Studienführer Physik Meteorologie · 2016-05-02 · Meteorologie mitgebracht haben und in den...

65
Studienführer Physik Meteorologie Fakultät für Mathematik und Physik Gottfried Wilhelm Leibniz Universität Hannover

Transcript of Studienführer Physik Meteorologie · 2016-05-02 · Meteorologie mitgebracht haben und in den...

Studienführer

Physik

Meteorologie

Fakultät für Mathematik und Physik

Gottfried Wilhelm Leibniz Universität Hannover

Fakultät für Mathematik und Physik

Leibniz Universität Hannover

Welfengarten 1

D - 30167 Hannover

Tel. 0511 - 762 - 4466

Fax 0511 - 762 - 5819

www.maphy.uni-hannover.de

[email protected]

Vorwort

Liebe Studierende,

herzlich willkommen zum Studienjahr 2015/16 an unserer Fakultät!

Wir freuen uns sehr, Sie als neue Studierende hier begrüßen zu dürfen, und wir wünschen Ihnen

einen reibungslosen und erfolgreichen Anfang in Ihrem Studium an unserer Fakultät. Wir hof-

fen, dass Sie mit unserer Unterstützung Ihre Neigungen und Ihre Fähigkeiten in diesem Bereich

weiter entwickeln werden; die beruflichen Möglichkeiten und Aussichten nach einem erfolgrei-

chen Studium der Fächer unserer Fakultät sind hervorragend.

Sie haben die Physik als ein Schulfach kennengelernt, bei dem in kleinen Schritten die Themen

langsam entwickelt wurden. Meist stand das Experimentieren gegenüber einer präzisen Behand-

lung der Theorie im Vordergrund. Einigen von Ihnen macht das Experimentieren und Basteln

Spaß, die anderen sind fasziniert von der Beschreibung der Welt durch elegante und mathema-

tisch formulierte physikalische Gesetze. In den Nachrichten oder populärwissenschaftlicher Lite-

ratur haben Sie etwas über aktuelle Entdeckungen (z.B. das Higgs-Boson), zukünftige Technolo-

gien (z.B Nanoroboter und Quanten-Computer) und gesellschaftliche Herausforderungen (z.B.

Energiewende) gehört und gelesen - aber mit welchen Themen aus der Physik und Meteorologie

beschäftigen sich die Arbeitsgruppen in Hannover?

Auf den folgenden Seiten stellen die Institute der Physik, das Institut für Meteorologie und Kli-

matologie und das Institut für Didaktik der Mathematik und Physik solche Themen kurz vor, zu

denen die Mitglieder der Fakultät hier in Hannover forschen. Wie Sie an den Themen erkennen

können, ist sowohl die Grundlagenforschung (Stringtheorie, Quantenoptik, ...) als auch die an-

wendungsorientierte Forschung (Solarenergie, Nanotechnologie, ...) hier sehr gut vertreten. Um

selbst an diesen Themen zu arbeiten, sind ihre experimentellen und theoretischen Grundlagen

und Methoden zu erlernen. Es steht Ihnen dann auch offen, nicht nur die Physik oder Meteoro-

logie selbst weiterzuentwickeln, sondern Sie können sie auch als Schlüsseltechnologie und

Werkzeug in vielen Bereichen anwenden - das können Industrieforschung, Informatik, Finanz-

wirtschaft oder auch Medizin sein. Wenn Sie die Physik von ihrer experimentellen als auch von

der theoretischen Seite in größerer Breite kennengelernt und die Aspekte zum Lernen von Physik

in der Fachdidaktik reflektiert haben, werden Sie das Rüstzeug haben, um dieses Fach auch in

der Schule mit Begeisterung vermitteln zu können.

Wie kommen Sie dahin? Der Schlüssel ist das eigenaktive Lernen. Vom Zuschauen, wie es ande-

re machen, lernen Sie vielleicht ein bisschen, aber Ihr Können entwickeln Sie nur dann wirklich

weiter, wenn Sie selbst aktiv werden und Vorlesungen nicht nur anhören und mitschreiben (nut-

zen Sie möglichst viele Aufnahmekanäle!), sondern auch nacharbeiten und sich vor allem die

Übungsaufgaben vornehmen. Diskutieren Sie auch darüber mit anderen Studierenden. In den

ersten Semestern lernen Sie wichtige mathematische Grundlagen, die zum Fundament Ihres

Studiums zählen, auf dem spätere Lehrveranstaltungen vor allem der Theoretischen Physik auf-

bauen; Sie sollen hier nicht nur rechentechnische Fähigkeiten erwerben, sondern auch ein gutes

Verständnis abstrakter mathematischer Strukturen entwickeln. Es ist sinnvoll, auch schon früh-

zeitig zu lernen, Ihre Ideen und Überlegungen anderen zu erklären. Präsenzübungen und Semi-

nare geben reichlich Gelegenheit dazu. Dies spielt eine wichtige Rolle für Sie alle, natürlich für

diejenigen, die ins Lehramt gehen wollen, aber auch im Hinblick auf die spätere Zusammenarbeit

mit anderen, insbesondere in Teams, deren Mitglieder einen breitgestreuten fachlichen Hinter-

grund haben.

In den ersten Wochen des Studiums werden sicher viele von Ihnen die Umgewöhnung von der

Schule zur Universität als herausfordernd empfinden - stürzen Sie sich mit Freude und Ehrgeiz

in die Herausforderungen und lassen Sie sich durch Schwierigkeiten nicht entmutigen (siehe

oben: üben, üben, üben!). Wenn Sie aus der Schule ganz andere Erwartungen an die Physik oder

Meteorologie mitgebracht haben und in den ersten Monaten ins Zweifeln geraten, ob dies das

richtige Studienfach für Sie ist, sprechen Sie mit Ihren Lehrenden oder lassen Sie sich im Studi-

enbüro beraten. Sie finden in diesem Studienführer viele nützliche Hinweise auf Anlaufstellen

für vielfältige Fragen, die im Verlauf des Studiums auftauchen können.

Wir wünschen Ihnen, dass Sie die Begeisterung für die Fächer unserer Fakultät mit uns teilen

und Sie den Weg zu einem erfolgreichen Abschluss mit Freude bei uns gehen!

Ihr Studiendekan

Prof. Dr. Roger Bielawski

Inhaltsverzeichnis 1 Die Fakultät im Überblick .................................................................................................................. 7

1.1 Die Fakultät ................................................................................................................................. 7

1.2 Die physikalischen und meteorologischen Institute der Fakultät .................................................. 8

1.3 Aufbau und Gremien .................................................................................................................. 11

2 Studium .......................................................................................................................................... 13

2.1 Die Studiengänge ....................................................................................................................... 13

2.2 Aufbau des Studiums ................................................................................................................. 18

2.3 Bachelorstudiengänge ................................................................................................................ 21

2.3.1 Bachelor of Science in Physik ...................................................................................... 21

2.3.2 Bachelor of Science in Meteorologie ........................................................................... 23

2.3.3 Fächerübergreifender Bachelor ................................................................................... 24

Bachelor of Technical Education ................................................................................................ 29

2.4 Masterstudiengänge .................................................................................................................. 32

2.4.1 Master of Science in Physik ...................................................................................... 32

2.4.2 Master of Science in Meteorologie ............................................................................ 34

2.4.3 Physik für das Lehramt an Gymnasien ........................................................................ 35

2.4.4 Physik für das Lehramt an berufsbildenden Schulen ................................................... 36

2.5 Angebote rund ums Studium ..................................................................................................... 37

2.6 Studieren und leben in Hannover ............................................................................................... 39

3 Forschung ....................................................................................................................................... 41

3.1 Institut für Festkörperphysik ...................................................................................................... 41

3.2 Institut für Gravitationsphysik ...................................................................................................... 43

3.3 Institut für Meteorologie und Klimatologie ................................................................................... 45

3.2 3.4 Institut für Quantenoptik ..................................................................................................... 47

3.5 Institut für Theoretische Physik .................................................................................................. 49

3.6 Institut für Radioökologie und Strahlenschutz ........................................................................... 50

3.7 Institut für Didaktik der Mathematik und Physik ........................................................................ 50

Didaktik der Physik ..................................................................................................................... 51

4 Ansprechpartner für Studieninformation und –beratung ................................................................ 52

4.1 Ansprechpartner innerhalb der Fakultät ..................................................................................... 52

4.1.1 Studienorganisation .................................................................................................... 52

4.1.2 Fachstudienberatung .................................................................................................. 52

4.1.3 Fachberater Lehramt (Fächerübergreifender Bachelor/ Bachelor Technical Education /

Master Lehramt an Gymnasien / Master Lehramt an Berufsbildenden Schulen) ......................... 53

4.1.4 Praktikumsbeauftragter Lehramt ................................................................................. 53

4.1.5 BAföG-Beauftragter .................................................................................................... 53

4.1.6 Fachschaft Mathematik und Physik ............................................................................ 54

4.1.7 Prüfungsausschuss ...................................................................................................... 55

4.2 Zentrale Ansprechpartner .......................................................................................................... 55

4.2.3 Zentrum für Lehrerbildung (ZFL) ................................................................................. 57

4.2.4 Akademisches Prüfungsamt ........................................................................................ 57

4.2.5 Studieren im Ausland .................................................................................................. 58

4.2.8 Career Service und Zentrum für Schlüsselkompetenzen (ZFSK) ................................... 60

5 Anhang ........................................................................................................................................... 61

5.1 Links .......................................................................................................................................... 61

5.2 Lagepläne .................................................................................................................................. 62

2 Studium 7

1 Die Fakultät im Überblick

1.1 Die Fakultät

www.maphy.uni-hannover.de

Die Telefonnummern sind 0511 - 762 - ****, wobei **** für die unten angegebenen Nummern

steht.

Das Dekanat leitet die Fakultät; dem Dekanat gehören der Dekan und der Studiendekan an, den

Vorsitz hat der Dekan inne.

Dekan

Prof. Dr. Uwe Morgner [email protected]

Appelstraße 2 (Raum 114)

30167 Hannover

- 5477 / - 5499

Studiendekan

Prof. Dr. Roger Bielawski [email protected]

Welfengarten 1 (Raum c401)

30167 Hannover

- 2315 - 4466

Studienprodekan

Prof. Dr. Eric Jeckelmann [email protected]

Appelstraße 2 (Raum 225)

30167 Hannover

- 3661/-4466

Fakultätsgeschäftsführerin

Christel Tschernitschek [email protected]

Appelstraße 2 (Raum 113)

30167 Hannover

- 5476

Geschäftszimmer

Franziska Lorenz [email protected]

Appelstraße 2 (Raum 115)

30167 Hannover

- 5499

Promotionsbüro

Brigitte Weskamp [email protected]

8 2 Studium

Welfengarten 1 (Raum c 411)

30167 Hannover

- 17309

Die Studiengangskoordination ist die zentrale Anlaufstelle in Studienangelegenheiten. Sie fun-

giert als kommunikative und organisatorische Schnittstelle zwischen Studierenden und Lehren-

den. Die Studiengangskoordination ist damit insbesondere für die Beratung von Studierenden

zuständig.

Studiengangskoordination

Dipl.-Ing. Axel Köhler

Dr. Katrin Radatz [email protected]

Welfengarten 1 (Raum c 413)

30167 Hannover

- 5450

Geschäftszimmer

Mariana Stateva-Andonova [email protected]

Welfengarten 1 (Raum c 411)

30167 Hannover

- 4466

1.2 Die physikalischen und meteorologischen Institute der Fakultät

www.maphy.uni-hannover.de/de/institute

Die Standorte der physikalischen und meteorologischen Institute verteilen sich auf mehrere Ge-

bäude im Stadtgebiet. Angegeben sind immer die Gebäudenummer sowie die Raumnummer. Der

Standortfinder im Anhang (Kapitel 5) hilft beim Finden der Gebäude.

Hier aufgelistet sind die Professorinnen und Professoren der Institute, sowie die Sekretariate.

Die Telefonnummern sind 0511 - 762 - ****, wobei **** für die unten angegebenen Nummern

steht.

Die aktuellen Sprechstunden sind in der Regel auf den Internetseiten der Institute zu finden.

Man kann auch per E-Mail oder Telefon einen Termin außerhalb der offiziellen Sprechzeiten

vereinbaren.

Institut für Festkörperphysik

www.fkp.uni-hannover.de

Brendel, Rolf [email protected] 05151-9990

Haug, Rolf haug@ nano.uni-

hannover.de

- 2901 3701-122

Oestreich, Michael oest@ nano.uni-hannover.de - 3493 3701-020

Pfnür, Herbert [email protected] - 4819 3701-144

Tegenkamp, Christoph [email protected] -2542 3701-144

2 Studium 9

Sekretariate

Griep, Yvonne [email protected] -2902 3701-124

Kahrs, Heike [email protected] -4820 3701-142

Institut für Gravitationsphysik

www.aei.mpg.de/hannover-de/66-contemporaryIssues/home/index.html

E-Mail-Endung: aei.mpg.de

Allen, Bruce bruce.allen@ - 17148 3401-128

Danzmann, Karsten danzmann@ - 2356 3401-123A

Heurs, Michèle michele.heurs@ - 17037 3401-A112a

Schnabel, Roman roman.schnabel@ - 19169 3401-133

Sekretariate

Gemmeke, Birgit birgit.gemmeke@ - 17072 3401-A109a

Labove, Kirsten office-hannover@ - 2229 3401-126

Rehmert, Sabine sabine.rehmert@ - 17164 3401-121

Salatti-Tara, Karin karin.salatti-tara@ - 17145 3401-127

Institut für Meteorologie und Klimatologie

www.muk.uni-hannover.de

E-Mail-Endung: muk.uni-hannover.de

Groß, Günter gross@ - 5408 4105-F123

Raasch, Siegfried raasch@ - 3253 4105-F231

Seckmeyer, Gunther seckmeyer@ - 4022 4105-F113

Sekretariat

Kraege, Petra kraege@ - 2677 4105-F 124

Institut für Quantenoptik

www.iqo.uni-hannover.de

E-Mail-Endung: iqo.uni-hannover.de

Chichkov, Boris [email protected] 0511-2788-

316

LZH

10 2 Studium

Ertmer, Wolfgang ertmer@ - 2231 1101-d108

Heisterkamp, Alexander heisterkamp@ - 17481 1101-d125

Kovacev, Milutin kovacev@ - 5286 1101-d101

Morgner, Uwe morgner@ - 2452 1101-d103

Ospelkaus, Christian christian.ospelkaus@ - 17644 1101-d123

Ospelkaus, Silke silke.ospelkaus@ - 17645 1101-d124

Rasel, Ernst rasel@ - 19203 1101-d129

Ristau, Detlev [email protected] - 2231 LZH

Schmidt, Piet [email protected]

hannover.de

- 17240 1101-d123

Tiemann, Eberhard tiemann@ - 3306 1101-d130

Sekretariat

Hünitzsch, Elke huenitzsch@ -2589 1101-d110

Göldner-Pauer, Anne-Dore goeldner@ - 4406 1101-d111

Faber, Gunhild faber@ −2231 1101-d108

Institut für Theoretische Physik

www.itp.uni-hannover.de

E-Mail-Endung: itp.uni-hannover.de

Dragon, Norbert dragon@ - 4838 3701-228

Frahm, Holger frahm@ - 3266 3701-238

Flohr, Michael michael.flohr@ -3656 3701-242

Giulini, Domenico domenico.giulini@ - 3662 3701-227

Hammerer, Klemens klemens.hammerer@ -17056 3701-235

Jeckelmann, Eric eric.jeckelmann@ -3661 3701-225

Lechtenfeld, Olaf lechtenf@ -3667 3701-241

Lein, Manfred manfred.lein@ -3291 3701-209A

Osborne, Tobias tobias.osborne@ -17508 3702-022

Santos, Luis luis.santos@ -5890 3701-249

Vekua, Temo temo.vekua@ -17343 3701-210

Werner, Reinhard reinhard.werner@ -17501 3702-024

Weimer, Hendrik hweimer@ -19449 3702-246

Zagermann, Marco marco.zagermann@ -17340 3701-208B

2 Studium 11

Sekretariate

Burmeister, Catharina catharina.burmeister@ - 5889 3701-245

Gemmeke, Birgit birgit.gemmeke@ - 17072 3403-A109

Möller, Wiebke wiebke.moeller@ - 17500 3702-023

Richter, Gitta richter@ - 2244 3701-235

Schwebs, Emma schwebs@ - 3267 3701-239

Institut für Radioökologie und Strahlenschutz

www.irs.uni-hannover.de

E-Mail-Endung: irs.uni-hannover.de

Walther, Clemens walther@ -3312 4113-023

Sekretariate

Weiler, Bettina weiler@ -5112 4113-017

Didaktik der Physik

www.idmp.uni-hannover.de

E-Mail-Endung: idmp.uni-hannover.de

Friege, Gunnar friege@ - 17223 Raum b 401

Sekretariat

Reichel, Silke reichel@ -17282 Raum d 425

1.3 Aufbau und Gremien

Die Fakultät für Mathematik und Physik besteht aus dreizehn Instituten. Zum Bereich der Physik

gehören die sieben obengenannten Institute. Diese sind zum Teil weiter in Abteilungen unter-

gliedert oder lassen sich thematisch in Arbeitsgruppen unterteilen.

