Die Redoxreaktion Gleichungen komplexer Redoxreaktionen: Aufstellung der Gleichungen (Regeln)...

Click here to load reader

download Die Redoxreaktion Gleichungen komplexer Redoxreaktionen: Aufstellung der Gleichungen (Regeln) Übungen zur Redoxzahl und Redoxgleichung Beispiele für Redoxreaktionen

of 15

  • date post

    05-Apr-2015
  • Category

    Documents

  • view

    106
  • download

    0

Embed Size (px)

Transcript of Die Redoxreaktion Gleichungen komplexer Redoxreaktionen: Aufstellung der Gleichungen (Regeln)...

  • Folie 1
  • Die Redoxreaktion Gleichungen komplexer Redoxreaktionen: Aufstellung der Gleichungen (Regeln) bungen zur Redoxzahl und Redoxgleichung Beispiele fr Redoxreaktionen
  • Folie 2
  • Beispiel: Kohlenstoff wird in konz. Schwefelsure erhitzt. Dabei entsteht CO 2 + SO 2 Regeln zur Aufstellung von Gleichungen fr Redoxvorgnge
  • Folie 3
  • 04.08.2001 Hans Sturm Versuch Zucker und Schwefelsure (konz.) Die Schwefelsure verkohlt den Zucker. Es entsteht Zucker- kohle, die mit heier Schwefelsure zu Kohlendioxid und Schwefeldioxid weiterreagiert (=> Aufblhen des Gemisches). Taste = weiter
  • Folie 4
  • 04.08.2001 Hans Sturm Die Redox-Gleichung Die Reaktion von Kohlenstoff mit Schwefelsure ist eine Redox-Reaktion. Im Folgenden wird erklrt, wie die Gleichung fr eine derartige Reaktion aufgestellt wird.
  • Folie 5
  • 04.08.2001 Hans Sturm Die Redoxgleichung 1. Edukte => Produkte (unvollstndige Gleichung) C + H 2 SO 4 => CO 2 + SO 2 Regel:Beispiel: Erklrungen
  • Folie 6
  • 04.08.2001 Hans Sturm Die Redox-Gleichung 2. Bestimmung der Oxidationszahlen, die sich whrend der Reaktion ndern 0 +6 C +H 2 SO 4 => +4 CO 2 + SO 2 Regel:Beispiel: Erklrungen
  • Folie 7
  • 04.08.2001 Hans Sturm Die Redox-Gleichung 3. Aufstellen der Teilgleichungen (unvollstndig) Oxidation: 0 +4 C => CO 2 Regel:Beispiel: Reduktion: +6 +4 H 2 SO 4 => SO 2 Erklrungen
  • Folie 8
  • 04.08.2001 Hans Sturm Die Redox-Gleichung 4. Oxidations- Zahlen mit Elektronen ausgleichen Oxidation: 0 +4 C => CO 2 + 4e - Regel:Beispiel: Reduktion: +6 +4 H 2 SO 4 + 2e - => SO 2
  • Folie 9
  • 04.08.2001 Hans Sturm Die Redox-Gleichung 5. Ladungsaus- gleich durch H 3 O + n saurer Lsung (in alkalischer Lsung durch Hydroxidionen) Oxidation: C => CO 2 + 4e - + 4 H 3 O + Regel:Beispiel: Reduktion: H 2 SO 4 + 2e - + 2 H 3 O + => SO 2
  • Folie 10
  • 04.08.2001 Hans Sturm Die Redox-Gleichung 6. Ausgleich der Stoffbilanz mit Wasser Oxidation: C + 6 H 2 O => CO 2 + 4e - + 4 H 3 O + Regel:Beispiel: Reduktion: H 2 SO 4 + 2e - + 2 H 3 O + => SO 2 + 4 H 2 O
  • Folie 11
  • 04.08.2001 Hans Sturm Die Redox-Gleichung 7. Anpassung der e - -Zahlen in beiden Teilgleichungen Oxidation: C + 6 H 2 O => CO 2 + 4e - + 4 H 3 O + Regel: Beispiel: Reduktion: H 2 SO 4 + 2e - + 4 H 3 O + => SO 2 + 4 H 2 O / * 2 Red: 2 H 2 SO 4 + 4e - + 8 H 3 O + => 2 SO 2 + 8 H 2 O
  • Folie 12
  • 04.08.2001 Hans Sturm Die Redox-Gleichung 8. Addition der Teilgleichungen C + 6 H 2 O + 2 H 2 SO 4 + 4e - + 4 H 3 O + ====> CO 2 + 4e - + 4 H 3 O + + 2 SO 2 + 8 H 2 O Regel: Beispiel: C + 2 H 2 SO 4 => CO 2 2 SO 2 + 2 H 2 O
  • Folie 13
  • 04.08.2001 Hans Sturm Redox-Reaktionen in der Technik Das Galvanische Element (Die Elektrische Zelle) Das Galvanische Element Die Taschenlampenbatterie (Primrelement) Die Taschenlampenbatterie Die Autobatterie Bleiakkumulator (Sekundrelement) Die Autobatterie Bleiakkumulator Die Brennstoffzelle
