Baustoffdesign FF, SVB, HSC - TU Bergakademie...

Post on 06-Feb-2018

221 views 1 download

Transcript of Baustoffdesign FF, SVB, HSC - TU Bergakademie...

Baustoffdesign

Thomas A. BIER

Institut für Keramik, Glas- und Baustofftechnik, Leipziger Straße 28, 09596 Freiberg,

BaustoffdesignFF, SVB, HSC

Baustoffdesign

Material

Chemie

Mineralogie

Feinheit (SO, PSD)

Zemente PZ, TZ, C$

Füllstoffe

Organische StoffeDispergierbare Pulver

Zusatzmittel

Material

Chemie

Mineralogie

Feinheit (SO, PSD)

Zemente PZ, TZ, C$

Füllstoffe

Organische StoffeDispergierbare Pulver

Zusatzmittel

Verfahren

Mischen und Erhärtung

DSP

TemperaturAutoklav

Trocknen

Pressen /ExtrudierenZiegel

KS Stein

Macro Defect Free

Dry Mortar Technology – Special MortarsOptimization of Rapid Hardening Grouts

Rheology of Self Leveling Underlayments

Redispersible Polymer Powders in Self Leveling Underlayments

Refractories - CastablesBehavior at Temperature

Corrosion against Slags

Self Compacting ConcreteRheology and Early Shrinkage

Mix Design and Placing Underground

High Strength ConcreteRapid hardening Mortars, Concrete

Geopolymers

Autoclaved {Calcium Silicate} MaterialsDrying of CS Material

BauteileZiegel

KS Stein

Macro Defect Free

Baustoffdesign

Dry Mortar Technology – Special MortarsOptimization of Rapid Hardening Grouts

Rheology of Self Leveling Underlayments

Redispersible Polymer Powders in Self Leveling Underlayments

Refractories - CastablesHydration behavior

Behavior at Temperature

Corrosion against Slags

Self Compacting ConcreteRheology and Early Shrinkage

Mix Design and Placing Underground

High Strength ConcreteRapid hardening Mortars, Concrete

Geopolymers

Autoclaved Calcium Silicate MaterialsDrying of CS Material

Baustoffdesign

Density <1T°C <1000

Density>1T°C 1000-1500

Density >1,5T°C 1500

Conventional

Hydraulically bonded

Insulating castables

RegularRodding

RegularVibration

Self flow

Rodding

LCC

Vibration Vibration

Self flow

NCC

Hydraulically bonded Chemically bonded

Dense castables

Refractory Castables

Castables discussed

ULCC

Introduction - The family tree for Refractory Castables

Rodding

Vibration Vibration

MCC

VibrationSelf flow

VibrationSelf flow

Conventional Deflocculated

Baustoffdesign

Cement Fillers AdmixturesCAC with Silica fume Dispersants

- 70% Al2O3 Reactive alumina - TPP, HMP- 80% Al2O3 Spinel - Darvan 7S

MgO - Castament FS10Retarders

- Citric acid- Tri sodium citrate- Boric acid

Accelerators- Li2CO3

- Na2CO3

The universe of raw materials

Only one aggregatetabular aluminaOnly one aggregatetabular alumina

Baustoffdesign

Introduction - Conception of conventional and deflocculated castables

Ultra finefiller

Aggregate1-5 microns

4m

Aggregate1-5 microns

Water

Conventional Castable Low Cement Castable

Baustoffdesign

Comparison of the formulations used

Tabular alumina 6 - 10(mesh) 1/4 - 8

8 - 1414 - 2828 - 48

- 48- 100- 325

Spinel (mm) 0,5 - 10,5 - 00,045

Silica FumeReactive AluminaMagnesia70% CAC80% CACWater

The castables studied

SP-1-33166-5--9410-7--105

SP-2-33166-5--9410-11-6-5

SPF-202510-12105---2853-5,5

CC--14131132---------3011,6

22-1019-29-----510-5-5

LCC/SFC22-1019-29-----612-2-5

ULCC

Baustoffdesign

Influence of admixtures 'LCC/SFC '