Das Institut für Gravitationsphysik ist Teilinstitut des Max-Planck-Instituts für Gravitationsphy-

sik (Albert-Einstein-Institut) mit Sitz in Golm und Hannover. In Forschung und Lehre besteht

eine enge Verzahnung mit dem Laser Zentrum Hannover e.V. (LZH), dem Institut für Solarener-

gieforschung Hameln / Emmerthal (ISFH) und dem Laboratorium für Nano- und Quantenengine-

ering (LNQE).

12 2 Studium

Die Forschungsschwerpunkte werden durch die zwei Transregio-Sonderforschungsbereiche Gra-

vitationswellenastronomie und Planare Optronische Systeme und die vier Graduiertenkollegs

Analysis, Geometry and String Theory, Fundamentals and applications of ultra-cold matter, Mo-

dels of Gravity und Quantum mechanical noise in complex systems, sowie das niedersächsische

Promotionsprogramm School for Contacts in Nanosystems und die Forschergruppe Metallic na-

nowires on the atomic scales in besonderer Weise gefördert. Die Fakultät für Mathematik und

Physik, das Max-Planck-Institut für Gravitationsphysik und das Laser Zentrum Hannover sind

Sitz der „International Max Planck Research School on Gravitational Wave Astronomy“.

Die Gremien der Fakultät

Die aktuellen Mitglieder der folgenden Gremien sind der Homepage der Fakultät für Mathematik

und Physik (www.maphy.uni-hannover.de) zu entnehmen. Die E-Mail-Adressen der studenti-

schen Vertreterinnen und Vertreter finden sich auf der Homepage der Fachschaft Mathematik

und Physik.

Fakultätsrat

Der Fakultätsrat entscheidet in Angelegenheiten der Forschung und Lehre von grundsätzlicher

Bedeutung. Er beschließt die Ordnungen der Fakultät, insbesondere die Prüfungsordnungen. Der

Fakultätsrat besteht aus sieben Professorinnen und Professoren, zwei wissenschaftlichen Mitar-

beiterinnen und Mitarbeitern, zwei Studierenden und zwei Mitarbeiterinnen und Mitarbeitern

des Technischen und Verwaltungsdienstes (MTV-Gruppe); der Dekan hat den Vorsitz inne. Die

Sitzungen sind zum überwiegenden Teil öffentlich und finden während der Vorlesungszeit in

etwa monatlich immer mittwochs statt.

Studienkommission

Die Studienkommission ist vor Entscheidungen des Fakultätsrates in allen Angelegenheiten der

Lehre, des Studiums und der Prüfungen zu hören. Der Fakultätsrat hat die Empfehlungen zu

würdigen. Der Studienkommission gehören als stimmberechtigte Mitglieder zwei Professorinnen

und Professoren, ein/e wissenschaftliche/r Mitarbeiter/in und vier Studierende an; der Studien-

dekan hat den Vorsitz inne. Die Studienkommission tagt in der Regel zwei Wochen vor dem Fa-

kultätsrat.

Prüfungsausschuss

Die Bereiche Physik und Meteorologie verfügen je über einen Prüfungsausschuss.

Diese stellen die Durchführung der Prüfungen für den Bachelor- und Masterstudiengänge Physik

bzw. Meteorologie sicher. Sie wachen über die Einhaltung der Prüfungsordnungen. Auch bei

Zweifelsfällen in Prüfungsfragen entscheidet der Prüfungsausschuss.

Ein Anliegen für den Prüfungsausschuss wird in der Regel direkt an den Vorsitzenden des zu-

ständigen Prüfungsausschusses gerichtet (siehe Kapitel 4.1.7)Fehler! Verweisquelle konnte

nicht gefunden werden..

2 Studium 13

Für Entscheidungen zu den Lehramtsstudiengängen sind eigene Prüfungsausschüsse zuständig,

die vom Zentrum für Lehrerbildung (s. Kapitel 4.2.3) betreut werden.

Die Fachschaft

www.fs-maphy.uni-hannover.de

Die Studierenden der Fakultät für Mathematik und Physik bilden die gemeinsame Fachschaft

Mathematik/Physik. Die Interessen der Fachschaft vertritt der offene Fachschaftsrat, in dem alle

Studierenden mitarbeiten können. Der Fachschaftsrat trifft sich in der Vorlesungszeit immer

montags um 18.15 Uhr im Fachschaftsraum.

Die hauptsächliche Aufgabe des Fachschaftsrats ist die Vertretung der studentischen Interessen

in den Gremien der Fakultät. So wirkt er über die studentischen Vertreterinnen und Vertreter z.B.

bei der Gestaltung der Studien- und Prüfungsordnungen oder der Verwendung von Studienbei-

trägen mit und kann bei der Neueinstellung von Professorinnen und Professoren in den Beru-

fungskommissionen mitentscheiden. Er wirkt aber auch in fakultätsübergreifenden Gremien mit.

Wer Interesse hat selbst aktiv an der Planung von Lehre und Forschung – also in den Gremien

mitzuarbeiten, ist immer willkommen im Fachschaftsrat.

Was die Fachschaft sonst noch alles macht ist in Kapitel 4.1.6 zu erfahren.

Kontakt:

Fachschaft Mathematik/Physik [email protected]

Welfengarten 1 (Raum d 414)

30167 Hannover

Tel.: 0511-762-7405

www.fs-maphy.uni-hannover.de

2 Studium

2.1 Die Studiengänge

An der Leibniz Universität können die Fächer Physik oder Meteorologie in folgenden Studien-

gängen studiert werden:

Bachelorstudiengänge:

Bachelor Physik

Bachelor Meteorologie

Fächerübergreifender Bachelor (Physik im Lehramt an Gymnasien)

Bachelor Technical Education (Physik im Lehramt an berufsbildenden Schulen)

Masterstudiengänge:

Master Physik

Master Meteorologie

Master Lehramt an Gymnasien

14 2 Studium

Master Lehramt an berufsbildenden Schulen

Was sind die Ziele der einzelnen Studiengänge?

Die Bachelorstudiengänge Physik und Meteorologie dienen vornehmlich der wissenschaftsori-

entierten Grundlagenausbildung. Sie vermitteln zunächst eine Basis an mathematischem und

physikalischem Grundwissen.

Auf dieser Basis wird im Bachelorstudiengang Physik ein Überblick über das gesamte Spektrum

moderner Physik vermittelt.

Der Bachelorstudiengang Meteorologie entwickelt die mathematisch-physikalischen Grund-

kenntnisse der Studierenden in den Bereichen der Atmosphärenphysik und Meteorologie weiter

und bietet darüber hinaus die Möglichkeit einer anwendungsorientierten meteorologischen Spe-

zialisierung.

2 Studium 15

Aufbau der fachwissenschaftlichen Studiengänge

Der Studiengang Fächerübergreifender Bachelor ist der Einstieg in das Studium Lehramt an

Gymnasien. Er bietet eine wissenschaftsorientierte Grundlagenausbildung in zwei Unterrichtsfä-

chern, Grundlagen der jeweiligen Fachdidaktiken wie auch Grundlagen der Erziehungswissen-

schaften. Hier wird das Fach Physik mit einem weiteren Fach kombiniert. Physik kann hier als

Majorfach (höherer Umfang) oder als Minorfach (geringerer Umfang) gewählt werden.

Aufbau der Fächerübergreifenden Studiengänge für das Lehramt

Der Studiengang Bachelor Technical Education bereitet vornehmlich auf das Lehramt an be-

rufsbildenden Schulen vor. Er gliedert sich in ein Berufliches Fach (wie z.B. Elektro- oder Bau-

Fachwissen-

schaftlicher

Masterstudiengang

4 Semester

Bachelor of Science

3 J

ah

re

Lehramts-

orientierter

Masterstudiengang

4 Semester

Master of Science Master of Education

Berufseinstieg

2 J

ah

re

Fächerübergreifender

Bachelorstudiengang

(z.B. Mathematik mit Physik)

6 Semester

Bachelor of Science

Masterstudiengang

Allgemeine Physik

4 Semester

Masterstudiengang

Meteorologie

4 Semester

Bachelorstudiengang

Physik

6 Semester

Bachelorstudiengang

Meteorologie

6 Semester

2 J

ahre

3 J

ahre

Master of Science

16 2 Studium

technik) und ein vom Umfang her kleineres Unterrichtsfach, Physik kann nur als Unterrichtsfach

gewählt werden. Ein Übertritt in den Fachmaster Physik ist hier nicht möglich.

Aufbau der Studiengänge für das Berufsschullehramt

Alle Bachelorstudiengänge schließen mit einem eigenständigen berufsqualifizierenden Abschluss

ab.

Das Hauptziel der zwei Masterstudiengänge Physik und Meteorologie ist dagegen die Befähi-

gung zum effizienten, selbstständigen Arbeiten an der Spitze der Forschung und innovativen

Bereichen in Technik und Wirtschaft sowie in allen verantwortlichen Positionen von Staat und

Gesellschaft.

Dies erfordert sowohl die fachliche Vertiefung als auch das Heranführen an die Praxis des eigen-

verantwortlichen Arbeitens in der Wissenschaft. Die Masterstudiengänge sind daher durch eine

einjährige Vertiefungsphase und eine einjährige Forschungsphase charakterisiert.

Im Masterstudiengang Physik erwerben die Studierenden zunächst vertiefende Kenntnisse in

den drei Grundlagenforschungsschwerpunkten: Festkörperphysik, Quantenoptik und Gravitation.

Eine Besonderheit des Physikstudiums an der Leibniz Universität Hannover ist, dass sie auch

vertiefte Kenntnisse in Radioökologie und Strahlenschutz erwerben können. In einem dieser Ge-

biete werden Sie dann an die Grundlagenforschung herangeführt.

Die anwendungsnahe Forschung ist der Schwerpunkt im Masterstudiengang Meteorologie: hier

nehmen die Studierenden forschungsnah an einer Feldmesskampagne teil. Wählbare Inhalte im

Masterstudium sind zudem z.B. Numerische Wettervorhersage, Schadstoffausbreitung, sowie

Turbulenz oder Simulation turbulenter Strömungen.

Berufsschullehramtsorientierter

Bachelorstudiengang

6 Semester

Berufsschullehr-

amtsorientierter

Masterstudiengang

4 Semester

Bachelor of Science

3 J

ah

re

Master of Education

Berufseinstieg

2 J

ah

re

2 Studium 17

Die Masterstudiengänge Lehramt an Gymnasien und Lehramt an berufsbildenden Schulen

befähigen, aufbauend auf die entsprechenden Bachelorstudiengänge, zur Laufbahn einer Lehre-

rin/eines Lehrers an den entsprechenden Schultypen.

Die Schwerpunkte der Ausbildung liegen hierbei in der fachdidaktischen Ausbildung. Aber auch

der fachwissenschaftlichen Vertiefung und Weiterbildung ist entsprechender Raum gegeben. Im

Masterstudiengang Lehramt an Gymnasien wird in der fachwissenschaftlichen Ausbildung ins-

besondere die Bilanz zwischen Erst- und Zweitfach ausgeglichen.

Welche Berufsmöglichkeiten gibt es nach dem Studium?

Die Bachelorstudiengänge dienen dazu, den Übergang in einen folgenden Masterstudiengang

oder den qualifizierten Wechsel zu anderen Disziplinen zu ermöglichen. Sie können für be-

stimmte Tätigkeitsfelder auch eigenständig berufsqualifizierend sein.

Denkbare Berufsfelder werden dort zu finden sein, wo Unternehmen Berufseinsteigern eine auf

fundiertem mathematisch-naturwissenschaftlichem Grundwissen aufsetzende Weiterquali-

fikation entsprechend der Unternehmensbelange ermöglichen (z.B. in speziellen Trainee-

Programmen). Zum anderen können Unternehmen Bedarf an Absolventen des Bachelorstudien-

gangs Physik für Tätigkeitsfelder haben, die analytische Fähigkeiten und Abstraktions-vermögen

erfordern, für die aber die umfassende wissenschaftliche Qualifikation der Masterabsolventinnen

und -absolventen nicht vollständig erforderlich ist. Im Marketing und Vertrieb oder auch Pro-

jektmanagement wäre das zum Beispiel vorstellbar.

Absolventinnen und Absolventen eines Meteorologie-Bachelorstudiengangs sind zudem beim

Deutschen Wetterdienst für den gehobenen Dienst qualifiziert, sofern sie, wie in unserem Ba-

chelorstudiengang vorgesehen, hinreichende Kenntnisse in synoptischer Meteorologie erworben

haben.

Die konsekutiven Masterstudiengänge sind forschungsorientiert. Ein erfolgreicher Masterab-

schluss ist auch die Voraussetzung dafür, im Rahmen einer anschließenden Berufs- und For-

schungstätigkeit den Doktorgrad erwerben zu können.

Berufliche Schlüsselkompetenz unserer Absolventinnen und Absolventen im experimentellen

Bereich ist die Fähigkeit, geeignete und möglichst aussagefähige Experimente zu entwerfen, um

dann die Beobachtungen und Messresultate auf der Basis umfassenden und vielseitig anwend-

baren Wissens zu interpretieren. Charakteristische Kompetenzen von Physikerinnen und Physi-

kern, bzw. Meteorologinnen und Meteorologen im theoretischen Bereich sind die begriffliche

und mathematische Analyse beobachteter physikalischer Eigenschaften sowie das Entwickeln

numerischer Modelle und numerischer Verfahren auf verschiedenen Abstraktionsebenen. Über-

fachliche Schlüsselkompetenzen werden besonders im Bereich der präzisen Darstellung und

Präsentation, des strukturierten Problemlösens und im effizienten Projektmanagement sowie der

Zusammenarbeit in internationalen Teams erworben. Nutzen Sie darüber hinaus bitte auch die

Angebote des Zentrums für Schlüsselkompetenzen:

www.zfsk.uni.hannover.de

Aufgrund dieser vielfältigen grundsätzlichen Fähigkeiten können Physikerinnen und Physiker

sowie Meteorologinnen und Meteorologen einerseits in öffentlich geförderten oder industriellen

18 2 Studium

Forschungslabors an grundlagen- und anwendungsorientierten Fragestellungen arbeiten, sind

zum anderen aber auch außerhalb des unmittelbaren Fachs wie beispielsweise in der Informati-

onstechnologie, der Unternehmensberatung sowie im Bank- und Versicherungswesen gesuchte

Mitarbeiterinnen und Mitarbeiter. Sie sind vielfach auf Gebieten tätig, für die sie während des

Studiums nicht direkt ausgebildet wurden. Sie sind überall dort zu finden, wo in einem sich

schnell verändernden Umfeld komplexe Probleme strukturiert behandelt werden müssen und

flexible kreative Problemlöser gefragt sind.

Meteorologinnen und Meteorologen übernehmen zunehmend Aufgaben, die sich aufgrund des

globalen Wandels in der Atmosphäre insbesondere im Umwelt- und Klimaschutz und allgemein

in der Vorsorge für Gesellschaft und Wirtschaft ergeben. Darüber hinaus benötigt der Deutsche

Wetterdienst in zunehmendem Maße Meteorologinnen und Meteorologen mit Master-

Abschluss.

Berufsziel Lehramt

Eine Besonderheit stellen die Fächerübergreifenden Bachelorstudiengänge dar: Einerseits sind

sie Grundlage für den konsekutiven Masterstudiengang Lehramt an Gymnasien und stellen

somit den Einstieg in ein lehramtsbezogenes Studium dar. Andererseits führt aber auch der Fä-

cherübergreifende Bachelorstudiengang zu einem ersten berufsqualifizierenden Abschluss und

ermöglicht auch den Wechsel zu einem fachwissenschaftlichen Masterstudiengang, sofern die

entsprechenden Zugangsvoraussetzungen erfüllt sind.

In der Praxis wird der Zugang zu einem fachwissenschaftlichen Masterstudiengang in Physik

oder Mathematik in der Regel vorzugsweise dann möglich sein, wenn bereits im Fächerübergrei-

fenden Bachelorstudiengang Mathematik und Physik kombiniert worden sind.

