Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN...

398
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik Einflussfaktoren auf die Exposition von Flurförderzeugfahrern gegenüber Ganzkörper-Vibrationen Gabriel Horst Ottmar Fischer Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.- Prof. Dr. phil. Klaus Bengler Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Willibald A. Günthner 2. Univ.-Prof. Dr.-Ing. Rainer Bruns, Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Die Dissertation wurde am 01.04.2015 bei der Technischen Universität München einge- reicht und durch die Fakultät für Maschinenwesen am 02.09.2015 angenommen.

Transcript of Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN...

Page 1: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Maschinenwesen

Lehrstuhl für Fördertechnik Materialfluss Logistik

Einflussfaktoren auf die Exposition von

Flurförderzeugfahrern gegenüber

Ganzkörper-Vibrationen

Gabriel Horst Ottmar Fischer

Vollständiger Abdruck der von der Fakultät für Maschinenwesen

der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.- Prof. Dr. phil. Klaus Bengler

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Willibald A. Günthner

2. Univ.-Prof. Dr.-Ing. Rainer Bruns,

Helmut-Schmidt-Universität

Universität der Bundeswehr Hamburg

Die Dissertation wurde am 01.04.2015 bei der Technischen Universität München einge-

reicht und durch die Fakultät für Maschinenwesen am 02.09.2015 angenommen.

Page 2: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Herausgegeben von:

Univ.-Prof. Dr.-Ing. Willibald A. Günthner

fml – Lehrstuhl für Fördertechnik Materialfluss Logistik

Technische Universität München

Zugleich:

Dissertation. München: Technische Universität München, 2015

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, ins-

besondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen,

der Wiedergabe auf photomechanischem oder ähnlichem Wege und der Speiche-

rung in Datenverarbeitungsanlagen bleiben – auch bei nur auszugsweiser Verwen-

dung – vorbehalten.

Layout und Satz: Gabriel Fischer

Copyright © Gabriel Fischer

Printed in Germany 2015

ISBN: 978-3-941702-59-2

fml – Lehrstuhl für Fördertechnik Materialfluss Logistik

Technische Universität München

Boltzmannstr. 15

85748 Garching

Telefon: + 49.89.289.15921

Telefax: + 49.89.289.15922

www.fml.mw.tum.de

Page 3: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

I

Vorwort

Während meiner Zeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Fördertech-

nik Materialfluss Logistik (fml) der Technischen Universität München habe ich mich

intensiv mit unterschiedlichen Fragestellungen aus dem Gebiet der Flurförderzeuge

auseinandergesetzt. Daraus ist diese Arbeit entstanden.

Die Grundlage bildet das von mir geleitete und bearbeitete Forschungsprojekt „Un-

tersuchung der Humanschwingungen beim Betrieb von Flurförderzeugen“. Ich be-

danke mich bei allen Projektbeteiligten aus der Industrie und vom VDMA, die dieses

Projekt sowohl zuerst ermöglicht und dann interessiert begleitet, als auch mich mit

ihrer Erfahrung, ihrem Wissen und Versuchsfahrzeugen unterstützt haben.

Mein besonderer Dank gilt meinem Doktorvater Herrn Prof. Dr.-Ing. W. A. Günthner

für überaus interessante und abwechslungsreiche Jahre an seinem Lehrstuhl, der

mir durch sein Vertrauen, seine fortlaufende Unterstützung und viele Freiräume ein

selbstbestimmtes Arbeiten ermöglicht und somit zum Gelingen dieser Arbeit beige-

tragen hat. Zudem danke ich Herrn Prof. Dr.-Ing. Rainer Bruns für die Übernahme

des Koreferats sowie Herrn Prof. Dr. phil. Klaus Bengler für die Übernahme des Vor-

sitzes der Prüfungskommission.

Die Anstrengungen, die mit dieser Arbeit verbunden sind, fallen leichter, wenn man

Menschen um sich weiß, an die man sich jederzeit wenden und auf deren Unterstüt-

zung man zählen kann. So bedanke ich mich bei all meinen ehemaligen Kollegen für

das freundschaftliche, kollegiale und motivierende Arbeitsklima und die stets anzu-

treffende Hilfsbereitschaft. Und auch zu Hause konnte ich immer auf das Verständ-

nis, die Unterstützung und die Motivation meiner Familie zählen. Ganz konkret

möchte ich mich deswegen bei Janina, Alexander, Thomas, Eva, Stefan, Sebastian,

Vroni, Josef, Gabi, Ottmar, Monika und Leonora bedanken.

Gabriel Fischer

Page 4: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 5: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

III

Kurzfassung

Einflussfaktoren auf die Exposition von Flurförderzeugfahrern gegenüber Ganzkörper-Vibrationen

Fahrer von Flurförderzeugen sind wie alle Bediener von mobilen Arbeitsmaschinen

gegenüber Ganzkörper-Vibrationen exponiert. Diese Belastung, die je nach Höhe,

Art und Dauer der Einwirkung eine Gefahr für die Gesundheit des Menschen darstel-

len kann, rückt mit der Festlegung von Expositionsgrenzwerten durch die Lärm- und

Vibrations-Arbeitsschutzverordnung im Jahr 2007 zunehmend in den Fokus der Flur-

förderzeugbranche. Vorliegende Arbeit fasst den aktuellen Kenntnisstand aus der

seit damals publizierten Fachliteratur zusammen und ergänzt diesen um eine ganz-

heitliche Untersuchung hinsichtlich der Haupteinflussfaktoren, die für die Vibrations-

belastung der Flurförderzeugfahrer verantwortlich sind und gleichzeitig als Stellgrö-

ßen dienen können, um eine Belastungsreduktion zu erreichen. Zu diesem Zweck

werden drei repräsentative Vertreter der Flurförderzeugpopulation in Deutschland

ausgewählt – je ein Elektro- und Verbrenner-Gabelstapler sowie ein Schubmaststap-

ler – und als schwingungsfähige Mehrkörpermodelle abgebildet, um umfangreiche

Parameterstudien durchführen zu können. Im Ergebnis bleibt festzuhalten, dass

Fahrbahnanregung und Fahrgeschwindigkeit den stärksten Einfluss auf die Fahrer-

belastung nehmen. Diese ist umso höher, je schneller das Fahrzeug fährt und je

stärker die Anregung durch die Fahrbahn ist. Gleichzeitig verstärken sich beide Fak-

toren gegenseitig. Einen demgegenüber untergeordneten Einfluss weisen bei Gabel-

staplern die Reifen bezüglich Steifigkeit und Dämpfung, die Kabinenlagerung aus

Gummilagern sowie die transportierte Last, welche sich schwingungsdämpfend

auswirkt, auf. Beim Schubmaststapler ist die Höhe der Belastung hingegen unab-

hängig von der transportierten Last. Fahrtrichtung und Neigung des Hubgerüsts be-

sitzen für alle untersuchten Flurförderzeuge keinen nachweisbaren Einfluss auf die

Fahrerbelastung. Zudem wird herausgearbeitet, dass nur mit einem korrekt an das

Fahrergewicht eingestellten Sitz eine deutliche Schwingungsreduktion erzielbar ist.

Abschließend wird hinsichtlich der zu erwartenden Belastung für Gabelstaplerfahrer

ein Vorschlag für ein Tabellenwerk präsentiert, das neben einer Unterteilung der

Fahrbahnbeschaffenheit auf drei Stufen auch eine Differenzierung nach Fahrge-

schwindigkeit vorsieht. Basierend auf den Ergebnissen der Simulationsstudie ist

festzuhalten, dass die Fahrt über ebene Fahrbahnen mit Gabelstaplern und Schub-

maststaplern im Normalfall unkritisch ist. Nur wenn Fahrbahnen mit größeren Un-

ebenheiten vorliegen, ist ein Erreichen von Auslöse- und Grenzwert innerhalb der

Arbeitszeit nicht auszuschließen.

Page 6: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

IV

Abstract

Parameters of industrial truck drivers’ exposure to whole-body vibrations

As well as all operators of mobile machines, drivers of industrial trucks are exposed

to whole-body vibrations. These could pose a risk for human health depending on

amount, type and duration of exposure. With the definition of exposure limits by the

Occupational Health and Safety Ordinance on Noise and Vibration in 2007, whole

body vibrations got into the focus of the industrial truck industry. This thesis sum-

marizes the current state of knowledge and adds a holistic investigation regarding

the main factors that are responsible for the vibration exposure of truck drivers. For

this purpose three representative members of the German population of industrial

trucks are selected – one electric and one combustion forklift truck and a reach

truck – and converted into multibody models in order to carry out extensive parame-

ter studies. Results show that road excitation and driving speed take the strongest

influence on the driver's vibration exposure. This influence becomes higher, the

faster the vehicle drives and the stronger the excitation by the roadway becomes. At

the same time, both factors reinforce each other. Forklifts tire stiffness and damping,

cab suspension with rubber bearings and transported load, which also reduce the

strength of the vibrations, have a subordinated influence. In contrast to forklift

trucks, the vibration load of reach trucks is independent of the transported load. The

driving direction and the inclination of the lifting frame have no detectable influence

on the driver's vibrations exposure for all examined industrial trucks. In addition, it

can be demonstrated that only with a seat properly adjusted to the driver's weight a

significant vibration reduction can be achieved. Finally, a proposal for tables listing

the expected driver’s vibration exposure is presented, that provide a classification of

driving speed and road excitation in three increments. Based on the results of the

simulation study the ride on flat roads with forklifts and reach trucks normally is not

critical. Only when driving surfaces are uneven it can not be excluded that limit val-

ues are reached during working hours.

Page 7: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

V

Inhaltsverzeichnis

Verwendete Formelzeichen XI

1 Einführung 1

1.1 Der Flurförderzeugfahrer im Fokus des Arbeitsschutzes 2

1.2 Einflussfaktoren auf die Vibrationsbelastung kennenlernen 6

1.3 Vorgehensweise und Struktur der Arbeit 8

2 Stand der Technik und Forschung 13

2.1 Flurförderzeuge 13

2.1.1 Einteilungskriterien 13

2.1.2 Verbreitung 17

2.1.3 Dynamische Simulation von Flurförderzeugen 23

2.2 Ganzkörper-Vibrationen 27

2.2.1 Auswirkungen auf die Gesundheit und die Sicherheit 29

2.2.2 Messung und Kennwertberechnung 33

2.2.2.1 Messung der Ganzkörper-Vibrationen 33

2.2.2.2 Kennwertberechnung 36

2.2.3 Rechtliche Rahmenbedingungen 42

2.2.4 Ganzkörper-Vibrationen bei Flurförderzeugen 45

3 Forschungslücke und Aufgabenstellung 55

3.1 Einflussfaktoren auf die Schwingungsbelastung 55

3.1.1 Haupteinflussgröße Maschine 59

3.1.2 Haupteinflussgröße Mensch 63

3.1.3 Haupteinflussgröße Umwelt 64

3.1.4 Haupteinflussgröße Management 65

3.2 Aufgabenstellung 67

4 Planung der Untersuchung 71

4.1 Auswahl der Forschungsmethoden 71

4.1.1 Datenerhebung 71

4.1.2 Datenauswertung 74

Page 8: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Inhaltsverzeichnis

VI

4.2 Auswahl der Flurförderzeuge 75

4.2.1 Gabelstapler 77

4.2.2 Elektro-Schmalgangstapler 79

4.3 Auswahl der Fahrersitze 81

4.4 Fahrbahnoberflächen im Einsatzgebiet der Flurförderzeuge 82

4.5 Versuchsplan 87

5 Modellbildung der Flurförderzeuge 93

5.1 Mehrkörpersimulation 93

5.1.1 Mehrkörpersysteme 93

5.1.2 Kinematische Struktur und Bewegungsgleichungen 94

5.1.3 Vorgehen bei der Erstellung der Mehrkörpersysteme 96

5.2 Modellierung gemeinsamer Teilkomponenten 99

5.2.1 Reifen 99

5.2.1.1 Auswahl des Reifenmodells 100

5.2.1.2 Geometrie 105

5.2.1.3 Steifigkeit 105

5.2.1.4 Dämpfung 107

5.2.1.5 Fahrantrieb 109

5.2.2 Fahrbahn 109

5.2.2.1 Straßenmodelle für die Mehrkörpersimulation 110

5.2.2.2 Periodische Unebenheiten 111

5.2.2.3 Regellose Unebenheiten 112

5.2.2.4 Herausragende Einzelhindernisse 115

5.2.2.5 Generierung von Fahrbahnen für die Simulation 115

5.2.3 Sitz 121

5.2.3.1 Modellaufbau 121

5.2.3.2 Parameterbestimmung 125

5.2.3.3 Sitzübertragungsfaktor 128

5.2.4 Fahrer 131

5.2.5 Hubgerüst 135

5.2.5.1 Mechanischer Aufbau 136

5.2.5.2 Hydraulikzylinder 137

5.2.5.3 Hubkette 139

Page 9: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Inhaltsverzeichnis

VII

5.2.5.4 Mastspiel durch Rollenkontakte 142

5.2.6 Lagerung von Kabine und Pendelachse 145

5.2.7 Fahrzeugstruktur 145

5.2.7.1 Auskragende Radarme des EFM 14 146

5.2.7.2 Motorabdeckung/Sitzplatte 147

5.2.8 Bestimmung von Masse und Schwerpunkt 148

5.3 Simulationsmodelle der Flurförderzeuge 150

5.3.1 Gabelstapler 150

5.3.2 Schubmaststapler 151

6 Verifikation und Validierung der Simulationsmodelle 153

6.1 Verifikation der Simulationsmodelle 154

6.2 Validierung der Teilkomponenten 155

6.2.1 Reifen 155

6.2.2 Fahrer 156

6.2.3 Sitz 157

6.3 Validierung der Simulationsmodelle durch Fahrversuche 159

6.3.1 Teststrecke 160

6.3.2 Messtechnik und Datenaufbereitung 162

6.3.3 Durchführung der Referenzmessungen 164

6.3.4 Vergleichsrechnungen 165

6.3.4.1 Gabelstapler DFG 35 165

6.3.4.2 Gabelstapler EFG 20 169

6.3.4.3 Schubmaststapler EFM 14 170

6.4 Reproduzierbarkeit der Ergebnisse und Replikation 172

6.5 Abschließende Bewertung 173

7 Einflussfaktoren auf die Vibrationsbelastung 175

7.1 Grundlegende Einflussfaktoren 175

7.1.1 Effekte und Grundlagen der Varianzanalyse 175

7.1.2 Dominierende Schwingungsrichtung 180

7.1.3 Wahrnehmbarkeit von Effekten 180

7.1.4 Gabelstapler EFG 20 und DFG 35 181

7.1.5 Schubmaststapler EFM 14 191

7.1.6 Fazit 195

Page 10: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Inhaltsverzeichnis

VIII

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last 197

7.2.1 Versuchsumfang 197

7.2.2 Grundlagen der linearen Regression 202

7.2.3 Einzelhindernisse Schwellenüberfahrt 206

7.2.3.1 Modellansatz 206

7.2.3.2 Gabelstapler EFG 20 209

7.2.3.3 Gabelstapler DFG 35 212

7.2.3.4 Schubmaststapler EFM 14 214

7.2.4 Regellose Unebenheiten 216

7.2.4.1 Modellansatz 217

7.2.4.2 Gabelstapler EFG 20 220

7.2.4.3 Gabelstapler DFG 35 221

7.2.4.4 Schubmaststapler EFM 14 223

7.2.4.5 Klassifizierte Böden 224

7.2.5 Sonstige Anregungen 226

7.2.5.1 Fugen 226

7.2.5.2 Einseitige Anregung der Räder 229

7.2.6 Fazit 232

7.3 Fahrerplatzlagerung 233

7.3.1 Fahrerkabine bei Gabelstaplern 235

7.3.2 Sitzplatte Schubmaststapler 238

7.4 Fahrer und Sitz 241

7.4.1 Gewichtseinstellung 241

7.4.2 Einfluss der Belastungshöhe 245

7.5 Abschließende Bewertung und Abschätzung der Fahrerbelastung 247

7.5.1 Maßgebliche Einflussfaktoren 247

7.5.2 Bestimmung der Fahrbelastung 249

7.5.2.1 Mittlere Fahrerbelastung 250

7.5.2.2 Exemplarische Betrachtung von Hindernissen 252

8 Zusammenfassung und Ausblick 257

Literaturverzeichnis 263

Abbildungsverzeichnis 297

Page 11: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Inhaltsverzeichnis

IX

Tabellenverzeichnis 313

Anhang A Ergänzungen zu grundlegenden Einflussfaktoren A-1

A.1 Varianzanalyse A-1

A.2 Haupteffekte A-11

A.3 Wechselwirkungen A-16

Anhang B Ergänzungen Detailbetrachtung Fahrbahnanregung B-1

B.1 Fahrbahnunebenheiten B-1

B.2 Streudiagramme B-3

B.3 Diagramme zu Teilaspekten B-8

B.4 Tabellen lineare Regression B-22

B.5 Klassifizierte Böden B-23

B.6 Fugen B-29

B.7 Einzelradanregung B-35

Anhang C Ergänzungen Fahrer und Sitz C-1

Page 12: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 13: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

