tout i), for all minit ∈ Vε(ν0), the solution m of the system with M ≡ 0 associated to the initialcondition m(0) = minit satisfies:

∀ t ≥ 0,m(t) ∈ Vε(ν0e−ct ).

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 45: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Unstable configuration

x

y

z

x

y

z

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 46: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Stable configuration

x

y

z

x

y

z

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 47: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan Net of particles

Control

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 48: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

ControlControl Net of particles

Control

Given m[ and m] two pertinent configurations. We choose the initial state in the neighborhood of m[,then the configuration m] is the goal.

∀t ∈ [ilv, i

lv

+ δlv

],M(t) =

+M, si m[i = −m]i = ~e2,

0 si m[i = m]i ,−M, si m[i = −m]i = −~e2,

∀t /∈N⋃

i=0

[ilv, i

lv

+ δlv

], M(t) = 0.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 49: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

ControlThe magnetic dipole induces a magnetic field Ωi0 given by

Happ(t,M)(i0) =µ0M4π

1r3

(2 cos(θ)ur + sin(θ) uθ),

where

r is the distance between the dipole and the considered particle:

r = [(x0 + vt − i0l)2 + δ2l2]12 ,

ur et uθ are given by

ur =1r

x0 + vt − i0l−δl

0

, uθ =1r

δlx0 + vt − i0l

0

θ is the angle (−~e2, ur ).

M is the control.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 50: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Theorem

Given γ0 and c chosen in the stability zone. There exists γ1 > 0 with γ1 < γ0, there exists ν1 > 0,M > 0 and δ > 0 such that

Vl3≤ γ1,

then we can claim the following stability result:given m[ and m] two pertinent configurations t 7→ M(t) the control obtain auctioning the dipole. Ifminit ∈ Vε[ (ν1), The solution m of the system associated to the initial condition minit satisfies:

∀ t ≥ Tf , m(t) ∈ Vε] (ν1e−c(t−Tf )).

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 51: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

PlanPlan Net of particles

The sotchastic case

• Modeling of ferromagnetic materials• Physical principles• The microscopic scale• The micromagnetic model• Link between scales

• One particle• The stochastic model• Results• Illustrations•Which noise for which model?

• Net of particles• The deterministic model• Stable configurations• Control• The sotchastic case

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 52: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

The studied systemThe studied system Net of particles

The sotchastic case

Similarly to the study performed for one particle, where are now interested in a net of particles∀σ ∈ Σl,n :dYσ,t = −µσ,t ∧ (H(µt )(σ)dt + εdWσ,t )− α µσ,t ∧ (µσ,t ∧ (H(µt )(σ)dt + εdWσ,t )) ,

µσ,t =Yσ,t|Yσ,t |

,

Y0 = y ∈ (S2)Σl,n .

Goal: to retrieve a phase transition behavior for configurations.

Work in progress with J. Lelong and A. Kritoglou.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 53: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Examples of dynamicsExamples of dynamics Net of particles

The sotchastic case

-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000

-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000

-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000

Stephane Labbe (Joseph Fourier University), Ferromagnetism,

Page 54: Some control considerations for ferromagnetic materials › trelat › GDT › confs › Stephane_Labbe.… · Some control considerations for ferromagnetic materials Stephane Labb´

Thank you for your attention.

Stephane Labbe (Joseph Fourier University), Ferromagnetism,