Die Studienprogramme in Technical Education bieten ebenfalls den Vorteil eines ersten berufs-

qualifizierenden Abschlusses bereits nach 6 Semestern. Absolventen des Bachelorstudienpro-

gramms (B. Sc.) in Technical Education können eine Berufstätigkeit im Bereich Berufsbildung /

Training in der Industrie aufnehmen oder aber ihr Studium in einem Masterstudiengang für das

Lehramt an berufsbildenden Schulen fortführen.

2.2 Aufbau des Studiums

Bitte beachten Sie, dass der rechtsverbindliche Text für alle Prüfungsordnungen stets der in

den Verkündungsblättern der Universität veröffentlicht ist.

Zugangsvoraussetzung:

Alle Bachelorstudiengänge unserer Fakultät sind zulassungsfrei. D.h. es bedarf lediglich einer

Hochschulzugangsberechtigung, um ein Studium aufzunehmen. Diese wird meist durch das Abi-

tur erbracht. (Für das Lehramtsstudium kann hiervon abweichend jedoch eine Zulassung zum

zweiten Fachgebiet notwendig sein. Informieren Sie sich hierüber bitte im Zentrum für Lehrer-

bildung.). Neben der allgemeinen Hochschulzugangsberechtigung gibt es weitere Möglichkeiten,

2 Studium 19

für ein Studium zugelassen zu werden - z.B. die Prüfung für den Erwerb der fachbezogenen

Hochschulzugangsberechtigung nach beruflicher Vorbildung. Diese Prüfung für die Zulassung

zum Studium wird häufig von Bewerbern für den Berufsschullehramtsstudiengang Bachelor of

Technical Education gewählt. Nähere Informationen zu einer Studienaufnahme ohne Abitur gibt

es auf der Homepage der Universität:

www.uni-hannover.de/hochschulzugang

Die Masterstudiengänge sind zulassungsbeschränkt. Für die Zulassung zum Master of Science

Physik und Meteorologie wird gefordert, dass der Bachelorabschluss mit der Note 3.0 oder bes-

ser erworben wurde. Bei den Lehramtsbezogenen Masterstudiengängen muss der Bachelor mit

mind. 2.5 abgeschlossen worden sein. Zurzeit werden diese Vorgaben aber nicht mehr berück-

sichtigt und sollen ganz abgeschafft werden. Die genauen Regeln (inklusive Ausnahmeregeln)

stehen in den entsprechenden Zugangsordnungen:

www.uni-hannover.de/zugangsordnung

Die Bewerbungsfrist für eine Aufnahme in einen Masterstudiengang endet zum Wintersemester

am 15. Juli und zum Sommersemester jeweils am 15. Januar.

Das Studium:

Die Studieninhalte sind in so genannte Module gegliedert. Ein Modul ist eine thematische Zu-

sammenfassung von Lehrveranstaltungen. Es kann also mehr als eine Veranstaltung umfassen

und sich über mehr als ein Semester erstrecken. Zur Ausbildung tragen neben den meist von

Übungen begleiteten Vorlesungen auch Seminare bei. Zum erfolgreichen Absolvieren eines Stu-

diengangs müssen in den einzelnen Modulen Studienleistungen sowie Prüfungsleistungen

(Modul- und modulübergreifende Prüfungen) erbracht werden.

Bei den Studienleistungen wird in der Regel eine Mindestpunktzahl aus Übungsbearbeitungen

gefordert. Bewertungen von Studienleistungen gehen nicht in die Endnote ein. Studienleistun-

gen können beliebig oft wiederholt werden.

Die Inhalte eines Moduls, oder im Falle einer modulübergreifenden Prüfung, mehrerer Module,

werden als Prüfungsleistung studienbegleitend durch eine mündliche Prüfung oder eine Klausur

abgeprüft (Ausnahme: Modul Bachelor- / Masterarbeit).

Jedem Modul sind entsprechend dem erwarteten Arbeitsaufwand so genannte Leistungspunkte

zugeordnet. Nach Erbringen der erforderlichen Studien- und Prüfungsleistungen werden den

Studierenden die dem Modul zugeordneten Leistungspunkte gutgeschrieben.

Leistungspunkte nach dem European Credit Transfer and Accumulation System (ECTS) beschrei-

ben den Aufwand, der erforderlich ist, um die durch ein Modul vermittelte Kompetenz zu erwer-

ben. Ein Leistungspunkt (LP) entspricht einem geschätzten Arbeitsaufwand von 30 Stunden. Pro

Semester sind etwa 30 Leistungspunkte zu erwerben.

In den Bachelorstudiengängen sind mindestens 180 Leistungspunkte zu erwerben, in den Mas-

terstudiengängen 120. Die Module erstrecken sich über ein bis zwei Semester. Sie erfordern von

den Studierenden in der Regel jeweils etwa einen Arbeitsaufwand zwischen 150 und 300 Stun-

den, entsprechend 5 bis 10 LP. Einen über diesen Regelumfang hinausgehenden Arbeitsaufwand

20 2 Studium

benötigen insbesondere die grundlegenden Module sowie das Bachelorprojekt und die Module

der Forschungsphase im Masterstudiengang.

Die Abschlussnote berechnet sich als gewichtetes Mittel der Prüfungsnoten.

Welche Module Sie in Ihrem Studiengang belegen müssen, welche Prüfungsleistungen Sie er-

bringen müssen und welche Gewichte diesen Prüfungsleistungen zugeordnet sind, können Sie in

der Prüfungsordnung Ihres Studiengangs nachlesen (siehe Kapitel 5).

Anmeldung und Durchführung der Prüfungen:

Zu jeder Prüfung muss innerhalb eines festgesetzten Anmeldezeitraums eine Anmeldung beim

Prüfungsamt erfolgen. Bei Nichtbestehen einer Prüfungsleistung besteht die Möglichkeit zur

zweimaligen Wiederholung. Ausgenommen hiervon sind die Bachelor- und die Masterarbeiten.

Sie dürfen einmal mit einem anderen Thema wiederholt werden.

Die Anmelde- und Prüfungstermine finden sich auf der Internetseite des Prüfungsamts:

www.uni-hannover.de/pruefungsamt

2 Studium 21

2.3 Bachelorstudiengänge

Vorbemerkung zu den Studienverlaufsplänen

In den folgenden Abschnitten finden Sie unter anderem konkrete Studienverlaufspläne für die

Physik- und Meteorologiestudiengänge der Leibniz Universität Hannover. Bitte beachten Sie,

dass diese Studienverlaufspläne lediglich Vorschläge zur Gestaltung Ihres Studiums sind. Sie

sind keineswegs so vorgeschrieben. Insbesondere sind Überschneidungen einzelner Lehrveran-

staltungen in den interdisziplinären Studiengängen nicht immer auszuschließen, so dass eine

Änderung der persönlichen Studienplanung notwendig werden kann. Beachten Sie aber bei Ihrer

persönlichen Planung, dass gerade die Grundvorlesungen zum Teil stark aufeinander aufbauen

und deshalb in der angegebenen Reihenfolge gehört werden sollten. Bei Fragen stehen Ihnen die

Studiengangskoordination und die Fachberater gerne zur Verfügung.

2.3.1 Bachelor of Science in Physik

Semester/ Be-

reich

1. Se-

mester

2. Semes-

ter

3. Semes-

ter

4. Semes-

ter

5. Semes-

ter

6. Semes-

ter LP

Mathematik Analysis I

Lin. Alg. I

20 LP

Analysis II

10 LP

Mathe für

Physiker I

4 LP

Mathe für

Physiker II 4

LP

38

Experimental

Physik

Mechanik

u Relati-

vität

6 LP

Elektrizität

12 LP

Optik,

Atomphy,

Quanten-

phänomene

10 LP

Moleküle,

Kerne,

Teilchen,

Festkörper

10 LP

38

Theoretische

Physik

Mathe-

matische

Methoden

7 LP

Elektrody-

namik

7 LP

Analytische

Mechanik

8 LP

Quanten-

theorie

8 LP

Statistische

Physik

8 LP

38

Vertiefungs-

studium

2 von 3 Vertiefungsmodulen

je V3+Ü1+P3 je 8 LP

- Festkörperphysik

- Atom- und Molekülphysik

- Kohärente Optik

16

Physikalischer

Wahlbereich

mindestens 12 LP aus dem

Lehrangebot der Physik

12

Schlüsselkompe-

tenzen

Seminar oder Vorlesung

4 LP

4

Wahlpflichtfach BWL, Chemie, Elektrotechnik, Geodäsie, Informatik, Mathematik, Maschinenbau, Me-

teorologie, Philosophie, VWL 16

Präsentation und

Projektarbeit

Physik

Präsentie-

ren Seminar

3 LP

Bachelorar-

beit 12 LP

Vortrag

3 LP

18

Regelstudienzeit: 6 Semester (insgesamt 180 LP)

Bachelorarbeit:

Die Bachelorarbeit soll zeigen, dass Sie in der Lage sind, innerhalb eines vorgegebenen Zeit-

raums ein Problem aus dem Fach selbstständig nach wissenschaftlichen Methoden zu bearbei-

ten. Sprechen Sie die Dozentinnen und Dozenten der Physik an und fragen Sie nach geeigneten

22 2 Studium

Themen. Das Modul Bachelorarbeit beinhaltet einen Vortrag über Ihre abgeschlossene Bachelor-

arbeit.

Zulassungsvoraussetzungen: Die Anmeldung zur Bachelorarbeit setzt voraus, dass Sie das Modul

Mathematik für Physiker, wie auch die modulübergreifenden Prüfungen Experimentalphysik und

Theoretische Physik I abgeschlossen haben.

Wahlpflichtfach:

Im Wahlpflichtfach lernen die Studierenden Aufgabenstellung und Vorgehensweisen anderer

Fachrichtungen kennen. Der Gesamtumfang beträgt 16 Leistungspunkte (LP).

Standardnebenfächer sind:

Betriebswirtschaftslehre, Chemie, Elektrotechnik, Geodäsie, Informatik, Mathematik, Maschinen-

bau, Meteorologie, Philosophie, VWL

Für diese Wahlpflichtfächer beschließt der Fachbereich Studienpläne in Absprache mit den je-

weiligen Fachvertretern.

Studierende, die ein hier nicht aufgeführtes Anwendungsfach wählen möchten, sollten mit ei-

nem Vertreter des betreffenden Faches einen Studienplan entwerfen und diesen dann dem Prü-

fungsausschuss zusammen mit dem Antrag auf Zulassung eines weiteren Wahlpflichtfaches

vorlegen. Das Studium des Wahlpflichtfaches beginnt in der Regel im dritten Semester. Je nach

persönlicher Studienplanung sind jedoch Abweichungen möglich.

2 Studium 23

2.3.2 Bachelor of Science in Meteorologie

Semester /

Bereich

1. Semes-

ter

2. Semes-

ter

3. Semes-

ter

4. Semes-

ter

5. Semes-

ter

6. Semes-

ter LP

Mathematik

Lin. Alg. A

4 LP

Analysis A

5 LP

Lin. Alg. B

4 LP

Analysis B

5 LP

Numerik A

4 LP

Stochastik

A

4 LP

Angewand-

tes Pro-

grammieren

4 LP

30

Experimental

Physik

Mechanik u

Relativität

6 LP

Elektrizität

12 LP

Optik,

Atomphy,

Quantenphä

10 LP

28

Theoretische

Physik

Mathemati-

sche Me-

thoden

7 LP

Elektrody-

namik

7 LP

14

Allgemeine &

Angewandte

Meteorologie

Einführung

in die Me-

teorologie I

4 LP

Einführung

in die Me-

teorologie II

4 LP

Strahlung I

4 LP

Klimatolo-

gie

4 LP

Strahlung II

4 LP

38

Wolken-

physik

4 LP

Instrument-

en Prakti-

kum

6 LP

Synoptische

Meteorolo-

gie I

4 LP

Synoptische

Meteorolo-

gie II

4 LP

Theoretische

Meteorologie

Thermody-

namik u.

Statik

4 LP

Kinematik

u. Dynamik

4 LP

Turbulenz u.

Diffusion

4 LP

12

Vertiefungs-

studium

Studium und Beruf

Berufskundliches Praktikum u. Tutorium

5 LP

Meteorologische Exkursion

2 LP

7

Wahlmodul Meteorologie

Auswahl aus entsprechend zugeordneten Lehrveranstal-

tungen im Umfang von mind. 20 LP

20

Naturwissenschaftlich – technischer Wahlbereich

mind. 12 LP aus Lehrveranstaltungen der in der Prüfungs-

ordnung genannten Fakultäten

12

Schlüsselkom-

petenzen

Eine Lehrveranstaltung aus dem Angebot des Fachspra-

chenzentrums oder Zentrum für Schlüsselkompetenzen

oder entsprechend ausgewiesene Angebote der Fakultät.

2 LP

Wissen-

schaftliches

Schreiben

2 LP

4

Präsentation

und Projektar-

beit

Bachelor-

projekt 15

Bachelorarbeit:

Die Bachelorarbeit soll zeigen, dass Sie in der Lage sind, innerhalb eines vorgegebenen Zeit-

raums ein Problem aus dem Fach selbstständig nach wissenschaftlichen Methoden zu bearbei-

ten. Der Bearbeitungszeitraum beträgt drei Monate.

24 2 Studium

Das Thema der Bachelorarbeit kann einmal innerhalb der ersten vier Wochen zurückgegeben

werden. Die Bachelorarbeit kann nur einmal wiederholt werden.

Sprechen Sie die Dozentinnen und Dozenten der Meteorologie an und fragen Sie nach geeigne-

ten Themen.

Zulassungsvoraussetzungen: Die Anmeldung zur Bachelorarbeit setzt voraus, dass Sie bereits

100 Leistungspunkte aus den Kernmodulen erworben haben.

2.3.3 Fächerübergreifender Bachelor

Ein wesentlicher Aspekt der Ausbildung im Lehramtsstudium sind fachdidaktische Veranstaltun-

gen und die Schulpraxis. Es wird empfohlen, dass Sie sich frühzeitig mit Dozentinnen und Do-

zenten des Instituts für Didaktik der Mathematik und Physik in Verbindung setzen, um die Or-

ganisation des Schulpraktikums und Ihre weitere didaktische Ausbildung abzustimmen.

Musterstudienpläne:

Im Folgenden werden Studienverlaufspläne für den Fächerübergreifenden Bachelorstudiengang

Physik vorgestellt. Hierbei ergeben sich unterschiede je nachdem, ob Physik Major- oder Mi-

norfach gewählt wird.

Für Ihre eigene Studienplanung sollen sie als Richtschnur dienen. Bitte beachten Sie, dass diese

Pläne nur Modellcharakter haben und keineswegs bindend sind. Insbesondere wird Ihre Studien-

planung von Ihrer Fächerkombination abhängen. Als Richtlinie sollte Ihnen bei der Planung die-

nen, dass Sie etwa 30 Leistungspunkte je Semester erwerben sollten. Auch sollten aufeinander

aufbauende Vorlesungen in der richtigen Reihenfolge gehört werden. Wenn Sie Probleme mit

Ihrer Studienplanung haben, steht Ihnen die Studiengangskoordination gerne für eine Beratung

zur Verfügung.

Beispielhaft werden zusätzlich die Studienverlaufspläne für die Fächerkombination Mathematik

und Physik angegeben.

Majorfach Physik

Semester /

Bereich

1. Semes-

ter

2. Semes-

ter

3. Semester 4. Semes-

ter

5.Semest

er

6. Semes-

ter LP

Physik

Mechanik &

Relativität

Mathe.

Methoden

der Physik

Elektrizität

Grundprak-

tikum I

Theoreti-

sche Elek-

trodynamik

Optik, Atom-

physik,

Quanten-

phänomene

Grund-prakt.

II

Theoretische

Physik f.

Lehramt

Physik

präsentieren

Moleküle,

Kerne,

Teilchen,

Festkörper

Grundprakti

kum III

Zwei weiterführende

Physikvorlesungen

Praktikum

80

2 Studium 25

13 LP

19 LP

24 LP

8 LP

Je 8 LP

Didaktik Phy-

sik

Einführung

in die Fach-

didaktik

Physik

4 LP

Lernen

von

Physik,

Lehren

von Phy-

sik

6 LP

10

Bachelor-

arbeit

Bachelorar-

beit

Seminar

10

Minorfach Physik

Semester /

Bereich

1. Semes-

ter

2. Semes-

ter

3. Semes-

ter

4. Semes-

ter

5. Semes-

ter

6. Semes-

ter LP

Physik

Mechanik &

Relativität

Math. Me-

thoden d.