XI

Verwendete Formelzeichen

Lateinische Buchstaben

Zeichen Einheit Bedeutung

(8)A 2m s Tagesexposition

( )a t 2m s Beschleunigung als Funktion der Zeit

a Konstante für Kohärenzfunktion h

0a 2m s Beurteilungsbeschleunigung

Bodena allgemeine Fahrbahnanregung

Bodena transformierte allgemeine Fahrbahnanregung

eina 2m s Beschleunigung an der Einleitstelle in den menschlichen

Körper

( )wa t 2m s frequenzbewertete Beschleunigung als Funktion der Zeit

(8)wa 2m s Beurteilungsbeschleunigung für eine Beurteilungsdauer von

acht Stunden

0( )wa t 2m s gleitender Effektivwert

wea 2m s energieäquivalenter Mittelwert für die Einwirkungsdauer eT

,w Ha 2m s formaler Effektivwert der frequenzbewerteten Beschleuni-

gung für ein Hindernis

,w ma 2m s Effektivwert der frequenzbewerteten Beschleunigung mit

Hindernis

,w oa 2m s Effektivwert der frequenzbewerteten Beschleunigung ohne

Hindernis

wPa 2m s Effektivwert der frequenzbewerteten Beschleunigung auf

dem Schwingtisch

wSa 2m s Effektivwert der frequenzbewerteten Beschleunigung auf

dem Sitz

wTa 2m s Effektivwert der frequenzbewerteten Beschleunigung

,wT Basisa 2m s Normierungsbasis für den normierten Effektivwert der

frequenzbewerteten Beschleunigung ,wT Na

,wT Na 2m s normierter Effektivwert der frequenzbewerteten

Beschleunigung

Page 14: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Verwendete Formelzeichen

XII

,ˆwT Na 2m s geschätzter normierter Effektivwert der frequenzbewerteten

Beschleunigung

B m Querschnittsbreite des Reifens

b Bandfaktor

Regressionskoeffizient

b standardisierter Regressionskoeffizient

Fe eb lg m Felgenbreite

c N m allgemeine Steifigkeit

FC Scheitelfaktor (Crest-Faktor)

,Kette hc N m Steifigkeit des hinteren Teils der Hubkette

,kette spezc 2

N m

spezifische Hubkettensteifigkeit

,Kette vc N m Steifigkeit des vorderen Teils der Hubkette

,Kette Zugc N m Steifigkeit der Hubkette bei Zug

Kontaktc N m Kontaktsteifigkeit

Reifenc N m Reifensteifigkeit

,Reifen grundc N m Reifensteifigkeit der Grundausstattung

,oSc , ,uSc N m Federsteifigkeit des oberen/unteren Gummipuffers

,S Fc N m Federsteifigkeit der mechanischen Sitzfeder

, ,0S Fc N m gewichtsunabhängiger Federsteifigkeitsanteil der

mechanischen Sitzfeder

S,F,SEc ( )N m kg gewichtsabhängiger Federsteifigkeitsanteil der

mechanischen Sitzfeder

,S Polc N m Federsteifigkeit des Sitzpolsters

,S xc , ,S yc N rad Sitz-Torsionssteifigkeit um x/y-Achse

,HG gesc N m Steifigkeit des Gesamtsystems Hubgerüst

Zylc N m Steifigkeit des Hydraulikzylinders

d N s m allgemeine Dämpfungskonstante

AD m Außendurchmesser des Reifens

Fe eD lg m Felgendurchmesser

Ketted N s m Dämpfungskonstante der Hubkette

,Kontakt maxd N s m maximale Dämpfungskonstante für Kontakt

Reifend N s m Dämpfungskonstante des Reifens

,Reifen grundd N s m Dämpfungskonstante des Reifens in Grundausstattung

Page 15: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Verwendete Formelzeichen

XIII

,S Dd N s m Dämpfungskonstante des eingebauten Dämpfers

, ,, S o S ud d N s m Dämpfungskonstante der oberen/unteren Gummipuffer

,S Pold N s m Dämpfungskonstante des Sitzpolsters

df Anzahl der Freiheitsgrade

Zyld N s m Dämpfungskonstante eines Hydraulikzylinders

E Effekt

2 3m s energieproportionale Beschleunigungsgröße

e Kraftexponent bei Kontaktkraftberechnung

Residuum

*1 2, , E E E 2N mm

E-Modul der Kontaktkörper

HE 2 3m s energieproportionale Beschleunigungsgröße eines

Hindernisses

einF N Kraft an der Einleitungsstelle in den menschlichen Körper

empF empirischer F-Wert

FahrbahnF N Kraft aus Fahrbahnanregung

Gf Anzahl der Freiheitsgrade eines Gelenks

KetteF N Kraft in der Hubkette

maxf Hz größte zu berücksichtigende Frequenz

minf Hz kleinste zu berücksichtigende Frequenz

NF N Kontaktnormalkraft

ReifenF N Radlast

Reifenf m Einfederung des Reifens unter Last

,S FDF N Feder-Dämpfer-Kraft des Sitzes

, ,S FD rückF N Rückstellkraft des Sitzes

, ,S F VorF N Sitzvorspannkraft

,S PolF N Rückstellkraft des Sitzpolsters

SteuerF N Steuerkraft

Systemf Anzahl der unabhängigen verallgemeinerten Freiheitsgrade

tatf Anzahl der tatsächlichen Freiheitsgrade

G Anzahl der Faktorstufen

g Faktorstufe

Kg m Durchdringung zweier Körper

,K maxg m Schwellwert für maximale Dämpfung im Kontakt

Page 16: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Verwendete Formelzeichen

XIV

H m Reifenhöhe

( )h t m Fahrbahnunebenheit in Abhängigkeit der Zeit

( )h x m Fahrbahnunebenheit in Abhängigkeit der Wegposition

h m Unebenheitsamplitude

0H Nullhypothese

0h m Nulllage des Höhenprofils

,eff nh m Bandeffektivwert

Schwelleh m Schwellenhöhe

wIF Instationaritätsfaktor

J Anzahl der Beobachtungswerte

Anzahl der beschreibenden Faktoren

K Anzahl der Beobachtungen pro Faktorstufeneinstellung

k Beobachtungszeitpunkt

, , x y zk k k richtungsabhängiger Korrekturfaktor

,u oki ki untere/obere Grenze des Konfidenzintervalls

L m Wellenlänge

0L m Bezugswellenlänge

1l , 2l m Abschnitte der Teststrecke

bl m Lagerrollenbreite

gesl m Teststreckenlänge

Kettel m Einbaulänge der Hubkette

maxL m größte Wellenlänge

minL m kleinste Wellenlänge

M Anzahl der Beobachtungswerte

m kg allgemeine bewegte Masse

Fakm Anzahl der Faktorstufenkombinationen

Lastm kg transportierte Last

( )M f kg scheinbare Masse des menschlichen Körpers

nennm kg Nennlast

SEm kg Gewichtseinstellung am Sitz

,S obenm kg mitschwingende Masse des Sitzes

bMS mittlere quadratische Abweichung zwischen den

Faktorstufen

Page 17: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Verwendete Formelzeichen

XV

tMS mittlere quadratische Abweichung

wMS mittlere quadratische Abweichung innerhalb der Faktorstufen

MTVV 2m s Maximum Transient Vibration Value

N Anzahl der Simulationen

Anzahl der Wegkreisfrequenzen

BN Anzahl aller Beobachtungen

Gn Anzahl der Gelenke eines Mehrkörpersystems

HN Anzahl der Hindernisse

Kn Anzahl der Starrkörper eines Mehrkörpersystems

redn Anzahl der redundanten Bindungen eines

Mehrkörpersystems

p Signifikanz

Konstante für Kohärenzfunktion h

mitp Faktor zum Ausgleich der mitschwingenden Masse eines

Menschen auf dem Sitz

r Anzahl der Zwangsbedingungen eines Mehrkörpersystems

2R Bestimmtheitsmaß

2korrR korrigiertes Bestimmtheitsmaß

statr m statischer Halbmesser des Reifens

dynr m dynamischer Rollradius

s m Auslenkung der oberen Sitzplatte

Standardfehler der Schätzung

0s Konstante für Kohärenzfunktion h

APs m Sitzarbeitspunkt

bs Standardfehler des Regressionskoeffizientens

Gs m Einfederung eines Profilstollenelements aus Gummi

maxs m maximale Sitzauslenkung

, o us s m Position oberer/unterer Anschlag Gummipuffer

ps m Spurweite

vors m vorgespannte Länge der mechanischen Feder

bSS Summe der quadrierten Abweichung zwischen den

Faktorstufen

tSS Gesamtabweichung

Page 18: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Verwendete Formelzeichen

XVI

wSS Summe der quadrierten Abweichung innerhalb der

Faktorstufen

SEAT Sitzübertragungsfaktor

T s Dauer der Messung

t s Zeit

0T s Beurteilungszeit

0t s Beobachtungszeitpunkt

eT s Einwirkungsdauer

empt empirischer t-Wert

u m Auslenkung des Sitzpolsters

Störgröße

einv m s Schwinggeschwindigkeit an der Einleitungsstelle in den

menschlichen Körper

Fahrv m s Fahrgeschwindigkeit

,Fahr maxv m s größte Fahrgeschwindigkeit

,Fahr minv m s kleinste Fahrgeschwindigkeit

VDV ,175m s Vibrationsdosiswert (Vibration Dose Value)

totalVDV 1,75m s Gesamtschwingungsdosiswert

, d kW W Frequenzbewertungskurven

X unabhängige/erklärende Variable

m Periodenlänge

x m relative Verschiebung der Verbindungspunkte in

Kettenlängsrichtung

minx m Schwellwert für Hubkettensteifigkeit im Zug-Bereich

Zylx m Einfederung eines Hydraulikzylinders

Y allgemeine abhängige Variable

y Gesamtmittelwert aller Beobachtungen

Y Schätzwert der abhängigen Variable

y Schätzwert eines Beobachtungswerts

gy Mittelwert der Beobachtungswerte für eine Faktoreinstellung

gky Beobachtungswert

( )Z f N s m mechanische Eingangsimpedanz des menschlichen Körpers

Page 19: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Verwendete Formelzeichen

XVII

Griechische Buchstaben

Zeichen Einheit Bedeutung

rad Phasenverschiebung

max maximale Neigung Hubgerüst

Regressionskoeffizient des stochastischen Modells

h Kohärenzfunktion für Spurweite

Schrittweite

2p partielles Eta-Quadrat

Lagrange Multiplikator

Querdehnungszahl

s Integrationszeitkonstante der Gleitende-Effektivwert-

Methode

tread s Relaxationszeit des Gummis im Reifen

h 3m spektrale Dichte der Fahrbahnunebenheiten

l 3m spektrale Dichte der Fahrbahnunebenheiten der linken Seite

lr 3m Kreuzprodukt der spektralen Dichten der

Fahrbahnunebenheiten von linker und rechter Seite

r 3m spektrale Dichte der Fahrbahnunebenheiten der rechten

Seite

1 m Wegkreisfrequenz

0 1 m Bezugs-Wegkreisfrequenz

a 1 m untere Grenze des Frequenzbands

e 1 m obere Grenze des Frequenzbands

max 1 m größte Wegkreisfrequenz

min 1 m kleinste Wegkreisfrequenz

p 1 m Bezugs-Wegkreisfrequenz für Spurweite

Page 20: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 21: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1

1 Einführung

Mens sana in corpore sano – ein gesunder Geist in einem gesunden Körper. Dieses

verkürzte Zitat aus den Satiren des römischen Dichters Juvenal ist allseits bekannt,

und seine Bedeutung ist angesichts steigender Belastungen im heutigen beruflichen

Umfeld und der Einführung der Rente mit 67 aktueller denn je. Gerade der gesunde

Geist scheint in der heutigen Zeit in Gefahr zu sein, vergegenwärtigt man sich die

stark steigenden Zahlen psychischer Erkrankungen und Burnout. Eine Auswertung

der Bundespsychotherapeutenkammer aus dem Jahr 2012 legt offen, dass seit 2004

die Anzahl der Krankschreibungen aufgrund eines Burnout um 700 % und die An-

zahl der betrieblichen Fehltage sogar um fast 1.400 % gestiegen ist. Auch generell

ist eine stetige Zunahme der psychischen Erkrankungen bei betrieblichen Fehltagen

zu verzeichnen. So sind nach der Studie 12–13 % der Arbeitsunfähigkeitstage im

Jahr 2011 auf psychische Erkrankungen zurückzuführen. [Bun-2012a]

Doch bei all der gesteigerten Aufmerksamkeit gegenüber den psychischen Erkran-

kungen darf auch der „corpus sanus“, der gesunde Körper, nicht außer Acht gelas-

sen werden. So geben die Antworten der vom Bundesinstitut für Berufsbildung

(BIBB) in Kooperation mit der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

(BAuA) durchgeführten Erwerbstätigenbefragung von 20.036 Erwerbstätigen ab

15 Jahren aus dem Jahr 2012 Anlass zum Nachdenken. Lediglich 54 % der Befrag-

ten beschreiben ihren Gesundheitszustand als gut, weitere 12 % als weniger gut

und 2 % sogar als schlecht [Wit-2013]. Durchschnittlich war im Jahr 2012 jeder Ar-

beitnehmer 12,2 Tage arbeitsunfähig, weswegen durch Produktionsausfall wirt-

schaftliche Kosten von 12,4 Mrd. € entstanden sind [Bun-2012b]. Die wichtigste Rol-

le spielt dabei die „Volkskrankheit Rückenschmerz“. So leiden einer Umfrage des

Robert Koch-Instituts 62 % der Bevölkerung an Rückenschmerzen [Koh-2004].

