Soutenance de thèse d’habilitationpioline/Seminars/...Soutenance de thèse d’habilitation...

91
Soutenance de thèse d’habilitation Université Pierre et Marie Curie Contributions à la théorie dite des supercordes Aspects de la théorie des cordes en champ de fond dépendant du temps Boris Pioline LPTHE, Paris 19 septembre 2003 transparents disponibles sur http://www.lpthe.jussieu.fr/ ˜ pioline/seminars.html

Transcript of Soutenance de thèse d’habilitationpioline/Seminars/...Soutenance de thèse d’habilitation...

  • Soutenance de thèse d’habilitation

    Université Pierre et Marie Curie

    Contributions à la théoriedite des supercordes

    Aspects de la théorie des cordes enchamp de fond dépendant du temps

    Boris PiolineLPTHE, Paris

    19 septembre 2003

    transparents disponibles surhttp://www.lpthe.jussieu.fr/ p̃ioline/seminars.html

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 1

    Remerciements

    α. Thèse de doctorat: Aspects non-perturbatifs de la théorie des cordes

    direction I. Antoniadis, avril 1998

    1. Dualité, amplitudes non perturbatives et instantons

    Kiritsis, Obers, Hanany, Partouche

    2. Théories de jauge non commutatives

    Schwarz, Elitzur, Rabinovici

    3. Sur la correspondance AdS/CFT

    D’Hoker, Bachas, Hoppe, Kiritsis

    4. Supercordes à basse énergie

    Antoniadis, Bachas

    5. Formes automorphes et la supermembrane

    Nicolai, Plefka, Waldron, Kazhdan

    6. Champs de fond dépendant du temps

    Waldron, Durin, Berkooz, Gutperle

    Pour des contraintes dépendantes du temps, je me restreindrai à ce dernier thème.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 2

    Plan de l’exposé

    1. Introduction

    2. Modèles-jouets de champs de fond dépendant du temps

    3. Cordes ouvertes dans une onde électromagnétique

    Durin BP; Gutperle BP

    4. Cordes ouvertes en champ électrique et l’univers de Milne

    Berkooz BP

    5. Conclusions et spéculations

    Waldron BP

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 3

    Introduction

    • Initialement introduite pour décrire les interactions fortes, la théorie des cordes a pourprincipale vocation la description quantique de la gravitation. Accessoirement, elle décritaussi les interactions de jauge du Modèle Standard dans un cadre unifié.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 3

    Introduction

    • Initialement introduite pour décrire les interactions fortes, la théorie des cordes a pourprincipale vocation la description quantique de la gravitation. Accessoirement, elle décritaussi les interactions de jauge du Modèle Standard dans un cadre unifié.

    • Grâce aux propriétés uniques des théories conformes bidimensionnelles, la théorie descordes conduit à des amplitudes de diffusion de gravitons finies dans l’UV, tout au moinsau voisinage de l’espace plat.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 3

    Introduction

    • Initialement introduite pour décrire les interactions fortes, la théorie des cordes a pourprincipale vocation la description quantique de la gravitation. Accessoirement, elle décritaussi les interactions de jauge du Modèle Standard dans un cadre unifié.

    • Grâce aux propriétés uniques des théories conformes bidimensionnelles, la théorie descordes conduit à des amplitudes de diffusion de gravitons finies dans l’UV, tout au moinsau voisinage de l’espace plat.

    • Au contraire d’autres approches plus “canoniques” à la gravité quantique, la théorie descordes est définie par rapport à un champ de fond de référence, par exemple l’espace deMinkowski à 10 dimensions, et l’indépendance vis-à-vis du champ de fond est nonmanifeste.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 3

    Introduction

    • Initialement introduite pour décrire les interactions fortes, la théorie des cordes a pourprincipale vocation la description quantique de la gravitation. Accessoirement, elle décritaussi les interactions de jauge du Modèle Standard dans un cadre unifié.

    • Grâce aux propriétés uniques des théories conformes bidimensionnelles, la théorie descordes conduit à des amplitudes de diffusion de gravitons finies dans l’UV, tout au moinsau voisinage de l’espace plat.

    • Au contraire d’autres approches plus “canoniques” à la gravité quantique, la théorie descordes est définie par rapport à un champ de fond de référence, par exemple l’espace deMinkowski à 10 dimensions, et l’indépendance vis-à-vis du champ de fond est nonmanifeste.

    • La formulation perturbative actuelle de la théorie des cordes est bien adaptée au calculd’éléments de matrice S en espace asymptotiquement plat, fort utile pour la physique desparticules mais moins pour la cosmologie.

    + + + ...

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 4

    Introduction

    • Alors que les confirmations expérimentales en physique des particules sont suspendues àla prochaine génération d’accélérateurs de particules, la cosmologie observationnelleconnaît un essor impressionnant, conduisant à des mesures des paramètrescosmologiques à une précision inégalée:

    No Big Bang

    1 2 0 1 2 3

    p

    -1

    0

    1

    2

    3

    2

    3

    o e

    Supernovae

    CMB

    Clusters

    Knop et al. (2003)Spergel et al. (2003)Allen et al. (2002)

    Supernova Cosmology Project

    ΩΛ

    M

    ΩΛ = 71.0%

    Ωbaryon = 4.7%

    Ωdark = 24.3%

    w = −0.98± .12

    h = 0.72± .05

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 4

    Introduction

    • Alors que les confirmations expérimentales en physique des particules sont suspendues àla prochaine génération d’accélérateurs de particules, la cosmologie observationnelleconnaît un essor impressionnant, conduisant à des mesures des paramètrescosmologiques à une précision inégalée:

    No Big Bang

    1 2 0 1 2 3

    p

    -1

    0

    1

    2

    3

    2

    3

    o e

    Supernovae

    CMB

    Clusters

    Knop et al. (2003)Spergel et al. (2003)Allen et al. (2002)

    Supernova Cosmology Project

    ΩΛ

    M

    ΩΛ = 71.0%

    Ωbaryon = 4.7%

    Ωdark = 24.3%

    w = −0.98± .12

    h = 0.72± .05

    • Si la théorie effective de supergravité suffit quelquefois à décrire les modèlescosmologiques, éventuellement inspirés par la théorie des cordes (e.g. univers branaires),la compréhension de la théorie des cordes en champs de fond dépendant du temps restetrès embryonnaire.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 5

    Strings in time-dependent backgroundsDe nombreuses questions se posent lorsqu’on cherche à décrire la théorie des cordes enchamp de fond dépendant du temps:

    • La définition perturbative des amplitudes de genre plus élevé impose de considérer unesurface d’univers euclidienne, et donc un espace-cible euclidien. La continuationanalytique de l’espace-cible est en général ambiguë et complexe.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 5

    Strings in time-dependent backgroundsDe nombreuses questions se posent lorsqu’on cherche à décrire la théorie des cordes enchamp de fond dépendant du temps:

    • La définition perturbative des amplitudes de genre plus élevé impose de considérer unesurface d’univers euclidienne, et donc un espace-cible euclidien. La continuationanalytique de l’espace-cible est en général ambiguë et complexe.

