Das-RiskNetworks MIT Slides

download Das-RiskNetworks MIT Slides

of 10

Transcript of Das-RiskNetworks MIT Slides

  • 8/20/2019 Das-RiskNetworks MIT Slides

    1/21

    Risk Networks

    Sanjiv R. Das

    Santa Clara University

    @MITJune 2014

    Sanjiv R. Das   Risk Networks   CSRA 2014 1 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    2/21

    Systemic Risk from Co-Lending Networks: Overview

    Joint work with IBM Almaden1

    Focus on financial companies that are the domain for systemic risk(SIFIs).

    Extract information from unstructured text (filings).

    Information can be analyzed at the institutional level or aggregated

    system-wide.Applications: Systemic risk metrics; governance.

    Technology: information extraction (IE), entity resolution, mappingand fusion, scalable Hadoop architecture.

    1“Extracting, Linking and Integrating Data from Public Sources: A Financial CaseStudy,” (2011), (with Douglas Burdick, Mauricio A. Hernandez, Howard Ho, GeorgiaKoutrika, Rajasekar Krishnamurthy, Lucian Popa, Ioana Stanoi, ShivakumarVaithyanathan),  IEEE Data Engineering Bulletin, 34(3), 60-67. [Proceedings

    WWW2010, April 26-30, 2010, Raleigh, North Carolina.]Sanjiv R. Das   Risk Networks   CSRA 2014 2 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    3/21

    Data

     

    employment, director, officer

    insider, 5% owner, 10% owner

     h o l d i n g s

     t r a n s a c t

     i o n s 

    Event

    Company Person

    SecurityLoan

    subsidiaries, insider, 5%,10% owner, banking

    subsidiaries 

    borrower,lender 

    Forms 8-K

    Forms 10-K, DEF 14A, 8-K, 3/4/5

    Forms 10-K, DEF14A, 8-K, 3/4/5, 13F,

    SC 13D, SC 13G,FDIC Call Report

    Reference SEC tableForms 13F, Forms 3/4/5

    Forms 3/4/5, SC 13D, SC 13G, 10-K,FDIC Call Report

    Forms 3/4/5, SC 13D, SC 13G

    Forms 10-K, 10-Q, 8-K

    #$ %&'&()*+, -.'&/01*2

    3  -.'&/

    3  *004&/

    3  $ -.'&5

    3  5+6&

    71+/&1-,5&/0

    3  /&,+6&5 *'08648-'+, 9+'+:&/0

    3  ;-,5*':0 *' 5*

    ?4//&'6 @A&'603  9&/:&/ +'5 +)B4*0*8-'

    3  %+'C/426)>

    3  )1+':& -= -D)&/0 +'5 5*/&)6-/0

    3  9+6&/*+, 5&('*8A& +:/&&9&'60

    E-+' F:/&&9&'60

    3  ,-+' 0499+/> 5&6+*,0

    3  )-4'6&/2+/8&0 G%-//-.&/H

    ,&'5&/H -61&/ +:&'60I

    3  )-99*69&'60

    J'0*5&/ (,*':0

    3  6/+'0+)8-'0

    3  1-,5*':0

    3  J'0*5&/ /&,+8-'01*2

    KD)&/0 L M*/&)6-/0

    3  9&'8-'

    3  %*- /+':&H +:&H )4//&'6

    2-0*8-'H 2+06 2-0*8-'

    3  0*:'&5 %>

    )-99*N&& 9&9%&/01*2

    !"#$% '()*"#+% ,-$./01$. 2-%"345% "-5) 1)6'$-/ (+.$0)-%4"'% 7/ +8')%"-3 "-9)(6$0)- 1)-1+'5% $-#(+.$0)-%4"'% :"54"- +85($15+# 1)-1+'5%

    Sanjiv R. Das   Risk Networks   CSRA 2014 3 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    4/21

    Loan Extraction

    Id Agreement Name Date Total Amount

    1 Credit Agreement June 12, 2009 $800,000,000

    Id Company Role Commitment

    1 Charles Schwab Corporation Borrower

    1 Citibank, N.A. Administrative Agent

    1 Citibank, N.A. Lender $90,000,000

    1 JPMorgan Chase Bank, N.A. Lender $90,000,000

    1 Bank of America, N.A. Lender $80,000,000

    #$%&'() *+%(,-.- / #$01%234+ 45 64%+ 7+541&%34+ 8%0%

    Loan Information

    Loan Company Information940)-/ 64%+ 842:&)+0 ;()< =, >?%1()- @2?A%= >41'41%34+ B+ *:C DE FGGH

    Extractandcleanseinformationfromheaders,tablesmaincontentandsignatures

    Sanjiv R. Das   Risk Networks   CSRA 2014 4 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    5/21

    Co-Lending Network

    1 Definition: a network based on links between banks that lendtogether.

    2 Loans used are not overnight loans. We look at longer-term lendingrelationships.

    3 Lending adjacency matrix:

    L ≡ {Lij }, i , j  = 1...N 4 Undirected graph, i.e., symmetric:   L

     ∈ R N ×N 

    5 Total lending impact for each bank:   x i , i  = 1...N 

    Sanjiv R. Das   Risk Networks   CSRA 2014 5 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    6/21

    Centrality

    1 Influence relations are circular:

    x i  =N 

     j =1

    Lij x  j ,∀i 

    2 Pre-multiply by a scalar to get an eigensystem:

    λx =  L · x3 Principal eigenvector of this system gives the “centrality” score for a

    bank.4 This score is a measure of the systemic risk of a bank.

    Sanjiv R. Das   Risk Networks   CSRA 2014 6 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    7/21

    Data

    Five years: 2005 to 2009.

    Loans between FIs only.

    Filings made with the SEC.