Krieger geht sogar davon aus, dass mehr als 80 % der Deutschen im Laufe ihres

Lebens diese Krankheit ereilt [Kri-2013]. Bezogen auf die Gruppe der Erwerbstätigen

leiden 46 % an Schmerzen im unteren Rücken bzw. Kreuzschmerzen [Wit-2013].

Daher verwundert es nicht, dass Muskel- und Skeletterkrankungen der wichtigste

Grund für Krankmeldungen von Pflichtversicherten sind [Gra-2013a]. Im Jahr 2012

können gut 24 % aller Arbeitsunfähigkeitstage darauf zurückgeführt werden, in

Summe sind dies ganze 122 Mio. Tage bei steigender Tendenz [Bun-2012b].

Anhand der genannten Zahlen liegt es nahe, dass Arbeitsschutz und Prävention die

wichtige Schlüsselfunktion einnehmen, um die Gesundheit der Arbeitnehmer zu

schützen. Auch Angestellte in der Logistikbranche sind bei der Ausübung ihres Be-

Page 22: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1 Einführung

2

rufs physischen Belastungen ausgesetzt und werden durch die zuständigen Berufs-

genossenschaften in den Arbeitsschutz einbezogen.

1.1 Der Flurförderzeugfahrer im Fokus des Arbeitsschutzes

Der Arbeitsschutz vereint alle Maßnahmen zum Schutz der Beschäftigten bei der

Arbeit, um die Gesundheit, die Arbeitskraft und die Leistungsfähigkeit des arbeiten-

den Menschen zu erhalten. Er lässt sich in die drei Bereiche des allgemeinen, des

technischen und des sozialen Arbeitsschutzes unterteilen. Während der allgemeine

Arbeitsschutz sicherstellt, dass „die Grundsätze des Arbeitsschutzes sowie die

Pflichten von Arbeitgeber und Arbeitnehmer eingehalten werden“, ist die Aufgabe

des technischen Arbeitsschutzes, dass „gesetzliche Bestimmungen bezüglich der

Bereitstellung von Arbeitsmitteln durch Arbeitgeber sowie der Benutzung dieser Ar-

beitsmittel durch die Beschäftigten bei der Arbeit eingehalten werden.“ Der soziale

Arbeitsschutz fokussiert dagegen die Bestimmungen des Mutterschutzgesetzes, des

Jugendarbeitsschutzgesetzes und des Arbeitszeitgesetzes. [Bay-2013]

Die vorliegende Arbeit rückt die Fahrer von Flurförderzeugen in den Vordergrund des

Arbeitsschutzes. Denn beim Umgang mit Flurförderzeugen kann es zum einen

schnell zu schweren oder sogar tödlichen Unfällen kommen, bei denen der Flurför-

derzeugfahrer selbst oder Personen im Umfeld verletzt werden. So ereigneten sich

im Jahr 2007 im Bereich Großhandel und Lagerei 1.119 meldepflichtige Unfälle1

[Kan-2009]. Zum anderen ist zu beachten, dass der Gabelstaplerfahrer während der

Ausübung seiner Tätigkeit im Normalfall physischen Belastungen ausgesetzt ist, die

es zu minimieren gilt.

Bei genauerer Betrachtung der Unfälle bei Flurförderzeugen mit Fahrersitz ist nach

Kany festzuhalten (Abbildung 1-1), dass die Anfahrunfälle, bei denen der Fahrer

selbst oder andere Personen verletzt werden, mit 45 % (2006) bzw. 39 % (2007) den

größten Anteil einnehmen [Kan-2009]. Als Ursache können die Unachtsamkeit des

Fahrers, Zeitdruck, nicht optimale Betriebsabläufe sowie eine eingeschränkte Sicht

des Fahrers angeführt werden. Zur Vermeidung sind technische (z. B. Beschaffung

von Flurförderzeugen mit guter Sicht) und organisatorische Maßnahmen (z. B. Opti-

mierung der Verkehrswege, Panoramaspiegel im Kreuzungsbereich) zu ergreifen.

1 Die tatsächliche Zahl ist höher einzustufen, da einige Unfälle mit kraftbetriebenen Flurförderzeu-

gen unter Beteiligung anderer Arbeitsmittel diesen zugeordnet sein können [Kan-2009]. Über alle Branchen einschließlich der Unfallversicherungsträger der öffentlichen Hand sind im Jahr 2007 insgesamt 1.055.797 meldepflichtige Arbeitsunfälle zu verzeichnen [Bun-2010a].

Page 23: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1.1 Der Flurförderzeugfahrer im Fokus des Arbeitsschutzes

3

Abbildung 1-1: Meldepflichtige Unfälle mit Flurförderzeugen mit Fahrersitz nach [Kan-2009]

Auf Platz zwei folgen Unfälle beim Auf- und vor allem beim Absteigen (bzw. Ab-

springen) mit ca. 35 %, bei denen der Fahrer selbst der Leidtragende ist, was übli-

cherweise Zeitdruck, Unachtsamkeit und fehlenden bzw. unzweckmäßigen Tritten

geschuldet ist. Auch wenn sie mit 2-3 % einen vergleichsweise kleinen Anteil am

gesamten Unfallgeschehen einnehmen, führen Kippunfälle in Längsrichtung oder zur

Seite häufig „zu schweren bis schwersten bis hin zu tödlichen Verletzungen“. Diesen

Unfällen kann aktiv durch technische Maßnahmen begegnet werden. Anzuführen

sind eine Verriegelung der Pendelachse gegenüber dem Fahrzeugchassis sowie eine

Reduzierung der Fahrgeschwindigkeit abhängig vom Lenkwinkel oder der Hubhöhe

[Hei-2003]. Ein Beckengurt alleine ist nicht ausreichend, auch hier sind tödliche Un-

fälle auf Grund der mangelnden Akzeptanz und der daraus folgenden ausbleibenden

Nutzung zu verzeichnen. Abhilfe hierfür schafft eine Gurtschlossüberwachung [Hei-

2003]. Das Unfallgeschehen beim Umgang mit Flurförderzeugen mit Fahrerstand

lehnt sich stark an das skizzierte Bild bei Flurförderzeugen mit Fahrersitz an. [Kan-

2009]

Neben den Unfällen, die sich als Einzelereignis auszeichnen, wurden bereits die kon-

tinuierlichen physischen Belastungen angesprochen, denen der Flurförderzeugfahrer

ausgesetzt ist. Diese können nach Schäfer und Kany in erster Linie in drei Bereiche

unterteilt werden [Sch-2009a]:

50

40

30

20

10

0

Hera

bfa

llen

Gab

elz

inke

2006 (N= 459)

2007 (N= 566)

Anfa

hre

n

Auf-

/A

bst

eig

en

Ab

sturz

Lad

eg

ut

Kip

pen

Lad

eb

rücke

Ho

chfa

hre

n

Wart

ung

/R

ep

ara

tur

Hub

lad

e-

bühne

So

nst

ige

Ante

il m

eld

ep

flic

htig

er

Unfä

lle [%

]

Page 24: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1 Einführung

4

Verdrehen der Wirbelsäule beim Rückwärtsfahren

seitliche Bewegung des Kopfes beim Fahren, um Sichteinschränkungen zu

kompensieren

Ganzkörper-Vibrationen

Ist durch große Lasten die Sicht auf die Fahrbahn versperrt oder sind Gefällestre-

cken zu befahren, ist der Fahrer angewiesen, rückwärts zu fahren. Nach Haimerl be-

trägt der Anteil der Rückwärtsfahrt sogar annähernd 50 % [Hai-2005]. Da der Sitz

bei Gabelstaplern im Normalfall nach vorne ausgerichtet ist, wird eine Verdrehung

der Wirbelsäule erzwungen. Effektive Abhilfe können Fahrzeuge mit Drehsitz ver-

schaffen [Sch-2003]. Fahrzeuge mit drehbarer Kabine, wie in [Rie-2005b] beschrie-

ben, haben sich bis jetzt am Markt nicht durchsetzen können, dafür sind einige Mo-

delle mit einer hochgesetzten Kabine ausgestattet.

Unabhängig von eingeschränkten Sichtverhältnissen im Lager durch z. B. Regale

zwingen schon Bauteile des Fahrzeugs selbst den Fahrer zu ständigen Kopfbewe-

gungen, um den Fahrweg vollständig einsehen zu können. Funktionsbedingt stellt

das Hubgerüst eine Sichtbehinderung nach vorne dar, auch der Kabinenrahmen und

Anbauteile wirken sich negativ auf die Sicht aus. Bei der Beschaffung eines Gabel-

staplers sollte der Unternehmer deswegen auf eine optimierte Konstruktion achten.

[Sch-2009a; Kan-2012].

Während ihres Betriebs werden im Normalfall alle Flurförderzeuge zu Schwingungen

angeregt und übertragen diese über die Standplattform oder den Sitz auf den Fah-

rer. Da diese dabei auf den gesamten Körper einwirken, spricht man von Ganzkör-

per-Vibrationen. Ganzkörper-Vibrationen mindern nicht nur den Komfort, sondern

können auch zu Muskel- und Skeletterkrankungen sowie Durchblutungsstörungen

führen und stellen somit eine Gefährdung für die Gesundheit und die Sicherheit des

Menschen dar [CEN-1996]. Hiervon sind jedoch nicht nur Fahrer von Flurförderzeu-

gen betroffen. Insgesamt 21 % der Befragten der BIBB/BAuA-Erwerbstätigenbefra-

gung geben an, Arbeiten mit starken Erschütterungen, Stößen und Schwingungen,

die man im Körper spürt, auszuführen, bei 4 % ist dies sogar häufig der Fall. Von

den Letztgenannten fühlen sich 54 % durch die Vibrationen belastet, bezogen auf

alle Befragten sind dies 2,3 % [Wit-2013].

Neben den bereits angesprochen Faktoren Rückwärtsfahren und Ganzkörper-

Vibrationen zählen nach Kuhnt auch die monotone Sitzhaltung sowie der Klima-

wechsel durch unterschiedliche Arbeitsräume zu den wichtigsten Faktoren, die beim

Flurförderzeugfahrer während des Fahrens zu Rückenproblemen führen können

[Kuh-2001].

Page 25: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1.1 Der Flurförderzeugfahrer im Fokus des Arbeitsschutzes

5

Abseits des klassischen Gegengewichtsgabelstaplers ist bei Schubmaststaplern

noch ein weiterer Aspekt zu berücksichtigen. Beim Ein- und Auslagern von Waren in

hochgelegenen Regalfächern muss der Fahrer seinen Kopf weit nach hinten über-

strecken, was ergonomisch ungünstig ist und Ermüdungen und Verspannungen her-

vorruft. Dem können Sitze mit variablem Neigungswinkel sowie neigbare Kabinen

entgegenwirken. [Kan-2012]

Neben den aufgeführten Belastungen, die beim Fahren des Flurförderzeugs auftre-

ten, kann das Aufgabenfeld des Gabelstaplerfahrers als Logistiker zusätzliche ma-

nuelle Tätigkeiten erfordern. Üblicherweise fallen diese an, wenn einzelne Lasten

ein-, aus- oder umgelagert werden müssen. Hierdurch ergeben sich zusätzliche Be-

lastungen durch Heben, Tragen, Ziehen und Schieben der Waren. So ermittelt Walch

im Rahmen einer Feldstudie „ein Belastungsprofil der operativen Logistik, das vor-

nehmlich von hoher körperlicher Belastung geprägt ist“. Insbesondere in der Kom-

missionierung treten „Belastungen durch das Heben von Lasten auf, die ein hohes

Maß an Gesundheitsrisiko für die Logistiker bergen“ [Wal-2011].

Ebenso wie das Verdrehen der Wirbelsäule, die seitliche Kopfbewegung sowie das

Überstrecken des Kopfs steht die Belastung aus manueller Kommissioniertätigkeit

nicht im Fokus der vorliegenden Arbeit. Diese konzentriert sich ausschließlich auf

Ganzkörper-Vibrationen, gegenüber denen der Flurförderzeugfahrer exponiert ist.

Obwohl die Gefahr, die von Ganzkörper-Vibrationen ausgeht, seit langem bekannt

ist und deswegen früh Flurförderzeugfahrer in Langzeituntersuchungen einbezogen

wurden (z. B. [Neu-1997]) sowie auch auf Fachtagungen und Informationsblättern

die Branche der Flurförderzeugbetreiber durch entsprechende Beiträge sensibilisiert

wurde (z. B. [Fis-2001; Kuh-2001; Ber-2003; Hel-2005]), hat man seitens der Bran-

che dem Thema bis Mitte des letzten Jahrzehnts nur ungenügend Beachtung ge-

schenkt, da eine Lücke im deutschen Rechtssystem bestand. Denn „weder für die

Hersteller von vibrierenden Geräten bzw. Maschinen noch für deren Anwender war

in Deutschland verbindlich geregelt, wann tatsächlich eine Gefährdung der Sicher-

heit oder der Gesundheit besteht“ [Moh-2007], da keine Grenzwerte existierten.

Dies hat sich grundlegend geändert, als die Europäische Union im Jahr 2002 den

Stein ins Rollen brachte und mit der Richtlinie 2002/44/EG Mindestanforderungen an

den Schutz der Beschäftigten vor Vibrationen definierte [Eur-2002]. Spätestens mit

der Verabschiedung der Lärm- und Vibrations-Arbeitsschutzverordnung im Jahre

2007 als Umsetzung der EU-Richtlinie durch die deutsche Bundesregierung [Bun-

2007b] wurden die Betreiber – und nicht die Hersteller – von Flurförderzeugen end-

gültig in die Pflicht genommen, einer möglichen Gefährdung der Beschäftigten

Page 26: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1 Einführung

6

durch die Einwirkung von Vibrationen entgegenzuwirken. Im Rahmen der Gefähr-

dungsbeurteilung im Zuge des bereits thematisierten Arbeitsschutzes ist nun die

Belastung der Arbeitnehmer durch Vibrationen, die sogenannte Tagesexposition,

explizit zu bestimmen (Kapitel 2.2.2), mit definierten Grenzwerten zu vergleichen

(Kapitel 2.2.3) und bei Überschreitung geeignete Maßnahmen zu ergreifen.

