14a AP09 Piezo Lecture SOHN

77
 Piezoelectric Sensor and its Applications Hoon Sohn Department of Civil and Environmental Engineering  Daejeon, Korea  epar men o v an nv ronmena ng neer ng Carnegie Mellon University Pittsburgh, PA

Transcript of 14a AP09 Piezo Lecture SOHN

Page 1: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 1/77

 

Piezoelectric Sensor and its Applications

Hoon Sohn

Department of Civil and Environmental Engineering

 

Daejeon, Korea

 epar men o v an nv ronmen a ng neer ng

Carnegie Mellon University

Pittsburgh, PA

Page 2: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 2/77

Outline

•Introduction to Piezoelectricity

•  

• Polarization Process

•Various types of piezo actuation and sensing modes

•Applications

•Precision control

•Power harvesting

•Guided wave based damage detection

•Impedance based damage detection

•PZT self-diagnosis

2Asian Pacific Summer SchoolSmart Structure and System Laboratory

•Non-contact and wireless excitation and sensing of PZT

Page 3: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 3/77

What is Piezoelectricity?

Piezoelectricity means “pressure electricity”, which is usedto describe the coupling between a material’s mechanicalan e ec r ca e av ors.

–stretched, electric charge is generated across the material.

– Inverse piezoelectric effect : Conversely, when subjected to ae ec r c vo age npu , a p ezoe ec r c ma er a mec an ca ydeforms.

silicon

δ, deformation

atoms

oxygenatoms

F Applied Force

+ +x

-

--

-

-

+

++

FixedMicroscopic View

--

- - --

+ + ++

x

-

--

-

-

+

+

+

+

+

3Asian Pacific Summer SchoolSmart Structure and System Laboratory

Piezoelectricity

Page 4: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 4/77

Brief History of Piezoelectricity

Pierre Curie and his brother Jacques first discovered thepiezoelectricity phenomenon in quartz and Rochelle salt in 1880 and

“ ”, .

– Piezoelectric effect was first found in certain crystalline minerals:zinc blende tourmaline uartz rochelle salt can su ar  etc. 

– In 1940, piezoelectricity was demonstrated in the first syntheticpiezoelectric substance – Barium titanate.

4Asian Pacific Summer SchoolSmart Structure and System Laboratory

Pierre Curie, 1905 Jacques Curie, 1926

Page 5: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 5/77

Natural Piezoelectric Materials

Piezoelectric Crystals (natural material)– 2  – Rochelle salt (NaKC4H4O6· H2O): water soluble

– EDT (ethylene diamine tartrate) and DKT (diapotassium tartrate) –

– Perovskite family: the group of ferroelectric crystals represented byBaTiO3 is called the perovskite family.

5Asian Pacific Summer SchoolSmart Structure and System Laboratory

Rochelle salt

Page 6: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 6/77

Artificially Synthesize Piezoelectric Materials

Piezoelectric Ceramics (man-made materials) – 3

– Lead Zirconate Titanate (PbZrTiO3) = PZT, most widely used

– The composition, shape, and dimensions of a piezoelectric ceramice ement can e ta ore to meet t e requ rements o a spec cpurpose.

6Asian Pacific Summer SchoolSmart Structure and System Laboratory

Photo courtesy of MSI, MA

Page 7: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 7/77

Piezoelectricity (Piezo means “squeeze” in Greek)

In piezoelectric materials such as quartz, the generatedcharge (Q) is proportional to the applied force (F ):

dF Q = 

dF C QV  == /

 

Artificially polarized materials such as ceramics and some

effect.

below the Curie

+

 have randomly oriented

dipoles

empera ure, s

polarization remainspermanent

-

7Asian Pacific Summer SchoolSmart Structure and System Laboratory

High temperature produces stronger agitation of dipoles and when they

are subjected to electric field, they are aligned along the field lines

Page 8: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 8/77

Poling (or Polarization) Process

The piezoelectric property of ceramics does not arise simply from itschemical composition.

n a on o av ng e proper ormu a on, p ezoe ec r c ceram csmust be subjected to a high electric field for a short period of time to

force the randomly oriented micro-dipoles into alignment. This" ".

8Asian Pacific Summer SchoolSmart Structure and System Laboratory

Picture courtesy of G Cook, EDO Electro Ceramics Products, and Sensor Magazine

Page 9: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 9/77

Poling (or Polarization) Process II

  e oma ns are a gne y expos ng e e emen o a s rong,electric field, usually at an elevated temperature to accelerate the

process.  roug t s po ar z ng po ng  treatment, oma ns most near y

aligned with the electric field expand at the expense of domains thatare not aligned with the field.