Physik

13 LP

Elektrizität

Grundprak-

tikum I

Theoreti-

sche Elekt-

rodynamik

19 LP

Optik,

Atomphysik,

Quanten-

phänomene

Grundprak-

tikum II

9 LP

Moleküle,

Kerne,

Teilchen,

Festkörper

Grundprak-

tikum III

9 LP

50

Didaktik Phy-

sik

Einführung

in die Fach-

didaktik

Physik

4 LP

Lernen von

Physik

Lehren von

Physik

6 LP

10

Fächerkombinationen:

Die Kombination der Fächer wird im Verhältnis 2:1 zwischen Major- und Minorfach gewählt,

wobei zur Qualifizierung für das Lehramt an Gymnasien das Zweitfach im Masterstudiengang

entsprechend zu ergänzen ist, während bei einem Übergang zum fachwissenschaftlichen Master

das Majorfach Schwerpunkt bleibt.

Hinzu kommt ein Professionalisierungsbereich, der erziehungs- und kommunikations-

wissenschaftliche Themen, sowie je ein vierwöchiges Praktikum in einer Schule und in einem

Unternehmen umfasst.

Bachelorarbeit:

Die Bachelorarbeit soll zeigen, dass Sie in der Lage sind, innerhalb eines vorgegebenen Zeitraums

ein Problem aus dem Fach selbstständig nach wissenschaftlichen Methoden zu bearbeiten. Sie

kann im fachwissenschaftlichen oder fachdidaktischen Bereich des Majorfaches geschrieben

werden. Voraussetzung für die Zulassung zur Bachelorarbeit ist, dass bereits mind. 120 Leis-

tungspunkte erbracht worden sind. Sprechen Sie die Dozentinnen und Dozenten Ihres Erstfachs

26 2 Studium

an und fragen Sie nach geeigneten Themen. Zusätzlich führt die Fakultät jährlich eine Informa-

tionsveranstaltung durch, in der über mögliche Themen informiert wird.

Die Bachelorarbeit im Fach Physik beinhaltet ein Seminar, in dem in der Regel ein Vortrag über

die abgegebene Arbeit gehalten wird.

2 Studium 27

Beispielkombination Majorfach Physik – Minorfach Mathematik

Semester / Be-

reich

1. Semester 2. Semester 3. Semester 4. Semes-

ter

5. Semester 6. Semester LP

Mathematik

Analysis I

10 LP

Analysis II

10 LP

Lin. Alg. I

10 LP

Geometrie

für Lehr-

amt

10 LP

Algebra I

10 LP

50

Didaktik

Mathematik

Einführung

in die FD –

Teil1

2 LP

Einführung

in die FD –

Teil2

2 LP

IV FD Sek I

3 LP

Seminar

FD

3 LP

10

Physik

Mechanik

&

Relativität

Mathe.

Methoden

der Physik

13 LP

Elektrizität

Grundprakti-

kum I

Theoretische

Elek-

trodynamik

19 LP

Optik, Atom-

physik,

Quanten-

phänomene

Grundprakti-

kum II

9 LP

Moleküle,

Kerne,

Teilchen,

Festkörper

Grund-

praktikum

III

Physik

präsentie-

ren

13 LP

Theoretische

Physik f.

Lehramt

10 LP

Zwei

weiterfüh-

rende Phy-

sikvorlesun-

gen

Je 8 LP

80

Didaktik

Physik

Einf.

Physik

Didaktik

4 LP

Lernen von

Physik

Lehren von

Physik

6 LP

10

Professiona-

lisierungs-

bereich

Schulpraktikum; Berufspraktikum; Erziehungswissenschaften;

Schlüsselkompetenzen 20

Bachelor-

arbeit

Seminar BA

3 LP

Bachelor-

Arbeit

10

Beispielkombination Majorfach Mathematik – Minorfach Physik

Semester /

Bereich

1. Semes-

ter

2. Semes-

ter

3. Semes-

ter

4. Semes-

ter

5. Semester 6. Semes-

ter LP

Mathematik

Analysis I

Lin. Alg. I

20 LP

Analysis II

10 LP

Algebra I

10 LP

Math. Sto-

chastik I

10 LP

Algorithmi-

sche Mathe-

matik

Wahlmodul

20 LP

Geometrie

für Lehramt

10 LP

80

Didaktik Ma-

thematik

Einführung

in die FD –

Teil1

2 LP

Einführung

in die FD –

Teil2

2 LP

IV FD Sek I

3 LP

Seminar FD

3 LP

10

28 2 Studium

Physik

Mechanik &

Relativität

6 LP

Elektrizität

Grundprak-

tikum I

12 LP

Optik,

Atomphysik,

Quanten-

phänomene

Grundprak-

tikum II

Math. Me-

thoden d.

Physik

16 LP

Moleküle,

Kerne,

Teilchen,

Festkörper

Grundprak-

tikum III

Theoreti-

sche Elekt-

rodynamik

16 LP

50

Didaktik

Physik

Einf.

Physik

Didaktik

4 LP

Lernen von

Physik

Lehren von

Physik

6 LP

10

Professiona-

lisierungs-

bereich

Schulpraktikum;Berufspraktikum; Erziehungswissenschaften;

Schlüsselkompetenzen 20

Bachelor-

arbeit

Seminar zur

Bachelorar-

beit

3 LP

Bachelor-

arbeit

7 LP

10

2 Studium 29

Bachelor of Technical Education

Musterstudienplan für das Unterrichtsfach Physik

Das Unterrichtsfach Physik kann, je nach beruflicher Fachrichtung, im ersten oder dritten Se-

mester begonnen werden. Im Folgenden machen wir Ihnen Vorschläge, wie Sie Ihr Physikstudi-

um aufbauen können. Diese Pläne sollen Ihnen zur Orientierung dienen, sie sind aber keineswegs

bindend oder notwendigerweise für Ihre eigene Planung optimal. Insbesondere wird Ihre Studi-

enplanung von der Wahl Ihrer beruflichen Fachrichtung abhängen. Als Richtlinie sollte Ihnen bei

der Planung dienen, dass Sie etwa 30 Leistungspunkte je Semester erwerben sollten.

Studienbeginn im ersten Semester

Semester / Be-

reich

1. Semes-

ter

2. Semes-

ter

3. Semes-

ter

4. Semes-

ter

5. Semes-

ter

6. Semes-

ter LP

Physik

Mechanik u

Relativität

Math. Me-

thoden der

Physik

13 LP

Elektrizität

12 LP

Optik,

Atom-

physik,

Quanten-

phänomene

10 LP

35

Physik

kommunizieren

Proseminar 3 LP 3

Fachdidaktik

Physik

Einf. in die

Fachdidak-

tik

4 LP

Lernen von

Physik

Lehren von

Physik

6 LP

10

Berufliche

Fachrichtung

Fachrichtungen können sein: Bautechnik, Elektrotechnik, Farbtechnik und Raumge-

staltung, Holztechnik, Lebensmittelwissenschaft, Metalltechnik, Ökotrophologie 93

Berufs- u. Wirt-

schaftspädagogik

Veranstaltungen gemäß Prüfungsordnung. Integriert in diesen Modulkomplex ist ein

vierwöchiges Praktikum 15

Schlüsselkompe-

tenzen Veranstaltungen gemäß Prüfungsordnung 10

Bachelorarbeit

Bachelor

arbeit

Seminar

15 LP

15

30 2 Studium

Studienbeginn im dritten Semester

Semester / Be-

reich

1. Semes-

ter

2. Semes-

ter

3. Semes-

ter

4. Semes-

ter

5. Semes-

ter

6. Semes-

ter

LP

Physik

Mechanik u

Relativität

Math. Me-

thoden der

Physik

13 LP

Elektrizität

12 LP

Optik,

Atom-

physik,

Quanten-

phänomene

10 LP

35

Physik kommu-

nizieren

Proseminar 3 LP 3

Fachdidaktik

Physik

Einf. in die

Fachdidak-

tik

4 LP

Lernen von

Physik

Lehren von

Physik

6 LP

10

Berufliche

Fachrichtung

Fachrichtungen können sein: Bautechnik, Elektrotechnik, Farbtechnik und Raumge-

staltung, Holztechnik, Lebensmittelwissenschaft, Metalltechnik, Ökotrophologie 95

Berufs- u. Wirt-

schaftspädago-

gik

Veranstaltungen gemäß Prüfungsordnung. Integriert in diesen Modulkomplex ist ein

vierwöchiges Praktikum. 15

Schlüssel-

kompetenzen Veranstaltungen gemäß Prüfungsordnung 10

Bachelorarbeit

Bachelor-

arbeit

Seminar

15 LP

15

Bachelorarbeit:

Die Bachelorarbeit soll zeigen, dass Sie in der Lage sind, innerhalb eines vorgegebenen Zeitraums

ein Problem aus dem Fach selbstständig nach wissenschaftlichen Methoden zu bearbeiten. Sie

kann in der beruflichen Fachrichtung oder im Unterrichtsfach geschrieben werden.

Sprechen Sie die Dozentinnen und Dozenten des von Ihnen gewählten Bereiches an und fragen

Sie nach geeigneten Themen. Im Fach Physik beinhaltet die Bachelorarbeit den Besuch eines

Seminars, in dem in der Regel ein Vortrag über die abgegebene Arbeit gehalten wird.

2 Studium 31

Fächerkombinationen:

: Das Bachelorstudium im Bereich Technical Education gliedert sich in die beruflichen Fachrich-

tung, das Unterrichtsfach Physik, die Berufs- und Wirtschaftspädagogik, Module zur Schlüssel-

qualifikationen sowie die Bachelorarbeit. Die einzelnen Anteile haben den folgenden Umfang:

Berufliche Fachrichtung 92 LP

Unterrichtsfach Physik 48 LP

Berufs- und Wirtschaftspädagogik 15 LP

Schlüsselqualifikationen 10 LP

Modul Bachelorarbeit 15 LP

32 2 Studium

2.4 Masterstudiengänge

Die Prüfungsordnungen (Kapitel 5) für die Masterstudiengänge wie auch die Zulassungsordnung

zum Masterstudium sind auf der Homepage der Leibniz Universität zu finden:

www.uni-hannover.de/de/studium/studiengaenge/physik

2.4.1 Master of Science in Physik

Der Masterstudiengang Physik ist forschungsorientiert und führt die Studierenden an die mo-

derne Grundlagenforschung heran. Es werden Kenntnisse und Kompetenzen in mehreren Teilfä-

chern der Physik vermittelt, und die Studierenden werden zum selbstständigen wissenschaftli-

chen Arbeiten angeleitet.

Die fachliche Vertiefungs- und Schwerpunktphase dient dem Erwerb der für eine eigenständi-

ge produktive Arbeit in der Physik notwendigen fortgeschrittenen Kenntnisse in den an der Fa-

kultät für Mathematik und Physik vertretenen Grundlagenforschungsgebieten: der Festkörper-

physik, der Quantenoptik und der Gravitation. Ein weiteres mögliches Thema ist Radioökologie

und Strahlenschutz. Abgerundet und ergänzt werden die Studienmöglichkeiten durch ein inter-

disziplinäres Wahlpflichtfach.

Das zentrale Element der Forschungsphase ist die Masterarbeit im Umfang von 30 Leistungs-

punkten. Dabei handelt es sich um eine selbstständige Forschungsarbeit zu einer aktuellen Fra-

gestellung moderner Physik.

Studienverlauf im Masterstudiengang Physik

Semester / Bereich 1. Semester 2. Semester 3. Semester 4. Semester LP

Vertiefungs- und

Schwerpunktphase

2 von 4 fortgeschrittenen

Vertiefungsmodulen (je 5 LP):

- Fortgeschrittene Festkörperphysik

- Gravitationsphysik

- Quantenoptik

- Quantenfeldtheorie

Je V3+Ü1

10

Vorlesungen und Praktika aus dem Veranstal-

tungskatalog der Physik

mindestens 27 LP

oder

Vorlesungen und Praktika aus dem Veranstal-

tungskatalog der Physik

Mindestens 17 LP

Industriepraktikum 10 LP

27

Seminar 3 LP 3

Schlüsselkompeten-

zen

Lehrveranstaltung aus dem Angebot des Fachsprachenzentrums, LUIS; ZfSk oder der

Fakultät 4

Wahlpflichtfach z.B. Chemie, Meteorologie, Hydrologie, Geogra-

fie, Informatik, Geowissenschaft, Betriebswirt-

16

2 Studium 33

schaftslehre

Forschungsphase

Forschungspraktikum

15 LP

Masterarbeit-

projekt

30 LP

60

Projektplanung 15 LP

34 2 Studium

2.4.2 Master of Science in Meteorologie

Im Masterstudiengang Meteorologie werden sowohl forschungs- als auch anwendungsrelevan-

te Kompetenzen vermittelt. Studierende werden für die Forschung im Bereich der Beobachtung,

Analyse und Modellierung meteorologischer und klimatologischer Zusammenhänge aber auch

für das Arbeiten in dem zunehmend industriellen und unternehmerischen Arbeitsmarkt der Wet-

tervorhersage und -beratung, der Energiewirtschaft, der Versicherungswirtschaft, der Luft- und

Raumfahrt sowie des Umwelt- und Klimaschutzes ausgebildet.

Analog zu den Masterstudiengängen Physik gliedert sich der Masterstudiengang Meteorologie in

eine fachliche Vertiefungs- und Schwerpunktphase und eine Forschungsphase.

In der fachlichen Vertiefungs- und Schwerpunktphase wird meteorologisches Spezialwissen

vermittelt, das zunächst mit dem Übersichtsmodul Fortgeschrittene Meteorologie auf den im

Bachelorstudiengang gelegten Grundlagen aufbaut und dann in den Bereichen der modernen

Messmethoden und der angewandten Meteorologie nach Wahl der Studierenden vertieft wird.

Ergänzt wird das erste Studienjahr durch ein Modul zur Forschungs- und Berufsorientierung

sowie durch das Wahlpflichtfach.

Das Lehrangebot der Vertiefungs- und Schwerpunktphase sowie im Wahlpflichtfach beinhaltet

Vorlesungen, Übungen, Seminare, Feldversuche, Exkursionen und Industrie- oder Forschungs-

praktika.

Studienverlauf im Masterstudiengang Meteorologie

Semester / Bereich 1. Semester 2. Semester 3. Semester 4.Semester LP

Fortgeschrittene

Meteorologie

Seminare zur Fort-

geschrittenen

Meteorologie I

5 LP

Seminare zur Fort-

geschrittenen

Meteorologie II 5

LP

10

Fortgeschrittenen-

praktikum 6 LP 6

Schlüsselkompeten-

zen

Lehrveranstaltungen aus dem Angebot des Fachsprachenzentrums, ZfSK oder der

Fakultät 4

Wahlbereich

Meteorologie

Ausgewählte The-

men moderner

Meteorologie

Mind. 24 LP aus

dem entsprechen-

den Angebot des

Modulkatalogs

24

Wahlpflichtfach z.B. Chemie, Elektrotechnik, Physik, Ma-

schinenbau, Informatik, Mathematik,

Betriebswirtschaftslehre

16

Forschungsphase

Forschungsprakti-

kum 15 LP

Masterarbeit-

projekt 30 LP

60 Projektplanung 15

LP

2 Studium 35

2.4.3 Physik für das Lehramt an Gymnasien

Im Zentrum des Masterstudiengangs Lehramt an Gymnasien steht die fachdidaktische Ausbil-

dung und Schulpraxis. Es wird empfohlen, dass Sie sich frühzeitig mit Dozentinnen und Dozen-

ten des Instituts für Didaktik der Mathematik und Physik in Verbindung setzen, um die Organisa-

tion des Schulpraktikums und Ihre weitere didaktische Ausbildung abzustimmen.

Im Folgenden werden Studienverlaufspläne für das Fach Physik im Studiengang Master Lehramt

an Gymnasien vorgestellt. Hierbei ergeben sich Unterschiede je nachdem, ob Physik als Erst-

oder Zweitfach gewählt wird. Für Ihre eigene Studienplanung sollen sie als Richtschnur dienen.

Bitte beachten Sie, dass diese Pläne nur Modellcharakter haben und keineswegs bindend sind.

Wenn Sie Probleme mit Ihrer Studienplanung haben, steht Ihnen unsere Studiengangskoordina-

tion gerne für eine Beratung zur Verfügung.

Modul Masterarbeit

Das Modul Masterarbeit besteht aus der Masterarbeit und einer mündlichen Prüfung. Die Mas-

terarbeit soll zeigen, dass der Prüfling in der Lage ist, innerhalb einer vorgegebenen Frist ein

Problem aus dem Fach oder den Bildungswissenschaften selbstständig nach wissenschaftlichen

Methoden zu bearbeiten. Die Masterarbeit kann im Erst- oder Zweitfach oder in den Bildungs-

wissenschaften geschrieben werden. Die Bearbeitungszeit der Masterarbeit beträgt vier Monate.