    • Différents états du vide sont en général possibles, comment implémenter unetransformation de Bogolioubov d’un vide à l’autre ? Théorie des champs de cordes ousurface d’univers non locales ?

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 5

    Strings in time-dependent backgroundsDe nombreuses questions se posent lorsqu’on cherche à décrire la théorie des cordes enchamp de fond dépendant du temps:

    • La définition perturbative des amplitudes de genre plus élevé impose de considérer unesurface d’univers euclidienne, et donc un espace-cible euclidien. La continuationanalytique de l’espace-cible est en général ambiguë et complexe.

    • Différents états du vide sont en général possibles, comment implémenter unetransformation de Bogolioubov d’un vide à l’autre ? Théorie des champs de cordes ousurface d’univers non locales ?

    • Le choix des observables est obscur en l’absence de région asymptotique plate, dans lecas d’univers fermés, ou présentant des régions asymptotiques avec courbes causalesfermées.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 5

    Strings in time-dependent backgroundsDe nombreuses questions se posent lorsqu’on cherche à décrire la théorie des cordes enchamp de fond dépendant du temps:

    • La définition perturbative des amplitudes de genre plus élevé impose de considérer unesurface d’univers euclidienne, et donc un espace-cible euclidien. La continuationanalytique de l’espace-cible est en général ambiguë et complexe.

    • Différents états du vide sont en général possibles, comment implémenter unetransformation de Bogolioubov d’un vide à l’autre ? Théorie des champs de cordes ousurface d’univers non locales ?

    • Le choix des observables est obscur en l’absence de région asymptotique plate, dans lecas d’univers fermés, ou présentant des régions asymptotiques avec courbes causalesfermées.

    • L’impossibilité d’imposer un cut-off infrarouge compatible avec l’invariance conformeconduit classiquement à des singularités de Big Bang ou de Big Crunch... Que deviennentelles sous l’effet des corrections quantiques / de cordes ?

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 6

    Lorentzian orbifold

    • The Lorentzian orbifold, quotient of flat R1,1 Minkowski space by a boost J is a toyexample of a cosmological singularity:

    Horowitz Steif; Seiberg; Nekrasov

    XX +−

    CTC

    Big Crunch

    Big Bang

    CTC

    Milne Universe region:

    ds2

    = −dT 2 + T 2dθ2

    θ ≡ θ + 2π

    “Whiskers” with CTC:

    ds2

    = −r2dη2 + dr2

    η ≡ η + 2π

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 6

    Lorentzian orbifold

    • The Lorentzian orbifold, quotient of flat R1,1 Minkowski space by a boost J is a toyexample of a cosmological singularity:

    Horowitz Steif; Seiberg; Nekrasov

    XX +−

    CTC

    Big Crunch

    Big Bang

    CTC

    Milne Universe region:

    ds2

    = −dT 2 + T 2dθ2

    θ ≡ θ + 2π

    “Whiskers” with CTC:

    ds2

    = −r2dη2 + dr2

    η ≡ η + 2π

    • This is a non-generic example of a Kasner singularity, arising locally in other models suchas gauged WZW models. Are whiskers and CTC generic ?

    Cornalba Costa; Craps Kutasov Rajesh; Elitzur Giveon Kutasov Rabinovici

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 6

    Lorentzian orbifold

    • The Lorentzian orbifold, quotient of flat R1,1 Minkowski space by a boost J is a toyexample of a cosmological singularity:

    Horowitz Steif; Seiberg; Nekrasov

    XX +−

    CTC

    Big Crunch

    Big Bang

    CTC

    Milne Universe region:

    ds2

    = −dT 2 + T 2dθ2

    θ ≡ θ + 2π

    “Whiskers” with CTC:

    ds2

    = −r2dη2 + dr2

    η ≡ η + 2π

    • This is a non-generic example of a Kasner singularity, arising locally in other models suchas gauged WZW models. Are whiskers and CTC generic ?

    Cornalba Costa; Craps Kutasov Rajesh; Elitzur Giveon Kutasov Rabinovici

    • What is the fate of the cosmological singularity and CTC under string corrections ? Cantwisted states resolve the singularity ?

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 7

    Parabolic orbifold

    • The parabolic orbifold is a quotient of flat R1,2 Minkowski space by a null boost, ie theproduct of a boost J01 and a rotation R12,

    X+

    ds2

    = −2dy+dy− + (y+)2dy2

    y ≡ y + 2π

    Simon; Liu Moore Seiberg

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 7

    Parabolic orbifold

    • The parabolic orbifold is a quotient of flat R1,2 Minkowski space by a null boost, ie theproduct of a boost J01 and a rotation R12,

    X+

    ds2

    = −2dy+dy− + (y+)2dy2

    y ≡ y + 2π

    Simon; Liu Moore Seiberg

    • This background has no CTC and preserves half of the supersymmetries.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 7

    Parabolic orbifold

    • The parabolic orbifold is a quotient of flat R1,2 Minkowski space by a null boost, ie theproduct of a boost J01 and a rotation R12,

    X+

    ds2

    = −2dy+dy− + (y+)2dy2

    y ≡ y + 2π

    Simon; Liu Moore Seiberg

    • This background has no CTC and preserves half of the supersymmetries.• Yet it has Closed Null Curves and a non-Hausdorff line of singularity. It is more relevant to

    the physics of null singularities and gravitational wave than to cosmology.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 8

    Toys are broken

    • Either of these examples seem to be plagued with perturbative divergences, related tolarge graviton exchange at the singularity, implying large backreaction.

    Liu Moore Seiberg

    Berkooz Craps Kutasov Rajesh

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 8

    Toys are broken

    • Either of these examples seem to be plagued with perturbative divergences, related tolarge graviton exchange at the singularity, implying large backreaction.

    Liu Moore Seiberg

    Berkooz Craps Kutasov Rajesh

    • Due to high blue-shift towards the singularity, the images of the particles on the coveringspace may non-perturbatively form a large black hole, that eats up the space.

    Horowitz Polchinski

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 8

    Toys are broken

    • Either of these examples seem to be plagued with perturbative divergences, related tolarge graviton exchange at the singularity, implying large backreaction.

    Liu Moore Seiberg

    Berkooz Craps Kutasov Rajesh

    • Due to high blue-shift towards the singularity, the images of the particles on the coveringspace may non-perturbatively form a large black hole, that eats up the space.

    Horowitz Polchinski

    Can backreaction and particle production resolve these divergences ?

