SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P <...

12
SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia Tomoya Fukawa, Benjamin Chua Yan-Jiang, Jason Chua Min-Wen, Elwin Tan Jun-Hao, Dan Huang, Chao-Nan Qian, Pauline Ong, Zhimei Li, Shuwen Chen, Shi Ya Mak, Wan Jun Lim, Hiro-omi Kanayama, Rosmin Elsa Mohan, Ruiqi Rachel Wang, Jiunn Herng Lai, Clarinda Chua, Hock Soo Ong, Ker-Kan Tan, Ying Swan Ho, Iain Beehuat Tan, Bin Tean Teh, Ng Shyh-Chang Supplementary Figure 1 Human RXF393 cancer cells induce muscle atrophy. (a) Relative frequency distributions of myofiber cross-sectional area in matching quadriceps muscle biopsies from SKR- and RXF-bearing mice. AU, arbitrary units of pixels. Data are expressed as means. P < 0.001 relative to SKR control, as determined by Mann-Whitney test. (b) Representative phase contrast images of early myotubes derived from human muscle stem cells isolated from patient biopsies, after 6d exposure to cachectic RXF media or non-cachectic SKR media. (c) Measurements of total cell volume differences in early myotubes from (b), based on quantitative phase imaging. Data are expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t-test. (d) Western blot of human myotubes after 6 days of exposure to cachectic RXF or non-cachectic SKR medias, using antibodies against myogenin, α-actinin, fast myosin heavy chain (MHC), pan-MHC, GAPDH and tubulin. Supplementary Figure 2 Cachectic RXF media induces mitochondrial oxidative stress in human myotubes. (a) Representative MitoSox Red fluorescence images of live human myotubes after 1h exposure to cachectic RXF versus non-cachectic SKR media. (b) Representative MitoSox Red fluorescence images of live human myotubes after 1h exposure to cachectic RXF with and without the fatty acid oxidation inhibitor etomoxir 10 μM. (c) Quantification of cell death using ethidium dye, after 6d exposure to RXF media. Data are Nature Medicine: doi:10.1038/nm.4093

Transcript of SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P <...

Page 1: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia Tomoya Fukawa, Benjamin Chua Yan-Jiang, Jason Chua Min-Wen, Elwin Tan Jun-Hao, Dan Huang, Chao-Nan Qian, Pauline Ong, Zhimei Li, Shuwen Chen, Shi Ya Mak, Wan Jun Lim, Hiro-omi Kanayama, Rosmin Elsa Mohan, Ruiqi Rachel Wang, Jiunn Herng Lai, Clarinda Chua, Hock Soo Ong, Ker-Kan Tan, Ying Swan Ho, Iain Beehuat Tan, Bin Tean Teh, Ng Shyh-Chang

Supplementary Figure 1 Human RXF393 cancer cells induce muscle atrophy. (a) Relative

frequency distributions of myofiber cross-sectional area in matching quadriceps muscle biopsies

from SKR- and RXF-bearing mice. AU, arbitrary units of pixels. Data are expressed as means.

P < 0.001 relative to SKR control, as determined by Mann-Whitney test. (b) Representative

phase contrast images of early myotubes derived from human muscle stem cells isolated from

patient biopsies, after 6d exposure to cachectic RXF media or non-cachectic SKR media. (c)

Measurements of total cell volume differences in early myotubes from (b), based on quantitative

phase imaging. Data are expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as

determined by Student’s t-test. (d) Western blot of human myotubes after 6 days of exposure to

cachectic RXF or non-cachectic SKR medias, using antibodies against myogenin, α-actinin, fast

myosin heavy chain (MHC), pan-MHC, GAPDH and tubulin.

Supplementary Figure 2 Cachectic RXF media induces mitochondrial oxidative stress in

human myotubes. (a) Representative MitoSox Red fluorescence images of live human

myotubes after 1h exposure to cachectic RXF versus non-cachectic SKR media. (b)

Representative MitoSox Red fluorescence images of live human myotubes after 1h exposure to

cachectic RXF with and without the fatty acid oxidation inhibitor etomoxir 10 µM. (c)

Quantification of cell death using ethidium dye, after 6d exposure to RXF media. Data are

Nature Medicine: doi:10.1038/nm.4093

Page 2: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

2

expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t-

test.