Bei experimentellen Arbeiten kann auch eine Bearbeitungszeit von 6 Monaten vorgesehen wer-

den.

Die mündliche Prüfung im Rahmen des Moduls Masterarbeit wird von zwei Prüfenden abge-

nommen. Eine oder einer der beiden Prüfenden muss die Fachwissenschaft eines der gewählten

Fächer, die oder der zweite Prüfende muss die Didaktik des anderen Fachs oder die Bil-

dungswissenschaften vertreten. In der mündlichen Prüfung soll der Prüfling nachweisen, dass er

in der Lage ist, die im Studium erworbenen Kompetenzen systematisch in Bezug zur Schulpraxis

zu setzen und über relevante Aspekte seines späteren Berufsfeldes in einen kritisch-diskursiven

Dialog zu treten. Die mündliche Prüfung kann vor oder nach der Masterarbeit abgelegt werden

Physik Erstfach

Semester / Bereich 1. Semester 2. Semester 3. Semester 4. Semester LP

Fachwissenschaftli-

che Vertiefung

Wahl eines Fachs

aus dem Wahlmo-

dulbereich

5 LP

5

Fortgeschrittene

Fachdidakitk Physik

Praktikum Experi-

mente und

Experimentieren

im Physikunterricht

4 LP

8

Seminar

2 LP

Seminar

2 LP

Fachpraktikum Schulpraktikum

Seminar

7 LP

7

Masterarbeit Masterarbeit

20

36 2 Studium

Physik Zweitfach

Semester / Bereich 1. Semester 2. Semester 3. Semester 4. Semester LP

Fortgeschrittene

Fachdidaktik Physik

Praktikum Experi-

mente und

Experimentieren

im Physikunterricht

4 LP

Seminar

2 LP

Seminar

2 LP

8

Physik präsentieren Proseminar 4

Physik

Theoretische Physik

für Lehramt

10 LP

10

Fachpraktikum Schulpraktikum

Seminar

7 LP

7

Wahlpflichtbereich

Wahl zweier

Fächer aus dem

Wahlmodulbe-

reich

Je. 8 LP

16

2.4.4 Physik für das Lehramt an berufsbildenden Schulen

Im Folgenden wird ein Studienverlaufsplan für das Fach Physik im Studiengang Master Lehramt

an berufsbildenden Schulen vorgestellt. Für Ihre eigene Studienplanung soll er als Richtschnur

dienen. Bitte beachten Sie, dass dieser Plan nur Modellcharakter hat und keineswegs bindend

ist. Je nach gewählter Berufsrichtung werden Abweichungen notwendig sein. Wenn Sie Proble-

me mit Ihrer Studienplanung haben, steht Ihnen unsere Studiengangskoordination gerne für

eine Beratung zur Verfügung.

Modul Masterarbeit

Das Modul Masterarbeit besteht aus der Masterarbeit und einer mündlichen Prüfung. Die Mas-

terarbeit soll zeigen, dass der Prüfling in der Lage ist, innerhalb einer vorgegebenen Frist ein

Problem aus einem der Bereiche des Studiums selbstständig nach wissenschaftlichen Methoden

zu bearbeiten. Die Bearbeitungszeit der Masterarbeit beträgt vier Monate. Bei experimentellen

Arbeiten kann auch eine Bearbeitungszeit von 6 Monaten vorgesehen werden.

Die mündliche Prüfung im Rahmen des Moduls Masterarbeit wird von zwei Prüfenden abge-

nommen. Eine oder einer der beiden Prüfenden muss die Fachwissenschaft der gewählten beruf-

lichen Fachrichtung oder des gewählten Unterrichtsfaches vertreten, die oder der zweite Prüfen-

de muss die Didaktik der gewählten beruflichen Fachrichtung oder des gewählten Unterrichtfa-

ches oder die Bildungswissenschaften (Berufs- und Wirtschaftspädagogik) vertreten. In der

mündlichen Prüfung soll der Prüfling nachweisen, dass er in der Lage ist, die im Studium erwor-

benen Kompetenzen systematisch in Bezug zur Schulpraxis zu setzen und über relevante Aspek-

te seines späteren Berufsfeldes in einen kritisch-diskursiven Dialog zu treten. Die mündliche

Prüfung kann vor oder nach der Masterarbeit abgelegt werden.

Semester / 1. Semester 2. Semester 3. Semester 4. Semester LP

2 Studium 37

Bereich

Physik

Praktikum

Experimente und

Experimentieren

im Physikunterricht

4 LP

Moleküle, Kerne,

Teilchen,

Festkörper

8 LP

12

Fachdidaktik

Physik

Seminar

2 LP

Seminar

2 LP

4

Fachpraktikum Schulpraktikum

Seminar

4 LP

4

Fachwissenschaftli-

che Vertiefung

Wahl eines Fachs

aus dem Wahlmo-

dulbereich

8 LP

Wahl eines Fachs

aus dem Wahl-

modulbereich

8 LP

16

2.5 Angebote rund ums Studium

Bibliotheken www.tib.uni-hannover.de

In Hannover befindet sich die Universitätsbibliothek (UB) und Technische Informationsbibliothek

(TIB) direkt neben dem Hauptgebäude der Universität. Die TIB ist die Deutsche Zentrale Fachbib-

liothek für Technik/Ingenieurwissenschaften und deren Grundlagenwissenschaften, insbesondere

Chemie, Informatik, Mathematik und Physik. Dies bedeutet, dass derzeit kein Standort in

Deutschland vom Literaturbestand her für ein Studium dieser Fachgebiete besser ausgestattet

ist. Außerdem gibt es Institutsbibliotheken. Mit der kostenlosen HOBSY-Bibliothekskarte können

alle Studierenden nicht nur in UB und TIB sondern auch in den Standorten der Stadtbibliothek

Bücher ausleihen.

Leibniz Universität IT Services (LUIS, ehem. RRZN) www.rrzn.uni-hannover.de

Hier werden regelmäßig Kurse zum Umgang mit Programmiersprachen und Betriebssystemen

angeboten (z.B. Linux, WINDOWS, C, JAVA usw.). Des Weiteren wird auch eine Reihe von Hand-

büchern zum Selbststudium herausgegeben (RRZN-Handbücher für staatliche Hochschulen).

Studieren im Ausland

Die Leibniz Universität bietet zahlreiche Möglichkeiten, während des Studiums einige Zeit im

Ausland zu verbringen. Wichtige erste Informationen können Sie den Internetseiten des Hoch-

schulbüros für Internationales entnehmen:

www.international.uni-hannover.de/ausland.html

Im Service Center der Universität stehen Mitarbeiter des Hochschulbüros für Internationales für

weitergehende Fragen rund um ein Auslandsstudium zur Verfügung. An der Fakultät wird zur-

zeit vor allem das Erasmus-Programm genutzt:

Erasmus

Ansprechpartner:

Studiendekanat

Dipl. -Ing. Axel Köhler [email protected]

Mariana Stateva-Andonova [email protected]

38 2 Studium

Im Zuge des Erasmus-Programms der EU sind zahlreiche Universitäten in ganz Europa Partner-

schaften zum gegenseitigen Studierendenaustausch eingegangen. Erbrachte Leistungen werden

gegenseitig anerkannt. Es müssen an der Partnerhochschule keine Studiengebühren bezahlt

werden.

Fachsprachenzentrum www.fsz.uni-hannover.de

Das Fachsprachenzentrum der Universität Hannover bietet für Studierende kostenlose Sprach-

kurse an. Für Studierende der Physik oder der Meteorologie sind gute Englischkenntnisse nicht

nur für den späteren Beruf unersetzlich, sondern bereits im Studium wichtig, da viele grundle-

gende Lehrbücher in englischer Sprache herausgegeben werden.

Um die vorhandenen Englischkenntnisse für das Studium auszubauen, eignet sich zum Beispiel

Englisch für Physik und Mathematik. Des Weiteren werden Grammatikkurse, Vorbereitungskurse

für Auslandsaufenthalte und Beruf sowie Kurse für wissenschaftliche Kommunikation und Ar-

gumentation angeboten. Selbstverständlich gibt es auch Kurse für diverse andere Sprachen.

Career Service der Universität Hannover www.career.uni-hannover.de

Unter dem Dach des Career Service der Universität Hannover werden all jene Aktivitäten zu-

sammengefasst, die das Ziel haben, Studierenden sowie Absolventinnen und Absolventen der

Universität Hannover ein Angebot bereitzustellen, das

- sie auf die sich wandelnden Anforderungen in der Arbeitswelt vorbereitet.

- sie dazu anregt, die eigene berufliche Entwicklung aktiv zu planen.

- sie dazu befähigt, den Übergang vom Studium in den Beruf konstruktiv zu gestalten.

- den Kontakt zu und den Austausch mit der Beschäftigungswelt zu beiderseitigem Nutzen

fördert.

Der Veranstaltungskalender Job fit ist voller interessanter Veranstaltungen zu den Fragen

- Wie plane ich meinen Berufsweg?

- Welche Möglichkeiten und Berufswege gibt es?

- Wie informiere ich mich über Unternehmen?

- Wie nehme ich Kontakt zu Unternehmen auf?

- Wie bewerbe ich mich richtig?

- Wie bereite ich mich auf einen Auslandsaufenthalt vor?

- Was brauche ich, um mich selbstständig zu machen?

Job fit erscheint jedes Semester und ist zu finden unter:

www.jobfit.career.uni-hannover.de

2 Studium 39

2.6 Studieren und leben in Hannover

In diesem Abschnitt sollen einige wenige Aspekte des studentischen Lebens aufgeführt werden.

Ausführlichere Informationen gibt es in der Broschüre Studieren in Hannover vom Studenten-

werk, in der Broschüre Tipps für das Studium der Zentralen Studienberatung sowie auf den In-

ternetseiten von Universität und Studentenwerk Hannover.

www.uni-hannover.de www.studentenwerk-hannover.de

Wohnen

Ob eigene Wohnung, WG oder Wohnheimplatz – die Suche nach vier Wänden ist für viele der

erste Schritt ins Studium. Die vielen schwarzen Bretter z.B. im Lichthof im Hauptgebäude der

Uni oder den Mensen sind wichtige Anknüpfungspunkte, wenn man eine Wohnung oder WG

sucht. Des Weiteren findet man Angebote in den Hannoverschen Tageszeitungen oder man fragt

bei der Privatwohnraumvermittlung des Studentenwerks nach. Infos über die diversen Studie-

rendenwohnheime erhält man in der Wohnheimverwaltung des Studentenwerks.

www.studentenwerk-hannover.de/wohnen.html

Daneben gibt es auch noch einige Wohnheime anderer Träger, es lohnt sich, nachzuforschen.

Auch der AStA hat einen Informationsflyer “Wohnen in Hannover“ www.asta-hannover.de

Essen + Trinken

In der Hauptmensa kann man aus einer Auswahl von bis zu 10 Gerichten wählen. Die Haupt-

mensa zählte in diversen Untersuchungen in den Bereichen Qualität, Preis und Auswahl immer

wieder zu den besten Mensen Deutschlands. Des Weiteren gibt es für den kleinen Hunger acht

Cafeterien an den verschiedenen Universitätsstandorten. Die Cafeteria ”Sprengelstube“ im

Hauptgebäude bietet sich auch zum Aufenthalt zwischen den Vorlesungen an.

www.studentenwerk-hannover.de/essen.html

Verkehr

Mit dem Semesterticket können Studierende die öffentlichen Verkehrsmittel in der Region Han-

nover und fast alle Nahverkehrszüge in Niedersachsen nutzen. Da der größte Teil der Radwege in

einem guten Zustand ist, kommen viele Studierende mit dem Fahrrad zur Universität. Im Semes-

terbeitrag ist ein geringer Beitrag enthalten, der für die Fahrradwerkstätten verwendet wird, in

denen man Fahrräder kostenlos reparieren lassen kann. Nähere Informationen zum Semesterti-

cket und Fahrradwerkstätten sind beim AStA zu bekommen. www.asta-hannover.de

Hochschulsport

Der Hochschulsport ist ein Angebot an alle Studierenden, gemeinsam Sport zu treiben, sich zu

bewegen und vom Uni-Stress zu erholen. Die verschiedenen Kurse von Aikido über Basketball

und Leichtathletik bis Yoga sind überwiegend kostenlos für Studierende oder deutlich billiger als

in den meisten Sportvereinen. Zu Beginn jedes Semesters wird das Sportprogramm herausgege-

ben, aus dem man Kurse auswählen kann. Auch in der vorlesungsfreien Zeit werden Kurse ange-

boten. Das Sportprogramm ist beim Sportzentrum als Broschüre, aber auch im Internet erhält-

lich.

40 2 Studium

www.hochschulsport-hannover.de

Finanzielles und Soziales

In jedem Semester müssen alle Studierenden einen Semesterbeitrag bezahlen. Dieser wird vor

allem für das Semesterticket, den ”Verwaltungskostenbeitrag“ und das Studentenwerk bezahlt.

Seit dem WS 2014/15 werden keine Studiengebühren erhoben.

Sofern das Studium länger als die Regelstudienzeit plus weitere vier Semester dauert, sind jedes

Semester sogenannte Langzeitstudiengebühren zu zahlen, wobei es z.T. Ausnahmeregelungen

gibt. Der Betrag erhöht sich mit der Länge des Studiums. Hierüber informiert das Immatrikulati-

onsamt.

Beratung zum BAFöG bietet die BAFöG-Abteilung des Studentenwerks Hannover und die BA-

FöG- und Sozialberatung im AStA.

www.studentenwerk-hannover.de/bafoeg-und-co.html

www.asta-hannover.de

HiWi-Jobs und Arbeitsmöglichkeiten

Die beste Möglichkeit, nicht nur Geld zu verdienen, sondern auch Erfahrungen für den späteren

Beruf zu gewinnen und Studieninhalte zu wiederholen, ist als studentische Hilfskraft im Bereich

der Universität zu arbeiten. Hier ist Mitarbeit in der Forschung und Verwaltung der Institute

oder im Bereich der Lehre möglich. Bei Interesse empfiehlt es sich die Dozenten und wissen-

schaftlichen Mitarbeiter direkt anzusprechen. Sie stehen gern beratend zur Verfügung.

Daneben bietet Hannover als bedeutende Industrie- und Handelsstadt auch in Firmen, Verwal-

tung und Dienstleistung sowie bei den Messen (z.B. CeBIT, Hannover Industriemesse) diverse

Möglichkeiten für Studierende, Geld zu verdienen.

41

3 Forschung

Im Folgenden stellen die physikalischen, meteorologischen und fachdidaktischen Bereiche der

Fakultät sich und ihre Forschungsaktivitäten vor. Dies ermöglicht es Ihnen, eine erste Orientie-

rung über mögliche Studienschwerpunkte und Themen für die Abschlussarbeiten zu erhalten.

3.1 Institut für Festkörperphysik

www.fkp.uni-hannover.de

Professoren: R. Brendel, R. Haug, M. Oestreich, H. Pfnür, Ch. Tegenkamp

1) Abteilung Atomare und molekulare Strukturen

Vom Atom zum Festkörper

Prof. Dr. Herbert Pfnür, Prof. Dr. Christoph Tegenkamp

Die physikalischen (und chemischen) Eigenschaften kleinster Strukturen werden wesentlich

durch ihre Berandung bestimmt. Deshalb können sie auch über die Grenzflächen manipuliert

und gesteuert werden. Das gilt für alle Nano-Objekte und wird mit fortschreitender Miniaturi-

sierung immer bedeutsamer, so z.B. bei der Steigerung der Leistungsfähigkeit elektronischer

Schaltkreise durch Verwendung ultrakleiner und ultraschneller Chip-Architekturen, aber auch

beim Design von neuen Katalysatoren. Die wissenschaftliche Bedeutung dieser Vorgänge und

gleichzeitig deren Relevanz unter Anwendungsaspekten wurde einmal mehr durch die Verlei-

hung der Nobelpreise des Jahres 2007 sowohl in Physik wie in Chemie unterstrichen.