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 9

    Open strings in time dep. backgroundsIn order to disentangle gravitational instabilities from time-dependence, it may be simpler toconsider time-dependent open-string configurations: moving D-branes or electric fields:

    • Backreaction in the closed string sector may be neglected as gs → 0. Yet general issuessuch as choice of vacua and production of open strings are retained.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 9

    Open strings in time dep. backgroundsIn order to disentangle gravitational instabilities from time-dependence, it may be simpler toconsider time-dependent open-string configurations: moving D-branes or electric fields:

    • Backreaction in the closed string sector may be neglected as gs → 0. Yet general issuessuch as choice of vacua and production of open strings are retained.

    • More powerful techniques are available for open strings: boundary states, string fieldtheory, gauge theory . . .

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 9

    Open strings in time dep. backgroundsIn order to disentangle gravitational instabilities from time-dependence, it may be simpler toconsider time-dependent open-string configurations: moving D-branes or electric fields:

    • Backreaction in the closed string sector may be neglected as gs → 0. Yet general issuessuch as choice of vacua and production of open strings are retained.

    • More powerful techniques are available for open strings: boundary states, string fieldtheory, gauge theory . . .

    • Moving D-branes and electric fields are often easier to visualize...

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 9

    Open strings in time dep. backgroundsIn order to disentangle gravitational instabilities from time-dependence, it may be simpler toconsider time-dependent open-string configurations: moving D-branes or electric fields:

    • Backreaction in the closed string sector may be neglected as gs → 0. Yet general issuessuch as choice of vacua and production of open strings are retained.

    • More powerful techniques are available for open strings: boundary states, string fieldtheory, gauge theory . . .

    • Moving D-branes and electric fields are often easier to visualize...• Time dependent open string backgrounds may be holographically dual to time-dependent

    closed string backgrounds...

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 10

    closed strings on orbifoldsvs open strings in electric fields

    • An analogue of the Lorentzian orbifold is a D-brane head-on collision, or open strings in aconstant electric field:

    E −E

    0 1

    v −v

    0 1

    XX +−

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 10

    closed strings on orbifoldsvs open strings in electric fields

    • An analogue of the Lorentzian orbifold is a D-brane head-on collision, or open strings in aconstant electric field:

    E −E

    0 1

    v −v

    0 1

    XX +−

    • Analogues of the parabolic orbifold are null scissor configurations, or open strings in aconstant null field F = fdx2 ∧ dx+:

    X+

    B

    E=B

    v=1

    Bachas Hull

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 10

    closed strings on orbifoldsvs open strings in electric fields

    • An analogue of the Lorentzian orbifold is a D-brane head-on collision, or open strings in aconstant electric field:

    E −E

    0 1

    v −v

    0 1

    XX +−

    • Analogues of the parabolic orbifold are null scissor configurations, or open strings in aconstant null field F = fdx2 ∧ dx+:

    X+

    B

    E=B

    v=1

    Bachas Hull

    • Charged open strings have (half) the same mode structure as twisted closed strings.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 11

    Open strings in constant electromag. field vs orbifolds

    • Open strings couple to an electromagnetic field through their boundary only. Theembedding coordinates are therefore free bosons in the bulk of the Minkowskian strip0 < σ < π, τ ∈ R,

    Xµ(τ, σ) = f

    µ(τ + σ) + g

    µ(τ − σ)

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 11

    Open strings in constant electromag. field vs orbifolds

    • Open strings couple to an electromagnetic field through their boundary only. Theembedding coordinates are therefore free bosons in the bulk of the Minkowskian strip0 < σ < π, τ ∈ R,

    Xµ(τ, σ) = f

    µ(τ + σ) + g

    µ(τ − σ)

    • The electric field may be different on each of the two D-branes. The boundary conditionsat σ = σa ∈ {0, π}

    ∂σXµ

    + (2πα′)F

    µν;a(X)∂τX

    ν= 0

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 11

    Open strings in constant electromag. field vs orbifolds

    • Open strings couple to an electromagnetic field through their boundary only. Theembedding coordinates are therefore free bosons in the bulk of the Minkowskian strip0 < σ < π, τ ∈ R,

    Xµ(τ, σ) = f

    µ(τ + σ) + g

    µ(τ − σ)

    • The electric field may be different on each of the two D-branes. The boundary conditionsat σ = σa ∈ {0, π}

    ∂σXµ

    + (2πα′)F

    µν;a(X)∂τX

    ν= 0

    • For a constant F , this is a linear system of non-local ODEs, which can be solved in Fourierspace. Assuming [F0, F1] = 0,

    e−2πiωn =

    1 + F0

    1− F0·1− F11 + F1

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 11

    Open strings in constant electromag. field vs orbifolds

    • Open strings couple to an electromagnetic field through their boundary only. Theembedding coordinates are therefore free bosons in the bulk of the Minkowskian strip0 < σ < π, τ ∈ R,

    Xµ(τ, σ) = f

    µ(τ + σ) + g

    µ(τ − σ)

    • The electric field may be different on each of the two D-branes. The boundary conditionsat σ = σa ∈ {0, π}

    ∂σXµ

    + (2πα′)F

    µν;a(X)∂τX

    ν= 0

    • For a constant F , this is a linear system of non-local ODEs, which can be solved in Fourierspace. Assuming [F0, F1] = 0,

    e−2πiωn =

    1 + F0

    1− F0·1− F11 + F1

    • Twisted closed strings in orbifolds satisfy

    Xµ(σ + 2π, τ) = R

    µν X

    ν(σ, τ) ⇒ e−2πiωn = Rµν

    • Twisted closed strings and charged open strings behave analogously whenR = (1 + F )/(1− F ).

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 12

    Open strings in a constant electromag fieldThe dispersion relation again:

    e−2πiωn =

    1 + F0

    1− F0·1− F11 + F1

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 12

    Open strings in a constant electromag fieldThe dispersion relation again:

    e−2πiωn =

    1 + F0

    1− F0·1− F11 + F1

    • Magnetic field: F = b(

    0 1

    −1 0

    )→ {ib,−ib} hence |T | = 1 and frequencies are real:

    ωn = n± ν , πν = ArcTan b1 − ArcTan b0

    where ν is the stringy Larmor frequency. The string c.o.m. follows stable Landau orbits.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 12

    Open strings in a constant electromag fieldThe dispersion relation again:

    e−2πiωn =

    1 + F0

    1− F0·1− F11 + F1

    • Magnetic field: F = b(

    0 1

    −1 0

    )→ {ib,−ib} hence |T | = 1 and frequencies are real:

    ωn = n± ν , πν = ArcTan b1 − ArcTan b0

    where ν is the stringy Larmor frequency. The string c.o.m. follows stable Landau orbits.