1.2 Einflussfaktoren auf die Vibrationsbelastung kennenlernen

Sensibilisiert durch die neue Gesetzeslage rückte das Thema der Ganzkörper-

Vibrationen in den Fokus der Branche und war Kernpunkt zahlreicher Veröffentli-

chungen in Fachzeitschriften und auf Fachtagungen. Da im Gegensatz zu anderen

Branchen wie z. B den Baumaschinen belastbare Expositionsdaten bei Flurförder-

zeugen zu diesem Zeitpunkt nur unzureichend vorhanden waren, wurden sowohl

einzelne Messwerte veröffentlicht2 als auch generell über das Gefährdungspotential

sowie Erfahrungen mit dem Thema berichtet3. Generell bestand öffentlich Unklarheit,

in welchem Maße das Thema die Branche betrifft, d. h. ob und in welchen Bereichen

mit Grenzwertüberschreitungen zu rechnen ist. Mittlerweile ist der damals vage

Kenntnisstand durch Messungen, die sowohl Flurförderzeuge mit und ohne Sitz ad-

ressieren, erweitert, so dass exaktere Aussagen möglich sind, die sich jedoch noch

lange nicht über alle Einsatzgebiete von Flurförderzeugen erstrecken. Gerade die

Berufsgenossenschaft Handel und Warendistribution (BGHW) nimmt sich dem The-

ma über sog. Branchenmessungen an [Rok-2013]. Einen Überblick zum aktuellen

Wissensstand bietet Kapitel 2.2.4.

Neben der zu erwartenden Tagesexposition, einem aus Messungen abgeleiteten

Kennwert für die Vibrationsbelastung an einem Arbeitstag, ist für die Branche von

großem Interesse, welche Faktoren diese Tagesexposition beeinflussen. Mit diesem

Wissen ist es sowohl möglich, die Übertragbarkeit von Messwerten eines Arbeits-

platzes auf einen anderen zu prüfen als auch wirkungsvolle Maßnahmen zu treffen,

um die Vibrationsbelastung zu reduzieren. Deswegen war und ist eine Betrachtung

der Einflussfaktoren immer Bestandteil eingangs genannter als auch aktueller Veröf-

fentlichungen (vgl. [Sch-2010b; Egb-2012; Rok-2013]). Konkrete Aussagen sind je-

doch nur sehr selten anzutreffen, meist erfolgt eine Auseinandersetzung nur auf qua-

litativer Ebene. So halten z. B. Schäfer et al. verallgemeinernd fest, dass „für eine

bestimmte Fahrzeugart die Vibrationseinwirkung auf den Fahrer umso größer ist, je

holperiger die Fahrbahn und je höher die Fahrgeschwindigkeit ist“ [Sch-2007b]. Eine

2 vgl. [Rie-2005a; Sch-2007b; Töd-2007a] 3 vgl. [Eic-2007; Lin-2007; Sch-2007b; Sch-2007c; STI-2007; Töd-2007a; Töd-2007b; Vor-2007d;

Sch-2009a]

Page 27: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1.2 Einflussfaktoren auf die Vibrationsbelastung kennenlernen

7

ausführliche Auseinandersetzung mit den postulierten Einflussfaktoren der Fachwelt

erfolgt in Kapitel 3.1.

Vor diesem Hintergrund wurde auf Initiative der bedeutendsten deutschen Flurför-

derzeug-Hersteller ein öffentlich gefördertes Forschungsvorhaben initiiert, welches

das Schwingungsverhalten von Flurförderzeugen unter Einbeziehung von Fahrzeug-

sitz und Fahrer im Hinblick auf die Thematik der Ganzkörper-Vibrationen wissen-

schaftlich untersuchen, dabei den Einfluss einzelner Betriebsparameter, wie z. B.

Bodenunebenheiten, Fahrgeschwindigkeit und Beladungszustand, auf das gesamte

Schwingungsverhalten der Flurförderzeuge erfassen sowie die im Sinne der Vibrati-

onsbelastung kritischen Parameter identifizieren soll. Vorliegende Arbeit fußt auf die-

sem in den Jahren 2008 bis 2010 durchgeführten Forschungsprojekt, welches der

Autor als Projektleiter bearbeitet hat und dessen Ergebnisse in [Fis-2010e; Fis-

2010b; Fis-2010c; Fis-2010d; Fis-2010a; Gün-2011; Fis-2011b; Fis-2011a; Fis-

2011c] veröffentlicht sind.

Auch wenn sich der „Hype“ nach dem Jahr 2007 in der Branche allmählich gelegt

hat und mehr und mehr Messwerte der Öffentlichkeit zugänglich gemacht werden

(vgl. Kapitel 2.2.4), so sind noch lange nicht alle Fragestellungen zum Thema Ganz-

körper-Vibrationen bei Flurförderzeugen beantwortet. Auch scheint es, als ob das

Thema in aktueller Fachliteratur für Fahrer und Betreiber von Flurförderzeugen noch

nicht den ihm gebührenden Stellenwert einnimmt. So stellt Kaufmann im Staplerfah-

rer-ABC fest, dass „neben Schäden aus Lärm zunehmend auch Schäden aus Vibra-

tionen an Bedeutung gewinnen“ und weist lediglich nur auf die Auswahl eines ge-

eigneten Sitzes mit einem Federungssystem hin, das „auf das Gewicht des Fahrers

eingestellt werden kann“ [Kau-2011, S. 134]. Ein Hinweis auf die Wichtigkeit einer

richtigen Sitzeinstellung bzw. ein Hinweis auf die Gesundheitsgefährdung durch Vib-

rationen unterbleibt. Ebenso fragt die Berufsgenossenschaft Handel und Waren-

distribution (BGHW) zwar im Handbuch für Gabelstaplerfahrer „Wie geht es Ihrer

Wirbelsäule?“, erwähnt bei den die Wirbelsäule belastenden Arbeiten jedoch aus-

schließlich das Heben, Schieben und Ziehen von Lasten im Rahmen der Kommissi-

oniertätigkeiten [Zel-2012, S. 8–13]. Auch im Unternehmer-Handbuch Gabelstapler

der BGHW wird das Thema Ganzkörper-Vibrationen selbst in der neuesten Auflage

nicht thematisiert. Es erfolgt lediglich ein Hinweis, dass „die Wirbelsäule des Fahrers

durch Verdrehung – insbesondere in Verbindung mit Vibrationen – übermäßig belas-

tet werden kann“ [Kan-2012, S. 26]. Ebenfalls in der BGI-Information 545 „Gabel-

stapler“ der Berufsgenossenschaft Holz und Metall (BGHM) finden sich zwar Hin-

weise auf die Notwendigkeit schwingungsmindernder Sitze, die korrespondierenden

Verordnungen und Technischen Regeln werden jedoch nicht erwähnt. Die Umset-

zung der Lärm- und Vibrations-Arbeitsschutzverordnung schreitet nach Mohr zwar

Page 28: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1 Einführung

8

stetig voran, trotzdem ist auf Basis von Umfragen festzuhalten, „dass aber immer

noch deutliche Defizite existieren“ [Moh-2013]. Die genannten Aspekte legen nahe,

dass weitere Forschungsarbeit auf diesem Themenfeld nötig ist, auch um eine wei-

tere Sensibilisierung aller Beteiligten zu erreichen.

Weiterhin ist festzustellen, dass gerade hinsichtlich der Frage, welche Faktoren aus-

schlaggebend für die Höhe der Vibrationsbelastung sind, teilweise noch gegenläufi-

ge Behauptungen existieren, was in Kapitel 3.1 herausgestellt wird. An dieser Stelle

setzt vorliegende Arbeit an und nimmt sich zum Ziel, die in Kapitel 3.2 herausgear-

beiteten Forschungsfragen zu beantworten, die hier einleitend im Vorgriff genannt

werden:

Welche Faktoren bestimmen maßgeblich in welcher Höhe die Vibrations-

exposition von Fahrern von typischen Flurförderzeugen mit Fahrersitz und

wie beeinflussen sich diese Faktoren gegenseitig?

Wie kann auf Basis dieser Erkenntnis die Vibrationsbelastung der Flurför-

derzeugfahrer mit Fahrersitz abgeleitet werden?

Mit den angestrebten Ergebnissen, die die Einflüsse auch möglichst in quantitativer

Hinsicht offenlegen, soll es zum einen möglich sein, effektive Maßnahmen zu ergrei-

fen, um die Vibrationsexposition der Fahrer zu minimieren und zum anderen kann

anhand der Aussagen besser beurteilt werden, ob bekannte Messwerte einer Ar-

beitsumgebung auf einen anderen Einsatzfall übertragen werden können.

Im Rahmen dieser Arbeit erfolgt explizit eine Fokussierung auf typische Flurförder-

zeuge mit Fahrersitz, da sich diese Gruppe sowohl hinsichtlich des Einleitungs-

punkts in den Körper als auch des Einsatzbereichs der Fahrzeuge deutlich von Flur-

förderzeugen mit stehendem Fahrer unterscheidet und die vorgenommene Be-

schränkung eine fundierte Betrachtung innerhalb einer in sich geschlossenen Arbeit

ermöglicht.

1.3 Vorgehensweise und Struktur der Arbeit

Nachdem das Ziel, die Einflussfaktoren auf die Vibrationsbelastung von Flurförder-

zeugfahrern mit Fahrersitz zu untersuchen, eingeführt ist, widmet sich dieses Kapitel

der Vorgehensweise zur Beantwortung der Forschungsfragen und damit verbunden

dem Aufbau und der Struktur vorliegender Arbeit. Die Vorgehensweise ist eng ver-

bunden mit dem angewandten Forschungsvorgehen und den dabei eingesetzten

Page 29: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1.3 Vorgehensweise und Struktur der Arbeit

9

Forschungsmethoden. Letztgenannten kommt ein hohes Maß an Bedeutung zu, da

„die Ergebnisse wissenschaftlicher Untersuchungen und die daraus abgeleiteten

Maßnahmen in der Anwendungspraxis nur so gut sein können wie die Methoden,

mit denen sie gewonnen wurden“ [Eid-2011, S. 3]. Forschungsmethoden als Werk-

zeuge des wissenschaftlichen Fortschritts „umfassen alle Hilfsmittel zur Gewinnung

und systematischen Auswertung von Informationen oder Daten“ [Eid-2011, S. 3].

Während in den Ingenieurswissenschaften vor allem Vorgehensweisen im Bereich

der Produktentwicklung wie z. B. das Münchener Vorgehensmodell nach Lindemann

[Lin-2009] bekannt sind, im Rahmen derer wiederum spezielle Kreativmethoden wie

TRIZ [Kle-2007] oder strukturierende Methoden wie der Morphologische Kasten

[Zwi-1989] eingesetzt werden, findet eine intensive Diskussion von Forschungsme-

thoden vor allem im Bereich der Sozialwissenschaften statt (vgl. [Bor-2010; Eid-

2011]). In diesem Kontext stellen Eid, Gollwitzer und Schmitt ein Vorgehen für einen

vollständigen Forschungsprozess vor, innerhalb dessen die einzelnen Forschungs-

methoden problemspezifisch eingesetzt werden [Eid-2011, S. 11–18]. Dieses an-

hand der einzelnen Schritte im Forschungsprozess skizzierte Vorgehen in Abbil-

dung 1-2 besitzt Allgemeingültigkeit und gibt der vorliegenden Arbeit einen wertvol-

len Rahmen für die angewandte Vorgehensweise und Struktur.

Abbildung 1-2: Schritte im Forschungsprozess nach [Eid-2011, S. 11–18]

Nachfolgende Überlegungen ordnen die vorliegende Forschungsarbeit in den For-

schungsprozess nach Eid ein, indem die Kapitel samt Inhalt den Forschungsschrit-

Entstehung eines Erkenntnisinteresses

Sammlung verfügbaren Wissens

Entwicklung einer Fragestellung

Planung der Untersuchung- Auswahl einer Erhebungsmethode- Festlegung der Population und Auswahl einer

Stichprobe- Probleme bei der Versuchsdurchführung- mangelnde Validität

Durchführung der Untersuchung

Auswertung der Daten

Schlussfolgerungen aus der Untersuchung

Mitteilung der Untersuchung

1.

2.

3.

4.

5.

6.

7.

8.

Page 30: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1 Einführung

10

ten gegenübergestellt werden (Abbildung 1-3) und nehmen dabei Ergebnisse zur

Identifikation der eingesetzten Forschungsmethoden vorweg. So ist vorab festzuhal-

ten, dass die Überlegungen zur Auswahl der Erhebungsmethode zum Einsatz der

Mehrkörpersimulation an repräsentativen Flurförderzeugen geführt haben.

Abbildung 1-3: Struktur der Arbeit in Anlehnung an den Forschungsprozess nach Eid

Insgesamt ist die Arbeit in acht Kapitel aufgeteilt. Die Erstehung des Erkenntnisinte-

resses ist in der Einleitung in Kapitel 1 beschrieben. Sie spannt den Bogen über die

Volkskrankheit Rückenschmerz und den bei Flurförderzeugen wichtigen Arbeits-

schutz und stellt abschließend speziell die Gefährdung durch Ganzkörper-

Vibrationen und die dort noch vorhandenen Unwägbarkeiten in den Vordergrund.

Kapitel 2 widmet sich mit dem Stand der Technik zuerst dem Thema der Flurförder-

zeuge und stellt damit sowohl eine Entscheidungsgrundlage für die spätere Auswahl

der Stichprobe (Fahrzeuge) dar als auch eine Übersicht über zurückliegende und

aktuelle Forschungsarbeiten aus dem Bereich der dynamischen Simulation zur Ver-

fügung. Ebenso schafft der Stand der Technik beim Leser ein Grundverständnis

über Theorie und Praxis der Ganzkörper-Vibrationen und geht dabei speziell auf

Ganzkörper-Vibrationen bei Flurförderzeugen ein. Obwohl in Kapitel 1.2 bereits die

Forschungsfrage einleitend genannt ist, widmet sich Kapitel 3 nochmals detailliert

der Entwicklung dieser Fragestellung. Hierbei werden existierende Erkenntnisse

über Einflussfaktoren auf die Vibrationsbelastung strukturiert analysiert und bewer-

tet, um daraus die Aufgabenstellung und Zielsetzung der vorliegenden Arbeit konk-

ret abzuleiten. Die Planung der Untersuchung findet im gleichnamigen Kapitel 4

Entstehung eines Erkenntnisinteresses

Sammlung verfügbaren Wissens

Entwicklung einer Fragestellung

Planung der Untersuchung

Durchführung der Untersuchung

Auswertung der Daten undSchlussfolgerungen aus der Untersuchung

Kapitel 1

Kapitel 2

Kapitel 3

Kapitel 4

Kapitel 7

Einführung

Stand der Technik und Forschung

Forschungslücke und Aufgabenstellung

Planung der Untersuchung

Modellbildung der Flurförderzeuge

Verifikation und Validierung der Simulationsmodelle

Einflussfaktoren auf die Vibrationsbelastung

Zusammenfassung und Ausblick

Kapitel 6

Kapitel 5

Kapitel 8

Forschungsschritte nach Eid Kapitel der Arbeit

Page 31: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

1.3 Vorgehensweise und Struktur der Arbeit

11

statt. Dies beginnt mit einer Auswahl der einzusetzenden Forschungsmethoden,

wobei die nach Eid zu berücksichtigenden Punkte „Probleme bei der Versuchs-

durchführung“ und „mangelnde Validität“ diskutiert werden. Im Rahmen der „Festle-

gung der Population und Auswahl der Stichprobe“ erfolgt eine Beschränkung auf

spezielle Flurförderzeugtypen, eine Auswahl repräsentativer Geräte und Fahrersitze

sowie eine Betrachtung der typischen Einsatzgebiete der Flurförderzeuge. Ebenso

fällt die Entscheidung, die Datenerhebung mit Hilfe der dynamischen Simulation

durchzuführen. Die Konzeption eines ersten Versuchsplans rundet das Kapitel ab.

