3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

20
3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP- vollständig Marco Barz Seminar über Algorithmen SoSe2007

description

3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig. Marco Barz Seminar über Algorithmen SoSe2007. Gliederung. 1. Einleitung 2. Wiederholung 3. Beweis 3SAT ≤ 3C 3C ≤ P3C P3C ≤ P3C4. 1. Wiederholung. Was ist ein planarer Graph ? - PowerPoint PPT Presentation

Transcript of 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

Page 1: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

3-Färbbarkeit von planaren Graphen mit Maximalgrad 4

ist NP-vollständigMarco Barz

Seminar über Algorithmen SoSe2007

Page 2: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

Gliederung

• 1. Einleitung• 2. Wiederholung• 3. Beweis

– 3SAT ≤ 3C– 3C ≤ P3C– P3C ≤ P3C4

Page 3: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

1. Wiederholung

• Was ist ein planarer Graph?• Ein Graph, der auf einer Ebene mit

Punkten für die Knoten und Linien für die Kanten dargestellt werden kann, ohne dass die Kanten sich kreuzen

Page 4: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

Wiederholung

• Was ist 3-Färbbarkeit?• G=(N,A) ungerichteter Graph ohne

Mehrfachkanten • f Abbildung N -> {1,2,3}• f ist gültige 3-Färbung von G, falls für je

zwei beliebige benachbarte Knoten v1 und v2 von G gilt: – f(v1)≠f(v2) – für alle v aus N gilt: f(v)≤3

Page 5: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

Beweis

• Beweisführung in 3 Schritten mittels 3er Reduktionen

1. 3SAT ≤ 3-Färbbarkeit von Graphen2. 3-Färbbarkeit von Graphen ≤ 3-

Färbbarkeit von planaren Graphen3. 3-Färbbarkeit von planaren Graphen ≤ 3-

Färbbarkeit von planaren Graphen mit Maximalgrad 4

Page 6: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

1. 3SAT ≤ 3C

• Konstruktion des Graphen H

a

b

c

y1

y2

y4 y5

y6

y3

Wenn die Knoten a,b,c gleich gefärbt sind, muss y6 bei einer gültigen 3-Färbung von H ebenfalls die gleiche Farbe annehmen

Page 7: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

Eigenschaften von H• 1.1 Jede Färbung der Knoten a,b,c, so

dass 1{f(a),f(b),f(c)} kann zu einer gültigen 3-Färbung erweitert werden, so dass f(y6)=1

• 1.2 wenn f(a)=f(b)=f(c)=i, dann ist auch f(y6)=i

Page 8: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

1. 3SAT ≤ 3C

• Menge C von p Klauseln in n Variablen x1,x2,...,xn als Eingabe für 3SAT

• Annahme: Jede Klausel hat 3 Literale (Beweis siehe Quellen) Ci=(aibici)

• Ziel: Konstruktion eines Graphen G, der genau dann 3-färbbar ist, wenn C erfüllbar ist

Page 9: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

1. 3SAT ≤ 3C

a1

b1

c1

y11

y12

y14 y15

y16

y13

a2

b2

c2

y21

y22

y24 y25

y26

y23

x1

x2

v2 v1

v3

x1 x2

Page 10: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

1. 3SAT ≤ 3C

• „=>“– C hat erfüllende Belegung– Definiere f:N->{yij:1ip,1j6} durch:

• f(v1)=1, f(v2)=2, f(v3)=3

• f(xi)=1, f( )=2 falls xi=true

• f(xi)=2, f( )=1 falls xi=false• f weist benachbarten Knoten verschiedene Werte zu• Weil C erfüllt, gilt: 1=f(v1){f(ai), f(bi), f(ci)} für alle i, 1ip.• Nach Eigenschaft 1.1 kann f zu einer gültigen 3-Färbung

erweitert werden

x i

x i

x i

Page 11: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

1. 3SAT ≤ 3C• „<=„

– f:N->{1,2,3} ist gültige 3-Färbung von G– Kanten in A erzwingen Eigenschaften:

• {f(xi),f( ):1in}={f(v1),f(v2)}• {f(yi6):1ip}={f(v1)}

– Es folgt aus Eigenschaft 1.2 dass f(v1){f(ai), f(bi), f(ci)}, 1ip– Ausserdem: f(xi)!=f( )– Setzen von x genau dann auf true (f(x)=1), wenn f(xi)=f(v1),

ergibt erfüllende Belegung für C

x i

x i

Also ist C dann und nur dann erfüllbar, wenn G 3-färbbar ist .

Page 12: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

2. 3C ≤ P3C

v v‘

u

u‘

• Schlüsselkonstruktion für den 2. Teil des Beweises ist dieser Graph H (Kreuzung)

• Eigenschaften:

• 2.1 Jede gültige 3-Färbung von H ergibt die gleichen Farben jeweils für u,u‘ und v,v‘

• 2.2 Es existiert immer eine 3-Färbung, bei der u und v verschiedene Farben haben

Page 13: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

2. 3C ≤ P3C

• Konstruktion des planaren Graphen G‘=(N‘,A‘) aus einem Graphen G=(N,A)

1. Platziere G in der Ebene, mit Kreuzungen, aber so, dass nicht mehr als 2 Kanten sich an einem Punkt treffen (abgesehen von ihrem Endpunkt) und so, dass keine Kante einen anderen Knoten als ihren eigenen Endpunkt berührt.

