T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

17
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Fractionalized Fermi liquids Transparencies online at http://pantheon.yale. edu/~subir cond-mat/0209144 paper rejected by cond-mat Subject: cond-mat daily 0209108 -- 0209143 received 1651 Date: Thu, 5 Sep 2002 22:56:09 -0400 Subject: cond-mat daily 0209145 -- 0209175 received 1651 Date: Sun, 8 Sep 2002 22:53:13 -0400

description

paper rejected by cond-mat. Subject: cond-mat daily 0209108 -- 0209143 received 1651 Date: Thu, 5 Sep 2002 22:56:09 -0400 Subject: cond-mat daily 0209145 -- 0209175 received 1651 Date: Sun, 8 Sep 2002 22:53:13 -0400. Fractionalized Fermi liquids. T. Senthil (MIT) Subir Sachdev - PowerPoint PPT Presentation

Transcript of T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Page 1: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

T. Senthil (MIT)Subir Sachdev

Matthias Vojta (Karlsruhe)

Fractionalized Fermi liquids

Transparencies online at http://pantheon.yale.edu/~subir

cond-mat/0209144

paper rejected by cond-matSubject: cond-mat daily 0209108 -- 0209143 received 1651Date: Thu, 5 Sep 2002 22:56:09 -0400

Subject: cond-mat daily 0209145 -- 0209175 received 1651Date: Sun, 8 Sep 2002 22:53:13 -0400

Page 2: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Doniach’s T=0 phase diagram for the Kondo lattice

† †'

Conduction electrons;

localized moments (assumed =1/2, for specificity)

ij i j K i i fii j i

i

fi i

H t c c J c c S

c

S f S

JK / t

“Heavy” Fermi liquid with moments Kondo screened

by conduction electrons. Fermi surface obeys

Luttinger’s theorem.

FLSDW

Local moments choose some static spin

arrangement

2~ / ~ exp /RKKY K K KJ J t T t J

Page 3: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Luttinger’s theorem on a d-dimensional lattice for the FL phase

Let v0 be the volume of the unit cell of the ground state, nT be the total number density of electrons per volume v0. (need not be an integer)

02 Volume enclosed by Fermi surface2

mod 2

d

T

v

n

1c cT fn n n n

Page 4: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

It is more convenient to analyze the Kondo-Heiseberg model:

† †' ,ij i j K i i fi H fi fj

i j i i j

H t c c J c c S J i j S S

Work in the regime JH > JK

Determine the ground state of the quantum antiferromagnet defined by JH, and then couple to conduction electrons by JK

Reconsider Doniach phase diagram

“f moments screen each other”

Page 5: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Ground states of quantum antiferromagnets

Begin with magnetically ordered states, and consider quantum transitions which restore spin rotation invariance, leading to a

quantum paramagnet

Two classes of magnetically ordered states:

() Collinear spins () Non-collinear spins

1 2

2 21 2 1 2

cos sin

4 4, ; 1 ; 0

3 3

S N N

N N N N

������������������������������������������

��������������������������������������������������������

r Q r Q r

Q

2

cos

, ; 1

S N

N

����������������������������

��������������r Q r

Q

Page 6: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Paramagnetic states with 0j S

Bond order and confined spinons

2

1S=1/2 spinons are confined by a linear potential into a

S=1 spin exciton

Generic behavior in d=2

() Collinear spins

Page 7: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Paramagnetic states with 0j S

U(1) spin liquid with deconfined spinons

Possible ground state in d=3

() Collinear spins

Page 8: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Paramagnetic states with 0j S

Z2 spin liquid with deconfined spinons

Can appear in d=2,3

() Non-collinear spins

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991); X. G. Wen, Phys. Rev. B 44, 2664 (1991). T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000).R. Moessner and S.L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).

Page 9: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

() Collinear spins, Berry phases, and bond-order

S=1/2 antiferromagnet on a bipartitie lattice

ij i ji j

H J S S

Include Berry phases after discretizing coherent state path integral on a cubic lattice in spacetime

,

a 1 on two sublattices ;

Neel order parameter;

oriented area of spherical triangle

11 ex

p2

~

2a a a a a a

a aa

a a a

a

iZ d A

g

S

A

n n n n

n

0, , formed by and an arbitrary reference poi nt a a n n n

Page 10: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

0n

an a n

aA

a a

Change in choice of n0 is like a “gauge transformation”

a a a aA A

(a is the oriented area of the spherical triangle formed by na and the two choices for n0 ).