Im Zusammenhang mit der Durchführung der Untersuchung wird zuerst die Modell-

bildung der Flurförderzeuge in Kapitel 5 und die Verifikation und Validierung der ent-

standenen Simulationsmodelle in Kapitel 6 beschrieben. Die Durchführung der Si-

mulationsläufe an sich wird nicht im Detail erläutert, da dies unter Verwendung von

Hilfswerkzeugen automatisch durch die eingesetzte Software erfolgt. Deswegen

wird bei der Auswertung der Daten in Kapitel 7 direkt auf die Erkenntnisse durch den

Einsatz multivarianter Analysemethoden eingegangen. Das Kapitel schließt mit kon-

zentrierten Schlussfolgerungen zur Belastung des Fahrers bzw. zu den Einflussfak-

toren. Der nach Eid vorgesehene Schritt der „Mitteilung der Untersuchung“ wird

nicht gesondert erwähnt, da er mit vorliegender Arbeit vollzogen wird.

Page 32: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 33: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

13

2 Stand der Technik und Forschung

2.1 Flurförderzeuge

Als Flurförderzeuge werden gleislose Flurfördermittel bezeichnet, die vorwiegend für

den innerbetrieblichen Transport von Lasten Verwendung finden. Hierbei dienen sie

„ihrer Bauart nach dem Befördern, Ziehen, Schieben, Heben, Stapeln oder In-

Regale-Einlagern von Lasten aller Art. Sie sind fahrerlos, mitgängergeführt oder von

einem Fahrer bedient, der auf dem Flurförderzeug oder einem hebbaren Fahrerplatz

sitzt oder steht“ [VDI 3586, S. 3]. Dieses Kapitel nennt im Hinblick auf die spätere

Fahrzeugauswahl Einteilungskriterien für die unterschiedlichen Flurförderzeuge und

geht auf deren Verbreitung ein. Abschließend wird ein Überblick über abgeschlosse-

ne und laufende Forschungsarbeiten am Untersuchungsobjekt Flurförderzeug aus

dem Bereich der dynamischen Simulation gegeben.

2.1.1 Einteilungskriterien

Für die unterschiedlichen Aufgabenbereiche der Logistik wurden seit der Entstehung

der Flurförderzeuge maßgeschneiderte Geräte entwickelt, so dass heutzutage eine

hohe Variantenvielfalt festzustellen ist. Dank einer ständigen Standardisierung und

Normung entlang dieses Entwicklungsprozesses existiert jedoch nach Günthner und

Heptner eine klar gegliederte Struktur in Bezug auf Bauart, Tragfähigkeit, Hubhöhe

und sonstige Sicherheitsbestimmungen [Gün-2007, S. 140].

Gleichzeitig sind im deutschen Sprachgebrauch unterschiedlichste Bezeichnungen

wie Gabelstapler oder Stapler anzutreffen, die teilweise synonym für den Begriff

Flurförderzeug gebraucht werden, streng genommen jedoch nur für Untergruppen

stehen. Nachfolgende Ausführungen folgen explizit den in der Fachliteratur und

Normen üblichen Begriffsbezeichnungen und bieten einen Überblick über gebräuch-

liche Einteilungskriterien.

Je nach Betrachtungsebene sind unterschiedliche Einteilungen möglich. Bereits die

eingangs genannte Definition lässt mögliche Unterscheidungsmerkmale erahnen. So

schlägt Kaufmann eine grobe Unterteilung aller Flurförderzeuge nach Mitgänger-

Flurförderzeug, Flurförderzeug mit Fahrersitz oder Fahrerstand, Fahrerloses Flurför-

derzeug und Anhänger vor [Kau-2013, S. 115]. Für die im Fokus der Betrachtung

stehenden kraftbetriebenen Flurförderzeuge der innerbetrieblichen Logistik nimmt

die DIN ISO 5053 eine Einteilung nach den Kriterien Benutzungsart, Antriebsart, Rä-

der, Art der Steuerung und Fahrbewegung vor [DIN ISO 5053]. Dabei stellt die Be-

Page 34: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

14

nutzungsart ein zweckmäßiges und übliches Unterscheidungsmerkmal dar. So wer-

den nach ihr auf oberster Ebene einfache Wagen mit fester Plattform, Schlepper und

Flurförderzeuge mit Hubeinrichtung unterschieden. Mit fortschreitender Detaillierung

lassen sich die Flurförderzeuge mit Hubeinrichtung weiter in stapelnde Flurförder-

zeuge (Stapler), nichtstapelnde Hubwagen und Kommissionier-Flurförderzeuge dif-

ferenzieren. Auch diese Aufteilung erscheint noch zu grob, da viele der heute allseits

geläufigen stapelnden Flurförderzeuge somit unter einen Hut genommen werden.

Deswegen sieht die DIN ISO 5053 noch eine weitere Aufschlüsselung dieser Gruppe

in elf unterschiedliche Typen vor. Zu den bekanntesten Vertretern gehören hierbei

die Gabelstapler sowie Schubstapler, wobei bei letzteren die Ausführung mit

Schubmast gegenüber der mit Schubgabel dominiert. Die ersten beiden Ebenen der

Aufteilung nach Benutzungsart zeigt Abbildung 2-1 vollständig und ergänzt diese mit

Beispielen stapelnder Flurförderzeug auf der dritten Ebene.

Abbildung 2-1: Einteilung der Flurförderzeuge nach Benutzungsart gemäß [DIN ISO 5053]

An dieser Stelle sei darauf verwiesen, dass der Begriff Gabelstapler in der Literatur

und vor allem im Sprachgebrauch nicht immer einheitlich verwendet wird. Seiner

Wortzusammensetzung nach umfasst er stapelnde Flurförderzeuge mit einer Gabel

bzw. Gabelzinken. Dies ist jedoch ein sehr weitfassender Bereich, da diese Definiti-

on fast alle Flurförderzeuge mit Hubeinrichtung einschließt. Im Rahmen dieser Arbeit

findet die Begriffsdefinition nach [DIN ISO 5053] Verwendung, bei der Gabelstapler

den sog. und allseits bekannten Gegengewichtsgabelstapler beschreiben und sich

klar von Schubstaplern, Seitenstaplern, Kommissionierstaplern und den restlichen

stapelnden Flurförderzeugen abgrenzen.

Weltweit gesehen ist eine Unterteilung der Flurförderzeuge in acht unterschiedliche

Klassen gebräuchlich, wobei die ersten fünf Klassen für die Erhebung der World In-

dustrial Truck Statistics (WITS) genutzt werden, auf welche gesondert in Kapi-

tel 2.1.2 eingegangen wird. Diese acht Klassen werden weiter unterteilt, wobei die

Flurförderzeuge

Wagen mitfester Plattform

Flurförderzeuge mit Hubeinrichtung

Schlepper

stapelnde Flurförderzeuge

nichtstapelnde Hubwagen

Kommissionier-Flurförderzeug

Gabelstapler Schubstapler Gabelhochhubwagen Querstapler

Page 35: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.1 Flurförderzeuge

15

jeweiligen Vereinigungen aus Europa, Nordamerika, China, Japan, Korea und Brasi-

lien teilweise unterschiedliche Untergruppen bilden und somit in verschiedenen De-

tailtiefen aufschlüsseln. So sieht die Industrial Truck Association (ITA) für Nordame-

rika in Klasse 2 nur fünf Untergruppen (Lift Codes) und in Klasse 3 nur acht Unter-

gruppen vor [Ont-2009; Ind-2014], während die Europäische Vereinigung der För-

der- und Lagertechnik (Fédération Européenne de la Manutention – FEM) die Klas-

se 2 in neun Untergruppen (Product Code) und die Klasse 3 in 15 Untergruppen ein-

teilt [Sek-2014]. Abbildung 2-2 gibt eine Übersicht über die international gebräuchli-

chen acht Flurförderzeugklassen.

Abbildung 2-2: Internationale Flurförderzeugklassen mit Unterteilung nach FEM [Ind-2014; Sek-2014]

Abbildung 2-2 schlüsselt in gekürzter Fassung nach den Untergruppen der FEM auf.

Die Klassen sind nach denen der ITA benannt, da die FEM selbst keine Klassenna-

men vorsieht. Ein Blick auf die international gebräuchlichen Flurförderzeugklassen

lässt erkennen, dass im Vergleich zum deutschen bzw. europäischen Raum gänzlich

– Fahrerstand-Stapler

– Elektro-Dreirad-Stapler

– Elektro-Vierrad-Stapler (Bandagen)

– Elektro-Vierrad-Stapler (alle Reifen)

– Fahrersitz-Niederhubwagen

– Fahrersitz-Hochhubwagen

– Doppelstockhubwagen

– Schubgabelstapler

– Schubmaststapler

– Vertikalkommissionierer

– Seitenstapler

– Querstapler u. Mehrwegestapler

– Geh-Niederhubwagen

– Niederhubwagen (Fahrerplattform in

untersch. Ausführung)

– Hochhubwagen (handgeführt u. mit

Fahrerplattform)

– Doppelstockhubwagen

– Doppelstockhubwagen ohne

Fahrerplattform

– Horizontalkommissionierer

– ...

– V-Stapler nur für Bandagen

– V-Stapler, alle Reifenarten

– Stapler für Container

– Reach Stacker

– Seitenstapler

– Fahrersitz-Schlepper

– Geländestapler

– Semikraftbetriebene und Handgabel-

Hubwagen

– Semikraftbetriebene und Handgabel-

Hochhubwagen

Klasse 1: Elektro-Gabelstapler

Klasse 2: Elektro-Schmalgangstapler

Klasse 3: handgeführte Elektrostapler Klasse 8: handgeführte Hubwagen

Klasse 7: Geländestapler

Klasse 6: Schlepper

Klasse 5: Verbrenner-Stapler (alle Reifen)

Klasse 4: Verbrenner-Stapler (Bandagen)

Page 36: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

16

andere Prioritäten in der Ausstattung und damit auch in der Unterteilung gesetzt

werden. Während in den nordamerikanischen Regionen eine klare Trennung zwi-

schen Elektro- und Verbrenner-Gabelstapler und bei letztgenannten zwischen Ban-

dagen- (cushion) und Luftreifen (pneumatic tire) vollzogen wird, ist dies bei deut-

schen Herstellern nicht zu erkennen. Hier wird im Normalfall die Klasse Gabelstapler

genannt und dann in Fahrzeuge mit Elektroantrieb und verbrennungsmotorischem

Antrieb aufgeteilt. Bezüglich der Reifen erfolgt in dieser Gruppe keine Differenzie-

rung, da im europäischen Raum deutlich Superelastik-Reifen dominieren, während

diese in Nordamerika kaum eingesetzt werden4. Diese Unterschiede in der Untertei-

lung existieren nicht nur auf dem Papier, sondern werden auch bei Betrachtung der

Produktpräsentation amerikanischer und deutscher Flurförderzeughersteller für den

jeweiligen Markt deutlich. Bei weltweiten Betrachtungen werden die Klassen 4 und 5

im Normalfall zusammengefasst.

Seit den letzten Jahren erfolgt im deutschen Sprachgebrauch zunehmend eine Un-

terteilung der (kraftbetriebenen) Flurförderzeuge mit Hubeinrichtung in die großen

Bereiche Gabelstapler und Lagertechnik. Der Lagertechnik sind im Allgemeinen die

Geräte zuzuordnen, die ausschließlich im Innenbereich eingesetzt werden. Dazu

zählen Schubmaststapler, Kommissionierstapler, Kommissionierer sowie Hoch- und

Niederhubwagen, welche neben dem Be- und Entladen von LKWs für das Ein- und

Auslagern sowie die Kommissionierung eingesetzt werden.

Ein Vergleich der Produktnamen unterschiedlicher deutscher Hersteller offenbart,

dass oftmals individuelle Bezeichnungen vergeben werden, die nicht unmittelbar auf

den Flurförderzeugtyp schließen lassen. Lediglich die Tragfähigkeit des Flurförder-

zeugs ist stets Bestandteil des Produktnamens. Dabei formuliert die VDI 3586 ein-

heitliche Regelungen für die Benennung von Flurförderzeugen nach DIN ISO 5053

zum Gebrauch in den Typenblättern und gibt somit zusätzliche Hinweise für die vor-

her diskutierte Unterteilung von Flurförderzeugen [VDI 3586]. Auf diese Regeln wird

im Rahmen dieser Arbeit zurückgegriffen, so dass auch die Bezeichnung der reprä-

sentativ ausgewählten Flurförderzeuge nach VDI 3586 erfolgt. Diese setzt sich für

ein Flurförderzeug mit kraftbetriebenem Fahr- und Hubantrieb jeweils aus der Be-

nennung für den Fahrantrieb (Tabelle 2-1), für die Bedienungsart und für die Bau-

form (Tabelle 2-2) zusammen, für die in der VDI 3586 jeweils Kennbuchstaben defi-

niert sind. Da im Rahmen der Arbeit ausschließlich Flurförderzeuge mit Fahrersitz im

Fokus stehen, die den Kennbuchstaben „F“ erhalten, wird an dieser Stelle auf eine

weitere Auflistung möglicher Bedienarten verzichtet.

4 Auf die unterschiedlichen Reifentypen bei Flurförderzeugen wird in Kapitel 5.2.1 gesondert einge-

gangen.

Page 37: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.1 Flurförderzeuge

17

Tabelle 2-1: Einteilung und Benennung der Flurförderzeuge nach dem Fahrantrieb [VDI 3586]

Benennung Kennbuchstabe

Handbetrieb H

Kraftantrieb

Verbrennungsmotor

Benzin B

Diesel D

Gas T

Elektromotor Batterie E

Extern (Netz) N

Hybridantrieb Y

Tabelle 2-2: Kennbuchstaben für Flurförderzeuge nach Bauform (Auswahl stapelnder Flurförder-zeuge) nach [VDI 3586]

Bauform Kennbuchstabe

Gabelstapler G

geländegängiger Gabelstapler R

Mitnahmestapler O

Schubmaststapler M

Schubgabelstapler S

Kommissionierer K

Die Tragfähigkeit des Flurförderzeugs wird in der Benennung berücksichtigt, indem

die Nenntragfähigkeit in Kilogramm geteilt durch 100 angegeben wird. Gleichzeitig

sieht die VDI 3586 vor, dass die festgelegten Benennungen um Herstellerangaben

und Ausführungsmerkmale ergänzt werden können.

2.1.2 Verbreitung

Bevor näher auf die Population der Flurförderzeuge und ihre Absatzzahlen einge-

gangen wird, werden zwei der gängigsten stapelnden Flurförderzeugtypen mit Fah-

rersitz in Bezug auf ihre Bauweise sowie die Einsatzfelder näher erläutert.