Supplementary Figure 3 Human G361 and mouse Lewis lung carcinoma (LLC) cells both

cause excessive fatty acid oxidation to induce p38 MAPK signaling in myofibers as well.

Western blot for phospho-p38, phospho-AKT, IκBα, MHC, and GAPDH levels in quadriceps

myofibers of G361- or LLC-bearing mice after daily intraperitoneal injections of DMSO vehicle or

20 mg/kg etomoxir (n = 3 each).

Supplementary Figure 4 Etomoxir rescues muscle atrophy in mouse models of cachexia. (a)

Representative images of RXF-bearing mice’ quadriceps muscle morphology with and without

etomoxir treatment. Etomoxir-treated mice’ quadriceps preserved their muscle mass. (b)

Forelimb and hindlimb muscle mass (% of body mass) of RXF-bearing mice after daily injections

of DMSO vehicle, etomoxir or SB202190 (n = 5 each). (c) Forelimbs’ and hindlimbs’ muscle

mass (% body mass) of G361-bearing mice after daily injections of DMSO vehicle, 20 mg/kg

etomoxir or 5 mg/kg SB202190 (n = 5 each). Etoxomir and SB202190 rescued limb muscle

loss. (d) Representative H&E histology of quadriceps muscles after daily intraperitoneal

injections of DMSO vehicle or etomoxir in LLC-bearing C57BL/6J mice. Etomoxir rescued

myofiber atrophy. Bar represents 200 µm. (e-g) Tumor growth curves of (e) RXF, (f) G361, and

(g) LLC tumors, with daily injections of DMSO vehicle, 20 mg/kg etomoxir or 5 mg/kg of

SB202190 (n = 5 each). Data are expressed as means ± s.e.m. *P < 0.05 relative to DMSO

vehicle control, as determined by Student’s t-test.

Supplementary Figure 5 Intramuscular controlled-release formulation of etomoxir only rescues

treated hindlimbs’ muscle mass. (a) Hindlimb muscle mass (% of body mass) of RXF-bearing

Nature Medicine: doi:10.1038/nm.4093

Page 3: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

3

mice after intramuscular injections of vehicle- (2% oxidized alginate beads, n = 6) or etomoxir-

gel (100 µg / 50 µL, n = 7) into hindlimb thigh muscles every 7 days. Mice were sacrificed when

the mice lost 15% weight. Untreated and vehicle-gel-treated hindlimbs atrophied to 3.2% body

mass, whereas the etomoxir-gel-treated hindlimbs showed a significant rescue from atrophy

(3.8%, P = 0.007), similar to normal non-cachectic hindlimbs (3.6%). (b) Representative images

of etomoxir-gel-treated left quadriceps muscle morphology and H&E histology, relative to the

untreated right quadriceps muscles. Bar represents 200 µm. Data are expressed as means ±

s.e.m. **P < 0.01 relative to vehicle-gel control, as determined by Student’s t-test.

Supplementary Figure 6 Etomoxir inhibited fatty acid oxidation, but not PPARα-associated

sterol and carbohydrate metabolism. (a) Acyl-carnitine levels in quadriceps muscles after 20

mg/kg etomoxir treatment (n = 4). (b) Fatty acid and cholesterol levels in quadriceps muscles

after 20 mg/kg etomoxir treatment (n = 4). (c) Polar metabolites significantly changed in

quadriceps muscles after 20 mg/kg etomoxir treatment (n = 4). Etomoxir altered only 12 of 3743

polar metabolites in quadriceps muscles, none of which were PPARα-associated carbohydrates.

Instead only a polar fatty acid, several nucleotide-related metabolites, and redox-related

metabolites were affected by etomoxir, supporting a fatty acid oxidation-specific mechanism that

regulated the redox state and myocellular growth. CMP, cytidine monophosphate. FAD, flavin

adenine dinucleotide. GSSG, glutathione disulfide. Data are expressed as means ± s.e.m. *P <

0.05 and **P < 0.01 relative to DMSO vehicle control, as determined by Student’s t-test.

Supplementary Figure 7 Etomoxir did not affect PPARα target genes in quadriceps muscles.

Raw microarray expression values for PPARα target genes and PPARα itself, relative to Pax3

and Pax7, which are at the background level, after 20 mg/kg etomoxir treatment (n = 3). Pdk4,

pyruvate dehydrogenase kinase 4. Fabp3, fatty acid binding protein 3. Ldha, lactate

Nature Medicine: doi:10.1038/nm.4093

Page 4: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

4

dehydrogenase A. Pcx, pyruvate carboxylase. Pck1, phosphoenolpyruvate carboxykinase 1.