  • Folie 14
  • 04.08.2001 Hans Sturm Das Galvanische Element Ein galvanisches Element liefert Strom. Hier befindet sich ein Zinkblock in einer Zinksulfatlsung und ein Kupferblech in einer Kupfersulfatlsung. InfoInfo-TextText
  • Folie 15
  • 04.08.2001 Hans Sturm Elektrische Zelle, auch als galvanische Zelle bzw. galvanisches Element bezeichnete Vorrichtung zur Umwandlung von chemischer Energie in Elektrizitt. Elektrische Zellen bestehen meist aus flssigem, pastenartigem oder festem Elektrolyt sowie einer positiven und negativen Elektrode. Der Elektrolyt ist ein Ionenleiter. Mit einfachen Worten ausgedrckt, zersetzt sich eine der beiden Elektroden unter Elektronenabgabe (Oxidation), whrend die andere Elektronen aufnimmt (Reduktion). Werden beide Elektroden durch einen elektrischen Leiter verbunden, so fliet ein elektrischer Strom. Die Kombination von zwei oder mehreren elektrischen Zellen bezeichnet man als Batterie. Man unterteilt elektrische Zellen nach ihrer Funktionsweise in Primrelemente und in Sekundrelemente bzw. Akkumulatoren (wieder aufladbare Batterien). Bei den Primrelementen knnen die chemischen Stoffe, die die Energieumwandlung herbeifhren und sich dabei selbst verndern, nicht wieder zurckgebildet werden. Genau dies gelingt bei Sekundrelementen, wenn man elektrischen Strom in entgegengesetzter Richtung durch sie hindurchleitet. So genannte Brennstoffzellen werden ebenfalls zu den elektrischen Zellen gezhlt. Im Gegensatz zu den hier besprochenen Primr- und Sekundrelementen, werden in Brennstoffzellen die chemischen Stoffe in einem kontinuierlichen Ablauf zu- und abgefhrt. "Elektrische Zelle."Microsoft Encarta Enzyklopdie 2001. 1993-2000 Microsoft Corporation. Alle Rechte vorbehalten.
  • Folie 16
  • 04.08.2001 Hans Sturm Blick in das Innenleben einer herkmmlichen Taschenbatterie. Die Grundform der heute blichen Trockenelemente geht auf das Leclanch-Element zurck, das 1866 erstmals von dem franzsischen Erfinder Georges Leclanch konstruiert wurde. Bei dem hier gezeigten Beispiel handelt es sich um das System Zink-Braunstein, das eine Nennspannung von 1,5 Volt liefert. "Trockenelement (Taschenbatterie). "Microsoft Encarta Enzyklopdie 2001. 1993-2000 Microsoft Corporation. Alle Rechte vorbehalten. PRIMRELEMENTE Der gebruchlichste Typ ist das Leclanch- oder Trockenelement, das um 1860 der franzsische Chemiker Georges Leclanch erfunden und entwickelt hat. Die heutzutage verwendete Form ist der ursprnglichen Ausfhrung immer noch sehr hnlich. Der Elektrolyt eines Primrelements besteht dabei aus einer Mischung Ammoniumchlorid und Zinkchlorid. Beide liegen in Pastenform vor. Die uere Zinkhlle der Batterie ist der Minuspol. Die positive Elektrode (Pluspol) besteht aus einem Kohlenstoffstab, der von einer Mischung aus Kohlenstoff und Mangandioxid umgeben ist. Ein Leclanchelement erzeugt eine Spannung von circa 1,5 Volt. Weitere heutzutage bliche Systeme sind beispielsweise Zink-Zinkchlorid-Mangandioxid, Zink-Natriumhydroxid-Mangandioxid sowie Lithium-Mangandioxid.
  • Folie 17
  • 04.08.2001 Hans Sturm SEKUNDRELEMENTE Das Funktionsprinzip von Sekundrelementen erfand 1859 der franzsische Physiker Gaston Plant. Diese auch als Akkumulatoren bezeichneten Vorrichtungen lassen sich durch den umgekehrten Ablauf der chemischen Reaktion wieder aufladen. Bei der Zelle von Plant handelte es sich um einen Bleiakkumulator, wie er auch heute noch verwendet wird. Das System enthielt drei oder sechs elektrische Zellen, die in Reihe geschaltet waren. Heutzutage findet man Akkumulatoren in Personen- und Lastautos, in Flugzeugen und anderen Fahrzeugen. Akkumulatoren knnen so starken elektrischen Strom liefern, wie er beispielsweise zum Starten eines Motors bentigt wird. Als Elektrolyt dient verdnnte Schwefelsure. Die negative Elektrode besteht aus Blei, die positive aus Bleidioxid. Mit einfachen Worten erklrt, dissoziiert beim Betrieb die negative Bleielektrode in freie Elektronen und zweifach positive Bleiionen. Die Elektronen flieen durch den ueren elektrischen Stromkreis zur Bleidioxidanode. Die positiven Bleiionen verbinden sich mit Sulfationen im Elektrolyten zu Bleisulfat. An der Bleidioxidanode kommt es zu einer weiteren chemischen Reaktion. Aus Bleidioxid, positiven Wasserstoffionen im Elektrolyten und Elektronen bilden sich Wasser und positive Bleiionen. Letztere verbinden sich mit Sulfationen zu Bleisulfat. Ein Bleiakkumulator ist nach einiger Zeit erschpft, da die Schwefelsure allmhlich in Wasser und die Elektroden in Bleisulfat umgewandelt werden. Beim Aufladen der Batterie verlaufen die oben angegebenen Reaktionen in umgekehrter Richtung. Die Lebensdauer eines Bleiakkumulators liegt bei ungefhr fnf Jahren. Er liefert circa zwei Volt pro Zelle. "Bleiakkumulator."Microsoft Encarta Enzyklopdie 2001. 1993-2000 Microsoft Corporation. Alle Rechte vorbehalten. Bleiakkumulator Aufbau eines Bleiakkumulators, wie er auch als wieder aufladbare Autobatterie verwendet wird. Microsoft Corporation. Alle Rechte vorbehalten.
  • Folie 18
  • 04.08.2001 Hans Sturm Die Brennstoffzelle In der Brennstoffzelle liefert die Knallgas- reaktion Energie in Form von elektrischem Strom. InfoInfo-Text
  • Folie 19
  • 04.08.2001 Hans Sturm Brennstoffzelle, eine elektrochemische Vorrichtung, in der die von einer chemischen Reaktion gelieferte Energie direkt in Elektrizitt umgesetzt wird. Anders als bei den galvanischen Zellen oder Batterien entldt sich eine Brennstoffzelle nicht und kann auch nicht aufgeladen werden. Sie arbeitet kontinuierlich, solange von auen Brennstoff und Oxidationsmittel zugefhrt werden. Eine Brennstoffzelle enthlt eine Anode, an der der Brennstoff zustrmt (meist Wasserstoff oder wasserstoffreiche Gase), und eine Kathode, an der das Oxidationsmittel zustrmt, meist Luft oder Sauerstoff. Die beiden Elektroden sind durch einen elektrolytischen Ionenleiter voneinander getrennt. Bei einer Wasserstoff-Sauerstoff-Zelle mit einem Alkalimetallhydroxid-Elektrolyten (z. B. bei AFCs: Alkaline Fuel Cells) bilden sich an der Anode Protonen (Wasserstoffionen, H + ) und Elektronen. Die Protonen wandern durch den Elektrolyten in Richtung Kathode. Im Prinzip flieen die Elektronen durch den ueren Stromkreis (mit dem Stromverbraucher) und gelangen so zur Kathode. Dort nimmt der Sauerstoff bei Stromfluss zwei Elektronen pro Atom auf. Es bilden sich an der Kathode Hydroxidionen OH-, die durch den Elektrolyten in Richtung Anode wandern. Protonen und Hydroxidionen verbinden sich zu Wasser (H2O). Formal lautet die Anodenreaktion: 2 H 2 + 2 O -2- 2 H 2 O + 4