% Admixtures

% Water

Working Time

Flow value in % at ± minASTM T0

T15T30T45T60

Darvan 7S : 0,05%CT : 0,015%Na2CO3 : 0,005%

5

80

1301241149970

Sodium Hexameta-phosphate(HMP) : 0,025%

5

88

13012211311095

System 1 System 2

Baustoffdesign

Influence of cement type

0 15 3045

60Time (min) Secar 80HMP only

HMP 0,05 + AB 0,01D7S 0,05 + AB 0,020

50

100

150

200

250

Flow (mm)

Baustoffdesign

Results - Influence of fillers

Characteristics of reactive aluminas

015

3045 60

050

100150200250

Flow value(mm)

System 2 : Al-3System 2 : Al-2

System 2 : Al-1System 1

Reactive alumina andflow value in spinelcastables

Al-1 Al-2 Al-3

BET m2/g 2,6 - 3,1 7,0 3,3

Primary crystal size micron 0,5 - 3,0 - 0,5 - 3,0

D50 micron 2,0 - 2,5 0,6 1,5

Alumina % >99,8 >99,7 >99,8

Na2O % 0,06 0,08 0,03

Baustoffdesign

Results - Influence of fillers

015

3045

60

HMP + OX500

50100150200250300

Flow value(mm)

HMP + 971UTPP + OX50

TPP + 971U

Baustoffdesign

Corrosion Behavior in a Steel Ladle

Baustoffdesign

Failure of Castables

Baustoffdesign

Different Stages in Castable Life

Baustoffdesign

Different Stages in Castable Life

Baustoffdesign

• reaktive Tonerde

• Wassergehalt

• MgO-Körnung

• hydratisierbare Tonerde

Spinellbeton mit einem 80%igen Tonerdezement (System 1)

Spinellbeton mit einem 70%igen Tonerdezement (System 2)

Spinellbildender Beton mit 70%igen Tonerdezement (System 3)

Spinellbeton mit hydratisierbarer Tonerde (System 4)

Einlußfaktoren

Baustoffdesign

System 1 System 2 System 3 System 4Rohstoffe in Gew.-% in Gew.-% in Gew.-% in Gew.-%

Tabulartonerde (mm) 2,36 - 6,7 33 33 20 33 1,18 - 2,36 16 16 25 16

0,6-1,18 6 6 10 6 -0,3 5 5 12 5

-0,15 - - 10 - -0,045 - - 5 -

Spinell (mm) 0,5 - 1 9 9 - 9 0 - 0,5 4 4 - 4

-0,045 10 10 - 10 RW-Füller - - 2 - Magnesia - - 5 - reakt. Tonerde 7 11 8 11 70%CAC - 6 3 - 80%CAC 10 - - - Alphabond 300 - - - 6 Wasser 6 5 5,5 6

H4

Folie 17

H4 - Isolatoren werden abgenommen wenn nötig nachbearbeitet, ansonsten Bomsen abgetrennt

- nun kommen wir zum Problem der Arbeit

- Bomsenabfall zeigen

- warum kann nich wiederverwendet werden??? SIC-Mist beschreiben und ring zum Massekonzept herstelenHolze; 12.06.2004

Baustoffdesign

reaktive Tonerde

Einfluss der Tonerdemenge im System 1

0

20

40

60

80

100

120

140

160

180

200

7,00% 9,00% 11,00% 13,00%

Tonerdeanteil

Flie

smaß

in m

m,

Kal

tdru

ckfe

stig

keit

in M

pa

0

5

10

15

20

25

30

Rohdichte in g/cm

^3, K

altbiegefestigkeit in Mpa,

offene Porosität in %

Druckfestigkeit (RT) Fliesmaß in mm Biegefestigkeit (RT)offene Porosität % Rohdichte in g/cm3