    • Electric field: F = e(

    0 1

    1 0

    )→ {e,−e} hence |T | 6= 1 and frequencies have an

    imaginary part:ωn = n± iν , πν = ArcTanh e1 − ArcTanh e0

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 12

    Open strings in a constant electromag fieldThe dispersion relation again:

    e−2πiωn =

    1 + F0

    1− F0·1− F11 + F1

    • Magnetic field: F = b(

    0 1

    −1 0

    )→ {ib,−ib} hence |T | = 1 and frequencies are real:

    ωn = n± ν , πν = ArcTan b1 − ArcTan b0

    where ν is the stringy Larmor frequency. The string c.o.m. follows stable Landau orbits.

    • Electric field: F = e(

    0 1

    1 0

    )→ {e,−e} hence |T | 6= 1 and frequencies have an

    imaginary part:ωn = n± iν , πν = ArcTanh e1 − ArcTanh e0

    This instability is due to Schwinger production of charged pairs. The rate production ratefollows from the one-loop amplitude,

    =(A) =∑

    states

    ∞∑k=1

    (−1)F (k+1)(ν

    k

    )D/2exp

    (−πkM2

    ν

    )

    Bachas Porrati

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 13

    Open strings in a null electric field

    • A generic Fµν can always be brought to electric or magnetic form depending onsgn FµνF µν. However there is a third non-generic possibility,

    F = fdx2 ∧ dx+ = f

    0 10 10

    , x± = 1√2(x

    0 ± x1)

    which satisfies FµνF µν = 0. In 4D, it amounts to a configuration with crossed fields~E ⊥ ~B of equal magnitude |~E| = | ~B|.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 13

    Open strings in a null electric field

    • A generic Fµν can always be brought to electric or magnetic form depending onsgn FµνF µν. However there is a third non-generic possibility,

    F = fdx2 ∧ dx+ = f

    0 10 10

    , x± = 1√2(x

    0 ± x1)

    which satisfies FµνF µν = 0. In 4D, it amounts to a configuration with crossed fields~E ⊥ ~B of equal magnitude |~E| = | ~B|.

    • The eigenvalues of F are 0, so there is no vacuum polarization nor particle production, asexpected in an electromagnetic wave.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 13

    Open strings in a null electric field

    • A generic Fµν can always be brought to electric or magnetic form depending onsgn FµνF µν. However there is a third non-generic possibility,

    F = fdx2 ∧ dx+ = f

    0 10 10

    , x± = 1√2(x

    0 ± x1)

    which satisfies FµνF µν = 0. In 4D, it amounts to a configuration with crossed fields~E ⊥ ~B of equal magnitude |~E| = | ~B|.

    • The eigenvalues of F are 0, so there is no vacuum polarization nor particle production, asexpected in an electromagnetic wave.

    • After T-duality on x, this describes a null scissor configuration, i.e. two intersecting straightD-branes whose intersection point moves with the speed of light.

    Bachas Hull

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 13

    Open strings in a null electric field

    • A generic Fµν can always be brought to electric or magnetic form depending onsgn FµνF µν. However there is a third non-generic possibility,

    F = fdx2 ∧ dx+ = f

    0 10 10

    , x± = 1√2(x

    0 ± x1)

    which satisfies FµνF µν = 0. In 4D, it amounts to a configuration with crossed fields~E ⊥ ~B of equal magnitude |~E| = | ~B|.

    • The eigenvalues of F are 0, so there is no vacuum polarization nor particle production, asexpected in an electromagnetic wave.

    • After T-duality on x, this describes a null scissor configuration, i.e. two intersecting straightD-branes whose intersection point moves with the speed of light.

    Bachas Hull

    • This open string background bears similarities with the closed string parabolic orbifold.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 14

    Relativistic string in a pulse

    • More generally, one may allow an arbitrary dependence in the light-cone time x+, and anharmonic profile in transverse coordinates:

    A = Φ(x+, x

    i)dx

    +, ∂

    2iΦ = 0

    This is an exact SUSY solution of the open strings eom to all orders in α′.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 14

    Relativistic string in a pulse

    • More generally, one may allow an arbitrary dependence in the light-cone time x+, and anharmonic profile in transverse coordinates:

    A = Φ(x+, x

    i)dx

    +, ∂

    2iΦ = 0

    This is an exact SUSY solution of the open strings eom to all orders in α′.

    • Strings can be quantized in the light-cone gauge X+ = x+0 + p+τ .

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 14

    Relativistic string in a pulse

    • More generally, one may allow an arbitrary dependence in the light-cone time x+, and anharmonic profile in transverse coordinates:

    A = Φ(x+, x

    i)dx

    +, ∂

    2iΦ = 0

    This is an exact SUSY solution of the open strings eom to all orders in α′.

    • Strings can be quantized in the light-cone gauge X+ = x+0 + p+τ .

    • For Φ = fi(x+)xi, the boundary conditions receive a time-dependent source term,

    ∂σXi+ (2πα

    ′)p

    +fi(X

    +) = 0 , σ ∈ {0, π}

    while Xi remains free in the bulk. Classical solutions can be computed by linear response.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 14

    Relativistic string in a pulse

    • More generally, one may allow an arbitrary dependence in the light-cone time x+, and anharmonic profile in transverse coordinates:

    A = Φ(x+, x

    i)dx

    +, ∂

    2iΦ = 0

    This is an exact SUSY solution of the open strings eom to all orders in α′.

    • Strings can be quantized in the light-cone gauge X+ = x+0 + p+τ .

    • For Φ = fi(x+)xi, the boundary conditions receive a time-dependent source term,

    ∂σXi+ (2πα

    ′)p

    +fi(X

    +) = 0 , σ ∈ {0, π}

    while Xi remains free in the bulk. Classical solutions can be computed by linear response.

    • After T-duality along x, on obtains “null scissors”configurations, with arbitrary shape. An incoming stringin its ground state will in general emerge in an excitedstate, depending on the profile Φ(x+): the S-matrix canbe computed.

    Bachas

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 14

    Relativistic string in a pulse

    • More generally, one may allow an arbitrary dependence in the light-cone time x+, and anharmonic profile in transverse coordinates:

    A = Φ(x+, x

    i)dx

    +, ∂

    2iΦ = 0

    This is an exact SUSY solution of the open strings eom to all orders in α′.

    • Strings can be quantized in the light-cone gauge X+ = x+0 + p+τ .

    • For Φ = fi(x+)xi, the boundary conditions receive a time-dependent source term,

    ∂σXi+ (2πα

    ′)p

    +fi(X

    +) = 0 , σ ∈ {0, π}

    while Xi remains free in the bulk. Classical solutions can be computed by linear response.

    • After T-duality along x, on obtains “null scissors”configurations, with arbitrary shape. An incoming stringin its ground state will in general emerge in an excitedstate, depending on the profile Φ(x+): the S-matrix canbe computed.