Mit dem Begriff Flurförderzeug assoziiert fast jeder sofort die Gabelstapler, die Al-

leskönner der Branche, die sich wegen ihrer universellen Einsetzbarkeit großer Be-

leibtheit erfreuen. Sie nehmen die Last im Normalfall vor den Vorderrädern auf, die in

der VDI 3586 erwähnte Möglichkeit der Aufnahme hinter den Hinterrädern ist übli-

cherweise nicht anzutreffen. Der Lasttransport selbst erfolgt freitragend. Das heißt,

dass das aus der Last resultierende Moment um die Vorderachse durch ein Gegen-

gewicht am Rumpf des Gerätes (z. B. Gewicht der Batterie oder separate Gewichte)

kompensiert wird, wodurch sich der ebenfalls gebräuchliche und die Funktionsweise

richtig beschreibende Name Gegengewichtsgabelstapler ableitet. Gabelstapler erle-

Page 38: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

18

digen unterschiedlichste Aufgaben in den Bereichen Transport, Ein-/Auslagern und

Umschlagen. Als Antrieb kommen üblicherweise Elektromotoren mit Batterie sowie

Verbrennungsmotoren mit Diesel oder Gas zum Einsatz. In der Regel erfolgt der An-

trieb über die Vorderachse. Zur Verdeutlichung zeigt Abbildung 2-3 typische Gabel-

stapler.

Abbildung 2-3: Beispiele für typische Elektro-Gabelstapler in Drei- und Vierradausführung (links, Mitte) sowie Verbrenner-Gabelstapler (rechts) (Bildquelle: Jungheinrich AG)

Gabelstapler mit elektromotorischem Antrieb werden nach Kaufmann „vorzugsweise

in Hallen eingesetzt, da sie sehr leise im Betrieb sind und wenig Schadstoffe abge-

ben“ [Kau-2013, S. 63]. Auch wenn viele Wechsel zwischen Außen- und Innenbe-

reich stattfinden bietet der Elektroantrieb Vorteile [Sch-2012]. Dafür ist die Tragfä-

higkeit bei Dreirad-Staplern auf 2,0 t und bei Vierrad-Staplern üblicherweise auf 4,5 t

beschränkt.

Verbrenner-Gabelstapler können im Normalfall Lasten bis zu 9,0 t bewegen. Eine

Ausnahme bilden die sog. Schwerlaststapler mit Tragfähigkeiten bis zu 30 t. Nach

Schneider sind Verbrenner-Gabelstapler von Vorteil, wenn „saisonale Schwankun-

gen eine hohe Einsatzflexibilität des Geräts erfordern, Steigungen zu bewältigen

bzw. Lasten zu verziehen sind oder in harten, intensiven Einsätzen dauerhaft eine

hohe Umschlagsleistung abverlangt wird“. Dass Verbrenner-Gabelstapler höhere

Umschlagsleistungen gegenüber Elektro-Gabelstaplern erzielen kann Rottmann an-

hand von Reihenuntersuchungen in der Traglastklasse von 4,0 t aufzeigen [Rot-

2007]. Eine hohe Umschlagsleistung ist nach Rose beispielsweise in der Getränke-

industrie, in der zu Spitzenzeiten im Dreischichtbetrieb gearbeitet wird, erforderlich,

so dass in diesem Industriezweig immer noch Treibgas-Gabelstapler den größten

Anteil besitzen und noch keine Verdrängung durch Elektro-Gabelstapler erkennbar

ist. Zu den klassischen Einsatzgebieten von Verbrenner-Gabelstaplern zählen In-

dustriebereiche wie Holz- und Stahlproduktion, Hafenbetriebe sowie Gießereien. Ein

weiterer Vorteil ist nach Link in der günstigeren Anschaffung eines Verbrenner-

Gabelstaplers zu sehen, da man „für das gleiche Geld wesentlich größere Tragkraft-

Page 39: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.1 Flurförderzeuge

19

kapazitäten erhält“. Den Elektro-Gabelstaplern werden jedoch weitere Wachstums-

chancen eingeräumt, wenn diese im Segment ab 5,0 t über wirtschaftliche Antriebe

verfügen. [Sch-2012]

Als zweites charakteristisches stapelndes Flurförderzeug mit Fahrersitz ist der

Schubmaststapler anzuführen, ein klassischer Vertreter der Lagertechnik für das

Transportieren und Einlagern von Lasten, der sich durch große Hubhöhen bis zu

13 m und eine hohe Wendigkeit dank seiner Dreirad-Bauweise auszeichnet. Er ist

vorzugsweise für den Transport von Europaletten (800 x 1200 mm) geeignet, welche

von der schmalen Seite aufgenommen werden. Bei dem Schubmaststapler handelt

es sich um einen sog. radunterstützten Stapler. Damit der Gesamtschwerpunkt von

Last und Fahrzeug innerhalb der Grundfläche des Fahrzeugs liegt, besitzen diese

Flurförderzeuge nach vorne auskragende Radarme. Die Bauform findet deshalb vor

allem in der Lagertechnik vielfach Verbreitung, da durch die Radarmunterstützung

der Grundkörper des Staplers relativ kompakt gebaut werden kann und so kleine

Gänge (Arbeitsgangbreiten bis ca. 2,7 m) im Lager und hohe Flächennutzungsgrade

gewährleistet werden. Das Hubgerüst wird auf einem fahrbaren Masthalter horizon-

tal innerhalb der Radarme geführt. Während wie bei einem freitragenden Gabelstap-

ler die Last mit vorgeschobenem Mast vor den Vorderrädern aufgenommen wird,

wird zur Gewährleistung der Standsicherheit bei Maximallast der Mast zum Fahren

an das Antriebsteil zurückgezogen, so dass die Last innerhalb der Radbasis trans-

portiert wird. Verbreitet sind Schubmaststapler mit Tragfähigkeiten bis 2,5 t. Im

deutschen Raum sind Schubgabelstapler, die anstatt des Hubmasts nur den Gabel-

träger horizontal verschieben, kaum gebräuchlich. Beispiele gängiger Schubmast-

stapler zeigt Abbildung 2-4.

Abbildung 2-4: Beispiele typischer Schubmaststapler (Bildquelle: Jungheinrich AG)

Weltweit gesehen stellen die Staplermärkte sehr unterschiedliche Anforderungen an

die Flurförderzeuge. So stehen nach Sieverdingbeck in Westeuropa und Teilen Ost-

Page 40: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

20

europas Produktivität, Fahrerkomfort, Service und Sicherheit im Fokus, während im

Gegensatz dazu im amerikanischen Markt vor allem kompakte und robuste Gabel-

stapler nachgefragt werden, welche im Normalfall über einen Verbrennungsmotor

verfügen. Im Vergleich zu den EU-Ländern wird auch in Russland vor allem Wert auf

die Robustheit der Fahrzeuge gelegt. Der asiatische Markt hingegen bietet kein ein-

heitliches Bild; während Japan vergleichbare Anforderungen an Ergonomie und Si-

cherheit wie in Europa stellt, werden in China vor allem kostengünstige Flurförder-

zeuge nachgefragt. [Sie-2012, S. 22]

Umfassendes Zahlenmaterial zur Aufschlüsselung der weltweiten Märkte ist der All-

gemeinheit kaum zugänglich und bleibt den Verbänden vorenthalten, die die Daten

erheben und zur World Industrial Truck Statistics (WITS) zusammenführen. Anhand

einer jährlich veröffentlichten Zusammenfassung der ausgelieferten Flurförderzeuge

in die jeweiligen Kontinente [Féd-2013a], welche Abbildung 2-5 für das Jahr 2012

widerspiegelt, lässt sich erkennen, welches die bevorzugten Flurförderzeuge welt-

weit sind. Eine Aufschlüsselung der Datenerhebung erfolgt nur in den ersten fünf

WITS-Klassen (Abbildung 2-2). Deutlich erkennbar ist die bereits erwähnte hohe

Nachfrage nach Verbrenner- gegenüber Elektro-Gabelstaplern im amerikanischen

Markt sowie eine deutlich höhere Nachfrage aus Asien nach diesen robusten Flur-

förderzeugtypen. Diese Effekte sind nicht nur im Jahr 2012, sondern auch über die

vorangehenden Jahre zu verzeichnen, wobei insgesamt eine Steigerung der weltweit

nachgefragten Flurförderzeuge seit 2009 um 67 % zu erkennen ist [Féd-2013a].

Abbildung 2-5: Flurförderzeugauslieferungen im Jahr 2012 nach Kontinenten [Féd-2013a]

Im Mittel der Jahre 2009 bis 2012 teilen sich die Elektro-Gabelstapler zu 16 %, die

Verbrenner-Gabelstapler zu 29 % und die Geräte der Lagertechnik zu 39 % den

Markt auf. Ausschlaggebend für den Spitzenplatz in der Nachfrage bei den robusten

0

50.000

100.000

150.000

200.000

250.000

Europa Amerika Asien Afrika Ozeanien

Ausl

iefe

rung

en [S

tück]

Klasse 1 - Elektro-Gabelstapler

Klasse 2 - Elektro-Schmalgangstapler

Klasse 3 - handgeführteElektrostapler

Klasse 4/5 - Verbrenner-Gabelstapler

Page 41: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.1 Flurförderzeuge

21

Gabelstaplern ist vor allem China, die weltweit den zweiten Platz bei der Abnahme

der insgesamt 977.000 abgesetzten Gabelstapler im Jahr 2011 belegen

(Abbildung 2-2).

Abbildung 2-6: Verteilung der weltweiten Gabelstaplerbestellungen im Jahr 2011 [KIO-2012]

Nach der weltweiten Betrachtung wird der Fokus auf Europa gesetzt, wo nach einer

Hochrechnung von Bruns et al. der Bestand an Flurförderzeugen im Jahr 2013

ca. 2 Millionen beträgt5 [Bru-2013b]. Den jährlichen Bedarf an neuen Flurförderzeu-

gen beziffert Barck wiederum zwischen 250.000 und 350.000 Geräten [Bar-2011].

Wie stark die einzelnen Flurförderzeugtypen in Europa, unterteilt nach West und

Ost6, nachgefragt werden, ist den jährlichen Statistiken der FEM zu entnehmen

(Abbildung 2-7). Neben dem Nachfrageeinbruch in den Zeiten der Wirtschaftskrise

ist erkennbar, dass sich in Westeuropa Verbrenner- und Elektro-Gabelstapler die

Waagschale halten und zusammen deutlich gegenüber den Großgeräten der Lager-

technik dominieren, während sich in den Zahlen von Osteuropa sowohl die Bevor-

zugung der robusten Verbrenner-Stapler als auch die untergeordnete Bedeutung

des Marktes gegenüber dem Westen widerspiegelt.

5 Die Datenerhebung umfasst die Flurförderzeuge der FEM-Klassen 1–5 in der EU-27 und der

Schweiz. 6 Westeuropa seit 2011 inkl. Türkei und Zypern (12.500 Stück); Osteuropa umfasst die Länder-

kennzeichen AL, ARM, AZE, BY, BA, BG, HR, CZ, EST, GEO, H, KZ, KGZ, LV, LT, MK, MD, PL, RO, RUS, SK, SLO, TD, TMN, UA, UZ, MNE, SRB und seit 2011 w/o KZ, KGZ, TD, TMN, UZ.

28%

6%

24%

6%

17%19%

0%

5%

10%

15%

20%

25%

30%

Westeuropa Osteuropa China Süd- undMittelamerika

Nordamerika Rest derWelt

Ante

ile d

er

Best

ellu

ng

en

Page 42: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

22

Abbildung 2-7: Marktentwicklung in Europa nach Bestelleingang [Féd-2013b]

Mit steigender Fokussierung wird nun ein Blick auf den deutschen Markt anhand der

gemeldeten Absatzzahlen der Jahre 2009–2010 geworfen (Abbildung 2-8). Erkenn-

bar ist wiederum die Erholung nach der Wirtschaftskrise sowie eine leichte Domi-

nanz der Lagertechnik, wobei in dieser Statistik auch handgeführte Elektrostapler

enthalten sind. So werden in Deutschland in den letzten Jahren ca. jährlich 75.000

neue Flurförderzeuge in Betrieb genommen. Deutschland bleibt damit vor Frankreich

und Italien der mit Abstand größte Einzelmarkt für Flurförderzeuge in Europa [Boe-

2013]. Die sich in Deutschland in Gebrauch befindlichen Geräte beziffert Barck nach

Expertenschätzung auf 600.000–700.000 [Bar-2011].

Abbildung 2-8: Absatz der Flurförderzeuge in Deutschland (nach WITS entnommen aus [Sch-2011; Boe-2012; Boe-2013])

0

5

10

15

20

25

30

35

40

45

50

2006 2007 2008 2009 2010 2011 2012

Ost-Europa

Klasse 1 - Elektro-Gabelstapler

Klasse 2 - Elektro-Schmalgangstapler

Klasse 3 - handgeführteElektrostapler

Klasse 4/5 - Verbrenner-Gabelstapler

Klasse 1/4/5Gabelstapler

0

40

80

120

160

2006 2007 2008 2009 2010 2011 2012

0

10

20

30

40

50

2006 2007 2008 2009 2010 2011 2012

ab

gese

tzte

Flu

rfö

rderz

eug

e in

Tsd

.

ab

gese

tzte

Flu

rfö

rderz

eug

e in

Tsd

.

Westeuropa Osteuropa

0

25.000

50.000

75.000

100.000

2009 2010 2011 2012

Ab

satz

[S

tück]

Lagertechnik

Gabelstapler

Page 43: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.1 Flurförderzeuge

23

Schätzungen des Verbands Deutscher Maschinen- und Anlagenbau (VDMA) bezif-

fern den Umsatz der im deutschen Markt erworbenen Flurförderzeuge auf insgesamt

1,2 Mrd. Euro, der sich gleichermaßen auf Gabelstapler und Lagertechnikgeräte auf-

teilt [Boe-2013]. Stellt man dieser Zahl den geschätzten Umsatz der Teilbranche

Flurförderzeuge in Deutschland mit 3,1 Mrd. Euro gegenüber [Ver-2013], so wird der

große Exportanteil sowie die Bedeutung der in Deutschland produzierten Flurförder-

zeuge für den Weltmarkt deutlich. Die größten Abnehmerländer deutscher Förder-

technik sind im Jahre 2012 die USA vor Frankeich und China.

Abschließend verbleibt noch die Frage, in welchem Bereich verstärkt Flurförderzeu-

ge eingesetzt werden. Einen Eindruck auf europäischer Ebene gibt eine Erhebung

der FEM über die Industriezweige mit den höchsten Absatzzahlen, was gleicherma-

ßen als Indikator für einen bevorzugten Einsatz von Flurförderzeugen dient (Ta-

belle 2-3).

Tabelle 2-3: Verteilung der Flurförderzeuge auf Industriezweige in Europa7

Industriezweig 2008 2009 2010 2011 2012

Transport und Logistik 12% 12% 16% 15% 17%

Lebensmittel und Getränkehandel 12% 15% 18% 13% 16%

Sonstiger Handel 15% 16% 19% 18% 18%

Dienstleistungen 8% 7% 7% 10% 8%

Automobil- und Fahrzeugindustrie 3% 3% 5% 4% 4%

Sonstige 32% 29% 35% 39% 37%

2.1.3 Dynamische Simulation von Flurförderzeugen

Im Hinblick auf die zu lösende Problemstellung wird im Folgenden ein Überblick

über Forschungsarbeiten auf dem Gebiet der dynamischen Simulation gegeben, um

bei der späteren Modellbildung der Flurförderzeuge auf diesem Wissensstand auf-

zubauen. Die kurz nach der Jahrtausendwende von Marquardt identifizierten

Schwerpunkte der Hochschulforschung im Bereich der Flurförderzeuge aus den

Fachgebieten der Mechanik, Dynamik, Hydraulik und Steuerungstechnik sind auch

in den letzten Jahren bestimmend [Mar-2003].