When the electric field is removed most of the dipoles are lockedinto a configuration of near alignment. The ceramics now has apermanent polarization.

Depoling might occur if high electrical field or heat is applied to thepiezoelectric ceramics material by accident.

9Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 10: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 10/77

How Piezoelectricity is related to Curie Temperature?

Above the Curie temperature, each perovskite crystallite

exhibits simple cubic symmetry, with no dipoles moment

Below the Curie tem erature, however, each cr stallite

has tetragonal or rhombohedral symmetry and a built-in

di ole moment which ma be reversed or switched to

certain allowed directions under an applied electric field.

 

certain temperature, called a Curie temperature, it will

.

temperature, the piezoelectric material will NOT regain its

10Asian Pacific Summer SchoolSmart Structure and System Laboratory

.

Page 11: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 11/77

Characteristics of Piezoelectric Ceramics

Mechanical Limitations– Mechanical stress sufficient to disturb the orientation of the

domains in a piezoelectric material can destroy the alignment of thedi oles. Dro in a iezoelectric element could kill the material!

Thermal Limitations– If a piezoelectric ceramic material is heated to its Curie point, the

domains will become disordered and the material will bedepolarized. The recommended upper operating temperature for a

ceramic usuall is a roximatel half-wa between 0°C and theCurie point.

– Also, sudden temperature fluctuations can generate relatively high

, .

11Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 12: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 12/77

Characteristics of Piezoelectric Ceramics

Electronic Limitations– Exposure to a strong electric field, of polarity opposite that of the

polarizing field, will depolarize a piezoelectric material.–

cycle in which polarity is opposite that of the polarizing field.– Often the operational voltage of the piezoelectric materials are

prov e n e spec ca on

Long-Term Stability – os proper es o a p ezoe ec r c ceram c e emen egra e

gradually, in a logarithmic relationship with time after polarization.

– Exact rates of aging depend on the composition of the ceramicelement and the manufacturing process.

12Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 13: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 13/77

Piezoelectric Properties

Because a piezoelectric ceramic is anisotropic, physical constantsrelate to both the direction of the applied mechanical or electric force

. ,each constant generally has two subscripts that indicate the

directions of the two related quantities.  

the Z-axis of a rectangular system of X, Y, and Z axes. Direction X,Y, or Z is represented by the subscript 1, 2, or 3, respectively, and

, ,

or 6, respectively.

13Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 14: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 14/77

Piezoelectricity Terminologies

Strain constant d: relates the mechanical strain producedby an applied electric field. The units may then beexpresse as me ers per me er, per vo s per me er(meters per volt).

d (m/V) = strain development / applied electric field

Volatge constant, g: relates the electric field produced by amec an ca s ress. e un may en e expresse asvolts/meter per newtons/square meter.

g (Vm/N) = open circuit electric field / applied mechanical stress

14Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 15: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 15/77

Piezoelectricity Terminologies (continued)

Coupling constant: describe the conversion of energy bythe ceramic element from electrical to mechanical form orv ce versa. e ra o o e s ore conver e energy o onekind (mechanical or electrical) to the input energy of thesecond kind electrical or mechanical is defined as thesquare of the coupling coefficient.

k2 = mechanical energy stored / electrical energy applied or

electrical energy stored / mechanical energy applied

15Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 16: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 16/77

Application Overview for Piezoelectric Materials

The piezoelectric effect is used in sensing applications, such as inforce or displacement sensors.

e nverse p ezoe ec r c e ec s use n ac ua on app ca ons, sucas in motors and devices that precisely control positioning, and in

generating sonic and ultrasonic signals. Piezoelectric materials are also pyroelectric. They produce electric

charge as they undergo a temperature change. So they can be usedfor thermometer (see the picture on the right).

16Asian Pacific Summer SchoolSmart Structure and System Laboratory

ezo o or c ua or ezo enera or ensor  

Page 17: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 17/77

Various Types of Pizeo Actuators (Motors)

17Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 18: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 18/77

Various Types of Pizeo Sensors (Generators)

18Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 19: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 19/77

Thermal Dependency of Piezpelectric Properties

19Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 20: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 20/77

Typical Spec Sheet of Piezoelectric Materials

20Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 21: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 21/77

Applications: Micro Fiber Composites (MFC)

The Macro Fiber Composite (MFC) is an innovative actuator that offers- .

consists of rectangular piezo ceramic rods sandwiched between layersof adhesive and electroded polyimide film. This film containsinterdi itated electrodes that transfer the a lied volta e directl to andfrom the ribbon shaped rods. This assembly enables in-plane poling,actuation, and sensing in a sealed, durable, ready-to-use package.When embedded in a surface or attached to flexible structures, theMFC actuator provides distributed solid-state deflection and vibrationcontrol.