    Bachas

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 15

    Relativistic string in a quadrupolar potential

    • The next simplest harmonic function is a quadratic potential

    Φ(x+, x

    i) = hij(x

    +)x

    ixj/2

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 15

    Relativistic string in a quadrupolar potential

    • The next simplest harmonic function is a quadratic potential

    Φ(x+, x

    i) = hij(x

    +)x

    ixj/2

    In the light-cone gauge, this leads to a massive boundary deformation:

    ∂σXi+ p

    +(ha)ij(x

    +)X

    j= 0 , σ = σ

    a

    hence conformal invariance is broken on the boundary.

    Durin, BP

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 15

    Relativistic string in a quadrupolar potential

    • The next simplest harmonic function is a quadratic potential

    Φ(x+, x

    i) = hij(x

    +)x

    ixj/2

    In the light-cone gauge, this leads to a massive boundary deformation:

    ∂σXi+ p

    +(ha)ij(x

    +)X

    j= 0 , σ = σ

    a

    hence conformal invariance is broken on the boundary.

    Durin, BP

    • This is an open string analogue of the gravitational wave, indeed the open string metricreads

    ds2= 2dx

    +dx

    −+ (dx

    i)2+ (2πα

    ′)2(hijx

    j)2(dx

    +)2

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 15

    Relativistic string in a quadrupolar potential

    • The next simplest harmonic function is a quadratic potential

    Φ(x+, x

    i) = hij(x

    +)x

    ixj/2

    In the light-cone gauge, this leads to a massive boundary deformation:

    ∂σXi+ p

    +(ha)ij(x

    +)X

    j= 0 , σ = σ

    a

    hence conformal invariance is broken on the boundary.

    Durin, BP

    • This is an open string analogue of the gravitational wave, indeed the open string metricreads

    ds2= 2dx

    +dx

    −+ (dx

    i)2+ (2πα

    ′)2(hijx

    j)2(dx

    +)2

    • Such deformations are also reminiscent of open string tachyon condensation in BSFT,however (i) hij is traceless, and (ii) the worldsheet is Lorentzian.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 16

    Non-relativistic dipole and critical gradient

    • On the light-cone, a relativistic string behaves like a non-relativistic dipole. This impliesthat its tensive energy is proportional to the square of its length:

    Vt =1

    α′p+(xL − xR)2

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 16

    Non-relativistic dipole and critical gradient

    • On the light-cone, a relativistic string behaves like a non-relativistic dipole. This impliesthat its tensive energy is proportional to the square of its length:

    Vt =1

    α′p+(xL − xR)2

    • For a quadrupolar wave, the electrostatic energy scales also like the square of thedistance,

    Ve = p+(h

    0ijx

    iLx

    jL − h

    1ijx

    iRx

    jR

    )

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 16

    Non-relativistic dipole and critical gradient

    • On the light-cone, a relativistic string behaves like a non-relativistic dipole. This impliesthat its tensive energy is proportional to the square of its length:

    Vt =1

    α′p+(xL − xR)2

    • For a quadrupolar wave, the electrostatic energy scales also like the square of thedistance,

    Ve = p+(h

    0ijx

    iLx

    jL − h

    1ijx

    iRx

    jR

    )• There is a critical line

    h1 − h0 − π(p+)2α′h0h1 = 0

    where the two forces balance against each other, leadingto stretched macroscopic strings: A non-relativisticanalogue of the Born-Infeld critical field.

    -4 -2 2 4e

    -4

    -3

    -2

    -1

    1

    2

    3

    4e¢

    -4 -2 2 4e

    -4

    -3

    -2

    -1

    1

    2

    3

    4e¢

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 16

    Non-relativistic dipole and critical gradient

    • On the light-cone, a relativistic string behaves like a non-relativistic dipole. This impliesthat its tensive energy is proportional to the square of its length:

    Vt =1

    α′p+(xL − xR)2

    • For a quadrupolar wave, the electrostatic energy scales also like the square of thedistance,

    Ve = p+(h

    0ijx

    iLx

    jL − h

    1ijx

    iRx

    jR

    )• There is a critical line

    h1 − h0 − π(p+)2α′h0h1 = 0

    where the two forces balance against each other, leadingto stretched macroscopic strings: A non-relativisticanalogue of the Born-Infeld critical field.

    -4 -2 2 4e

    -4

    -3

    -2

    -1

    1

    2

    3

    4e¢

    -4 -2 2 4e

    -4

    -3

    -2

    -1

    1

    2

    3

    4e¢

    What is the analogue of the open string metric for stretched strings ? is there a decoupledtheory analogous to NCOS ?

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 17

    Dynamical instability

    • For a traceless quadratic potential hij, the motion is always unstable, due to the convexityof the stability domain. However, this is a kinematical instability of the string probe, muchlike the divergence of geodesics in purely gravitational plane waves.

    Marolf Zayas; Brecher Gregory Saffin

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 17

    Dynamical instability

    • For a traceless quadratic potential hij, the motion is always unstable, due to the convexityof the stability domain. However, this is a kinematical instability of the string probe, muchlike the divergence of geodesics in purely gravitational plane waves.

    Marolf Zayas; Brecher Gregory Saffin

    • A well-known way to cure these instabilities is to introduce a magnetic field, as in thePenning trap:

    V (x) =e

    2(2z

    2 − x2 − y2) , B = bdx ∧ dy

    stable if b2 > e and e > 0

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 17

    Dynamical instability

    • For a traceless quadratic potential hij, the motion is always unstable, due to the convexityof the stability domain. However, this is a kinematical instability of the string probe, muchlike the divergence of geodesics in purely gravitational plane waves.

    Marolf Zayas; Brecher Gregory Saffin

    • A well-known way to cure these instabilities is to introduce a magnetic field, as in thePenning trap:

    V (x) =e

    2(2z

    2 − x2 − y2) , B = bdx ∧ dy

    stable if b2 > e and e > 0

    • One may also use parametric resonance as in theRF trap:

    V = (ω2+ α

    2cos t)(x

    2 − y2)

    -1 0 1 2 3 4 5 60

    1

    2

    3

    4

    5

    6

    7

    These mechanisms carry over to open strings in electromagnetic waves, or closed strings ingravitational waves.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 18

    Some more comments

    • In terms of the T-dual coordinate X̃i = f i(τ + σ)− gi(τ − σ) the bc becomes, afterdifferentiating once,

    ∂2τX̃

    i+ p

    +(ha)ij∂σX̃

    j= 0,

    This is an open string with two beads of massh−1a /p

    + at its ends. When h = 0, it reducesto a Dirichlet bc.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 18

    Some more comments

    • In terms of the T-dual coordinate X̃i = f i(τ + σ)− gi(τ − σ) the bc becomes, afterdifferentiating once,

    ∂2τX̃

    i+ p

    +(ha)ij∂σX̃

    j= 0,

    This is an open string with two beads of massh−1a /p

    + at its ends. When h = 0, it reducesto a Dirichlet bc.

