Übungen zur Biologie IA WS2003/2004 Endomembransystem Elektronenmikroskopie.

Post on 06-Apr-2016

219 views 1 download

Transcript of Übungen zur Biologie IA WS2003/2004 Endomembransystem Elektronenmikroskopie.

Übungen zur Biologie IA WS2003/2004

EndomembransystemElektronenmikroskopie

Elektronenmikroskopie

• Historie– 1924 L. de BROGLIE: Wellencharakter der

Elektronenstrahlen– 1932 M. KNOLL und E. RUSKA bauen das

erste Elektronenmikroskop– 1945 K. R. PORTER, A. CLAUDE und E.

F. FULLAM: Erstes EM-Bild einer Zelle – 1957 D. ROBERTSON: Struktur der PM

Auflösung:

• Auflösungsvermögen: Vermögen, zwei nahe beieinanderliegende Punkte getrennt darzustellen.– Mensch: 0,1 mm– LM ( = 550 nm): 0,2 µm– TEM ( = 0,005 nm): 0,2 nm (bei

biologischen Präparaten in der Realität ca. 2 nm)

Probleme und Lösungen der EM:

Hochvakuum erforderlich→ Entwässerung (kein lebendes Material): Alkohole, Aceton,

kritische Punkttrocknung

Stabilität des Präparates → Fixierung/Einbettung in Kunstharze: Chemische (Aldehyde und Osmium) oder physikalische Fixierung (Kryomethoden)

Ablenkung abhängig vom Atomgewicht → Kontrastierung mit Schwermetallen Uranylacetat, Bleizitrat

Auflösung von Präparatedicke abhängigDünnschnitte 60-100 nm

Auflösung von Präparatedicke abhängig

EM-Bilder• EM grundsätzlich schwarz/weiß -

entsprechen elektronendichten und –durchlässigen Bereichen

Aufbau und Strahlengang des

Transmissionselektronenmikroskop (TEM)

Rasterelektronenmikroskop (REM, engl. SEM)

• Biologische Präparate - selbst einzelne Zellen - sind meist zu groß und zu dick, um als Ganzes verwendet zu werden. In der Regel müssen Querschnitte angefertigt werden. Die Schnittechnik erfordert die Einhaltung folgender Schritte:

• Fixierung des Materials, üblicherweise mit Glutaraldehyd (zur Stabilisierung der Proteinstrukturen) und Osmiumtetroxyd (zur Festigung von Membranen), dann Entwässerung.

• Entwässerung meist durch aufsteigende Ethanol-Reihe

• Einbettung in Kunstharz (meist auf Epoxydbasis). Durch Imprägnierung werden die zellulären Strukturen stabilisiert. Ohne diese Verfestigung würden sie im Vakuum (im Elektronenmikroskop) kollabieren.

• Schneiden des in Kunstharz eingeschlossenen Materials: Benötigt wird ein Ultramikrotom, mit dem Schnittdicken von 15-100 nm erzielt werden können.

• Überführung der Schnitte auf einen Objektträger: Die Objektträger bestehen aus Kupfernetzchen, die von einem kohleverstärkten Kunststoffilm (Formvar) überzogen sind.

• Kontrastierung: Es gibt zwei prinzipiell verschiedene Möglichkeiten der Kontrastierung: Bedampfung und "Färbung" mit Schwermetallionen.

• 1.    Bedampfung: Präparate werden im Vakuum einer Metalldampfwolke (meist: Platin oder Platin/Kohle, Gold, Vanadium, Chrom, Blei u.a.) ausgesetzt.

• 2.    Bei der Kontrastierung durch Schwermetallionen werden die Präparate mit Uranylacetat- oder Bleicitratlösung behandelt. Man spricht von positive staining, wenn eine Struktur das Kontrastierungsmittel absorbiert hat oder wenn es von ihm eingelagert wird. Dem steht das negative staining gegenüber, bei dem sich die Metallionen um die eigentlichen Strukturen herum lagern. Im Elektronenmikroskop ist demnach nicht die Struktur selbst, sondern die Umgebung durch hohen Kontrast gekennzeichnet. Negative staining wird in der Regel zur Sichtbarmachung von Makro-molekülen und Molekülkomplexen (Ribosomen, Viren u.a.) eingesetzt.