Inactive Zone

Interdigitized 

ElectrodesPiezoceramic

Fiber 

21Asian Pacific Summer SchoolSmart Structure and System Laboratory

Transition Zone with Field 

Concentration

 Interdigitized 

Electrodes

Page 22: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 22/77

Applications: Piezoelectric Composites

Piezoelectric Composites– A combination of piezoelectric ceramics and polymers

to attain properties which can be not be achieved in asingle phase

Image courtesy of MSI, MA

22Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 23: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 23/77

Applications: Precision Control Applications

Precision Machining

 Nano positioning for microscope

23Asian Pacific Summer SchoolSmart Structure and System Laboratory

Photo courtesy of PI, Inc, Germany, and APC Int. Ltd., USA Positioning for laser vibrometer 

Page 24: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 24/77

Applications: Digital Micromirror Display (TexasInstrument)

Creates the computer projector Torsional mirrors respond to charges in integrated SRAM

  800,000 t ny, -sta e m rrors

Each mirror is 16 x 16 μm

 

24Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 25: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 25/77

Applications: Vibration Control

Inflatable structures are beingdesigned for space exploration

,excessive vibration is one of themain concerns for this type ofstructure. Research is beinconducted to use MFC forvibration control.

25Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 26: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 26/77

Applications: Ultrasonic Piezoelectric Motor

Advantages (compared to electromagnetic motor):faster response times, higher positioningprecision, hard brake with no backlash, highpower-to- weight ratio, and smaller packaging

envelope, lower profile (no iron cores required),an m n ma no se

Drawbacks (compared to electromagnetic motor):low horsepower.

An piezoelectric motor from EDO is shown on theright: This low-profile (<0.20 in. high), low inertiamotor uses solid-state piezoelectric crystals foraccurate, repeatable motion. The 130 kHz drivefrequency provides speeds of 250 mm/s, with a 6

ms response time and a dynamic resolution of< . m cron over severa nc es. e orce ou puto weight ratio is 14:1.

26Asian Pacific Summer SchoolSmart Structure and System Laboratory

Courtesy of G. Cook, EDO Electro-Ceramics Product

Page 27: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 27/77

Applications: Water Strider Robot

To develop a microrobot that takes advantage of the surface tension ofwater to stay and maneuver on water with power efficiency and agility.

characteristics of floating on the surface of water. Micro-actuators(PZT) are used to simulate water striders’ moveents.

. . .

A leading team member: Yun Seong Song 2nd year Masters student inMechanical Engineering B.S. in Mechanical Engineering and

.

27Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 28: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 28/77

Applications: PZT based Power Harvesting

28Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 29: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 29/77

Commercial Energy Harvesting Devices

29Asian Pacific Summer SchoolSmart Structure and System Laboratory

Another new energy harvester form Joule Thief from Adaptivenergy.com

Page 30: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 30/77

Applications: Electrical Impedance Method

This method utilizes electrical impedance measurements (=complex ratio of voltage and current) to infer the behavior ofstructural impedance (= ratio of force and velocity) which issensitive to local structural damage.

“monitoring for spot-welded structural joints,” by V. Giurgiutiu etal, J. Intelligent Mat. Systems and Structures, vol. 10, 1999, pp.802-812.

 Apply forceT

R

U

C

P

ZElectr ical ImpedanceMechanical Impedance

( ..

Current Output (I)Induce strain

T

U

R

E

T(

30Asian Pacific Summer SchoolSmart Structure and System Laboratory

A li ti f th I d M th d t

Page 31: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 31/77

Applictions of the Impedance Method toBolt Loosening Detection

444

Baseline 

40

41

42

   p  a

  r   t   (   V   /   I   )

amage

125 130 13536

37

38

39

   R  e  a   l 

PZT atchFre uenc kHzFrequency (kHz)

18.6

18.83

BaselineDama e I11

12PZT 2

BaselineDamage I

 

18

18.2

18.4

  a   l   p

  a  r   t   (   V   /   I   )

9

10

  a   l   p  a  r   t   (   V   /   I   )

125 130 13517.4

17.6

17.8   R  e

 125 130 1356

7

   R  e

 

31Asian Pacific Summer SchoolSmart Structure and System Laboratory

 

Page 32: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 32/77

Applications: Smart Layer

  mar ayer s a n e ec r c m w u - n p ezoe ec r c sensornetworks for monitoring of the integrity of composite and metal

structures developed by Prof. F.K. Chang and commercialized by the, .comprised of distributed piezoelectric actuators and sensors.