    • A T-dual-like but inequivalent bc would be to take

    ∂τXi+ p

    +∂iΦ(X) = 0

    The ends of the open string follow the gradient lines of Φ: null scissors of arbitrary shape.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 18

    Some more comments

    • In terms of the T-dual coordinate X̃i = f i(τ + σ)− gi(τ − σ) the bc becomes, afterdifferentiating once,

    ∂2τX̃

    i+ p

    +(ha)ij∂σX̃

    j= 0,

    This is an open string with two beads of massh−1a /p

    + at its ends. When h = 0, it reducesto a Dirichlet bc.

    • A T-dual-like but inequivalent bc would be to take

    ∂τXi+ p

    +∂iΦ(X) = 0

    The ends of the open string follow the gradient lines of Φ: null scissors of arbitrary shape.

    • For time-dependent quadrupolar fields, the Bogolioubov transformation betweenone-string states can be computed in the in the Born and adiabatic approximation.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 18

    Some more comments

    • In terms of the T-dual coordinate X̃i = f i(τ + σ)− gi(τ − σ) the bc becomes, afterdifferentiating once,

    ∂2τX̃

    i+ p

    +(ha)ij∂σX̃

    j= 0,

    This is an open string with two beads of massh−1a /p

    + at its ends. When h = 0, it reducesto a Dirichlet bc.

    • A T-dual-like but inequivalent bc would be to take

    ∂τXi+ p

    +∂iΦ(X) = 0

    The ends of the open string follow the gradient lines of Φ: null scissors of arbitrary shape.

    • For time-dependent quadrupolar fields, the Bogolioubov transformation betweenone-string states can be computed in the in the Born and adiabatic approximation.

    • The open string has a hidden half degree of freedom in in the splitting of the zero-modebetween left- and right-movers. It undergoes a non-trivial backreaction.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 18

    Some more comments

    • In terms of the T-dual coordinate X̃i = f i(τ + σ)− gi(τ − σ) the bc becomes, afterdifferentiating once,

    ∂2τX̃

    i+ p

    +(ha)ij∂σX̃

    j= 0,

    This is an open string with two beads of massh−1a /p

    + at its ends. When h = 0, it reducesto a Dirichlet bc.

    • A T-dual-like but inequivalent bc would be to take

    ∂τXi+ p

    +∂iΦ(X) = 0

    The ends of the open string follow the gradient lines of Φ: null scissors of arbitrary shape.

    • For time-dependent quadrupolar fields, the Bogolioubov transformation betweenone-string states can be computed in the in the Born and adiabatic approximation.

    • The open string has a hidden half degree of freedom in in the splitting of the zero-modebetween left- and right-movers. It undergoes a non-trivial backreaction.

    • Open/closed duality can be checked (rather) straightforwardly.Bergman Gaberdiel Green

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 19

    Colliding plane waves

    • A string probe with p+ 6= 0 can be thought as a perturbation colliding with the backgroundwave. Its state after the collision can be extracted simply from the Bogolioubovtransformation in light-cone gauge.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 19

    Colliding plane waves

    • A string probe with p+ 6= 0 can be thought as a perturbation colliding with the backgroundwave. Its state after the collision can be extracted simply from the Bogolioubovtransformation in light-cone gauge.

    • Quantum mechanically, part of the string will be scattered off the background wave, hencealter or back-react on the background wave through emission of p+ = 0 states.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 19

    Colliding plane waves

    • A string probe with p+ 6= 0 can be thought as a perturbation colliding with the backgroundwave. Its state after the collision can be extracted simply from the Bogolioubovtransformation in light-cone gauge.

    • Quantum mechanically, part of the string will be scattered off the background wave, hencealter or back-react on the background wave through emission of p+ = 0 states.

    • The same issue arises in the context ofgravitational waves. For this one needs to gobeyond the light-cone gauge.

    Gutperle BP.

    P

    F

    L R

    uv

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 20

    Electric field vs Milne Universe

    • Eigenmodes of closed strings in the twisted sector of order w are free fields satisfying

    X±(σ + 2π, τ) = e

    ±νX±(σ, τ) , ν = wβ

    hence the normal mode expansion:

    X±R(τ − σ) =

    i

    2

    ∞∑n=−∞

    (n± iν)−1/2α±ne−i(n±iν)(τ−σ)

    X±L (τ + σ) = −

    i

    2

    ∞∑n=−∞

    (−n∓ iν)−1/2α̃±ne−i(−n∓iν)(τ+σ)

    with canonical commutation relations

    [α+m, α

    −n ] = −(m+ iν)δm+n , [α̃

    +m, α̃

    −n ] = (m+ iν)δm+n

    (α±m)

    ∗= α

    ±−m , (α̃

    ±m)

    ∗= α̃

    ±−m

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 20

    Electric field vs Milne Universe

    • Eigenmodes of closed strings in the twisted sector of order w are free fields satisfying

    X±(σ + 2π, τ) = e

    ±νX±(σ, τ) , ν = wβ

    hence the normal mode expansion:

    X±R(τ − σ) =

    i

    2

    ∞∑n=−∞

    (n± iν)−1/2α±ne−i(n±iν)(τ−σ)

    X±L (τ + σ) = −

    i

    2

    ∞∑n=−∞

    (−n∓ iν)−1/2α̃±ne−i(−n∓iν)(τ+σ)

    with canonical commutation relations

    [α+m, α

    −n ] = −(m+ iν)δm+n , [α̃

    +m, α̃

    −n ] = (m+ iν)δm+n

    (α±m)

    ∗= α

    ±−m , (α̃

    ±m)

    ∗= α̃

    ±−m

    • Charged open strings are obtained by identifying

    α±n = α̃

    ±−n , ν =

    2

    πarctanh(E/π) ,

    and adding a canonical pair of constant zero modes x±0 with [x+0 , x

    −0 ] = iπ/E.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 21

    Zero-modes

    • In either cases, zero-modes consist of two pairs of hermitian canonically conjugatevariables,

    [α+0 , α

    −0 ] = −iν , [α̃

    +0 , α̃

    −0 ] = iν ,

    where, in the open string case, α̃±0 = ±√

    2νEx±0

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 21

    Zero-modes

    • In either cases, zero-modes consist of two pairs of hermitian canonically conjugatevariables,

    [α+0 , α

    −0 ] = −iν , [α̃

    +0 , α̃

    −0 ] = iν ,

    where, in the open string case, α̃±0 = ±√

    2νEx±0• In the open string case, x±0 is the linear momentum of a charged particle in an electric

    field, and α±0 its velocity. The trajectory is an hyperbola centered at (x+0 , x

    −0 ),

    (X+ − x+0 )(X

    − − x−0 ) +M2

    2ν2= 0

    t

    x

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 22

    Are there twisted physical states ?

    • Representing these oscillators on a Fock space with vacuum |0〉 annihilated by all α±n>0and by α−0 , the normal ordered worldsheet Hamiltonian reads

    L0 = −∞∑n=0

    (α+n )∗α−n −

    ∞∑n=1

    (α−n )

    ∗α

    +n +

    1

    2iν(1− iν)− 1 + Lint

    with a similar answer for L̃0.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 22

    Are there twisted physical states ?