Bedampfung mit Metallen

Spezielle EM-Techniken• Gefrierbruchverfahren• Lokalisation von z.B. Proteinen mittels Antikörper

1. Elektronenmikroskopie 

A) Bakterium (Escherichia coli): Beschriften Sie die Zeichnung und bestimmen Sie die Vergrößerung.

 

Vergrößerung: 40 000X

Plasmamembran

DNA (Nucleoid)

Ribosomen im Cytoplasma

B) Tierische Zelle ( Epithelzelle) 

Beschriften Sie die markierten Strukturen.

1) Lysosomen

2) Plasmamembran

3) Golgi-Apparat

4) Zellkern

5) Mitochondrion

6) Nucleolus

7) Chromatin (Heterochromatin)

8) Raues ER

1

7 6

5

2

3

4

8

C) Tierische Zelle (Detail) 

Beschriften Sie die Abbildung und bestimmen Sie die Vergrößerung.Markieren Sie das Lumen des rauen ERs und der Kernhülle farbig!

Vergrößerung: 61 000x

Golgi-Stapel

raues ER

Transport-vesikel

Kernhülle

Zellkern

D) Pflanzliche Zelle (Mesophyllzelle, Mais, 5 000x) 

Beschriften Sie die Zeichnung und zeichnen sie einen 3 µm Maßstab ein.

Mitochondrion

Plasmamembran

Zellwand

Nucleolus

Zellkern

Chloroplast

Stärkekorn

Vakuole

E) Pflanzliche Zelle (Detail, Tabakpflanze, Vergrößerung 20 000x) 

Beschriften Sie die Zeichnung und zeichnen Sie einen 500 nm Maßstab ein.

Chloroplast

Mitochondrion

Peroxisom

Vakuole

Zellwand

F) Einzellige Alge (Chlamydomonas reinhardtii, Vergrößerung 10 000x) Beschriften Sie die Zeichnung und zeichnen sie einen 1 µm Maßstab ein.

Geißel

Zellwand

Mitochondrion

Zellkern

Golgi-Stapel

Chloroplast

Vakuole

ER

Beobachtung von kontraktilen Vakuolen in lebenden Zellen

Bestimmen Sie die Periodenlänge (Zeitdauer für einen kompletten Zyklus). Bestimmen Sie die maximale Größe der kontraktilen Vakuolen (10 verschiedene Zellen, bilden Sie den Mittelwert). Berechnen Sie die Flüssigkeitsmenge (Volumen einer Kugel V = 4/3 r³), die von den kontraktilen Vakuolen in 1 min ausgeschieden werden.  

  

Ausgeschiedene Flüssigkeitsmenge: Für obige Werte ergeben sich 2637 µm³V Vakuole= 248 µm³ (1 µl = 1 mm³)

Einzelmessungen Mittelwert

Periodenlänge (s) 11.3

Max. Durchmesser (µm)

7.8

Phagocytose bei Paramecium

Kinetik der Phagocytose von Tuschepartikeln bei Tetrahymena

Tetrahymena Zellen werden mit einer 1%igen Tuschelösung versetzt. Die Zellen nehmen die Tuschepartikel in Phagosomen auf. Zu verschiedenen Zeitpunkten werden Proben fixiert. Bestimmen Sie die Anzahl der Phagosomen („Nahrungsvakuolen“) zu jedem Zeitpunkt (mindestens 5-10 Zellen, Mittelwert bilden). Anschließend tragen Sie die Mittelwerte gegen die Zeit auf. Interpretieren Sie das Ergebnis.

Einzelmessungen Mittelwert5 min10 min15 min20 min30 min40 min60 min

Interpretation: