Technische Universitat M unchen - TUM The chemo-enzymatic epoxidation process was optimized again...

download Technische Universitat M unchen - TUM The chemo-enzymatic epoxidation process was optimized again using

of 123

  • date post

    30-Jul-2020
  • Category

    Documents

  • view

    0
  • download

    0

Embed Size (px)

Transcript of Technische Universitat M unchen - TUM The chemo-enzymatic epoxidation process was optimized again...

  • Technische Universität München

    Lehrstuhl für Chemie Biogener Rohstoffe

    Development of Sustainable Chemo-enzymatic

    Processes for the Epoxidation of Terpenes

    Sumanth Ranganathan M.Sc.

    Vollständiger Abdruck von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung,

    Landnutzung, und Umwelt der Technischen Universität München zur Erlangung des akademis-

    chen Grades eines

    Doktor-Ingenieurs

    genehmigten Dissertation.

    Vorstizender: Prof. Dr.-Ing. Matthias Gaderer

    Prüfer der Dissertation: 1. Prof. Dr. Volker Sieber

    2. Prof. Dr.-Ing. Andreas Kremling

    Die Dissertation wurde am 15.03.2018 bei der Technischen Universität München eingereicht

    und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung,

    und Umwelt am 27.08.2018 angenommen.

  • Acknowledgements

    First and foremost, I would like to express my deepest and most sincere thanks to Prof. Dr. Volker Sieber, professor and head of the Chair of Chemistry of Biogenic Resources, TU Munich, Campus Straubing for giving me the opportunity to work on such an interesting topic and for the constant support throughout the duration of this work. He has been a great inspiration in the completion of this research work.

    Next, I would like to thank my second professor, Prof. Dr. Andreas Kremling, Faculty of Mechanical Engineering, Specialty Division for Systems Biotechnology, TU Munich, for co- supervising my thesis.

    I would also like to thank Prof. Dr.-Ing. Matthias Gaderer, of the Department of Regenerative Energy Systems, at TU Munich, Campus Straubing, for agreeing to be my chief examiner.

    I find it extremely hard to express my words of gratitude to Dr. Lars O Wiemann, my supervisor and mentor, for his guidance and constant words of encouragement right through the course of this dissertation.

    My thanks are also due to Dr. Lenard-Istvan Csepei, Ms. Claudia Falcke, Dr. Tobias Gärtner, Dr. Michael Hofer, Dr. Michael Richter, Dr. Fabian Steffler, Dr. Harald Strittmatter, and Dr. Luciana Vieira for helping me with technical details at times when I needed them the most.

    I owe a great deal of thanks to the lab technicians Ms. Christina Faltl, Ms. Patricia Huber, Ms. Manuela Kaiser, Ms. Melanie Speck and Ms. Marion Wölbing for their constant help in the lab, no matter how busy they were.

    I also would like to thank Ms. Elisabeth Aichner and Ms. Sabine Putz, who always had time to clarify German bureaucracy and solve administration related issues for me.

    For the amazing discussions at work and for the great social life in Straubing, I would like to thank my fellow PhD students who made tough times look not so tough.

    A special thanks to Mr. Steven Koenig for his help in proofreading my thesis.

    I would also like to thank the volleyball, football and free-letics gangs of WZ Straubing, who made it a point to keep me fit week-in and week-out.

    I would also like to thank my parents for their constant words of encouragement and believing in me and reminding me to never give up on my dreams.

    Finally, I would like to thank the people who contributed to helping me finish this thesis in its present form.

    i

  • Maximum effort

    - Deadpool

    ii

  • Contents

    1 Introduction 1

    1.1 Products of the chemical industry . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Green chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    1.2.1 The 12 principles of green chemistry . . . . . . . . . . . . . . . . . . . . 3

    1.2.2 Why alternate reaction media? . . . . . . . . . . . . . . . . . . . . . . . 4

    1.2.3 Solvent-free conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.2.4 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.2.5 Supercritical Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.2.6 Ionic liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    1.2.7 Deep eutectic solvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    1.3 Renewables and their role in the modern chemical industry . . . . . . . . . . . . 11