The area of the triangle is uncertain modulo 4and the action is invariant under4a aA A

0n

aA

an a n

0n

These principles strongly constrain the effective action for Aa

Spin-wave theory about Neel state receives minor

modifications from Berry phases.

Berry phases are crucial in determining structure of

"qua

nt

g

g

Small

Large

um-disordered" phase with

0

a

a aA

Integrate out to obtain effective action for

n

n

Page 11: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

2,

2 2with

This is compact QED in +1 dimensions with Berry p

1 1exp cos

2

ha

~

2 2

s.

se

a a a aaa

e

iZ dA

g

Ae

d

A

Simplest large g effective action for the Aa

This theory can be reliably analyzed by a duality mapping.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990).

K. Park and S. Sachdev, Phys. Rev. B 65, 220405 (2002).

(I) d=2:The gauge theory is always in a confining phase. There is an

energy gap and the ground state has bond order (induced by the Berry phases).

(II) d=3:An additional spin liquid (“Coulomb”) phase is also possible.

There are deconfined spinons which are minimally coupled to a gapless U(1) photon.

Page 12: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

It is more convenient to analyze the Kondo-Heiseberg model:

† †' ,ij i j K i i fi H fi fj

i j i i j

H t c c J c c S J i j S S

Work in the regime JH > JK

Determine the ground state of the quantum antiferromagnet defined by JH, and then couple to conduction electrons by JK

Nature of small JK expansion depends upon the paramagnetic ground state obtained at JK =0

Reconsider Doniach phase diagram

Page 13: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Consider, first the case JK=0 and JH chosen so that the spins form a bond ordered paramagnet

This system has a Fermi surface of conduction electrons with volume nc (mod 2)

However, because nf=2 (per unit cell of ground state)nT= nf+ nc= nc(mod 2), and

“small” Fermi volume=“large” Fermi volume (mod Brillouin zone volume)

These statements apply also for a finite range of JK

Conventional Luttinger Theorem holds

Page 14: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Consider, next the case JK=0 and JH chosen so that the spins form a spin liquid paramagnet

This system has a Fermi surface of conduction electrons with volume nc (mod 2)

Now nf=1 (per unit cell of ground state)

mod 2T f c cn n n n

This state, and its Fermi volume, survive for a finite range of JK

Perturbation theory is JK is free of infrared divergences, and the topological order in the ground state is protected.

02 Volume enclosed by Fermi surface2

1 mod 2

d

T

v

n

A Fractionalized Fermi Liquid (FL*)

Page 15: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Doping spin liquids

A likely possibility:

Added electrons do not fractionalize, but retain their bare quantum numbers.

Spinon, “photon”, and vison states of the insulator survive unscathed.

There is a Fermi surface of sharp electron-like quasiparticles, enclosing a volume determined by the

dopant electron alone.

Added electrons do not fractionalize, but retain their bare quantum numbers.

Spinon, “photon”, and vison states of the insulator survive unscathed.

There is a Fermi surface of sharp electron-like quasiparticles, enclosing a volume determined by the

dopant electron alone.

This is a “Fermi liquid” state which violates Luttinger’s theoremThis is a “Fermi liquid” state which violates Luttinger’s theorem

T. Senthil, S. Sachdev, and M. Vojta, cond-mat/0209144

A Fractionalized Fermi Liquid (FL*)

Precursors: L. Balents and M. P. A. Fisher and C. Nayak, Phys. Rev. B 60, 1654, (1999); T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000);

S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002).

Page 16: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Extended T=0 phase diagram for the Kondo lattice

JK / t

FL

SDW

MagneticFrustration,Magnetic field (?)

FL*

SDW*

Hertz Gaussian paramagnon theory

Quantum criticality associated with the onset of topological order – described by interacting gauge theory. (Speaking loosely – TK vanishes along this line)

• * phases have spinons with Z2 (d=2,3) or U(1) (d=3) gauge charges, and

associated gauge fields.• magnetic field can induce a generic second-order transition to a * phase.• Fermi surface volume does not distinguish SDW and SDW* phases.

Page 17: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

• Superconductivity is generic between FL and Z2 FL* phases.

JK / t

FL

SDW

Magneticfrustration

FL*

SDW*

Hertz Gaussian paramagnon theory

Superconductivity

Z2 fractionalization