Im Gegensatz zur aktuellen Fragestellung, wie stark der Mensch durch Vibrationen

beim Betrieb von Flurförderzeugen belastet ist, führt Kindervater bereits 1956 Unter-

suchungen zu statischen und dynamischen Radlasten von gleislosen Flurförderzeu-

gen durch [Kin-1956b; Kin-1956a]. Ebenso ermitteln Beisteiner und Maisch 1975 die

7 Eine vollständige Auflistung kann [Féd-2013b] entnommen werden. Die Zahlen basieren auf einer

Hochrechnung auf Basis der Daten aus Deutschland, Großbritannien und Frankreich.

Page 44: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

24

mechanische Beanspruchung von Industrie-Estrichböden durch Flurförderzeuge

mittels Versuchen und theoretischen Betrachtungen und stellen dabei auch die Rad-

lasten unterschiedlicher Flurförderzeuge in den Vordergrund [Bei-1975; Bei-1976].

Forschungsarbeiten über Hubgerüste weisen eine lange Tradition auf. Bereits 1974

stellt Kemme Berechnungsgrundlagen für statische und dynamische Beanspru-

chungen von Hubgerüsten vor und weist anhand von Messungen deren Gültigkeit

nach [Kem-1974]. Unter besonderer Berücksichtigung der Wölbkrafttorsion führt

Maisch 1980 Untersuchungen zur Beanspruchung von Gabelstaplerhubgerüsten

durch [Mai-1980]. Huang legt 1990 mit Hilfe der Finite-Elemente-Methode besonde-

res Augenmerk auf die Deformation und Beanspruchung der Hubgerüste hinsichtlich

der Berücksichtigung von Imperfektionen [Hua-1990]. Den grundlegenden Einsatz

der Finite-Elemente-Methode zur optimalen Gestaltung und Bemessung von Stap-

ler-Hubgerüsten diskutieren Beisteiner et al. in [Bei-1993]. Witala nimmt sich 2002

der Untersuchung eines Hubgerüst für einen Schubmaststapler in Simulation und

Versuch an [Wit-2002]. Im entstandenen Simulationsmodell wird dementsprechend

nur das Hubgerüst und nicht das komplette Fahrzeug berücksichtigt. Relevant für

die vorliegende Themenstellung sind die Abbildung des Spiels in den Führungsrollen

sowie die Ermittlung von Steifigkeiten und Dämpfungskenngrößen der Hubzylinder

in Versuchen. Mitwollen untersucht 2007 ebenfalls das Schwingungsverhalten von

Gabelstapler-Hubgerüsten im ausgefahrenen Zustand, bildet diese dabei als Fünf-

Massen-Modell ab und stellt aktive und passive Maßnahmen zur Schwingungsre-

duktion vor [Mit-2007]. Barthels entwickelt 2007 eine aktive Regelung zur Unterdrü-

ckung der im Betrieb auftretenden Schwingungen bei spielbehafteten Systemen

elastischer Balken am Beispiel des Hubgerüsts eines Schubmaststaplers und leitet

für dieses die Systemgleichungen ab, die er mit den Ergebnissen einer Finite-

Elemente-Berechnung validiert [Bar-2007].

Neben dem Hubgerüst als Baugruppe des Flurförderzeugs widmen sich mehrere

Arbeiten dem gesamten Fahrzeug und setzen dabei unterschiedliche Schwerpunkte.

Viele Arbeiten nehmen dabei Kippunfälle zum Anlass, auch wenn diese wie bereits

einführend dargelegt einen relativ geringen Anteil am Unfallgeschehen einnehmen

(Abbildung 1-1), aber meist mit schwerwiegenden Folgen verbunden sind. So stellt

Bonefeld 1981 einen Ansatz zur Berechnung der Quer-Kippstabilität und der

höchstzulässigen Kurvengeschwindigkeit vor [Bon-1981]. Shibli nutz 1985 zur Quan-

tifizierung der relevanten Einflussparameter auf die Kippstabilität von Gabelstaplern

und deren Optimierung einfache Ein- und Zwei-Massen-Modelle bei quasistatischer

Betrachtung der Fahrzustände [Shi-1985]. Auch Rappen erstellt 1988 im Zuge der

Untersuchung kleiner Industriereifen im Hinblick auf die Kipp- und Fahrstabilität von

Gabelstaplern quer- und vertikaldynamische Simulationsmodelle eines Gabelstap-

Page 45: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.1 Flurförderzeuge

25

lers und bestimmt im Hinblick auf die Modellierung des dynamischen Verhaltens des

Reifens Dämpfungs- und Steifigkeitswerte mittels Prüfständen [Rap-1988].

Ein Jahr später entwickelt Beha 1989 ein einfaches Mehrkörpermodell in der Fahr-

und Hubebene für einen Gabelstapler mit Zweifachteleskop-Hubgerüst [Beh-1989].

Ziel der Untersuchung ist die Ermittlung von Schwingbeiwerten für Gabelstapler un-

terschiedlicher Traglastklassen zur Berücksichtigung dynamischer Beanspruchun-

gen, weswegen das Schwingungsverhalten in Abhängigkeit verschiedener Fahr-

zeugparameter erforscht wird. Als wesentliche Einflussgrößen können die Federstei-

figkeit der Bereifung und der Hubhydraulik identifiziert werden. Die Anregung durch

den Boden wird über eine Störfunktion auf die Radachse realisiert.

Das Thema der dynamischen Standsicherheit greift Golombeck 1993 wieder auf,

berechnet anhand mathematischer Modelle für Drei- und Vierradgabelstapler die

Kippgrenzgeschwindigkeit und bestätigt die Ergebnisse anhand von Fahrversuchen

[Gol-1993]8.

Hinrichsen erarbeitet 1994 unterschiedliche Regelalgorithmen zur Kursführung eines

induktiv geführten Kommissionierstaplers und erstellt hierfür ein nichtlineares Fahr-

dynamikmodell, für welches er speziell die Seitenkraftkennlinien der verwendeten

Polyurethanräder am Prüfstand bestimmt [Hin-1994].

Bruns führt auch im Hinblick auf die Diskussion elektronischer Stabilitätssysteme

ergänzend zu Messungen (vgl. [Bru-2002b]) weitere umfangreiche Untersuchungen

auf dem Gebiet der dynamischen Kipptests und entsprechender Sicherheitsnach-

weise durch [Bru-2002a; Bru-2003a]. Im Gegensatz zu bisherigen Untersuchungen,

bei denen Rechenmodelle für die quasistatische Berechnung der Kippgrenzen ge-

nutzt werden, propagiert Bruns die Simulation des dynamischen Fahrverhaltens un-

ter Einsatz der Mehrkörpersimulation, denn anhand von Fahrversuchen kann gezeigt

werden, dass „die dynamische Entlastung der Hinterachse in Grenzsituationen nur

zu einem Schleudern, statt zu einem Kippen des Staplers führt“ [Bru-2003a]. Ein

hierfür geeignetes Mehrkörpermodell eines Gabelstaplers stellen Bruns und Bier-

mann 2003 vor, bei dem durch Einbindung von Control-System-Design-Tools z. B.

die Lenkhydraulik detailliert abgebildet ist [Bru-2003b]. Dieses Modell wird von

Biermann um ein aktives Fahrwerk an Vorder- und Hinterachse erweitert [Bie-2009].

8 Ergänzend zu der Dissertation von Golombek siehe [Elb-1996b; Elb-1996a; Elb-1997].

Page 46: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

26

Ein einfaches zweidimensionales Mehrkörpermodell eines Gabelstaplers stellen

auch Marquardt und Leonard vor und nutzen es für die Berechnung der Fahrzeug-

schwingungen in einem interaktiven Fahrsimulator [Mar-2004].

Schmalzl untersucht 2006 mit Hilfe eines hybriden Mehrkörpermodells den Einfluss

von Bodenungenauigkeiten auf das dynamische Verhalten von Schmalgangstaplern

[Sch-2006]. Im Gegensatz zu Beha modelliert er das Rad als Kreis und lässt es auf

einer Kurve, die die Unebenheiten der Fahrbahn nachbildet, abrollen.

Fast zur selben Zeit entsteht am Institut für Fördertechnik und Logistik der Universi-

tät Stuttgart im Auftrag der Still-Wagner GmbH ein umfangreiches Mehrkörpermo-

dell für einen Schubmaststapler als Werkzeug für die Projektierungsphase [Vor-

2007a]. Besonderes Augenmerk widmen Vorwerk und Nikic dem Hubgerüst, indem

die Hubmaste als elastische Balkenelemente sowie die Ketten im Bereich der Um-

lenkrolle durch Einzelglieder samt Kontaktelementen modelliert werden [Vor-2007b].

Das entstandene Mehrkörpermodell wird ebenso für die Untersuchung von Ganz-

körper-Vibrationen verwendet [Vor-2007d].

Im Rahmen der bereits erwähnten Untersuchungen bezüglich der dynamischen

Standsicherheit von Bruns wird deutlich, dass mit den in den Simulationspaketen

enthaltenen Reifenmodellen im Bereich der Querdynamik Grenzen gesetzt sind [Bru-

2003a]. Dadurch motiviert erforschen Busch und Bruns das Verhalten von Supere-

lastikreifen bei dynamischer Kurvenfahrt auf einem Prüfstand, identifizieren die rele-

vanten Zusammenhänge der Einflussparameter und überführen diese auf Basis neu-

ronaler Netze in ein Reifenmodell für die Mehrkörpersimulation [Bus-2012]. Ein spe-

ziell für die Anforderungen der Vertikaldynamik ausgelegtes Reifenmodell für Su-

perelastikreifen stellen Günthner et al. vor [Gün-2013].

Nicht nur der klassische Gabelstapler droht bei zu schneller Kurvenfahrt umzukip-

pen, auch Portalstapler, die in Häfen für den Umschlag von Containern eingesetzt

werden, sind gefährdet. Anhand eines Mehrkörpermodells können Bruns und Pie-

penburg zeigen, „dass ein Bremsen in einer kritischen Fahrsituation wie einem

schnellen Lenkwechsel oder einer engen 180°-Kurve das Fahrzeug stabilisieren

kann“, wenn die Bremskraft schnell genug aufgebaut wird, weswegen die Autoren

ein automatisches Stabilitätssystem vorschlagen [Bru-2013c].

Auch Routenzüge, die für den innerbetrieblichen Materialfluss zunehmend an Be-

deutung gewinnen, werden von Bruns et al. bezüglich ihrer Spurtreue mit Hilfe eines

einfachen Mehrkörpermodells untersucht. Besonderes Augenmerk wird dabei auf

Page 47: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

27

ein eigenes aus der Literatur angepasstes Reifenmodell gelegt, das auf der Basis

von Messungen in [Hin-1994] die Längs- und Querkräfte berechnet. [Bru-2013a]

Overmeyer et al. erforschen am Schubmaststapler die Belastung elektronischer Bau-

teile und greifen ebenfalls auf ein parametrisierbares Mehrkörpermodell zurück, wel-

ches Bauteilnachgiebigkeiten durch Feder-Dämpfer-Elemente berücksichtigt und

Reifenkräfte über eine Kontaktdefinition berechnet [Wei-2012; Ove-2013].

Abschließend sei erwähnt, dass im Bereich der mobilen Arbeitsmaschinen nicht nur

Flurförderzeuge mit Hilfe der Mehrkörpersimulation untersucht werden. So ermittelt

z. B. Böhler anhand eines detaillierten Traktormodells die Rumpfbelastung bei Stra-

ßenfahrt und bildet in dem zu Grunde liegenden Modell auch Fahrer und Sitz ab

[Böh-2001]. Bös et al. stellen ein parametrisiertes Mehrkörpermodell eines Radla-

ders vor, mit welchem definierte Fahrversuche durchfahren werden können, um das

Fahrzeug hinsichtlich Schwingungskomfort und Fahrdynamik zu optimieren [Bös-

2013]. Auch Kunze et al. berichten über ein Mehrkörpermodell eines Radladers, stel-

len aber nicht die Belastung des Fahrers in den Vordergrund, sondern einen multi-

physikalischen Ansatz zur Simulation von Erdbauprozessen mit Hilfe einer Kopplung

von Mehrkörpersimulation und der Diskrete-Elemente-Methode [Kun-2012].

2.2 Ganzkörper-Vibrationen

Wirken mechanische Schwingungen (Vibrationen, Stöße oder Erschütterungen) von

außen auf den menschlichen Körper ein, so spricht man umgangssprachlich verall-

gemeinernd von Humanschwingungen. In der Fachterminologie wird jedoch in Ab-

hängigkeit der durch die Vibrationen belasteten Körperstellen eine strikte Untertei-

lung vorgenommen in

Hand-Arm-Vibrationen (HAV) und

Ganzkörper-Vibrationen (GKV).

Unter Hand-Arm-Vibrationen sind mechanische Schwingungen im Frequenzbereich

zwischen 8–1000 Hz zu verstehen, welche „bei Übertragung auf das Hand-Arm-

System des Menschen Gefährdungen für die Gesundheit und Sicherheit verursa-

chen oder verursachen können“. Zu nennen sind dabei vor allem Knochen- oder

Gelenkschäden, Durchblutungsstörungen und neurologische Erkrankungen. Hand-

Arm-Vibrationen treten beispielsweise bei Arbeiten mit handgehaltenen oder hand-

geführten Arbeitsgeräten mit rotierenden oder oszillierenden Teilen, handgehaltenen

Page 48: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

28

schwingenden Bedienelementen oder Geräten mit Einzelauslösung (z. B. Nagler,

Bolzensetzer) auf. [Bun-2010c]

Im Fokus der vorliegenden Betrachtung stehen jedoch Ganzkörper-Vibrationen, als

welche mechanische Schwingungen im Frequenzbereich zwischen 0,1–80 Hz be-

zeichnet werden, „die bei Übertragung auf den gesamten Körper Gefährdungen für

die Gesundheit und Sicherheit verursachen oder verursachen können“. Beim ste-

henden Bediener wirken Ganzkörper-Vibrationen über die Füße, beim sitzenden Be-

diener über das Gesäß, die Füße und den Rücken und beim liegenden Menschen

über die Auflagefläche auf den gesamten Körper ein. Ganzkörper-Vibrationen sind

üblicherweise bei Fahrzeugen und selbstfahrenden Maschinen (z. B. Flurförderzeu-

ge, Erdbaumaschinen) oder bei Maschinen mit großer Unwucht oder Schlagenergie

(z. B. Schmiedehämmer) anzutreffen. [Bun-2010c]

Wie viele Beschäftigte in Deutschland durch Vibrationen belastet sind, ist nicht exakt

bekannt. Oftmals stützen sich Aussagen diesbezüglich auf lang zurückliegende Er-

hebungen. So kann auf Basis einer Studie aus dem Jahr 1989 davon ausgegangen

werden, dass in Europa circa 4–7 % der Beschäftigten gegenüber Ganzkörper-

Vibrationen exponiert sind [Int-1989]. Auf Basis einer von der Health and Safety

Executive in Auftrag gegebenen Studie in Großbritannien im Jahr 1998 [Hea-1999a;

Hea-1999b] kann Mohr unter Verwendung der statistischen Erhebungen des Mikro-

zensus 2001 [Sta-2002] aktuellere Exponiertenzahlen ableiten, welche allerdings

auch die Fahrt mit einem Verkehrsmittel zur und von der Arbeit berücksichtigen

[Moh-2003]. Er kommt zu dem Ergebnis, dass in Deutschland mit ca. 15 Mio. Perso-

nen 40 % der Erwerbstätigen Ganzkörper-Vibrationen ausgesetzt sind, davon sogar

1,1 Mio. oberhalb des Expositionsgrenzwerts (vgl. Kapitel 2.2.3). Ergänzt und bestä-

tigt werden diese Aussagen durch die eingangs erwähnte Erwerbstätigenbefragung

aus dem Jahr 2012 [Wit-2013]. Von den 20.036 befragten Erwerbstätigen geben

4.250 Personen (21,2%) an, Arbeiten mit starken Erschütterungen, Stößen und

Schwingungen, die man im Körper spürt, auszuführen. Bei 867 der Befragten (4,3%)

ist dies „häufig“ und bei 1.242 der Befragten (6,2%) „manchmal“ der Fall. Von den

Befragten, die „häufig“ angegeben haben, fühlen sich ca. die Hälfte (463 Befragte)

auch durch die Vibrationen belastet. Bezogen auf alle Erwerbstätigen empfinden

sich im Rahmen dieser Studie 2,3 % durch Vibrationen belastet. Eine Unterschei-

dung zwischen Ganzkörper-Vibrationen und Hand-Arm-Vibrationen wird in dieser

Erhebung nicht getroffen.