Data are expressed as means ± s.e.m. *P < 0.05 relative to DMSO vehicle control, as

determined by Student’s t-test.

Supplementary Figure 8 Oxidative damage is correlated with p38 activation in cachexia

patients’ muscle biopsies. (a-b) Representative immunohistochemical staining for (a) 8-oxo-

guanine and (b) nuclear phospho-p38 in non-cachexia and cachexia subject muscle biopsies (n

= 11), and their quantitative H-scores. Bar represents 50µm. (c) Correlation plot for the H-

scores of 8-oxo-guanine vs. phospho-p38 immunohistochemical staining in non-cachectic

(black) and cachectic (red) subjects’ rectus abdominus muscles (n = 11). Data are expressed as

means ± s.e.m. *P < 0.05 relative to non-cachectic control, as determined by Student’s t-test.

Supplementary Table 1 Top 4 upregulated and downregulated gene sets in mouse myotubes

after 6h exposure to cachectic RXF conditioned media, relative to SKR media (n = 3 each).

Supplementary Table 2 Top 4 upregulated and downregulated gene sets in human myotubes

after 6h exposure to cachectic RXF conditioned media, relative to SKR media (n = 3 each).

Supplementary Table 3 Top 4 upregulated and downregulated gene sets in cachectic RXF-

bearing mouse quadriceps muscles, relative to non-cachectic SKR-bearing mouse quadriceps

muscles (n = 3 each).

Supplementary Table 4 Top 10 downregulated and upregulated gene sets in cachectic RXF-

bearing mouse quadriceps muscles, after daily intraperitoneal injections of 20 mg/kg etoxomir,

relative to vehicle control (n = 3 each).

Nature Medicine: doi:10.1038/nm.4093

Page 5: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

a  

c  

b   RXF  media  (cachec-c)  SKR  media  

Supplementary  Figure  1  

d  

0  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

SKR   RXF  

Total  cell  volum

e  (fo

ld)  

SKR  

RXF  

*  

0  

10  

20  

30  

40  

50  

500   1,000   2,000   8,000   20,000  

Rlea-ve  freq

uency  (%

)  

AU  

RXF  SKR  

P  <  0.001  

Nature Medicine: doi:10.1038/nm.4093

Page 6: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

a  SKR  condi-oned  media  RXF  condi-oned  media  

Pro-­‐CX  +DMSO   Pro-­‐CX  +Etomoxir  

RXF  media  +DMSO   RXF  media  +Etomoxir  

A  

Figure  S6  

0  200  400  600  800  1000  1200  1400  

Concen

tra-

on  (p

g/ml)   Ac-vin  A  *  

*   *   *  

0  

10000  

20000  

30000  

40000  

50000  

Concen

tra-

on  (p

g/ml)   Myosta-n  

n.s.  

10  

100  

1000  

10000  

100000  

Pdk4   Fabp3   Ldha   Pcx   Pck1   Pax3   Pax7   Ppara  

Raw  expression  values  

Vehicle  Etomoxir  

n.s.   n.s.   n.s.  

n.s.   n.s.   n.s.   n.s.   n.s.  

c  

SKR  condi=oned  media  (Non-­‐CX)   RXF  condi=oned  media  (Pro-­‐CX)  

0.0  

0.2  

0.4  

0.6  

0.8  

1.0  

1.2  

1.4  

1.6  

1.8  

Vehicle   Etomoxir  

Cell  de

ath    

(fold  change  in  ethidium  fluo

rescen

ce)  

SKR   RXF  *  

n.s.  