32Asian Pacific Summer SchoolSmart Structure and System Laboratory

Image courtesy of FK Chang, Stanford Univ.

Page 33: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 33/77

Applications: Guided wave based damage detection

Read paper:– “Embedded NDE with Piezoelectric Wafer-Active

ensors n erospace pp cat ons, y .Giurgiutiu, Journal of Materials (JOM), Onlinespecial issue on Nondestructive Evaluation,Januar 2003.

Embedded piezoelectric wafer-active sensors(PWAS) is capable of performing in-situnondestructive evaluation NDE of structuralcomponents such as crack detection.

33Asian Pacific Summer SchoolSmart Structure and System Laboratory

Image courtesy of V. Giurgiutiu, USC

Page 34: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 34/77

34Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 35: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 35/77

35Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 36: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 36/77

36Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 37: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 37/77

37Asian Pacific Summer SchoolSmart Structure and System Laboratory

Page 38: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 38/77

38Asian Pacific Summer SchoolSmart Structure and System Laboratory

S t i d A ti t i M d f L b W

Page 39: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 39/77

Symmetric and Anti-symmetric Modes of Lamb Waves

PZT wafer

Symmetric     t   h

   i  c   k  n  e  s  s

Mode   P   l  a   t

Wave propagationPZT wafer

Anti-symmetric   k

  n  e  s  s

o e

   P   l  a   t  e   t   h   i

39Asian Pacific Summer SchoolSmart Structure and System Laboratory

Source: http://www.me.sc.edu/research/lamss/research/Waves/ewaves.htm 

Symmetric Mode of Lamb Waves

Page 40: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 40/77

Symmetric Mode of Lamb Waves

40Asian Pacific Summer SchoolSmart Structure and System Laboratory

Anti-Symmetric Mode of Lamb Waves

Page 41: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 41/77

Anti-Symmetric Mode of Lamb Waves

41Asian Pacific Summer SchoolSmart Structure and System Laboratory

Dispersion and Multi-Mode Characteristics of Lamb Waves

Page 42: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 42/77

Dispersion and Multi Mode Characteristics of Lamb Waves

Dispersion Curve of Group Velocity

oS 1SoS

   /  m

  s   )

  v  e   l  o  c   i   t  y   (

oA

oA1A

2S

   G  r  o

  u  p

Frequency (MHz) for a given plate thickness (1/4 inch)

While wave speed is independent of frequency in bulk (body) waves, wave speed varies

with frequency in Lamb wave propagation. This dispersion carries important implications

for Lamb wave anal sis. The anal sis is further com licated b the coexistence of at least

42Asian Pacific Summer SchoolSmart Structure and System Laboratory

 

two modes at any given frequency.

Impact Test Setup to Seed Delamination Damage

Page 43: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 43/77

Impact Test Setup to Seed Delamination Damage

  –, , . .

43Asian Pacific Summer SchoolSmart Structure and System Laboratory

Composite plate in a hanging condition A snap shot during an impact test

Visual Inspection of Damage after 37 m/v Impact

Page 44: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 44/77

Visual Inspection of Damage after 37 m/v Impact

 

Detection of internal delamination

via ultrasonic scan 

44Asian Pacific Summer SchoolSmart Structure and System Laboratory

Change of Response Signal due to Damage

Page 45: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 45/77

Change of Response Signal due to Damage

Impact location

 

Damaged paths with DI > 0.3 Estimated DelaminationImpact location with 37 m/s

A mode

Response time signals

corresponding to a damaged path    t  r  a   i  n

 

(from PZT 6 to PZT 9)

Before impact

45Asian Pacific Summer SchoolSmart Structure and System Laboratory

Time

Operational and Environmental Variations

Page 46: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 46/77

Operational and Environmental Variations

 changing boundary conditions, temperature variation,

surface debris can cause false ositive indication of

46Asian Pacific Summer SchoolSmart Structure and System Laboratory

damage.

Experimental Setup for Varying Temperature

Page 47: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 47/77

Experimental Setup for Varying Temperature

Specimen for Varying Temperature Test

Controller 

Infrared

Controller 

Infraredpec menpec menea er ea er 

SpecimenSpecimen

47Asian Pacific Summer SchoolSmart Structure and System LaboratoryTest using an Infrared Heater Test using a Temperature Chamber

Variations of Time Signals Under Changing Temperature (2mm crack)

Page 48: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 48/77

 

0.05

0.10

-30oC 0oC 22oC 70oC

 

0.100mm 0.5mm 1.0mm 2.0mm

0.100mm 0.5mm 1.0mm 2.0mm

 

-

0.00

   O

  u   t  p  u   t   (   V   )

0.0

.