System 1

- Tonerdegehalt- Feinheit der Tonerde - Additive

Verschiedene Tonerden

0

20

40

60

80

100

120

140

160

180

CT3000SG CTC40 CL370C CT9FG

eingesetzte Tonerde (geordnet nach abnehmender spezif. Oberfläche)

Flie

smaß

in m

m,

Kal

tdru

ckfe

stig

keit

in M

pa0

5

10

15

20

25

Rohdichte in g/cm

^3, K

altbiegefestigkeit in Mpa,

offene Porosität in %

Druckfestigkeit (RT) Fliesmaß in mm Biegefestigkeit (RT)

offene Porosität % Rohdichte in g/cm3

Baustoffdesign

Wirkung der verwendeten Additive im System 2

0

50

100

150

200

250

0,3%

Cas

tamen

t

0,08%

Cast+0

,01%

Zitrs

.+0,00

5%NaC

O3

0,3%

Cast+0

,002L

iCO3

0,05%

D7S+0

,02%

Bors.+0

,001

%NaC

O3

0,1HMP

0,06%

HMP+0,01

%Bors.

0,1TPP

Zusätze

Flie

smaß

in m

m,

Kal

tdru

ckfe

stig

keit

in M

pa

0

5

10

15

20

25

30

35

40

Rohdichte in g/cm

3̂, K

altbiegefestigkeit in Mpa,

offene Porosität in %

Druckfestigkeit (RT) Fliesmaß in mm Biegefestigoffene Porosität % Rohdichte in g/cm3

Wassergehalt System 2

- Wassergehalt- Additive

Verschiedene Castamentgehalte

0

20

40

60

80

100

120

140

160

180

200

0% 0,20% 0,30% 0,40%

Castamentgehalt

Flie

smaß

in m

m,

Kal

tdru

ckfe

stig

keit

in M

pa0

5

10

15

20

25

30

35

40

Rohdichte in g/cm

^3, K

altbiegefestigkeit in Mpa,

offene Porosität in %

Druckfestigkeit (RT) Fliesmaß in mm Biegefestigkeit (RT)

offene Porosität % Rohdichte in g/cm3

Baustoffdesign

MgO-Körnung System 3

- verschiedene MgO-Körnungen - Additive

Einfluss verschiedener MgO-Körnungen

0

50

100

150

200

250

MgO 1 MgO 2 MgO 3 MgO 4

eingesetzte MgO-Körnungen

Flie

smaß

in m

m,

Kal

tdru

ckfe

stig

keit

in M

pa

0

5

10

15

20

25

30

35

40

Rohdichte in g/cm

3̂, K

altbiegefestigkeit in Mpa,

offene Porosität in %

Druckfestigkeit (RT) Fliesmaß in mm Biegefestigkeit (RT)

offene Porosität % Rohdichte in g/cm3

Baustoffdesign

Wirkung verschiedener Alphabondgehalten mit 1%ADW

0

20

40

60

80

100

120

140

160

180

4 6 8

Alphabondgehalt in %

Flie

smaß

in m

m,

Kal

tdru

ckfe

stig

keit

in M

pa

0

5

10

15

20

25

Rohdichte in g/cm

^3, K

altbiegefestigkeit in Mpa,

offene Porosität in %

Druckfestigkeit (RT) Fliesmaß in mm Biegefestigkeit (RT)

offene Porosität % Rohdichte in g/cm3

hydratisierbare Tonerde System 4

- Tonerdegehalt- Additive

System 4 mit verschiedenen Additiven

0

20

40

60

80

100

120

140

160

180

200

1%ADW1 0,2% ZS 0,05%ZS+0,5%BL05

Zusätze

Flie

smaß

in m

m,

Kal

tdru

ckfe

stig

keit

in M

pa

0

5

10

15

20

25

30

Rohdichte in g/cm

^3, K

altbiegefestigkeit in Mpa,

offene Porosität in %

Druckfestigkeit (RT) Fliesmaß in mm Biegefestigkeit (RT)

offene Porosität % Rohdichte in g/cm3

Baustoffdesign

H3-1 H3-2 H3-3Korund 6978 11368 10156Spinell 2192 2333 2759Nephelin 128 374 445C3A5 134 - - CA6 2068 - 177