Supplementary  Figure  2  

b  

Nature Medicine: doi:10.1038/nm.4093

Page 7: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

1

1.5

2

2.5

3

Vehicle Etomoxir

Adi

pose

wei

ght

(% o

f Bod

y W

eigh

t)

*

G361   LLC  

p-­‐p38    

p-­‐AKT    (S473)  

AKT    

p38    

Etomoxir  Vehicle  

GAPDH  

IκBα      

MHC  

Etomoxir  Vehicle  

Supplementary  Figure  3  

Nature Medicine: doi:10.1038/nm.4093

Page 8: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

5

6

7

8

9

Vehicle   Etomoxir   SB202190  

Limbs’  m

uscle  mass    

(%  bod

y  mass)  

*  *  

*  

0 50

100 150 200 250 300 350 400

8 10 12 14 16 18 20 Time  (d)  

RXF  Vehicle

Etomoxir

SB202190

n.s.  

c  

5

6

7

8

9

Limbs’  m

uscle  mass    

(%  bod

y  mass)  

G361  (n  =  5)  

*  

*  

Etomoxir Vehicle

Figure  S8  

Etomoxir Vehicle

LLC

0

200

400

600

800

1000

7 9 11 13 15 17 19 21 23 25

G361  Vehicle

Etomoxir

SB202190

n.s.  

Tumor  Volum

e  (m

m3 )  

e  

Time  (d)  

0

100

200

300

400

500

600

0 5 10 15

LLC  Vehicle

Etomoxir

Time  (d)  

n.s.  

f  

a   b  

d  

g  

RXF  (n  =  5)  

Supplementary  Figure  4  Nature Medicine: doi:10.1038/nm.4093

Page 9: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

0%  50%  100%  150%  200%  250%  

Fold  Change  

Vehicle   Etomoxir  

0%  

50%  

100%  

150%  

200%  

Fold  change  

Vehicle   Etomoxir  

b  

*  *

**  

**  

*  n.s.  

a  

0%  

50%  

100%  

Decano

yl-­‐

carni-ne

 

Stearoyl-­‐

carni-ne

 

Palm

itoyl-­‐

carni-ne

 

Docosape

ntaeno

yl-­‐

carni-ne

 

Fold  change  

* * *   **  

a  Eto-­‐gel  

0%  

100%  

200%  

300%  

400%  

Cer(d1

8:0/20

:0)  

Cer(d1

8:1/22

:1(1

3Z))  

Glucosylceramide  

(d18

:1/24:1(15

Z))  

Cer(d1

8:1/24

:1(1

5Z))  

%  Change  

 

Vehicle   Etomoxir  

3.00%  

3.20%  

3.40%  

3.60%  

3.80%  

4.00%  

Eto   no  treatment   Vehicle   no  treatment  

RXF  hind

limb  muscle  (%

 bod

y  mass)  

Normal  Hindlimb  

-­‐gel   -­‐gel  

**  

c  

0%  50%  

100%  150%  200%  250%  

2-­‐Octen

edioate  

CMP  

Aden

ine  

MNA  

6-­‐Hy

droxy-­‐FA

D  

Guanine  

Methyl-­‐ino

sine  

UDP

-­‐MurNAC

 

Dimethylglycine

 

Ascorbic  acid  

Hypo

xanthine

 

GSSG

 Fold  change  

Vehicle   Etomoxir  *   * *  

*  *   *   *   *   *  

b  

Supplementary  Figure  5  

Supplementary  Figure  6  

Nature Medicine: doi:10.1038/nm.4093

Page 10: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

0  

50  

100  

150  

200  

0   50   100   150   200   250  

8-­‐Oxo-­‐guanine

 

r  =  0.92  

Phospho-­‐p38  

Phosph

o-­‐p3

8  

0  

50  

100  

150  

200  

non-­‐CX   CX  

Phosph

o-­‐p3

8  H-­‐score  

0  

50  

100  

150  

200  

non-­‐CX   CX  

Cachexia Patients Non-cachexia Patients

8-­‐Oxo-­‐guanine

 

 8-­‐Oxo-­‐guanine

 H-­‐score  

a  

Cachexia Non-cachexia

Cachexia Non-cachexia

Supplementary  Figure  7  

b  

c  

Supplementary  Figure  8  

*  

*  

Nature Medicine: doi:10.1038/nm.4093

Page 11: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

Supplementary  Table  3  

Top  Gene  sets  Up  in  cachec=c  mouse  muscles   FDR  q-­‐val  BUYTAERT_PHOTODYNAMIC_THERAPY_STRESS_UP   0.000  

REACTOME_ACTIVATION_OF_NF_KAPPAB_IN_B_CELLS   0.003  DAUER_STAT3_TARGETS_UP   0.003  

KEGG_PROTEASOME   0.006  Top  Gene  sets  Down  in  cachec=c  mouse  muscles   FDR  q-­‐val  