   O

  u   t  p  u   t   (   V   )

0.0

.

   O

  u   t  p  u   t   (   V   )

0 0.02 0.04 0.06-0.10

.

Time (ms)0 0.02 0.04 0.06

-0.10

- .

Time (ms)

First arrival of S0First arrival of A0 + reflected S0

0 0.02 0.04 0.06-0.10

- .

Time (ms)

First arrival of S0First arrival of A0 + reflected S0

0.10

-30oC 0oC 22oC 70oC

Signal AB

0.10

0mm 0.5mm 1.0mm 2.0mm

0.10

0mm 0.5mm 1.0mm 2.0mm

Signal AB

0.00

0.05

  u   t  p  u   t   (   V   )

0.0

0.05

  u

   t  p  u   t   (   V   )

0.0

0.05

  u

   t  p  u   t   (   V   )

0 0.02 0.04 0.06-0.10

-0.05

 0 0.02 0.04 0.0

-0.10

-0.05

First arrival of S0First arrival of A0 + reflected S0

0 0.02 0.04 0.0-0.10

-0.05

First arrival of S0First arrival of A0 + reflected S0

48

me ms

Signal BC

Time (ms)Time (ms)

Signal BC48Asian Pacific Summer SchoolSmart Structure and System Laboratory

Field bridge test configuration

Page 49: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 49/77

Field bridge test configuration

< The overview of Samseung Bridge > < Equipment setup >

< Intact girder case > < Girder with a stiffener case >

49Asian Pacific Summer SchoolSmart Structure and System Laboratory

Field test results

Page 50: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 50/77

Field test results

< Comparison of raw signals > < Comparison of mode conversion >

(a) Signals from an intact girder (a) Extracted MC1

mode

 

50Asian Pacific Summer SchoolSmart Structure and System Laboratory

gna s rom a g r er w e s ener x rac e 2 mo e

Extracting Mode Conversion Produced by a Crack 

Page 51: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 51/77

S0 A0AB S0 A0 AB A0S0S0 S0 /A0 A0 /S0 A0

Mode conversion

A0 /S0 S0 /A0

AB-CDAB-CD

51Asian Pacific Summer SchoolSmart Structure and System Laboratory

The usage of dual PZT transducers for reference-freeNDT

Page 52: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 52/77

NDT

Dual PZT transducer

Signal Ab

BB

S0A0

Signal Ab

PZT A PZT b

Signal Ba

BB

0 0Signal Ba

PZT a PZT B

Difference 

52Asian Pacific Summer SchoolSmart Structure and System Laboratory

(Signal Ab- Ba)

The usage of dual PZT transducers for reference-freeNDT

Page 53: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 53/77

NDT

Dual PZT transducer

Signal AbS0 A0Signal Ab A0 /S0 S0 /A0

B

PZT A PZT bCrack 

Signal Ba

BB

S0A0

Signal BaA0 /S0S0 /A0

PZT a PZT B

Difference

 

53Asian Pacific Summer SchoolSmart Structure and System Laboratory

-

Test setup

Page 54: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 54/77

– The dimension of each PZT:• Diameter = 18 mm, Thickness = 0.5 mm

< Testing configuration for detecting a crack on an aluminum plate >

• PSI-5A4E type

– Input signal: A tone-burst signal• Driving frequency - 150 kHz

–– Data sampling rate: 20 MS/sec

– Data averaging: 20 times

54Asian Pacific Summer SchoolSmart Structure and System Laboratory

Test results

Page 55: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 55/77

a Si nals ab and ba  a Si nals ab and ba 

b Si nals ab and ba  b Si nals ab and ba 

c Si nals Ab and Ba  c Si nals Ab and Ba 

55Asian Pacific Summer SchoolSmart Structure and System Laboratory

< Without a notch > < With a 1.5 mm depth notch >

Typical PZT Defects and Experimental Setup

Page 56: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 56/77

The dimension of each PZT:– 20 mm by 20 mm by 0.508

– PSI-5A4E type

Input signal: A narrowband

toneburst si nal Data sampling rate: 20 MS/sec

Data averaging: 10 times

 

Three different PZT conditions

-5/24/53°C

56Asian Pacific Summer SchoolSmart Structure and System Laboratory

(a) Intact condition (b) Debonded (c) Cracked

Our Approach for PZT Self-DiagnosisPZT Transducer Self-Diagnosis Schemee Overview

Page 57: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 57/77

To develop a PZT transducer self-diagnosis method robust to environmentalvariation

Measure PZT

(Scaling facto r): rans ucer se -sens ng

PZT Transducer defect happened

Monitor the fluctuationof PZT capacitance

(Scaling facto r)

STEP II: Detection of an abnormal PZT

condition by statistical process control

p

time

. . .. . . .. . .