Baustoffdesign

Formation of Phases as a Function of Temperature

Korund

Spinellbeta-Tonerde

Periklas

Quarz Nephelin

80°C 1200°C 1600°C

Baustoffdesign

SEM Investigations

Baustoffdesign

SVB

SVB for a tunnel shell in the research mine of TU Bergakademie Freiberg

Excavation

Baustoffdesign

SVB for a tunnel shell in the research mine of TU Bergakademie Freiberg

Lining

SVB

Baustoffdesign

SVB for a tunnel shell in the research mine of TU Bergakademie Freiberg

Reinforcement

SVB

Baustoffdesign

SVB for a tunnel shell in the research mine of TU Bergakademie Freiberg

Framework

SVB

Baustoffdesign

SVB for a tunnel shell in the research mine of TU Bergakademie Freiberg

Concreting

SVB

Baustoffdesign

SVB for a tunnel shell in the research mine of TU Bergakademie Freiberg

Finished shell

SVB

Baustoffdesign

SVB for a tunnel shell in the research mine of TU Bergakademie Freiberg

Finished shell

Baustoffdesign

Entrained Air

Sedimentation

Self Compaction

Flow Value [mm]

Stagnation Fu

nnel

Tim

e [s

]

Workability Evaluation according to DAfStB

DAfStb-Richtlinie Selbstverdichtender Beton (Ausgabe Nov, 2003) ANHANG Q; Q.1 Seite 32

Baustoffdesign

5

10

15

20

25

30

35

30 31 32 33 34 35

Flow Value [cm]

Funn

el T

ime

[s]

Lime Stone Powder

Fly Ash

Fly Ash + RHA

Fly Ash + SF

LSP

FA + RHA

FA

FA + SF

Cem I Cem I

Cem I

Cem I Cem II

Cem II

Cem II Cem II

Cem III

Cem III

Cem III

Cem III

Example: Workability for different Powder Additions

Ranking CEM II and III:LSP » FA+SF » FA+RHA » FA

Thomas A. Bier, Syed A. Rizwan:” EARLY SHRINKAGE IN SELF-COMPACTING MORTARS USING SECONDARY RAW MATERIALS” 9th Symposium on High Performance Concrete Rotorua, NZ, (2011)

Baustoffdesign

Workability Boxes according to Wallevik

O.H. Wallevik, J.E. Wallevik, Rheology as a tool in concrete science: The use of rheographs and workability boxes,Cem. Concr. Res. (2011)

Baustoffdesign

Workability Boxes for SCC

O.H. Wallevik, J.E. Wallevik, Rheology as a tool in concrete science: The use of rheographs and workability boxes,Cem. Concr. Res. (2011)

Baustoffdesign

Workability Boxes for different Applications

O.H. Wallevik, J.E. Wallevik, Rheology as a tool in concrete science: The use of rheographs and workability boxes,Cem. Concr. Res. (2011)

Baustoffdesign

Plasticizers and Stabilizers

Baustoffdesign

Entrained Air

Sedimentation

Self Compaction

Flow Value [mm]

Stagnation Fu

nnel

Tim

e [s

]

DAfStb-Richtlinie Selbstverdichtender Beton (Ausgabe Nov, 2003) ANHANG Q; Q.1 Seite 32

Plasticizers and Stabilizers

Baustoffdesign

Classical View into Workability

Baustoffdesign

Classical View into Workability

Baustoffdesign

500

750

1000

1250

1500

1750

2000

0 1 2 3 4 5 6 7

Yield Stress [Pa]