MOOTHA_VOXPHOS   0.000  REACTOME_RESPIRATORY_ELECTRON_TRANSPORT   0.000  

REACTOME_GLYCOLYSIS_GLUCONEOGENESIS   0.003  EBAUER_MYOGENIC_TARGETS_OF_PAX3_FOXO1_FUSION   0.004  

Non-­‐CX   Pro-­‐CX  mMuscles  

Supplementary  Table  1  

Gene  sets  Up  in  cachec=c  Human  myotubes   FDR  q-­‐val  DACOSTA_UV_RESPONSE_VIA_ERCC3_DN   2.72E-­‐02  

DACOSTA_UV_RESPONSE_VIA_ERCC3_COMMON_DN   6.01E-­‐02  GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_UP   6.19E-­‐02  

BUYTAERT_PHOTODYNAMIC_THERAPY_STRESS_UP   1.64E-­‐01  Gene  sets  Down  in  cachec=c  Human  myotubes   FDR  q-­‐val  ELVIDGE_HIF1A_AND_HIF2A_TARGETS_DN   0.00E-­‐00  

QI_HYPOXIA   0.00E-­‐00  WINTER_HYPOXIA_UP   5.45E-­‐04  

ELVIDGE_HYPOXIA_BY_DMOG_UP   2.57E-­‐03  

Gene  sets  Up  in  cachec=c  Mouse  myotubes   FDR  q-­‐val  GALINDO_IMMUNE_RESPONSE_TO_ENTEROTOXIN   5.23E-­‐03  ICHIBA_GRAFT_VERSUS_HOST_DISEASE_D7_UP   5.76E-­‐03  

BAKKER_FOXO3_TARGETS_UP   7.21E-­‐03  MIZUSHIMA_AUTOPHAGOSOME_FORMATION   2.03E-­‐02  

a   SKR   RXF  (cachec-c)  mMyotubes  

Gene  sets  Down  in  cachec=c  Mouse  myotubes   FDR  q-­‐val  MANALO_HYPOXIA_DN   0.00E-­‐00  

REACTOME_MRNA_PROCESSING   0.00E-­‐00  PENG_RAPAMYCIN_RESPONSE_DN   0.00E-­‐00  KARLSSON_TGFB1_TARGETS_UP   3.00E-­‐03  

Supplementary  Table  2  

Nature Medicine: doi:10.1038/nm.4093

Page 12: SUPPLEMENTARY INFORMATION Excessive fatty acid oxidation ... · 2 expressed as means ± s.e.m. *P < 0.05 relative to SKR control, as determined by Student’s t- test. Supplementary

Top  Gene  sets  Down  in  cachec=c  mouse  muscles  aVer  Etomoxir   FDR  q-­‐val  KEGG_PROTEASOME   0.000  REACTOME_ACTIVATION_OF_NF_KAPPAB_IN_B_CELLS   0.000  REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BIND_AU_RICH_ELEMENTS   0.000  BIOCARTA_PROTEASOME_PATHWAY   0.000  REACTOME_P53_DEPENDENT_G1_DNA_DAMAGE_RESPONSE   0.000  REACTOME_REGULATION_OF_APOPTOSIS   0.000  REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS   0.000  DAUER_STAT3_TARGETS_UP   0.000  RASHI_RESPONSE_TO_IONIZING_RADIATION_1   0.000  GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_BLUE_UP   0.001  

Top  Gene  sets  Up  in  cachec=c  mouse  muscles  aVer  Etomoxir   FDR  q-­‐val  CHEMELLO_SOLEUS_VS_EDL_MYOFIBERS_UP   0.000  REACTOME_MUSCLE_CONTRACTION   0.000  EBAUER_MYOGENIC_TARGETS_OF_PAX3_FOXO1_FUSION   0.000  REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_COUPLING_AND_HEAT_PRODUCTION_BY_UNCOUPLING_PROTEINS   0.000  

REACTOME_RESPIRATORY_ELECTRON_TRANSPORT   0.000  REACTOME_TCA_CYCLE_AND_RESPIRATORY_ELECTRON_TRANSPORT   0.000  KUNINGER_IGF1_VS_PDGFB_TARGETS_UP   0.000  KEGG_CARDIAC_MUSCLE_CONTRACTION   0.000  REACTOME_GLUCOSE_METABOLISM   0.001  DELASERNA_MYOD_TARGETS_UP   0.002  

Supplementary  Table  4  

Nature Medicine: doi:10.1038/nm.4093