.

. . . .Thresholdboundary.

LWER* Index

Change

TR* / SYM*

Indices

Chan e

Increase Decrease

No

Transducer 

Defect

No

STEP III: Time reversal based PZT transducer 

self-diagnosisConnection

Problem

Zero

Tem . Variat ion

NoYes No Yes

* TR: time reversal index

Cracking.

(No Transducer 

Defect)

 Debonding

STEP IV: Decision making based on three indices

57Asian Pacific Summer SchoolSmart Structure and System Laboratory

* SYM: symmetry index

* LWER: Lamb wave energy ratio index

Time Reversal Process with a Single PZT TransducerTime Reversal Process with a Single PZT Transducer

Page 58: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 58/77

 

LWER index

reversed in time domain

TR &

SYM

58Asian Pacific Summer SchoolSmart Structure and System Laboratory

Time Reversal based PZT Self-Diagnosis IndicesPZT Transducer Self-Diagnosis Indices

Page 59: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 59/77

Index

PZT Condition

Temperature

VariationIntact Debonding Cracking

Scaling Factor

(PZT capacitance)

baseline increase decrease or

decrease

TR/SYM baselinesignificant

increaseno change no change

LWER baselineshift horizontally

(left)

shift horizontally(right)

shift vertically

59Asian Pacific Summer SchoolSmart Structure and System Laboratory

TR/SYM Indices for PZT Debonding Detection: Experimental ResultPZT Debonding Detection using TR/SYM indices

Page 60: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 60/77

 under Varying Temperatures

PZT condition Intact PZT

 

Debonded PZT

20mm × 20mmCracked PZT

 Temp..[°C] Index 20mm × 20mm 

with 4mm debonded)18mm × 20mm

-5TR 0.0704 0.3321 0.0422

SYM 0.0008 0.0657 0.0021

24TR 0.0485 0.3597 0.0334

SYM 0.00003 0.0574 0.0003

53TR 0.0596 0.3564 0.0439

60Asian Pacific Summer SchoolSmart Structure and System Laboratory

SYM 0.00003 0.0459 0.0010

PZT Crack Detection using LWER index

Page 61: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 61/77

LWER index shifts horizontally according to PZT size variation . LWER index shifts vertically according to temperature variation .

Intact PZT

   d  e  x

 

Vertical shift due to

temperature increase

   W   E   R

   i  n 

Horizontal shift due to PZTsize decrease

61Asian Pacific Summer SchoolSmart Structure and System Laboratory

Freq (kHz)

Inductively coupled PZT transducer

Page 62: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 62/77

excite pulse receive pulse

)(t vr 

 pulsev)(t vs

s R

 pulsev)(t vs s R

PZT PZT

62Asian Pacific Summer SchoolSmart Structure and System Laboratory

Prototype Inductively Coupled PZT Transducer

Page 63: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 63/77

PC board

26 mm

ferrite

↑ trans ucer parts

← completed

63Asian Pacific Summer SchoolSmart Structure and System Laboratory

Demonstration of Contactless Power Delivery and Data Retrievalusing a Robot System

Page 64: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 64/77

Girder inspection robot Scanning the PZT sensor Traverse between two PZTs

64Asian Pacific Summer SchoolSmart Structure and System Laboratory

Wheels in contact with flange Raise probe Wheel approaching stiffener

Wireless/Embedded Ultrasonic Excitation/Sensing

Page 65: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 65/77

Wireless Power 

TransmissionPhotodiode

+

Transformer 

Light

Source

EOM

Modulator 

Power 

 Ampli fier 

PhotodiodeOscilloscope

Wireless Data

ransm ss on

LED

65Asian Pacific Summer SchoolSmart Structure and System Laboratory

Shifting in Wireless Sensor Network Paradigm

Page 66: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 66/77

 A/D Converter Microprocessor  A/D Converter Microprocessor 

Memory

RF Transmit ter 

 Active Sensor 

Memory

RF Transmit ter 

Passive

Sensor 

Wave Generator D/A Converter  

BatteryBattery

Power Demand: 40-80mW Power Demand: 600mW

Make the sensor node as “ dumb” as possible

Photodiode

Transformer   Act ive Sensor 

Light Source Modulator 

Oscilloscope Photodiode

66Asian Pacific Summer SchoolSmart Structure and System Laboratory

Optics-based Wireless Power/Data Transmission Test Setup

Page 67: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 67/77

1550nm light source

Laser Diode

Make an arbit rary

waveform

Modulator  Collimator  

Convert optical power to electrical power 

Photodiode

Generateguided wave

PZT transducer 

Narrow a beam of 

modulated laser 

Laser Diode + Modulator  

Convert electrical

signal to optical power 

 Analyze the guided

waves

Oscilloscope Laser Diode

Transmit data using

optical light

laser 

Collimator 

Wireless data transmissionConvert op tical power 

to electrical power 

Photodiode

67Asian Pacific Summer SchoolSmart Structure and System Laboratory

Optics-based Wireless Power/Data Transmission Demo

Page 68: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 68/77

 