    1.3.1 Terpenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    1.4 Epoxides and the epoxidation processes . . . . . . . . . . . . . . . . . . . . . . . 16

    1.4.1 Epoxidation using molecular oxygen . . . . . . . . . . . . . . . . . . . . . 16

    1.4.2 Epoxidation using hydrogen peroxide (H2O2) . . . . . . . . . . . . . . . . 17

    1.4.3 Epoxidation using halohydrin . . . . . . . . . . . . . . . . . . . . . . . . 18

    1.4.4 Epoxidation using peroxides . . . . . . . . . . . . . . . . . . . . . . . . . 19

    1.4.5 Epoxidation using ozone . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    1.4.6 Epoxidation using peroxycarboxylic acids . . . . . . . . . . . . . . . . . . 20

    1.4.7 Shi Epoxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    1.4.8 Jacobsen-Katsuki epoxidation . . . . . . . . . . . . . . . . . . . . . . . . 22

    1.4.9 Epoxidation using enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    1.5 Issues associated with the existing modes of epoxidation . . . . . . . . . . . . . 23

    1.5.1 Chemo-Enzymatic Epoxidation Process . . . . . . . . . . . . . . . . . . . 24

    1.6 Process Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    1.6.1 Taguchi method of robust design . . . . . . . . . . . . . . . . . . . . . . 26

    1.6.2 H2O2 production in general . . . . . . . . . . . . . . . . . . . . . . . . . 28

    1.6.3 Anthraquinone autoxidation process for manufacturing H2O2 . . . . . . . 29

    1.7 Objectives of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    2 Materials and Methods 31

    2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    2.1.1 Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    2.1.2 Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    2.1.3 Miscellaneous materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    2.1.4 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    2.1.5 Softwares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    2.2.1 Synthetic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    2.2.2 Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    iii

  • CONTENTS

    3 Results 45 3.1 Optimization of the lipase mediated epoxidation process for monoterpenes using

    the design of experiments - Taguchi method . . . . . . . . . . . . . . . . . . . . 45 3.2 A one pot reaction cascade of in situ hydrogen peroxide production and lipase

    mediated in situ production of peracids for the epoxidation of monoterpenes . . 60 3.3 Development of Semi-Continuous Enzymatic Terpene Epoxidation: Combination

    of Anthraquinone and the Lipase Mediated Epoxidation Process . . . . . . . . . 67 3.4 Development of a lipase-mediated epoxidation process for monoterpenes in choline

    chloride based deep eutectic solvents . . . . . . . . . . . . . . . . . . . . . . . . 80

    4 Discussion 101 4.1 Development of a robust lipase mediated epoxidation process for terpenes . . . . 101 4.2 Combining hydrogen peroxide production with the lipase-mediated epoxidation

    process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3 The semi-continuous combination of H2O2 production with the lipase-mediated

    epoxidation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4 Lipase-mediated epoxidation in DES . . . . . . . . . . . . . . . . . . . . . . . . 105 4.5 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    iv

  • Summary

    Terpenes are by-products of the paper and pulp industry that are useful as fine chemicals, phar-

    maceuticals, flavours, fragrances, or monomers for polymers. Often, the terpenes are modified

    chemically to form terpenoids (oxidized terpenes) before being used industrially. Epoxidation,

    the process of adding molecular oxygen to an alkene, is usually the preferred type of modifica-

    tion. For terpenes, this is done using the Prilezahev method, which utilizes a peroxycarboxylic

    acid as the oxidant. This method has several risks such as detonation at high temperatures,

    use of harmful organic solvents, and generation of equal amounts of waste with respect to the

    final product. To avoid these issues, a green and sustainable alternative needs to be designed

    using the 12 principles of green chemistry, which governs a chemical process to produce minimal

    waste, make use of renewable substrates, and avoid harmful reaction conditions.

    The present work focussed on the development of such a process and already incorporated

    the principles of green chemistry into the process design phase. To reach this goal, a chemo-

    enzymatic epoxidation process was envisioned, where a peroxycarboxylic acid is produced in

    situ using catalytic amounts of carboxylic acid in the presence of hydrogen