    • Representing these oscillators on a Fock space with vacuum |0〉 annihilated by all α±n>0and by α−0 , the normal ordered worldsheet Hamiltonian reads

    L0 = −∞∑n=0

    (α+n )∗α−n −

    ∞∑n=1

    (α−n )

    ∗α

    +n +

    1

    2iν(1− iν)− 1 + Lint

    with a similar answer for L̃0.

    • Due to the iν/2 term in the ground state energy, all states obtained by acting on |0〉 bycreation operators α±n

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 23

    Space-time representation of zero-modes

    • Quantum mechanically, zero-modes can be unitarily represented as covariant derivativesacting on wave functions f(x+, x−) of the center of motion of the charged string,

    α±0 = i∂∓ ∓

    ν

    2x±, α̃

    ±0 = i∂∓ ±

    ν

    2x±

    • The zero-mode piece of L0, including the evil iν2 ,

    L(0)0 = −α

    +0 α

    −0 +

    2= −

    1

    2(α

    +0 α

    −0 + α

    −0 α

    +0 )

    is just the Klein-Gordon operator of a particle of 2D mass M2 = −2L(0)0 and charge ν.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 23

    Space-time representation of zero-modes

    • Quantum mechanically, zero-modes can be unitarily represented as covariant derivativesacting on wave functions f(x+, x−) of the center of motion of the charged string,

    α±0 = i∂∓ ∓

    ν

    2x±, α̃

    ±0 = i∂∓ ±

    ν

    2x±

    • The zero-mode piece of L0, including the evil iν2 ,

    L(0)0 = −α

    +0 α

    −0 +

    2= −

    1

    2(α

    +0 α

    −0 + α

    −0 α

    +0 )

    is just the Klein-Gordon operator of a particle of 2D mass M2 = −2L(0)0 and charge ν.• For closed strings, the difference L(0)0 − L̃

    (0)0 is the zero-mode boost momentum,

    M2 − M̃2 = −iν(x

    +∂+ − x−∂−

    ):= J

    (0)

    subject to the matching condition βwJ = NL −NR In addition, the orbifold projectionrequires the total boost momentum J to be integer.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 24

    Klein-Gordon and the inverted harmonic oscillator

    • Defining α±0 = (P ±Q)/√

    2 and same with tildas, the Klein-Gordon operator justbecomes an inverted harmonic oscillator:

    M2= α

    +0 α

    −0 + α

    −0 α

    +0 =

    1

    2(P

    2 −Q2)

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 24

    Klein-Gordon and the inverted harmonic oscillator

    • Defining α±0 = (P ±Q)/√

    2 and same with tildas, the Klein-Gordon operator justbecomes an inverted harmonic oscillator:

    M2= α

    +0 α

    −0 + α

    −0 α

    +0 =

    1

    2(P

    2 −Q2)

    • More explicitely, in terms of u = (p̃+ νx)√

    2/ν,(−∂2u −

    1

    4u

    2+M2

    )ψp̃(u) = 0

    • The latter admits a respectable delta-normalizable spectrumof scattering states, in terms of parabolic cylinder functions,e.g:

    φ+in = D−12+i

    M22ν

    (e−3iπ4 u)e

    −ip̃teiνxt/2

    V

    ep

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 24

    Klein-Gordon and the inverted harmonic oscillator

    • Defining α±0 = (P ±Q)/√

    2 and same with tildas, the Klein-Gordon operator justbecomes an inverted harmonic oscillator:

    M2= α

    +0 α

    −0 + α

    −0 α

    +0 =

    1

    2(P

    2 −Q2)

    • More explicitely, in terms of u = (p̃+ νx)√

    2/ν,(−∂2u −

    1

    4u

    2+M2

    )ψp̃(u) = 0

    • The latter admits a respectable delta-normalizable spectrumof scattering states, in terms of parabolic cylinder functions,e.g:

    φ+in = D−12+i

    M22ν

    (e−3iπ4 u)e

    −ip̃teiνxt/2

    V

    ep

    • These correspond to non-compact trajectories of charged particles in the electric field.Tunnelling is just (stimulated) Schwinger pair creation,

    e− → (1 + η) e− + η e+

    Brezin Itzykson; Brout Massar Parentani Spindel

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 25

    Lorentzian vs Euclidean states

    • Analytic continuation X0 → e−iπ/2X0 , ν → eiπ/2ν takes us from an electric field in R1,1to a magnetic field in R2. At the same time, one should Wick rotate the worldsheet time.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 25

    Lorentzian vs Euclidean states

    • Analytic continuation X0 → e−iπ/2X0 , ν → eiπ/2ν takes us from an electric field in R1,1to a magnetic field in R2. At the same time, one should Wick rotate the worldsheet time.

    • The discrete spectrum with complex energy comes by analytic continuation of thenormalizable (Landau) states of the (stable) harmonic oscillator.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 25

    Lorentzian vs Euclidean states

    • Analytic continuation X0 → e−iπ/2X0 , ν → eiπ/2ν takes us from an electric field in R1,1to a magnetic field in R2. At the same time, one should Wick rotate the worldsheet time.

    • The discrete spectrum with complex energy comes by analytic continuation of thenormalizable (Landau) states of the (stable) harmonic oscillator.

    • Instead, the continuous scattering states of the inverted harmonic oscillator come byanalytic continuation from non-normalizable states of the stable harmonic oscillator.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 25

    Lorentzian vs Euclidean states

    • Analytic continuation X0 → e−iπ/2X0 , ν → eiπ/2ν takes us from an electric field in R1,1to a magnetic field in R2. At the same time, one should Wick rotate the worldsheet time.

    • The discrete spectrum with complex energy comes by analytic continuation of thenormalizable (Landau) states of the (stable) harmonic oscillator.

    • Instead, the continuous scattering states of the inverted harmonic oscillator come byanalytic continuation from non-normalizable states of the stable harmonic oscillator.

    • The contribution of the zero-modes to the one-loop amplitude can be interpreted eitherway,

    1

    2i sin(νt/2)=

    ∞∑n=1

    e−i(n+12)νt =

    ∫dM

    2ρ(M

    2)e−M2t/2

    where the density of states is obtained from the reflection phase shift,

    ρ(M2) =

    1

    νlog Λ−

    1

    2πi

    d

    dM2log

    Γ(

    12 + i

    M2

    )Γ(

    12 − i

    M2

    )• The physical spectrum can be explicitely worked out at low levels, and is free of ghosts:

    e.g. for open strings at level 1, one finds a transverse gauge boson; for closed strings, azero-momentum transverse graviton in each twisted sector.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 26

    Charged Klein-Gordon Eq. in Rindler space

    • For applications to the Milne universe, one should diagonalize the boost momentum J , ieconsider an accelerated observer.