Data transmission

68Asian Pacific Summer SchoolSmart Structure and System Laboratory

Optics-based Wireless Power/Data Transmission Demo

Page 69: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 69/77

69Asian Pacific Summer SchoolSmart Structure and System Laboratory

Light Receiving Node Combined with Transformer 

Page 70: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 70/77

Rubber pad

+ - PhotodiodeTransformer 

Rubber pad

Photodiode

Rubber pad

-

+-

 

PZT

transducer 

+

*

70Asian Pacific Summer SchoolSmart Structure and System Laboratory

., ,

* Transformer(N1:N2 = 8:160)

Experimental Setup for Embedded PZTExcitation and FBG Sensing

Page 71: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 71/77

Optical coupler

AWG

Tunable

Laser

EOM

EDFA

FBG

Oscilloscope

PZT A PZT B

Hole PDOpt. Cir.PD

71Asian Pacific Summer SchoolSmart Structure and System Laboratory

Comparison of AWG & TL Input Signals

Page 72: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 72/77

 

0.4  e

AWG Input TL Input

0.2

   d   V  o   l   t  a

-0.2  r  m  a   l   i  z  e

-0.4   N  o

0.25 0.30 0.35-0.6

Time (ms)

 

72Asian Pacific Summer SchoolSmart Structure and System Laboratory

Comparison of Responses at FBG Sensorobtained from AWG & TL inputs at PZT A

Page 73: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 73/77

 

0.6

0.8

  e

 

PZT A(AWG)-PZT B PZT A(TL)-PZT B- FBG - FBG

0.2

0.4

    V  o   l   t  a

-0.2

0

  m  a   l   i

  z  e

-0.8

-0.6

- .

   N  o  r

0 0.1 0.2 0.3 0.4-1

Time (ms)

 

73Asian Pacific Summer SchoolSmart Structure and System Laboratory

Summary and Conclusion

Page 74: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 74/77

Piezoelectric Transducer– Basic working principles

– , - ,

– Widely used for sensing, actuation and control applications– Especially popular for guided wave and impedance based damage detection

– , , .

Future research– Lon term reliabilit issue has been addressed et.– PZT self-diagnosis become a critical issue.

– Wiring and networking remains unsolved.

74Asian Pacific Summer SchoolSmart Structure and System Laboratory

References

Page 75: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 75/77

Ultrasonic Waves in Solid Media (Joseph L. Rose)Wave Motion in Elastic Solid (Karl F. Graff)Sohn, H., Park, G., Wait, J.R., Limback, N.P., Farrar, C.R., “Wavelet-Based Active Sensingfor Delamination Detection in Composite Structures,” Smart Materials and Structures , Vol.13, No. 1,pp. 153-160, 2003.Bourasseau, N., Moulin, E., Delebarre, C., and Bonniau, P., “Radome Health Monitoringwith Lamb Waves: Experimental Approach,” NDT&E International , Vol. 33, pp. 393-400,

.Kessler, S.S., “Piezoelectric-based In-situ Damage Detection of Composite Materials forStructural Health Monitoring Systems,” Ph.D. Dissertation, MIT, Massachusetts, 2002.Staszewski, W.J., Pierce, S.G., Worden, K., and Culshaw, B., “Cross-Wavelet Analysis forLamb Wave Dama e Detection in Com osite Materials usin O tical Fibre ” Ke Engineering Materials , Vol. 167-168, pp. 373-380, 1999.Badcock, R.A. and Birt, E.A., “The Use of 0-3 Piezocomposite Embedded Lamb WaveSensors for Detection of Damage in Advanced Fibre Composites,” Smart Materials and Structures , Vol. 9, pp. 291-297, 2000. em s re, . an a ageas, ., ruc ura ea on or ng ys em ase on rac eLamb Wave Analysis by Multiresolution Processing,” Smart Materials and Structures, Vol.10, pp. 504-511, 2001.Okafor, A.C., Chandrashekhara, K., Jiang, Y.P., and Kilcher, R.R., “Damage Assessment

”,Proceedings of SPIE , Vol. 2191, pp. 265-275, 1994.Monnier, T., Guy, P., Jayet, Y., Baboux, J.C., and Salvia, M., “Health Monitoring of SmartComposite Structures Using Ultrasonic Guided Waves,” Proceedings of SPIE , Vol. 4073,2000.

