Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a...

16
Vertiefendes Seminar zur Vorlesung Biochemie 07.11.2014 Proteine: Faltung Proteine: Faltung Gerhild van Echten-Deckert Fon. +49-228-732703 Homepage: http://www.limes-institut-bonn.de/forschung/arbeitsgruppen/unit-3/abteilung-van-echten-deckert/abt-van-echten-deckert-startseite/

Transcript of Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a...

Page 1: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Vertiefendes Seminar zur Vorlesung Biochemie

07.11.2014

Proteine: FaltungProteine: Faltung

Gerhild van Echten-Deckert

Fon. +49-228-732703

Homepage:http://www.limes-institut-bonn.de/forschung/arbeitsgruppen/unit-3/abteilung-van-echten-deckert/abt-van-echten-deckert-startseite/

Page 2: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Möglichkeiten der Assoziation von Möglichkeiten der Assoziation von MembranproteinenMembranproteinen mit der mit der LipidLipid--DoppelschichtDoppelschicht

Alberts et al. Molecular Biology of the Cell (2011)

Page 3: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Membranproteine unterscheiden sich durch ihre Topologie

Page 4: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

E ssi d tis h I f tiE ssi d tis h I f tiExpression der genetischen InformationExpression der genetischen Information

DNA mRNA Aminosäurenkette (linear) Natives i ( )DNA mRNA Aminosäurenkette (linear)

Protein (3D)Transkription Translation Faltung

LineareInformation

3 dimensionaleInformation

Page 5: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Das Experiment von C.B. AnfinsenDas Experiment von C.B. Anfinsen

Renaturierung von ungefalteter, denaturierter Ribonuklease

„Levinthal Paradoxon“

Page 6: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Wie falten Proteine?Wie falten Proteine?

U: UnfoldedI: IntermediateN: Native

Page 7: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Beginn der Helixbildung und Kollaps

Die Thermodynamik der Proteinfaltung als Freier-Enthalpie-Trichter. Am oberen Ende ist die Zahl der Konformationen, unddeshalb auch die konformationelle Entropie, hoch. Nur ein kleiner Bruchteil der intramolekularen Wechselwirkungen, die ind ti K f ti ft t i t b it h d Wäh d di F lt f t h it t i t d i d T i htder nativen Konformation auftreten, ist bereits vorhanden. Während die Faltung fortschreitet, verringert der in den Trichterführende thermodynamische Weg die Zahl der vorliegenden Zustände (die Entropie nimmt ab), erhöht die Menge desProteins in nativer Konformation und minimiert die Freie Enthalpie. Einbuchtungen am Rand des Trichters repräsentierensemistabile Zwischenprodukte der Faltung, die gelegentlich den Faltungsprozess verlangsamen können

Page 8: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological arrangements of the atomsprotein is displayed as a function of the topological arrangements of the atoms.The multiple states of the unfolded protein located at the top fall into a folding funnel consisting of an almost infinite number of local minima, each of which describes possible folding arrangements in the protein. Most of these states represent transient folding intermediates in the process of p p g pattaining the correct native fold. Some of these intermediates retain a more stable structure such as the molten globule, whereas other local minima act as folding traps irreversibly capturing the protein in a misfolded state.

Page 9: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

ProteinfaltungProteinfaltungIn vivo In vitro

200 – 400 mg/ml 0,01 – 0,02 mg/ml

Page 10: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological
Page 11: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Hsp 70 Hsp 60 (Chaperonine)

P k t G IProkaryonten

EukaryontenZytosol

Gruppe IGroEL: EubakterienHsp60: Mitochondrien

ChloroplastenyERMitochondrienChloroplasten

pGruppe II

Thermosom: ArchaebakterienTRIC: Zytosol - Eukaryonten

Page 12: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Overall architecture and dimensions of the GroEL–GroEScomplex. a, Van der Waals space-filling model of the entire

l i i l ki d f h G ES bi dicomplex in a top view looking down from the GroES-binding(cis) side; b, as a, but in a side view. The complex is colourcoded as follows: trans GroEL ring, red; cis GroEL ring, green;GroES, gold. c, C drawing of the 'inside' of the GroEL–GroESG o S, go d. c, C d aw g o e s de o e G o G o Scomplex. The view was produced by cutting the assembly openwith a plane containing the 7-fold axis. ADP molecules bound tocis GroEL ring are shown as space-filling models. a, b,P d d i Mid Pl (C t G hi L b tProduced using MidasPlus (Computer Graphics Laboratory,University of California, San Francisco); c, produced usingprogram O53. Nature 388, 741 - 750 (21 August 1997)

Page 13: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Bänderdarstellung einer GroELBänderdarstellung einer GroEL--UntereinheitUntereinheit

Page 14: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Der Reaktionszyklus von GroEDer Reaktionszyklus von GroE

Page 15: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Mechanismus der ChaperoneMechanismus der Chaperone--vermittelten Proteinfaltung bei vermittelten Proteinfaltung bei E.coliE.coli

(a)

(b)

a. Hsp70-System (Dnak, DnaJ, GrpE)b Ch i S (G EL G ES)b. Chaperonin-System (GroEL, GroES)

TIBS 23, Feb. 1998

Page 16: Vertiefendes Seminar zur Vorlesung Biochemie · Schematic of the folding energy landscape of a protein molecule where the energy of the protein is displa ed as a f nction of the topological

Proteinfaltung in EukaryontenProteinfaltung in Eukaryonten(a) (b)( ) ( )

a. Co-translationale Faltungb. Post-translationale Faltung TIBS 23, Feb. 1998