2. Für jede Kante {x,y} A bezeichne ihre Darstellung in der Ebene: {x,y}-Linie.

Füge zu jeder solchen Linie, die von anderen Linien gekreuzt wird, neue Punkte hinzu: einen zwischen jedem Endpunkt und der nächstliegenden Kreuzung und einen zwischen jedem Paar nebeneinander liegender Kreuzungen.

x y

3. Ersetze jede Kreuzung im Graphen durch eine Kopie vom Graph H, wobei seine Ausgänge u,u‘ die nächstliegenden neuen Punkte auf der einen an der Kreuzung beteiligten Linie ersetzen und v,v‘ die nächstliegenden neuen Punkte auf der anderen an der Kreuzung beteiligten Linie.

4. Für jedes {x,y} A: wähle einen Endpunkt als besonderen Endpunkt und verschmelze ihn mit dem nächstliegenden neuen Punkt auf der {x,y}-Linie. Die Kante zwischen dem anderen Endpunkt und seinem nächstliegenden neuen Punkt auf der {x,y}-Linie wird operante Kante der {x,y}-Linie genannt.

Page 14: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

2. 3C ≤ P3C

• Angenommen, G‘ ist 3-färbbar und f:N‘->{1,2,3} ist gültige 3-Färbung– Dann: f beschränkt auf N N‘ ist gültige 3-Färbung von

G– Beweis durch Widerspruch: falls nicht, dann würde

ein {x,y} A existieren, so dass f(x)=f(y). • Betrachte {x,y}-Linie in G‘: o.B.d.A x ist besonderer Endpunkt

für diese Linie. Nach Eigenschaft 2.2 haben alle neuen Punkte auf der Linie die gleiche Farbe wie x. Also müssen beide Endpunkte der operanten Kante die gleiche Farbe haben. Widerspruch!

Page 15: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

2. 3C ≤ P3C

• Umgekehrt, f:N->{1,2,3} ist gültige 3-Färbung für G: Erweiterung zu 3-Färbung für G‘ wie folgt:– Für jedes {x,y} A: färbe jeden neuen Punkt auf der

{x,y}-Linie mit Farbe f(x) (x=besonderer Endpunkt) -> alle operanten Kanten sind gültig gefärbt

– Nach Eigenschaft 2.2 kann diese 3-Färbung auf die inneren Knoten der Kreuzungen erweitert werden -> gültige 3-Färbung für G‘

Also ist G‘ dann und nur dann 3-färbbar, wenn G 3-färbbar ist. √

Page 16: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

3. P3C ≤ P3C4• Idee: Verwenden von Knoten-Substituten HK, die

Knoten mit Grad>4 ersetzen.• Ziel: Konstruktion eines planaren Graphen G‘

aus G, der höchstens Knotengrad 4 hat, und der 3-färbbar genau dann ist, wenn G 3-färbbar ist.

1

2

3

H3 H5

1

2 3 4

5

Page 17: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

3. P3C ≤ P3C4

• Eigenschaften von HK

– 3.1 HK hat 7(k-2)+1 Knoten, inklusive der Ausgänge (Outlets)

– 3.2 Kein Knoten von HK hat den Grad>4

– 3.3 HK ist planar

– 3.4 HK ist 3-färbbar, aber nicht 2-färbbar, und jede gültige 3-Färbung von HK weist jedem Ausgangsknoten die gleiche Farbe zu

Page 18: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

3. P3C ≤ P3C4

• Konstruktion von G‘– Fixiere planare Einbettung von G und benenne

willkürlich die r Knoten mit Grad>4 als v1,v2,...,vr

– Konstruiere Folge von Graphen G0,...,Gr wie folgt:• Gi entsteht aus Gi-1

• Sei d der Grad von vi in Gi-1 und {u1,vi},...,{ur,vi} die zu vi gehörigen Kanten im Uhrzeigersinn: Erstelle Gi durch Ersetzen von vi mit Hd und ersetze jede Kante {uj,vi} durch eine Kante, die uj mit dem Ausgangsknoten j des Knotensubstituts verbindet.

Page 19: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

3. P3C ≤ P3C4

• Es folgt aus den Eigenschaften von HK und der Konstruktion des Graphen G‘:– GK ist planar für 0kr

– GK hat r-k Knoten mit Grad>4

– GK ist 3-färbbar genau dann, wenn G 3-färbbar ist

G‘ erfüllt alle Voraussetzungen -> √

Page 20: 3-Färbbarkeit von planaren Graphen mit Maximalgrad 4 ist NP-vollständig

Danke!