 

75Asian Pacific Summer SchoolSmart Structure and System Laboratory

ce ent ec no og es, nc. < ttp: www.ace ent.com >, .

References (cont)

Page 76: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 76/77

Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P., “Signal Detection and NoiseSuppression Using a Wavelet Transform Signal Processor: Application to Ultrasonic FlawDetection ” IEEE Transactions on Ultrasonics Ferroelectrics and Fre uenc Control  Vol.44, pp. 14-26, 1997.Lamb, H., “On Waves in an Elastic Plate,” Proceedings of the Royal Society of London,Series A, Vol. 93, pp. 293-312, 1917.Gürdal, Z., Haftka, R.T., and Hajela, P., Design and Optimization of Laminated Composite 

a er a s , o n ey ons, nc, ew or , , .“Vallen System: The Acoustic Emission Company.” <http://www.vallen.de/>, 2003.Tan, K.S., Guo, N., Wong, B.S., and Tui, C.G., “Experimental Evaluation of Delaminationsin Composite Plates by the Use of Lamb Waves,” Composite Science and Technology , Vol.

-, . , .Lind, R., Kyle, S., and Brenner, M., “Wavelet Analysis to Characterize Non-linearities andPredict Limit Cycles of an Aeroelastic System,” Mechanical Systems and Signal Processing , Vol. 15, pp. 337-356, 2001.Sohn, H., Allen, D.W., Worden, K. and Farrar, C.R., “Structural Damage Classificationusing Extreme Value Statistics,” su m tte for pu cat on of ourna of ynam c  Systems, Measurement, and Control , 2003.Fisher, R.A. and Tippett, L.H.C., “Limiting Forms of the Frequency Distributions of theLargest or Smallest Members of a Sample,” Proceedings of the Cambridge Philosophical 

-, , . , .Castillo, E., Extreme Value Theory in Engineering , Academic Press Series in StatisticalModeling and Decision Science, San Diego, CA, 1998.Wang, C.S., and Chang, F.K., “Diagnosis of Impact Damage in Composite Structures withBuilt-in Piezoelectrics Network,” Proceedings of SPIE , Vol. 3990, pp.13-19, 2000.

76Asian Pacific Summer SchoolSmart Structure and System Laboratory#13 Guided

References (cont)

Page 77: 14a AP09 Piezo Lecture SOHN

7/27/2019 14a AP09 Piezo Lecture SOHN

http://slidepdf.com/reader/full/14a-ap09-piezo-lecture-sohn 77/77

David Greve, Hoon Sohn, Patrick Yue, Irving J. Oppenheim, “An Inductively-CoupledLamb Wave Transducer,” submitted to IEEE Sensors Journal , 2006.David W. Greve, Irving J. Oppenheim, Hoon Sohn, C. Patrick Yue “An Inductively Coupled(wireless) Lamb Wave Transducer,” The 3rd International Workshop on Advanced Smart Materials and Smart Structures Technology , Lake Tahoe, CA, May 29-30, 2006Seung Dae Kim, Chi Won In, Kelly E. Cronin, Hoon Sohn, Kent Harries, “A Reference-FreeNDT Technique for Debonding Detection in CFRP Strengthened RC Structures,” submitted 

, , .Sangjun Lee and Hoon Sohn, “Active Self-Sensing Scheme Development for StructuralHealth Monitoring,” submitted to Smart Materials and Structures, 2006.Sang Jun Lee, Hoon Sohn, "Active Self-sensing Module for Sensor Diagnosis andStructural Health Monitoring", Proceedings of Third European Workshop on Structural Health Monitoring , Granada, Spain, July 5-7, 2006.Piezoelectric Sensorics , by G. Gautschi, Springer-Verlag, 2002.Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, by W.G. Cady, Dover, New York 1964

, . , . . ., . , ,Fundamentals of Piezoelectricity, by T. Ikeda, Oxford University Press, Oxford, 1990The Principles of Piezoelectric Accelerometers, by G. Kulwanoski and J. Schnellinger,Sensors, 21(2): 27-33, 2004.Ferroelectric Sensors , by D. Damjanovic, P. Muralt, and N. Setter, IEEE Sensors Journal,

vol.1, no.3, October 2001, pp. 191-206.

77Asian Pacific Summer SchoolSmart Structure and System Laboratory