Unsere Arbeitsgruppe interessiert sich in diesem Zusammenhang vor allem für die Erzeugung

und Manipulation von ultrakleinen Strukturen auf der Skala von wenigen Nanometern bis zu

einzelnen Atomen, sowie für deren grundlegende physikalische Eigenschaften. Strukturen wie

Bündel atomarer Drähte oder Nanokontakte entstehen durch die Kombination von bewährten

Konzepten der Oberflächenphysik über Selbstorganisation (bottom-up-Ansatz) in Verbindung

mit mesoskopischer und makroskopischer Strukturierung (top-down-Ansatz). So sind wir in der

Lage, z.B. die elektronischen und die elektrischen Transporteigenschaften von null-, ein- und

zweidimensionalen Objekten zu untersuchen. Besonders spannend sind Frage nach der Verbin-

dung zwischen diesen Eigenschaften, bestimmten Materialkombinationen und der Morphologie.

Dazu bedarf es einer Vielzahl von Untersuchungstechniken, die sehr oberflächenempfindlich sind

und teilweise atomar auflösen können wie Tunnelmikroskopie (STM) und Elektronenbeugung

(LEED), oder verschiedene Arten von Elektronenspektroskopie (XPS, UPS, EELS).

2) Abteilung Nanostrukturen des Instituts für Festkörperphysik

Kleinste Halbleiterstrukturen für die Technologie von morgen

Prof. Dr. Rolf Haug, Prof. Dr. Michael Oestreich

Die Abteilung Nanostrukturen des Instituts für Festkörperphysik beschäftigt sich mit der Herstel-

lung und Charakterisierung von kleinsten Halbleiterstrukturen. Im Zentrum der Untersuchungen

3 Forschung

stehen die elektronischen und optischen Eigenschaften dieser winzigen, häufig nur wenige Na-

nometer großen Strukturen. Die Physik dieser kleinen Systeme wird weitgehend von Quantenef-

fekten bestimmt, wobei sowohl die Spins der Ladungsträger als auch die Dimensionalität der

Strukturen wichtige Parameter darstellen und besonders zwei-, ein- und nulldimensionale Sys-

teme von Interesse sind.

Die Proben werden extern mittels Molekularstrahlepitaxie hergestellte und mittels optischer

Lithographie, Elektronenstrahllithographie, neuartiger, direktschreibender Methoden unter Be-

nutzung eines Rasterkraftmikroskops, Aufdampf- und Ätzverfahren strukturiert. Die Untersu-

chungen an den Proben werden mit Methoden des Transports und der zeitaufgelösten Optik

durchgeführt, wobei eine Reihe von Magnetsystemen mit Magnetfeldern bis zu 17 Tesla und

optische Aufbauten mit Zeitauflösungen von 100 fs zur Verfügung stehen. Die Temperatur kann

dabei von Raumtemperatur bis hinab zu etwa 7 mK variiert werden.

Schwerpunktthemen bei den wissenschaftlichen Fragestellungen sind Einzelelektronentun-

neltransistoren, Wechselwirkungseffekte in Quantenpunkten, ganzzahliger und gebrochen-

zahliger Quanten-Halleffekt, Spinelektronik und Ladungsträgerdynamik in Halbleitern.

3) Abteilung Solarenergie des Instituts für Festkörperphysik

Prof. Dr. Rolf Brendel

Die Solarenergie kann große Beiträge zur Erzeugung von Strom und Wärme leisten. Während die

Verbrennung fossiler Brennstoffe die Atmosphäre mit dem klimaschädlichen CO2 belastet, ist

dies bei der Solarenergie nicht der Fall. In vielen Gegenden der Welt ist die Solarenergie bereits

heute die günstigste Art der Energieversorgung. Dennoch sind die Wirkungsgrade der Solarzel-

len, Photovoltaikmodule und der solarthermischen Systeme zum Teil noch sehr weit von den

physikalischen Grenzen entfernt, und der Materialverbrauch ist heute noch größer als notwen-

dig. Auch die Prozesse zur Herstellung von Photovoltaikmodulen und Sonnenkollektoren sind

noch nicht ausreichend optimiert. Das physikalische Verständnis der in den Komponenten auf-

tretenden Leistungsverluste und die darauf aufbauende Optimierung von Herstellungsprozessen

stehen im Zentrum unserer Arbeit. Daneben forschen wir auch im Bereich der Integration von

erneuerbaren Energieträgern ins Energiesystem, der zunehmend an Bedeutung gewinnt.

Die Abteilung Solarenergie des Instituts für Festkörperphysik betreibt anwendungsnahe For-

schung im Bereich der Photovoltaik. Dies geschieht in Zusammenarbeit mit dem Institut für So-

larenergieforschung (ISFH), einer vom Land Niedersachsen getragenen Forschungseinrichtung,

die ein An-Institut der Leibniz Universität Hannover ist. Beide Einrichtungen mit zusammen über

140 Mitarbeiterinnen und Mitarbeitern werden von Prof. Dr.-Ing. Rolf Brendel geleitet. Die tech-

nologische und messtechnische Laborausstattung ist hervorragend. Wir gehören zu den weltweit

führenden Teams im Bereich der Entwicklung von hocheffizienten Siliciumsolarzellen.

Wir analysieren z.B. Verlustmechanismen in Solarzellen und in Photovoltaikmodulen mit neuen

abbildenden Messtechniken, wie Elektrolumineszenz und Photolumineszenz. Die Messungen

werden mit Simulationsrechnungen für die Erzeugung, den Transport und die Vernichtung von

Elektron-Loch-Paaren verglichen. Mit dem Verständnis der dominierenden Verlustmechanismen

können neue Herstellungsprozesse für Solarzellen und –module mit höheren Wirkungsgraden

43

und reduziertem Materialaufwand erprobt werden. Beispielsweise studieren wir die physikali-

schen Eigenschaften von nanoporösem Silicium, welches eingesetzt wird, um sehr dünne ein-

kristalline Siliciumsolarzellen herzustellen. So kann die im Vergleich zu konventionellen Zellen

eingesetzte Menge an kristallinem Silicium um mehr als einen Faktor 10 gesenkt werden. Ein

anderes aktuelles Forschungsfeld ist der Einsatz von sehr intensiver Laserstrahlung für das Her-

stellen von Siliciumsolarzellen. Mit Picosekundenlasern können dielektrische Schichten fast

schadensfrei lokal geöffnet werden. Derart hergestellte Kontakte erlauben Wirkungsgrade von

über 21 % auf industrieüblichen Flächen. Wir beschäftigen uns außerdem mit dem Einfluss des

tatsächlichen Wetters, dem installierte Solarmodule ausgesetzt sind, um ihr Verhalten realitäts-

nah simulieren und Ergebnisse aus Labortests bei Standard-Testbedingungen besser im Hinblick

auf erzielbare Leistung unter realistischen Einsatzbedingung beurteilen zu können.

Neben der Forschung im Bereich Photovoltaik bildet die Abteilung Solare Systeme einen weite-

ren Themenschwerpunkt. Der immer weiter voranschreitende Ausbau erneuerbarer Energien er-

fordert die Entwicklung innovativer Ansätze, erneuerbare Energie ganzheitlich in das Energiesys-

tem zu integrieren. Hierbei ist es wichtig, nicht nur die Produktion von Strom aus erneuerbaren

Energien zu berücksichtigen, sondern auch die Wärmeerzeugung in die Betrachtung des Ge-

samtsystems mit einzubeziehen, um so den End- und Primärenergieverbrauch zu senken. Die

Forschung im Bereich solare Systeme erstreckt sich dabei über die Entwicklung von Komponen-

ten und Materialien der Solarthermie bis hin zu kombinierten thermischen und elektrischen Sys-

temen. In der Materialentwicklung stehen Beschichtungen für solarthermische Komponenten im

Fokus, mit dem Ziel, diesen Beschichtungen entweder besondere Eigenschaften zu verleihen oder

kostengünstige Verfahren für die Industrie zu etablieren. Ein Schwerpunkt unserer Komponen-

tenentwicklung sind solarthermische Kollektoren. Daneben werden auch die „nichtsolaren“ Sys-

temkomponenten thermischer Energiesysteme wie Frischwasser- und Wohnungsstationen,

Wärmespeicher und Wärmepumpen modelliert und optimiert. Im Bereich der thermischen und

elektrischen Energiesysteme werden Konzepte entwickelt, die das effiziente Zusammenwirken

von Speichern, Erzeugern und Verbrauchern ermöglichen. Ein aktuelles Thema ist die Entwick-

lung eines neuen Konzepts für Solarhäuser, bei dem die Sonnenwärme temperaturoptimiert dem

Gebäude entweder als direkte Heizwärme in eine Betonkernaktivierung oder auf höherem Tem-

peraturniveau einem Pufferspeicher zur allgemeinen Nutzung zugeführt wird. Neben der expe-

rimentellen Erprobung solcher Konzepte und Regelungsstrategien im Feld werden diese auch in

einer Experimentalanlage erforscht. Diese ermöglicht die Simulation, Vermessung und Analyse

des Betriebsverhaltens aller Einzelkomponenten und des Gesamtsystems unter realen Bedingun-

gen.

3.2 Institut für Gravitationsphysik

www.aei.mpg.de/hannover-de/66-contemporaryIssues/home/index.html

Professorinnen / Professoren: B. Allen, K. Danzmann, M. Heurs, C. Schnabel

Gravitationswellen – dem Urknall lauschen

Gravitationswellen sind winzige Verzerrungen der Raumzeit, die sich mit Lichtgeschwindigkeit

ausbreiten. Sie künden von Schwarzen Löchern, Sternkatastrophen und selbst vom Urknall. Sie

wurden von Einstein 1916 vorhergesagt, aber ihre Beobachtung stellt extreme technische An-

forderungen und steht noch aus.

3 Forschung

Das Institut für Gravitationsphysik betreibt ein Michelson-Interferometer mit 600 m Armlänge

(GEO 600) zum direkten Nachweis von Gravitationswellen. Die Anlage wurde auf dem Universi-

tätsgelände in Ruthe bei Sarstedt errichtet; sie ist Teil eines weltweiten Netzes von Gravitati-

onswellenempfängern. Planung und Betrieb erfolgen in enger Zusammenarbeit mit den Universi-

täten von Glasgow und Cardiff sowie dem Max-Planck-Institut für Gravitationsphysik (Potsdam

und Hannover). Die Beobachtung von Gravitationswellen eröffnet einen neuen Zweig der Astro-

nomie, der völlig neue Erkenntnisse über das Universum liefern wird.

Die Forschungsarbeit des Instituts befasst sich mit der Entwicklung neuer Techniken für die

nächste Generation empfindlicherer Gravitationswellendetektoren. Dabei geht es um Laserent-

wicklung, Quantenoptik, diffraktive Optik und nicht-klassisches Licht, Stabilisierung von Syste-

men am Quantenlimit und moderne Regelungstechnik. Ein besonders reizvolles und ehrgeiziges

Projekt ist ein satellitengestützter Gravitationswellendetektor im All (LISA). Hierbei handelt es

sich um ein Laserinterferometer mit Millionen km Armlänge in der Sonnenumlaufbahn. Eine

Vorläufermission zur Technologiedemonstration (LISA Pathfinder) wird 2014 gestartet. Wir be-

fassen uns gegenwärtig mit dem Bau und Test der Flughardware. Die LISA Technologie kann

auch in Schwerefeld-Satellitenmissionen zur Erdbeobachtung eingesetzt werden und wir berei-

ten eine solche Mission für einen Start 2016 vor.

Wichtige Aspekte der Gravitationswellendetektion sind Analyse und Interpretation der Detektor-

daten. Die erwarteten astrophysikalischen Signale sind schwach und deswegen im instrumentel-

len Rauschen verborgen. Daher muss man sie mit rechnergestützten Signalverarbeitungs- und

Filtermethoden identifizieren und extrahieren. Die Eigenschaften der astrophysikalischen Quel-

len (wie z.B. Himmelspositionen, Massen, Rotations- und Bahndaten) sind a priori nicht bekannt.

Daher können diese Suchen die Bearbeitung sehr große Datenmengen mit vielen verschiedenen

digitalen Filtern einschließen. Die Empfindlichkeit einiger Suchen ist nur durch die zur Verfü-

gung stehende Rechenkraft begrenzt.

Das AEI ist eine der weltweit führenden Institutionen in der Entwicklung und Durchführung die-

ser Suchen. Mitglieder des AEI erhalten durch internationale Abkommen Zugang zu den Daten

der empfindlichsten Gravitationswellendetektoren der Welt: die LIGO-Detektoren in den USA

und der Virgo-Detektor in Italien. Zur Datenanalyse unterhält das AEI große Computercluster,

die zu den weltweit leistungsfähigsten zählen: sie bestehen aus Tausenden von Rechenknoten

und Speichersystemen im Petabytebereich.

Die Methoden aus dem Gravitationswellenbereich werden außerdem zur Analyse anderer astro-

physikalischer Daten eingesetzt, z.B. von Daten großer Radioteleskope und Gammastrahlen-

Daten des NASA-Satelliten Fermi. Das AEI arbeitet zudem an Einstein@Home, einem der welt-

weit größten Projekte für verteiltes Rechnen, mit.

45

3-D-Modellmensch in solaren Strahlungsfeld

3.3 Institut für Meteorologie und Klimatologie

www.muk.uni-hannover.de

Professoren: G. Groß, S. Raasch, G. Seckmeyer,

Mehr als nur Wetter

Das Institut für Meteorologie und Klimatologie vertritt das Fachgebiet Meteorologie. Es ist das

einzige Universitätsinstitut für Meteorologie im Bundesland Niedersachsen. Das Institut gliedert

sich in folgender Arbeitsgruppen:

Strahlung und Fernerkundung

Ziel ist es die räumliche und zeitliche Variabilität der Solarstrahlung zu beschreiben um ihre

energetische, biologische und medizinische Wirkung besser als bisher erfassen zu können. Ein

Schwerpunkt ist die Entwicklung und der Einsatz von neuartigen Messgeräten zur Erfassung der

solaren Strahlung. Mit den gewonnenen Daten sollen sowohl die positiven Auswirkungen auf die

menschliche Gesundheit (u. a. Bildung von Vitamin D), als auch die negativen Auswirkungen (z.

B. Sonnenbrand, Hautkrebs) abgeschätzt werden. Dabei spielen der Klimawandel sowie die Ver-

änderungen des Ozons („Ozonloch“) eine Rolle. Ein verbessertes Verständnis der Solarstrahlung

ist auch erforderlich um die Nutzung der Solarenergie zu optimieren, womit ein Beitrag zur Be-

grenzung des Klimawandels geleistet werden kann. Um eine Übertragung der Ergebnisse auf

größere Gebiete zu ermöglichen werden die gewonnenen Daten auch zur Validierung von Satel-

litendaten verwendet. Da es sich zumeist um Fragestellungen von globaler Bedeutung handelt,

ist es notwendig, das Wissen internationaler Experten zu koordinieren. Deshalb werden zahlrei-

che wissenschaftliche Kooperationen im europäischen und im außereuropäischen Ausland ge-

pflegt und seit mehr als 20 Jahren wissenschaftliche Beiträge für Gremien des Network for the

Detection of Atmospheric Compostion Change und des Global Atmosphere Watch Programms

der World Meteorological Organization geleistet.

3 Forschung

PALM-Arbeitsgruppe

Die PALM-Arbeitsgruppe befasst sich mit Phänomenen der turbulenten atmosphärischen Grenz-

schicht, die mit räumlich sehr hoch auflösenden Grobstruktursimulationsmodellen (large-eddy

simulation, LES) untersucht werden. Das von der Gruppe entwickelte PArallelisierte LES-Modell

PALM zählt international zu den führenden meteorologischen Turbulenzsimulationsmodellen.

Die vielfältigen Forschungsschwerpunkte reichen von Grundlagenforschung zur Konvektionsor-

ganisation (z.B. Staubteufel und Wolkenstraßen) bis hin zu angewandten Themenbereichen wie

dem Einfluss der Turbulenz auf das Flugzeugverhalten während Start und Landung, der Stand-

ortbewertung für Windenergieanlagen, oder den Windverhältnissen in städtischen Gebieten (s.

Photo). Derartige Simulationen erfordern extreme Rechenleistung und werden z.B. auf dem Mas-

sivparallelrechner des Norddeutschen Zentrums für Hoch- und Höchstleistungsrechnen (HLRN)

durchgeführt. In diesem Zusammenhang ist die Entwicklung hoch optimierter numerischer Lö-

sungsverfahren für die jeweils neueste Computerhardware ein weiteres wichtiges Arbeitsfeld der

Gruppe. Durch den weltweiten Einsatz von PALM sind zahlreiche Kooperationen mit universitä-

ren Partnern entstanden, die von Studierenden und Promovierenden gerne zu entsprechenden

Auslandsaufenthalten genutzt werden.