    Gabriel Spindel; Mottola Cooper

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 26

    Charged Klein-Gordon Eq. in Rindler space

    • For applications to the Milne universe, one should diagonalize the boost momentum J , ieconsider an accelerated observer.

    Gabriel Spindel; Mottola Cooper

    y

    V

    y

    V

    y

    V • In the Rindler patch R, letting f(r, η) =e−iJηfJ(r) and r = ey, one gets a Schrodingerequation for a particle in a potential

    V (y) = M2e

    2y − (J +1

    2ν e

    2y)2

    • Incoming and outgoing Rindler/Unruh modescan be defined as usual ⇒ Schwinger paircreation in the bulk, thermal particle productionfrom the horizon.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 27

    Twisted state production in Milne

    • By analogy with the electric field, one expects Schwinger production of correlated pairs oftwisted stateson the Milne orbifold. Due to orbifold projection, lightest states will beproduced in J = 0 states, thereby breaking spatial homogeneity.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 27

    Twisted state production in Milne

    • By analogy with the electric field, one expects Schwinger production of correlated pairs oftwisted stateson the Milne orbifold. Due to orbifold projection, lightest states will beproduced in J = 0 states, thereby breaking spatial homogeneity.

    • For a given state of mass M , the local rate of pair creation can be evaluatedsemi-classically by computing the Jacobian

    w(X+, X

    −) =

    ∫dx

    +0 dx

    −0 δ[(X

    + − x+0 )(X− − x−0 ) +

    M2

    2ν2]

    × δ[νx+0 x−0 +

    M2

    2ν− J] =

    1√X+X−(ν2 + 2M2X+X−)

    hence diverges on the light-cone.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 27

    Twisted state production in Milne

    • By analogy with the electric field, one expects Schwinger production of correlated pairs oftwisted stateson the Milne orbifold. Due to orbifold projection, lightest states will beproduced in J = 0 states, thereby breaking spatial homogeneity.

    • For a given state of mass M , the local rate of pair creation can be evaluatedsemi-classically by computing the Jacobian

    w(X+, X

    −) =

    ∫dx

    +0 dx

    −0 δ[(X

    + − x+0 )(X− − x−0 ) +

    M2

    2ν2]

    × δ[νx+0 x−0 +

    M2

    2ν− J] =

    1√X+X−(ν2 + 2M2X+X−)

    hence diverges on the light-cone.

    • One may expect that pair creation will decrease the contraction rate so as to avoid thesingularity. This is hard to demonstrate with present technology.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 27

    Twisted state production in Milne

    • By analogy with the electric field, one expects Schwinger production of correlated pairs oftwisted stateson the Milne orbifold. Due to orbifold projection, lightest states will beproduced in J = 0 states, thereby breaking spatial homogeneity.

    • For a given state of mass M , the local rate of pair creation can be evaluatedsemi-classically by computing the Jacobian

    w(X+, X

    −) =

    ∫dx

    +0 dx

    −0 δ[(X

    + − x+0 )(X− − x−0 ) +

    M2

    2ν2]

    × δ[νx+0 x−0 +

    M2

    2ν− J] =

    1√X+X−(ν2 + 2M2X+X−)

    hence diverges on the light-cone.

    • One may expect that pair creation will decrease the contraction rate so as to avoid thesingularity. This is hard to demonstrate with present technology.

    • A more tractable situation perhaps is to send in squeezed twisted states from −∞, alongwith states one is interested to scatter.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 28

    Conclusions - speculations

    • Open strings in electric fields, or D-brane collisions, are a simpler arena to addressconceptual issues of Time and string theory. They often exhibit formal similarities withclosed string orbifolds.

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 28

    Conclusions - speculations

    • Open strings in electric fields, or D-brane collisions, are a simpler arena to addressconceptual issues of Time and string theory. They often exhibit formal similarities withclosed string orbifolds.

    • Using intuition from open strings, we have found that physical states do exist in the twistedsector of the Lorentzian orbifold, and can be pair produced. Can one compute scatteringamplitudes, backreaction ?

    D’Appollonio, Kiritsis

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 28

    Conclusions - speculations

    • Open strings in electric fields, or D-brane collisions, are a simpler arena to addressconceptual issues of Time and string theory. They often exhibit formal similarities withclosed string orbifolds.

    • Using intuition from open strings, we have found that physical states do exist in the twistedsector of the Lorentzian orbifold, and can be pair produced. Can one compute scatteringamplitudes, backreaction ?

    D’Appollonio, Kiritsis

    • Twisted sector states are produced in correlated pairs, i.e. squeezed states, whosecondensation should involve non-local deformations of the worldsheet. Can the techniquesdeveloped in the context of strong electric fields be useful ?

    Aharony Berkooz Silverstein

    Cooper, Eisenberg, Kluger, Mottola and Svetitsky

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 28

    Conclusions - speculations

    • Open strings in electric fields, or D-brane collisions, are a simpler arena to addressconceptual issues of Time and string theory. They often exhibit formal similarities withclosed string orbifolds.

    • Using intuition from open strings, we have found that physical states do exist in the twistedsector of the Lorentzian orbifold, and can be pair produced. Can one compute scatteringamplitudes, backreaction ?

    D’Appollonio, Kiritsis

    • Twisted sector states are produced in correlated pairs, i.e. squeezed states, whosecondensation should involve non-local deformations of the worldsheet. Can the techniquesdeveloped in the context of strong electric fields be useful ?

    Aharony Berkooz Silverstein

    Cooper, Eisenberg, Kluger, Mottola and Svetitsky

    • The closed string orbifold we have discussed are highly non-generic trajectories on thecosmological billiard: how about more general Kasner-like singularities ?

  • SOUTENANCE D’HDR - 19 SEPTEMBRE 2003 28

    Conclusions - speculations

    • Open strings in electric fields, or D-brane collisions, are a simpler arena to addressconceptual issues of Time and string theory. They often exhibit formal similarities withclosed string orbifolds.

    • Using intuition from open strings, we have found that physical states do exist in the twistedsector of the Lorentzian orbifold, and can be pair produced. Can one compute scatteringamplitudes, backreaction ?

    D’Appollonio, Kiritsis

    • Twisted sector states are produced in correlated pairs, i.e. squeezed states, whosecondensation should involve non-local deformations of the worldsheet. Can the techniquesdeveloped in the context of strong electric fields be useful ?

    Aharony Berkooz Silverstein

    Cooper, Eisenberg, Kluger, Mottola and Svetitsky

    • The closed string orbifold we have discussed are highly non-generic trajectories on thecosmological billiard: how about more general Kasner-like singularities ?

    • More generally, what is the fate of the classical chaos near a cosmological singularity,once quantum/string effects are taken into account ? Can exceptional theta series providethe wave function of the Universe ?

    Damour Henneaux Julia . . . ; BP Waldron