Vis

cosi

ty [m

Pas]

W/C = 0.4 W/C = 0.45 W/C = 0.5

Apparent Viscosity and Yield Stress in Pastes

Baustoffdesign

Funnel Time vs. Mini Slump in Pastes

5

15

25

35

10,00 15,00 20,00 25,00 30,00 35,00Mini Slump [cm]

Funn

el T

ime

[s]

W/C = 0.40 W/C = 0.45 W/C = 0.50

Baustoffdesign

Funnel Time vs. Flow Value

0

5

10

15

20

25

30

35

30,5 31 31,5 32 32,5 33 33,5 34

Mini Slump (cm)

Funn

el T

ime

(s)

Lime Stone PowderFly AshFly Ash + Rice Husk AshFly Ash + Silica Fume

Baustoffdesign

Self Compacting Mortars with Mineral Additives

Mortars with Fly Ash at two exposures

-600

-500

-400

-300

-200

-100

0

100

200

300

0 8 16 24

Time (Hours)Sh

rinka

ge/E

xpan

sion

(µm

/m)

C1-FA-Uncovered C1-FA-covered C2-FA-UncoveredC2-FA-Covered C3-FA-Uncovered C3-FA-covered

[Syed Ali Rizwan, Thomas. A Bier and Muhammad Sharif Nizami:” HIGH PERFORMANCE SELF-COMPACTING MORTARS CONTAINING POZZOLANIC POWDERS” BMC8, Poland(2006)]

Mortars with Lime Stone Powder at two exposures

-3000

-2500

-2000

-1500

-1000

-500

0

500

0 8 16 24

Time(Hours)

Shrin

kage

(µm

/m)

C1-LSP-Uncovered C1-LSP-Covered C2-LSP-UncoveredC2-LSP-Covered C3-LSP-Uncovered C3-LSP-Covered

Limestone Fly Ash

Baustoffdesign

Pedestrian Bridge in Sakata, Japan (Ductal)

Conception of conventional and deflocculated, dense concrete

Ultra finefiller

Cement grain1-5 microns

Ultra finefiller

Cement grain1-5 microns

4m

Cement Grain1-5 microns

Water

Conventional Concrete Low W/C Concrete

Design and ConstructionUltra High Strength Concrete

Baustoffdesign

Ultra High Strength ConcreteRunway D – Haneda Airport

Photo courtesy Prof. Kawakami

Baustoffdesign

Ultra High Strength ConcreteRunway D – Haneda Airport

Photo courtesy Prof. Kawakami

Baustoffdesign

Reactive-Powder Concrete (RPC)

Properties:High strength — 200 MPa

(can be produced to 810 MPa)

Very low porosity

Properties are achieved by:Max. particle size 300 mOptimized particle packing

Low water content

Steel fibers

Heat-treatment

Baustoffdesign

Mechanical Properties of RPC

Property Unit 80 MPa RPCCompressive strength MPa (psi) 80 (11,600) 200 (29,000)

Flexural strength MPa (psi) 7 (1000) 40 (5800)

Tensile strength MPa (psi) 8 (1160)

Modulus of Elasticity GPa (psi) 40 (5.8 x 106) 60 (8.7 x 106)

Fracture Toughness 103 J/m2 <1 30

Freeze-thaw RDF 90 100

Carbonation mm 2 0

Abrasion 10-12 m2/s 275 1.2

Baustoffdesign

What is the typical Ductal® mix ?

230 kg/m3

710 kg/m3

210 kg/m3

40 - 160 kg/m3

13 kg/m3

140 kg/m3

1020 kg/m3

Cement

Silica fume

Crushed Quartz

Sand

Fibres

Superplasticizer

Total water

No aggregates !

uctal

Baustoffdesign

Ultra High Strength ConcretePerformance