Umweltmeteorologie

Die Arbeitsbereiche der Umweltmeteorologie betreffen den unmittelbaren Lebensraum des Men-

schen. Für eine Beurteilung der Wirkungen von Wetter, Witterung, Klima und Lufthygiene auf

den menschlichen Organismus sind mehrere spezifische Komplexe von Bedeutung: thermischer

Wirkungskomplex, aktinischer Wirkungskomplex, lufthygienischer Wirkungskomplex einschließ-

lich Geruch, Lärm und Windkomfort.

Diese Aspekte werden insbesondere im Bereich von urbanen Ballungsräumen oberirdisch und

unterirdisch (z.B. U-Bahn Stationen) aber auch für den Innenraum untersucht. Aufgrund gesetz-

licher Vorgaben sind diese Einflußfaktoren auf den Menschen feste Bestandteile der räumlichen

Planung und müssen daher entsprechend berücksichtigt werden.

47

Für solche Planungsaufgaben sind in der Arbeitsgruppe spezielle numerische Modelle entwickelt

worden, die in der Lage sind, lokale und regionale Verteilungen der verschiedenen meteorologi-

schen Variablen zu berechnen. Die den Modellen zugrunde liegenden Differentialgleichungen

werden mit numerischen Verfahren auf einem Rechengitter gelöst. Aufgrund der Aufgabenstel-

lung werden sehr feine räumliche Maschenweiten von 1 m - 100 m verwendet.

Solche Modelle bieten die Möglichkeit, nicht nur derzeitige Zustände, sondern auch die Auswir-

kungen von Veränderungen der Rahmenbedingungen zu untersuchen wie:

Landnutzungsänderungen (Urbanisierung, Waldrodungen)

Veränderungen in der Zusammensetzung der Luft (Smog)

lokale Effekte globaler Klimaänderungen (Stadtklima 2100)

3.2 3.4 Institut für Quantenoptik

www.iqo.uni-hannover.de

Professorinnen / Professoren: B. Chichkov, W. Ertmer, A. Heisterkamp, M. Kovacev, U. Morgner,

C. Ospelkaus, S. Ospelkaus, E. M. Rasel, D. Ristau, P. O. Schmidt, E. Tiemann

Licht und Materie

Das Institut für Quantenoptik der Leibniz Universität Hannover befasst sich mit Grundlagenfor-

schung und anwendungsorientierter Forschung im Bereich der Laserphysik und der Wechselwir-

kung von Laserlicht mit Materie. Die Arbeiten reichen thematisch von der kältesten bisher er-

zeugten Materie (Bose-Einstein-Kondensation) zu den heißesten durch Laserstrahlung erzielba-

ren Plasmen mit den kürzesten Laserpulsen auf Femto- und Attosekunden-Zeitskalen. Unter-

sucht werden unterschiedlichste Systeme: Von einzelnen ultrakalten Atomen über Moleküle, die

sich gerade an der Grenze ihrer Entstehung befinden, bis hin zu lebenden biologischen Syste-

men. Die Forschung erstreckt sich bis zur Quanten-informationsverarbeitung und der satelliten-

gestützten Erforschung von Phänomenen der allgemeinen Relativitätstheorie. „Wie kann man

Laser noch verbessern?“, „Wo kann man Laserlicht einsetzen?“ oder „Was kann ich aus der

Wechselwirkung von Laserlicht mit Materie lernen?“, das sind einige der zentralen Fragestellun-

gen, die studiert werden. Neben dieser Grundlagenforschung stehen aber immer auch Anwen-

dungsaspekte im Mittelpunkt des Interesses. So wird an neuartigen Bildgebungsverfahren für

Gewebe und für technische Oberflächen gearbeitet, es wird erforscht, wie durch neue Verfahren

der Atom- und Molekülmanipulation Atomuhren und atomare Inertialsensoren mit bisher uner-

reichter Genauigkeit gebaut oder Atom-Molekülreaktionen (chemische Prozesse) kontrolliert

werden können, oder wie durch eine Laseroperation in Zukunft Brillen überflüssig gemacht oder

sogar einzelne Zellen extrem schonend manipuliert werden können; langfristig hofft man, mit

einzelnen Atomen ein Modell eines Quantencomputers zu bauen oder zu Lasern immer kürzerer

Wellenlänge bis zum Röntgenlaser zu gelangen.

3 Forschung

Die Forschungsarbeiten finden in lokaler, nationaler und internationaler Zusammenarbeit statt.

Kooperationen bestehen mit anderen Arbeitsgruppen innerhalb des Fachs Physik und dem Laser

Zentrum (LZH), mit anderen Fakultäten der Leibniz Universität Hannover, mit der Physikalisch-

Technischen Bundesanstalt in Braunschweig, NIFE (Niedersächsisches Zentrum für Biomedizin-

technik, Implantatforschung und Entwicklung) sowie mit anderen national und international

führenden Universitäten und Forschungseinrichtungen. Hervorzuheben sind dabei vor allem die

Kooperationen mit Physikern, Chemikern, Medizinern und Ingenieuren im Rahmen der Exzellenz-

cluster QUEST:"quantum engineering and space-time research", REBIRTH: „from regenerative

biology to recontructive therapy“ und HEARING4ALL: „Models, technology and solutions for di-

agnostics, restoration and support of hearing" sowie vieler von der Deutschen Forschungsge-

meinschaft, von Bundes- und Landesministerien, von der EU- Kommission oder der ESA geför-

derter nationaler und multinationaler Projekte. Der internationale Austausch von Wissen und

Wissenschaftlern wird dabei ganz groß geschrieben. Die Absolventen des IQ finden nach Mas-

terabschluss oder Doktorarbeit interessante berufliche Perspektiven in der weltweiten Forschung

und/oder in der forschungsnahen Industrie.

49

3.5 Institut für Theoretische Physik

www.itp.uni-hannover.de

Professoren: N. Dragon, H. Frahm, D. Giulini, K. Hammerer, E. Jeckelmann, O. Lechtenfeld, M.

Lein, T. Osborne, L. Santos, T. Vekua, R. Werner ,M. Zagermann

Theorie und Simulation: Vom Urknall bis zum Quantenrechner

Die Arbeitsgruppe Theorie der kondensierten Materie beschäftigt sich mit der Erforschung stark

wechselwirkender Elektronen und magnetischer Systeme in quasi ein- und zweidimensionalen

Festkörpern. Bei hinreichend tiefen Temperaturen werden die Eigenschaften solcher Systeme

durch die Existenz starker Quantenfluktuationen bestimmt. Die unkonventionellen Phasen dieser

Systeme, die sich bei Variation von Kopplungskonstanten und äußeren Feldern herausbilden

(Emergenz), werden ebenso untersucht wie die Fragestellung, welche Rolle Wechselwirkungsef-

fekte für die Transporteigenschaften dieser Systeme spielen. Hierzu werden aus exakt lösbaren

Modellen gewonnene Resultate mit quantenfeldtheoretischen Methoden analysiert sowie leis-

tungsfähige, an diese Probleme angepasste numerische Algorithmen entwickelt.

Die Arbeitsgruppe Stringtheorie und Gravitation (vormals Theoretische Kern- und Teilchen-

physik) ist an strukturellen Fragen der mathematischen Physik interessiert, insbesondere in den

Bereichen Stringtheorie, Quantenfeldtheorie und Gravitation. Dabei geht es zum einen um die

Strukturen und Eigenschaften von sogenannten Eichtheorien, die den drei fundamentalen Kräf-

ten des Mikrokosmos (elektromagnetische, starke und schwache Wechselwirkung) zugrunde

liegen. Andererseits beteiligt sich die Arbeitsgruppe an den internationalen Bemühungen um die

Realisierung eines 80-jährigen Traum: die fundamentale Kraft des Makrokosmos, also die Gravi-

tation, mit den übrigen drei Kräften zu vereinheitlichen. Dazu werden Supersymmetrie und Su-

pergravitation sowie Stringtheorie, konforme Feldtheorie und nicht-kommutative Geometrie

(eine "körnige" Deformation der Raumzeit) verwendet.

Die Arbeitsgruppe Theoretische Quantenoptik untersucht Probleme im Zusammenhang mit ult-

ra-kalten Atomen, Materie in starken Laserfeldern und makroskopischen Quantensystemen. Bei

sehr niedrigen Temperaturen zeigen Atome einzigartige Eigenschaften. Im Hinblick darauf stu-

diert die Gruppe Bose-Einstein-Kondensation, nichtlineare Atomoptik, dipolare Gase, Spinor-

Gase, eindimensionale Gase, Gittergase, und die Dynamik stark korrelierter atomarer Systeme.

Abgesehen von der Physik bei tiefen Temperaturen studiert die Arbeitsgruppe weiterhin die ult-

raschnelle Dynamik von Atomen und Molekülen in intensiven Laserfeldern sowie grundlegende

Aspekte der Dichtefunktionaltheorie, einer Methode zur Behandlung von Vielteilchenproblemen.

Außerdem untersucht die Arbeitsgruppe die Physik makroskopischer Quantensysteme, z.B. in

optomechanischen Systemen oder makroskopischen atomaren Ensembles, sowie die Anwendung

makroskopischer Quantensysteme in der Quanteninformationsverarbeitung.

3 Forschung

3.6 Institut für Radioökologie und Strahlenschutz

www.irs.uni-hannover.de

Professor: C. Walther

Radioaktive Stoffe und ionisierende Strahlung sind einerseits unverzichtbare Hilfsmittel in For-

schung, Technik und Medizin, andererseits stellen sie eine Gefährdung für Mensch und Umwelt

dar. Die Radioökologie beschreibt die Vorkommen natürlicher (z.B. Uran und Thorium Folgepro-

dukte) und anthropogener (z.B. kerntechnische Unfälle, Atombombentests) radioaktiver Stoffe in

der Umwelt und ihre Wege zum Menschen und die daraus resultierenden Strahlenexpositionen.

Darüber hinaus nutzt sie Radionuklide in der Umwelt als Tracer zur Untersuchung von Umwelt-

prozessen. Wesentlich hierbei ist die Anwendung höchstempfindlicher Ultraspurendetektion, wie

z.B. Beschleunigermassenspektrometrie oder Resonanzionisations Massenspektrometrie

Strahlenschutz ist die Voraussetzung für die Anwendung radioaktiver Stoffe und ionisierender

Strahlung in Medizin, Technik und Wissenschaft bei Minimierung der potentiellen Gefährdung

von Mensch und Umwelt. Strahlenschutz setzt das Verständnis der physikalischen, chemischen,

biologischen und ökologischen Prozesse voraus, die bei der Wirkungskette von der Erzeugung

von Radionukliden und Strahlung über die Wechselwirkung mit der Umwelt und biologischen

Systemen bis zur Manifestation von Schäden auftreten.

Die Forschung am Institut für Radioökologie und Strahlenschutz (IRS) befasst sich mit der Ent-

stehung und Erzeugung radioaktiver Stoffe und ionisierender Strahlung, dem Transport von

Strahlung in Materie, dem Verhalten radioaktiver und stabiler Stoffe in der Umwelt und der

Nutzung natürlicher und künstlicher radioaktiver und stabiler Isotope als Tracer zur Untersu-

chung von Umweltprozessen. Aktuelle Forschungsthemen in Kollaboration mit nationalen und

internationalen Partnern sind:

Radioökologische Untersuchungen in der nördlichen Ukraine, Untersuchung und Speziation

partikulär gebundener Radionuklide

Dazu Entwicklung spezieller Massenspektrometrischer und Laserspektroskopischer Speziati-

onsverfahren

Untersuchung von kontaminierten Proben aus der Umgebung des Kraftwerks Fukushima

Daichi

Speziation von Radionukliden in Lösungen mittels EXAFS, Electrospray Massenspektrometrie

Analyse und Radioökologie des langlebigen Spaltproduktes Iod-129

Strahlenexposition durch Radionuklide der natürlichen radioaktiven Zerfallsreihen

Untersuchungen zu Entsorgungsoptionen radioaktiver Reststoffe („Endlagerung“)

Insbesondere radiologische Gesichtspunkte und gesellschaftliche/soziale/politische Aspekte

Sorption und Einbau von Radionukliden an/in Tonmaterialien als Migrationsbarrieren in End-

lagern

3.7 Institut für Didaktik der Mathematik und Physik

www.idmp.uni-hannover.de

51

Professoren: T. Gawlick (Mathematik), R. Hochmuth (Mathematik), G. Friege (Physik),

S. Weßnigk (Physik)

Didaktik der Physik

Prof. Dr. Gunnar Friege

Die Didaktik der Physik behandelt das Lehren und Lernen von Physik. Dabei geht es um schuli-

sche ebenso wie außerschulische Lernorte. Die Gestaltung von optimalen Lernumgebungen für

Physik orientiert sich an Evidenzen der Lehr-Lern-Forschung. Die Frage nach gutem Physikunter-

richt wirft viele neue Fragen auf, die nur im Zusammenspiel mehrerer Bezugsdisziplinen (Physik,

weiteren Naturwissenschaften, Pädagogik, Soziologie, Psychologie, Geschichte, Philosophie…) zu

klären sind. Eine Antwort auf solche Fragen setzt sich einerseits aus jeweils aktuellen gesell-

schaftlichen Normen und andererseits aus empirischen Befunden zur Wirksamkeit bestimmter

Ansätze zusammen. Wir gehen davon aus, dass guter Physikunterricht kontinuierlich von For-

schenden und Lehrenden gemeinsam weiterentwickelt wird. Die Didaktische Rekonstruktion ist

Grundlage unserer Forschungs- und Lehrtätigkeit.

Im Institut gibt es Forschungs- und Entwicklungsschwerpunkte in folgenden Gebieten:

- inquiry learning / Forschendes Lernen

- Naturwissenschaftliche Wettbewerbe

- Aufgaben im Physikunterricht

- Experimentieren im Physikunterricht

- Fallbasierte Videoanalysen von Physikunterricht

- Technische Bildung im Physikunterricht

- Informelle Lernumgebungen

- Entwicklung eines Energieverständnisses

Wir gehen der Frage nach, wie im Physikunterricht experimentiert wird und wie Schülerinnen

und Schüler lernen zu forschen und Probleme zu lösen. Wir untersuchen, wie sich naturwissen-

schaftliche Wettbewerbe auf die Laufbahn der Teilnehmenden auswirken und wie man Wettbe-

werbe als Unterrichtsmethode einsetzen kann. Studierende haben bei uns die Gelegenheit, fall-

basierte Videostudien durchzuführen und anhand von Unterrichtsvideos ihr physikdidaktisches

Theoriewissen zu reflektieren. Wir entwickeln Unterrichtskonzepte und Lehrerfortbildungen im

Schnittbereich von technischer und physikalischer Bildung. Wir erforschen verschiedene Typen

von Lern- und Testaufgaben – beispielsweise, wie man Multiple-Choice-Aufgaben zum Lernen

von Physik einsetzen kann. Des Weiteren beschäftigt sich die Arbeitsgruppe mit Möglichkeiten

zur Verbesserung des Energieverständnisses, insbesondere in Bezug auf Alltagsphänomene.

4 Ansprechpartner für Studieninformation und -beratung

4 Ansprechpartner für Studieninformation und –beratung

Viele Fragen zum Studium sollten sich durch Lektüre dieses Studienführers klären lassen. Es gibt

aber auch Fragen, die im Beratungsgespräch am einfachsten zu beantworten sind. Dafür stehen

Ihnen die folgenden Personen und Einrichtungen zur Verfügung.

4.1 Ansprechpartner innerhalb der Fakultät

4.1.1 Studienorganisation

Informationen zur Studienorganisation finden Sie in dieser Broschüre, in den aktuellen Prü-

fungsordnungen und unter www.maphy.uni-hannover.de/de/studieren

Bei individuellen Fragen und Problemen können Sie sich an die Studiengangskoordination wen-

den.

Studiengangskoordination

Dipl.-Ing. Axel Köhler

Dr. Katrin Radatz

[email protected]

Welfengarten 1 (Raum c 413)

30167 Hannover Tel.: 0511-762-5450

4.1.2 Fachstudienberatung

Eine individuelle Studienberatung wird grundsätzlich von allen Professorinnen und Professoren

angeboten.

Als zentraler Fachberater steht darüber hinaus Prof. Lein zur Verfügung. Eine Fachstudienbera-

tung sollte besonders in den folgenden Fällen in Anspruch genommen werden:

vor der Wahl von Studienschwerpunkten, Prüfungsfächern und dem Arbeitsgebiet für die

Bachelor- oder Masterarbeit

bei der Planung eines Studiums im Ausland

nach nicht bestandenen Prüfungen

bei Studienfach-, Studiengangs- oder Hochschulwechsel.

Die aktuellen Sprechstunden der Fachberaterinnen und Fachberater lassen sich meistens im In-

ternet finden oder können telefonisch, per Post oder per E-Mail erfragt werden.