    No overnight loans.Example: 364-day bridge loans, longer-term credit arrangement, Libornotes, etc.

    Remove all edge weights ¡ 2 to remove banks that are minimallyactive. Remove all nodes with no edges. (This is a choice for the

    regulator.)

    Sanjiv R. Das   Risk Networks   CSRA 2014 7 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    8/21

    Loan Network 2005  

    %&'()*+, -./0

    1020 3*)(4. %5467

    84.9 *: ;

  • 8/20/2019 Das-RiskNetworks MIT Slides

    9/21

    Loan Network 2006–2009

    !""# !""%

    !""& !""'

    Sanjiv R. Das   Risk Networks   CSRA 2014 9 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    10/21

    Network Fragility

    1 Definition: how quickly will the failure of any one bank trigger failuresacross the network?

    2 Metric: expected degree of neighboring nodes averaged across all

    nodes. E (d 2)/E (d ) ≡ R ,where  d  stands for the degree of a node.

    3 Neighborhoods are expected to “expand” when  R  ≥ 2.4 Metric: diameter of the network.

    Sanjiv R. Das   Risk Networks   CSRA 2014 10 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    11/21

    Systemically Important Financial Institutions (SIFIs) 

    Sanjiv R. Das   Risk Networks   CSRA 2014 11 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    12/21

    Extensions

    1 Other markets, e.g., CDS exchange. Dodd-Frank mandatesconversion of all OTC contracts to be cleared through central counterparties (CCPs).

    2 Inserting risk values at each node. This allows for risk assessmentacross the network based on severity of risk. Overcomes an essentialmissing component of extant network analyses.

    Sanjiv R. Das   Risk Networks   CSRA 2014 12 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    13/21

    Risk Networks

    Assume  n  nodes, i.e., firms, or “assets.”Let  E  ∈  R n×n be a well-defined adjacency matrix. This quantifies theinfluence of each node on another.

    E  may be portrayed as a directed graph, i.e.,  E ij  = E  ji .E  jj  = 1;  E ij  ∈ {0, 1}.C   is a (n × 1) risk vector that defines the risk score for each asset.We define the “risk score” as

    S  =√ 

    C  E C 

    S (C , E ) is linear homogenous in  C .

    Sanjiv R. Das   Risk Networks   CSRA 2014 13 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    14/21

    ExampleRisk vector  C : 0 0 1 2 2 2 2 2 1 0 2 2 2 2 1 0 1 1Risk Score:   S  = 11.62

    Sanjiv R. Das   Risk Networks   CSRA 2014 14 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    15/21

    Example: Adjacency Matrix

    Sanjiv R. Das   Risk Networks   CSRA 2014 15 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    16/21

    Centrality and Fragility

    Centrality is the principal eigenvector  x  of dimension (n × 1) suchthat for scalar  λ:

    λ x  = E x Plot:

    Fragility: for each node with degree  d  j , fragility is the score given by

    E (d 2)/E (d )

    Values greater than 2 imply a fragile network.

    Sanjiv R. Das   Risk Networks   CSRA 2014 16 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    17/21

    Risk Decomposition1 Exploits the homogeneity of degree one property of  S .2 Risk decomposition (using Euler’s formula):

    S  =  ∂ S 

    ∂ C 1C 1 +

      ∂ S 

    ∂ C 2C 2 + . . . +

      ∂ S 

    ∂ C nC n

    3 Plot:

    Sanjiv R. Das   Risk Networks   CSRA 2014 17 / 21

  • 8/20/2019 Das-RiskNetworks MIT Slides

    18/21

    Risk Increments

    Increments are simply:

    I  j   =

      ∂ S 

    ∂ C  j  ,   ∀ j Plot:

    Sanjiv R. Das   Risk Networks   CSRA 2014 18 / 21

    N li d Ri k S

  • 8/20/2019 Das-RiskNetworks MIT Slides

    19/21

    Normalized Risk Score

    Units of  S  are free to choose, and determined by the units of vectorC , e.g., rating units, Z-score, expected loss.

    S̄  =

    √ C E C 

    C    (1)

    where C  =√ 

    C C   is the norm of vector  C .When there are no network effects,  E  = I , the identity matrix, andS̄  = 1, i.e., the normalized baseline risk level with no network(system-wide) effects is unity.Example : For the system in our example, the normalized score is  S̄  = 1.81.Now suppose, we add one additional bi-directed link between nodes 6 and12. The risk score  S  increases from 11.62 to 11.96, and the normalized risk

    score S̄  increases from 1.81 to 1.87.Example : If we keep the network unchanged, but re-allocate the compromise

    vector by reducing the risk of node 3 by 1, and increasing that of node 16 by

    1, we find that the risk score  S  goes from 11.62 to 11.87, and the

    normalized risk score  S̄  goes from 1.81 to 1.85.

    Sanjiv R. Das   Risk Networks   CSRA 2014 19 / 21

    C Ri k

  • 8/20/2019 Das-RiskNetworks MIT Slides

    20/21

    Cross Risk

    Is the spill over risk from node   i   to node   j   material?

    Sanjiv R. Das   Risk Networks   CSRA 2014 20 / 21

    C l ti N t k M

  • 8/20/2019 Das-RiskNetworks MIT Slides

    21/21

    Correlation vs Network Measures

    Correlation measures are pairwise and conditional; network measuresare system-wide and unconditional.

    Correlations tend to be high in crisis periods but are not early-warningindicators of systemic risk. It is an empirical question as to whether

    network measures are predictive.Correlation measures are statistical metrics. Network measuresdirectly model the underlying mechanics of the system because theadjacency matrix  E   is developed based on physical transactionactivity, and the compromise vector is a function of firm quality thatmay be measured in multivariate ways.

    Sanjiv R. Das   Risk Networks   CSRA 2014 21 / 21