Meteorologie

Dr. Micha Gryschka [email protected]

Herrenhäuser Straße 2

(Raum f 121)

30419 Hannover

Tel.: 0511-762-4022

Physik

53

Prof. Dr. Manfred Lein [email protected]

Appelstraße 2 (Raum 209A)

30167 Hannover

Tel.: 0511-762-3291

4.1.3 Fachberater Lehramt (Fächerübergreifender Bachelor/ Bachelor Technical

Education / Master Lehramt an Gymnasien / Master Lehramt an

Berufsbildenden Schulen)

Das Lehramtsstudium kombiniert fachwissenschaftliche und fachdidaktische Inhalte. Um beiden

Gebieten in der individuellen Beratung gerecht zu werden, stehen Ihnen zwei Fachberater zur

Verfügung.Fachberatung Physikdidaktik:

Prof. Dr. G. Friege Tel.: 0511-762-17223

Welfengarten 1 (Raum b401)

30167 Hannover [email protected]

Fachberatung Physik:

Prof. Dr. N. Dragon Tel.: 0511-762-4838

Appelstraße 2

30167 Hannover [email protected]

4.1.4 Praktikumsbeauftragter Lehramt

Im Lehramtsstudium sind schulische und außerschulische Praktika zu absolvieren. Für Fragen zu

den schulischen Praktika wenden Sie sich bitte an die Dozentinnen und Dozenten des Instituts

für Didaktik der Mathematik und Physik. Für Fragen zu den außerschulischen Praktika ist der

Praktikumsbeauftragte Lehramt zuständig.

Prof. Dr. Herbert Pfnür Tel. 0511-762-4819

Appelstraße 2 (Raum 143)

30167 Hannover [email protected]

4.1.5 BAföG-Beauftragter

Wenn Sie BAföG beziehen, müssen Sie wahlweise nach dem 3. oder 4. Semester eine Bescheini-

gung der Fakultät vorlegen, dass Sie in Regelzeit studieren. Wenden Sie sich hierzu an den BA-

föG-Beauftragten:

Meteorologie

Prof. Dr. Gunther Seckmeyer Tel.: 0511-762-4022

Herrenhäuser Straße 2

(Raum f 113)

30419 Hannover

[email protected]

4 Ansprechpartner für Studieninformation und -beratung

Physik

Prof. Dr. E. Jeckelmann Tel. 0511-762-3661

Appelstraße 2 (Raum 225)

30167 Hannover [email protected]

4.1.6 Fachschaft Mathematik und Physik

www.fs-maphy.uni-hannover.de

Erfahrungsgemäß erhalten Studierende viele Informationen am schnellsten von Mitstudierenden

aus dem gleichen oder höheren Semester. Die Fachschaft bietet Kontaktmöglichkeiten zu An-

sprechpartnerinnen und -partnern, die in den meisten Fällen - vor allem aufgrund ihrer eigenen

Studienerfahrung - viele Fragen klären oder an die jeweils zuständige Beratungsstelle verweisen

können. Die jeweils aktuellen Ansprechpartnerinnen und -partner sind im Internet zu finden.

Die hauptsächliche Aufgabe des Fachschaftsrats ist die Vertretung der studentischen Interessen

in den Gremien der Fakultät. So wirkt er über die studentischen Vertreter/innen z.B. bei der Ge-

staltung der Prüfungsordnungen mit und kann bei der Neueinstellung von Professorinnen und

Professoren in den Berufungskommissionen mitentscheiden. Er wirkt aber auch in fakultätsüber-

greifenden Gremien mit.

Darüber hinaus bietet die Fachschaft auch folgendes an:

• Orientierungseinheiten und gemeinsames Frühstück für alle Studienanfängerinnen und -

anfänger in der ersten. Woche vor dem Beginn des Wintersemesters

• Kennenlern-Freizeit am Wochenende für Studierende im ersten Semester

• Beratung zu den Mathematik-, Physik-, und Meteorologiestudiengängen

• Hilfe bei Problemen im Studium / mit Dozenten/-innen / Vorlesungsstruktur

• Arbeitsräume mit einer kleinen Lehrbuchsammlung

• kostenlosen Internetzugang über die Fachschaftsrechner

• eine Sammlung von Klausuren der letzten Jahre

• mehrere Aktenordner mit Fragen aus mündlichen Prüfungen, eine Sammlung von Prü-

fungsprotokollen und Klausuren befinden sich überwiegend online

• die Fachschaftszeitung Phÿsemathenten

• die Mailingliste Studilist, über die die Studierenden neben aktuellen Infos zum Studium

auch darüber hinaus gehende Angebote die Fakultät betreffend erfahren können

• Ein Fußballteam in dem alle interessierten Studierenden der Fakultät mitspielen können

• das alljährliche Fakultätsgrillfest

• Zahlendre3her Partys

Fachschaft Mathematik / Physik [email protected]

55

Welfengarten 1 (Raum d 414)

30167 Hannover

Tel.: 0511-762-7405

Wer selbst einmal Lust hat, Ansprechpartner zu werden, ist von der Fachschaft herzlich eingela-

den, einfach an einer Sitzung des Fachschaftsrates teilzunehmen. Die Sitzungen sind im Semes-

ter immer montags um 18.15 Uhr im Fachschaftsraum. Da es sich beim Fachrat um einen offe-

nen Rat handelt, ist jeder Studierender der Fakultät auf den Sitzungen stimmberechtigt. Dies gilt

für alle Abstimmungen, die sich nicht mit Finanzen oder Änderungen der Geschäftsordnung be-

fassen.

4.1.7 Prüfungsausschuss

Der Ablauf des Studiums, insbesondere die zu erbringenden Leistungen, wird durch die jeweili-

gen Prüfungsordnungen geregelt (siehe. Kap. 5). Der Prüfungsausschuss achtet darauf, dass die

Bestimmungen der Prüfungsordnung eingehalten werden. Er entscheidet über Fragen der Aner-

kennung von Leistungen wie auch in Widerspruchsverfahren.

Meteorologie

Prof. Dr. Seckmeyer

(Vorsitzender) Tel.: 0511-762-4022

Herrenhäuser Straße 2

(Raum f 113)

30419 Hannover [email protected]

Physik

Prof. Dr. Herbert Pfnür Tel. 0511-762-4819

Appelstraße 2 (Raum 143)

30167 Hannover [email protected]

4.2 Zentrale Ansprechpartner

4.2.1 Service Center www.uni-hannover.de/servicecenter

Prof. Dr. L. Santos Tel. 0511-762-5890

Appelstraße 2 (Raum 249)

30167 Hannover [email protected]

4 Ansprechpartner für Studieninformation und -beratung

Das Service Center der Leibniz Universität Hannover ist die zentrale Anlaufstelle für Studierende

und Studieninteressierte. Hier arbeiten Mitarbeiterinnen und Mitarbeiter aus verschiedenen

zentralen Einrichtungen der Universität, die Fragen rund ums Studium beantworten, bei Proble-

men helfen und die Orientierung an der Leibniz Universität Hannover erleichtern. Während der

Öffnungszeiten stehen Mitarbeiter folgender Bereiche zur Beratung zur Verfügung:

Akademisches Prüfungsamt

BAFöG-Beratung

Hochschulbüro für Internationales

Immatrikulationsamt

Psychologisch Therapeutische Beratung

Zentrale Studienberatung

Kontakt:

Service Center

Leibniz Universität Hannover

Welfengarten 1

30167 Hannover

Tel.: 0511-762-2020

Fax: 0511-76219385

[email protected]

Öffnungszeiten:

Montag - Donnerstag: 9.00 - 17.00 Uhr

Freitag und vor Feiertagen 9.00 - 15.00 Uhr

4.2.2 Zentrale Studienberatung (ZSB)

www.zsb.uni-hannover.de

Die Zentrale Studienberatung ist Anlaufstelle für alle Studierenden der Hochschulen Hannovers.

Es gibt verschiedenen Beratungsformen:

Kurzberatung: Kurze Erstinformationsgespräche (Dauer: bis zu 10 Minuten) in der Infothek

des ServiceCenter im Hauptgebäude (Mo.- Fr. 10.00 bis 14.00 Uhr)

Offene Sprechstunde: Einzelberatung in vertraulicher Atmosphäre ohne vorherige Terminver-

einbarung. Anmeldung in der Infothek im ServiceCenter (Do. 14.30-17.00)

Nach Terminvereinbarung über die Servicehotline der Leibniz Universität Hannover (0511-

762-2020): Einzelberatung in vertraulicher Atmosphäre

Die Beratung erfolgt zu allen Fragen und Problemen, die in engerem oder weiterem Zusammen-

hang mit dem Studium stehen; so z.B. bei:

Studienfachwechsel

Hochschulwechsel

Prüfungsproblemen

57

berufliche Perspektiven nach dem Studium

In der Infothek befindet sich umfangreiches Material über bundesweite Studienmöglichkeiten.

Hier stehen auch einige PC zur Verfügung, an denen Sie Datenbankrecherchen über Studien-

möglichkeiten durchführen können:

Zentrale Studienberatung Tel.: 0511-762-2020

Welfengarten 1

30167 Hannover

[email protected]

4.2.3 Zentrum für Lehrerbildung (ZFL)

www.zfl.uni-hannover.de

Das Zentrum für Lehrerbildung ist unter anderem für die organisatorischen Belange der Lehr-

amtsstudiengänge (Fächerübergreifender Bachelor, Master Lehramt an Gymnasien, Bachelor

Technical Education, Master an berufsbildenden Schulen) zuständig.

Standort: Im Moore 17c, 30167 Hannover

Fachreferentin Lehramt an Gymnasien (Fächerübergreifender Bachelorstudiengang, Master

Lehramt an Gymnasien)

Birgit Meriem Tel.: 0511-762-19746

Raum 009 [email protected]

Fachreferentin Lehramt an Berufsbildenden Schulen (Bachelorstudiengang Technical Educati-

on, Masterstudiengang Lehramt an berufsbildenden Schulen)

Katja Bestel Tel.: 0511-762-19762

Raum 008 [email protected]

4.2.4 Akademisches Prüfungsamt

www.uni-hannover.de/pruefungsamt

Die Prüfungen in den Bachelor- und Masterstudiengängen werden im zentralen Akademischen

Prüfungsamt der Universität in Zusammenarbeit mit dem für den jeweiligen Studiengang zu-

ständigen Prüfungsausschuss bzw. Studiendekanat organisiert.

Das Prüfungsamt übernimmt insbesondere folgende Aufgaben:

Prüfungsanmeldungen / Zulassung

Prüfungsrücktritte (z.B. infolge Krankheit)

Zentrale Erfassung von Prüfungsergebnissen

4 Ansprechpartner für Studieninformation und -beratung

Ausstellen von Bescheinigungen, z.B. für Kindergeld

Erstellen von Notenspiegeln für Bewerbungen oder beim Fach- oder Hochschulwechsel

Erstellen von Zeugnissen und Urkunden

Die Mitarbeiterinnen und Mitarbeiter des Akademischen Prüfungsamtes beraten gerne in allen

Prüfungsangelegenheiten. Bitte wenden Sie sich an die folgenden Adressen:

Zentrale Servicehotline:

Tel.: 0511-762-2020 Fax.: 0511-762-2137 [email protected]

Innerhalb des Prüfungsamtes gibt es zurzeit die folgenden Zuständigkeiten für die verschiedenen

Studiengänge:

Bachelor- und Masterstudiengänge Physik

Tim Grinke

Welfengarten 1 (Raum f 311)

30167 Hannover [email protected]

Bachelor- und Masterstudiengänge Meteorologie

Marie Schollbach

Welfengarten 1 (Raum f 311)

30167 Hannover [email protected]

Team Lehramt (Fächerübergreifender Bachelor / Master Lehramt Gymnasien / Bachelor Technical

Education und Master Lehramt an berufsbildenden Schulen)

Welfengarten 1 (Raum f 317)

30167 Hannover

Gabriele Chaborski-Reuter [email protected]

Henrike Boldt [email protected]

Florian Bauer

[email protected]

Susann Pößel (bis 14.10.15) [email protected]

Björn Golinski [email protected]

Svenja Hitchen [email protected]

Christine Meyerhof [email protected]

4.2.5 Studieren im Ausland

Die Leibniz Universität bietet verschiedene Möglichkeiten einen Teil des Studiums im Ausland zu

absolvieren. Zu diesen Möglichkeiten beraten der Auslandsbeauftragte der Fakultät, sowie das

Hochschulbüro für Internationales.

59

Auslandsbeauftragter der Fakultät:

Dipl.-Ing. Axel Köhler Tel.: 0511-762-5450

Welfengarten 1 (Raum c 413)

30167 Hannover [email protected]

Hochschulbüro für Internationales

www.international.uni-hannover.de

Das Hochschulbüro für Internationales bietet Informationen und Service zu Studien- und For-

schungsmöglichkeiten im Ausland. Es betreut die Austauschprogramme der Leibniz Universität

Hannover und berät zu Stipendien und Fördermöglichkeiten.

4.2.6 Ombudsperson der Universität

www.uni-hannover.de/ombudsperson-studium

Das Amt der Ombudsperson zur Sicherstellung guter Studienbedingungen dient als Anlaufstelle

und Ansprechpartner für Studierende, die allgemeine oder individuelle Probleme, Beschwerden

oder Verbesserungsvorschläge bezüglich ihres Studiums und der Lehre haben. Ombudsperson ist

Prof. Dr. Hans Bickes.

Kontakt über:

Rebecca Gora Tel. 0511-762 - 5446

Callinstraße14

30167 Hannover

Postfach 172

(links neben dem Haupteingang des Haupt-

gebäudes)

[email protected]

4.2.7 Psychologisch-Therapeutische Beratung für Studierende (ptb)

www.ptb.uni-hannover.de

Die Psychologisch-Therapeutische Beratung unterstützt und berät Studierende der Hochschulen

Hannovers bei psychosozialen Problemen wie:

Schwierigkeiten im Studium

Prüfungsangst

Studienabschluss

Orientierungsproblemen

Beziehungsproblemen

Einsamkeit

Psychosomatischen Beschwerden

Depressive Phasen

4 Ansprechpartner für Studieninformation und -beratung

Im Semester wird das Beratungsangebot durch themenspezifische Angebote ergänzt. Die ptb

unterstützt von Studierenden initiierte Selbsthilfegruppen.

Öffnungszeiten für Informationen und Anmeldung: Kontakt:

Mo - Fr: 10.00 - 12.00 Uhr (ganzjährig) Welfengarten 2c

Mo - Do: 14.00 - 16.00 Uhr (Vorlesungszeit) 30167 Hannover

Mi: 12.00 - 13.00 Uhr (Vorlesungszeit im Tel. 0511-762 -3799

Service Center) [email protected]

Offener Montagstermin: Mo 11.00 - 12. Uhr (während der Vorlesungszeit - ohne Anmeldung)

4.2.8 Career Service und Zentrum für Schlüsselkompetenzen (ZFSK)

www.career.uni-hannover.de www.zfsk.uni-hannover.de

Das Zentrum für Schlüsselkompetenzen ist beim Career Service der Universität Hannover ange-

siedelt. Der Career Service bietet Veranstaltungen zur Berufspraxis, Zusatzqualifikationen und

individueller Karriereberatung an.

Kontakt:

Career Service/ZEW Tel.: 0511 - 762 19137

Fax: 0511 - 762 8154

Schlosswender Str. 5

30167 Hannover [email protected]

5 Anhang 61

5 Anhang

5.1 Links

Prüfungsordnungen Bachelor:

Bachelor of Science in Physik: http://www.uni-hannover.de/de/studium/studiengaenge/mathe/ordnungen/index.php

Bachelor of Science in Meteorologie:

http://www.unihannover.de/de/studium/studiengaenge/meteorologie/ordnungen/index.php

Fächerübergreifender Bachelor: http://www.uni-hannover.de/de/studium/studiengaenge/faecher-bachelor/ordnungen/index.php

Prüfungsordnungen Master:

Master of Science in Physik:

http://www.uni-hannover.de/de/studium/studiengaenge/physik/ordnungen/index.php

Master of Science in Meteorologie:

http://www.uni-hannover.de/de/studium/studiengaenge/meteorologie/ordnungen/index.php

Physik Lehramt an Gymnasien:

http://www.uni-hannover.de/de/studium/studiengaenge/lehramt-gymnasien/ordnungen/index.php

Physik Lehramt an berufsbildenden Schulen:

http://www.uni-hannover.de/de/studium/studiengaenge/lbs/ordnungen/index.php

62 5 Anhang

5.2 Lagepläne

5 Anhang 63

64 5 Anhang

5 Anhang 65