Folgende Ausführungen gehen näher auf mögliche Auswirkungen von Ganzkörper-

Vibrationen auf die Gesundheit und die Sicherheit der Beschäftigten ein, erklären die

Kennwertberechnung sowie die dafür gültigen Grenzwerte und geben abschließend

Page 49: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

29

einen Überblick über aus der Literatur bekannte Belastungswerte für Flurförderzeug-

fahrer.

2.2.1 Auswirkungen auf die Gesundheit und die Sicherheit

Grundsätzlich reagiert jeder Mensch mit seiner ihm eigenen psychischen, körperli-

chen, genetischen und sozialen Voraussetzung unterschiedlich auf äußere Einwir-

kungen. Dies gilt auch für Vibrationen, so dass zwischen der auftretenden Belastung

als Gesamtheit der äußeren Bedingungen und Anforderungen in dessen Umgebung

und der daraus resultierenden Beanspruchung in Abhängigkeit seiner individuellen

Eigenschaften zu unterscheiden ist. Die bekannten Zusammenhänge mit den be-

stimmenden Faktoren stellt Abbildung 2-9 im Belastungs-Beanspruchungs-Modell

für Ganzkörper-Vibrationen dar.

Abbildung 2-9: Belastungs-Beanspruchungs-Modell für Ganzkörper-Vibrationen nach [Bun-2010c]

Die physikalische Belastung stellt die auf den Menschen einwirkende Vibration dar

und ist gekennzeichnet durch die Einwirkungsrichtung, die Amplitude, die Frequenz

sowie die Stoßhaltigkeit, die sich aus den ersten drei Größen ableiten lässt. Diese

detaillierte Betrachtung der Anregung ist unerlässlich, da der menschliche Körper

mit seinen Organen und Gliedmaßen selbst ein schwingungsfähiges System dar-

stellt, welches interindividuell wiederum unterschiedlich ausgeprägt sein kann. So

verhält sich der Körper nur bis zu Frequenzen von 2 Hz wie eine starre Masse und

weist Eigenfrequenzen zwischen 4–5 Hz sowie 12–15 Hz auf [Sto-2006]. Kenntlich

physikalische Belastung– Einwirkungsrichtung

– Amplitude

– Frequenz

– Stoßhaltigkeit

mitwirkende Belastungsfaktoren– Einleitungsstelle

– Körperhaltung

– Abstützung

– Temperatur

– Heben und Tragen

– Freizeitverhalten

Expositionsdauer– täglich

– jährlich

– im Berufsleben

– Pausenregime

– Aufeinanderfolge

Belastung durch Ganzkörper-Vibrationen

individuelle körperliche Voraussetzungen– Geschlecht

– Alter

– Alter bei Expositionsbeginn

– Konstitution

– allgemeiner Gesundheitszustand

– Zustand der Wirbelsäule

– Kenntnisse, Fähig- und Fertigkeiten

Mensch

akute Wirkungen– Befindungsstörungen (z. B. Kinetose)

– Leistungsbeeinträchtigungen

– Schmerzwahrnehmungen

– Lumbago, Ischias

– biomechanische und physiologische Reaktionen

chronische Wirkungendegenerative Veränderung der Bandscheiben,

Wirbelkörper u. -gelenke, Kaudasyndrom

Beanspruchung

Page 50: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

30

wird dies bei Betrachtung der mechanischen Impedanz9 des menschlichen Körpers

(Abbildung 2-10 links), bei der die beiden Maxima in den erwähnten Bereichen klar

zu erkennen sind. Grundsätzlich lässt sich auf Basis einer Vielzahl an Untersuchun-

gen festhalten, dass die Antwort des menschlichen Körpers auf Vibrationen abhän-

gig von der Amplitude, der Richtung und der Frequenz der Anregung ist [Gri-1990].

Somit ist auch zu erklären, dass Vibrationen unterschiedlicher Frequenz verschieden

wahrgenommen und nur bis zu einem bestimmten Maße ausgehalten werden kön-

nen. Eine Probandenstudie von Magid et al. mit 15 Freiwilligen, die sinusförmigen

Schwingungen unterschiedlicher Frequenzen bis zur absoluten Schmerzgrenze aus-

gesetzt werden, gibt einen Einblick, wie unterschiedlich Vibrationen vom menschli-

chen Körper ausgehalten werden können [Mag-1960]. Am wenigsten tolerant ge-

genüber Vibrationen ist der Körper im Bereich von 4–8 Hz, was angesichts der Ei-

genfrequenz in diesem Bereich nicht verwunderlich ist, während bei 1 Hz doppelt so

hohe Belastungen ausgehalten werden. Im Bereich zwischen 1–3 Hz treten vor allem

Schwierigkeiten beim Atem auf, und ein Proband ist sogar nach einer Minute Vibra-

tionsbelastung bei 8 Hz in Ohnmacht gefallen [Sto-2006].

Abbildung 2-10: Mechanische Impedanz einer sitzenden Person mit 70 kg Körpergewicht (nach [Sto-2006], links) und Toleranzgrenzen von Versuchspersonen gegenüber Vibrationen (nach Darstellung aus [Sto-2006] im Original aus [Miw-1967], rechts)

Im Gegensatz zur Belastungsgrenze setzen sich Bellmann et al. intensiv mit der

Wahrnehmung von vertikalen Ganzkörper-Vibrationen auseinander und ermitteln

eine Perzeptionsschwelle von 87 dB im Bereich von 6–63 Hz, wobei die interindivi-

duellen Unterschiede zwischen den Versuchspersonen mit steigender Frequenz

deutlich zunehmen [Bel-2004].

Neben der einwirkenden Vibration ist vor allem von Bedeutung, wo diese in den

Körper eingeleitet wird und welche Körperhaltung der Fahrer einnimmt, da die Be-

9 Zur Definition der mechanischen Impedanz siehe Kapitel 5.2.4.

Mensch 70 kg

starre Masse 70 kg

Frequenz [Hz]

0 4 8 12 160

2

4

6

mechanis

che Im

ped

anz

[kN

·s/m

]

Frequenz [Hz]

00

2

4

Beschle

unig

ung

[g

]

161284

6

8

Page 51: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

31

lastbarkeit der Wirbelsäule auf Grund der veränderten Geometrie zwischen Stehen

und Sitzen grundsätzlich verschieden ist [Cal-2001; Cha-2006] und zusätzlich un-

günstige Körperhaltungen beim sitzenden Fahrer zu höheren Kräften in der Wirbel-

säule führen können [Sei-2000]. Ebenso ändert sich mit der „Oberkörperneigung

auch der frequenzabhängige Zusammenhang zwischen der Schwingbeschleunigung

und den Wirbelsäulenkräften“ [Fri-2010]. Zudem kann das Heben und Tragen

schwerer Lasten im Wechsel mit Ganzkörper-Vibrationen zu einer stärkeren Schädi-

gung führen, als wenn beide Belastungen einzeln auftreten [Bun-2010c]. Als letzter

und auch wichtigster Einflussfaktor ist die Dauer der Vibrationsexposition zu nennen.

So zeigen Schust et al., dass „sowohl die Körperstatur und die Körperhaltung als

auch die tägliche und die jährliche Expositionszeit, die Lebensexpositionszeit und

das Lebensalter bei Beginn der Exposition einen signifikanten Einfluss auf die Risi-

kovorhersage haben“ [Sch-2013].

Die genannten Belastungen rufen im menschlichen Körper, der sich durch individu-

elle körperliche Voraussetzungen auszeichnet, unterschiedliche Beanspruchungen

hervor. Diese können nach den Kriterien Gesundheit, Komfort, Wahrnehmbarkeit

und Bewegungskrankheiten unterteilt werden [ISO 2631c]. Im Fokus der weiteren

Betrachtungen stehen die Auswirkungen auf die Gesundheit und damit auch auf die

Sicherheit, für die der Frequenzbereich von 0,5–80 Hz relevant ist. Bei den resultie-

renden Beanspruchungen spricht man auch von den sog. unmittelbaren Auswirkun-

gen auf die Gesundheit und Sicherheit, da sie direkt den Menschen betreffen, wel-

che wiederum grundsätzlich in akute und chronische Wirkungen unterteilt werden

[Bun-2010c]. Einen Überblick über gegenwärtige Literatur und eine Diskussion typi-

scher klinischer Befunde findet sich in [Joh-2013].

Eine allseits bekannte akute Wirkung von Ganzkörper-Vibrationen ist die Kinetose

als Vertreter der Befindungsstörungen, umgangssprachlich unter dem Namen See-

krankheit bekannt, welche sich bei niederfrequenten Schwingungen unter 0,5 Hz

einstellen kann. Ganzkörper-Vibrationen im Frequenzbereich von 0,5–80 Hz können

sowohl das allgemeine Wohlbefinden stören als auch die menschliche Leistungsfä-

higkeit beeinflussen. Zum anderen können sie schmerzhafte Muskelverspannungen,

Verdauungsstörungen, Störungen der peripheren Durchblutung oder Funktionsstö-

rungen der weiblichen Fortpflanzungsorgane hervorrufen. Weiterhin beobachtbar

sind biomechanische und physiologische Reaktionen wie die Änderung von Pulsfre-

quenz und Blutdruck. Diese „können, müssen aber nicht unbedingt vom Menschen

wahrgenommen werden“ und machen sich unter Umständen „nicht sofort nach Be-

lastungsbeginn, sondern erst nach ein bis zwei Stunden bemerkbar“ [Dup-1984,

S. 48]. [CEN-1996; Bun-2010c]

Page 52: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

32

Liegt jedoch eine langjährige Einwirkung von Ganzkörper-Vibrationen vor, so sind

Rückenschmerzen, ein verstärkter Verschleiß der Wirbelsäule und in dessen Folge

neurologische Ausfälle der unteren Gliedmaße als chronische Auswirkungen möglich

[Dup-1984; Sei-1986; CEN-1996; Sch-1998; Bov-1999].

Bandscheibenbedingte Erkrankungen der Lendenwirbelsäule durch langjährige,

vorwiegend vertikale Einwirkung von Ganzkörper-Vibrationen im Sitzen werden in

Deutschland als Berufskrankheit BK 2110 geführt [Dup-1994; Bun-2009]. Tabelle 2-4

zeigt für die letzten Jahre diesbezüglich die angezeigten Verdachtsfälle und stellt die

anerkannten Fälle gegenüber.

Tabelle 2-4: Berufskrankheit BK 2110 [Bun-2012c; Bun-2012b]

2008 2009 2010 2011 2012

226 angezeigte Verdachtsfälle 304 268 262 262 226

anerkannte Berufskrankheiten 13 17 8 8 4

neue Rentenfälle 7 8 4 5 2

Auffällig ist die hohe Diskrepanz zwischen den angezeigten und den tatsächlich an-

erkannten Fällen, da es den Betroffenen nicht leicht fällt nachzuweisen, ob die Er-

krankung der Lendenwirbelsäule auf arbeitsbedingte Entstehungsursachen zurück-

zuführen ist. Zum einen stellt sich das Problem, dass degenerative Veränderungen

der Wirbelsäule auch unabhängig von der arbeitsbedingten Belastung auftreten

[Bun-2005]. Zum anderen hängt die gesundheitliche Gefährdung durch Ganzkörper-

Vibrationen stark von der individuellen Belastbarkeit, der Robustheit des Skeletts

sowie der Körperhaltung ab [Sei-2000], wobei eine quantitative Bewertung dieser

Einflüsse in epidemiologischen Studien bis jetzt nicht verfügbar ist [Bun-2005]. Offe-

ne Punkte, deren Beantwortung „für eine zuverlässige Beurteilung des Zusammen-

hangs zwischen GKS und Erkrankung erforderlich wären“, diskutiert Seidel ausführ-

lich in [Sei-2004a].

Neben den genannten unmittelbaren Auswirkungen von Ganzkörper-Vibrationen auf

die Gesundheit und Sicherheit sind auch die mittelbaren (indirekten) Auswirkungen

zu beachten. Dies ist z. B. der Fall, sobald eine mobile Arbeitsmaschine nicht sicher

bedient werden kann, wenn auf Grund von Vibrationen die Erfassung von Warnsig-

nalen gestört ist oder Bedienelemente nicht sicher betätigt werden können [Bun-

2010c]. Grundsätzlich fällt es dem Menschen nämlich wesentlich leichter, aus dem

sicheren Stand oszillierende Objekte als stehende Objekte bei eigener vibrierender

Bewegung zu erkennen [Ben-1978; Sto-2006]. Stott hält fest, dass Personen unter

Vibrationseinfluss zwischen 2–6 Hz Probleme haben, die ausgestreckte Hand zu

kontrollieren und dass „tracking-tasks in which the arm is supported and the hand

Page 53: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

33

operates a joystick control show most disruption by vibration in the frequency range

4–8 Hz” [Sto-2006].

Angesichts der aufgeführten negativen Auswirkungen von Vibrationen sollte jedoch

abschließend nicht vergessen werden, dass auch durchaus positive Wirkungen von

Schwingungen bekannt sind wie z. B. beim Wiegen eines Kindes in den Schlaf.

Ebenso werden im Bereich des Trainings gezielt mechanische Schwingungsvorgän-

ge beim Menschen appliziert, um positive biomechanische und physiologische Ef-

fekte hervorzurufen. So reichen nach Haas et al. „die Resultate bezüglich der Effekte

von Schwingungsreizen auf Maximal- und Schnellkraft von leicht negativ bis außer-

ordentlich positiv“ [Haa-2004].

2.2.2 Messung und Kennwertberechnung

Um die Belastung des Menschen auf Grund von Exposition gegenüber Ganzkörper-

Vibrationen einheitlich zu bestimmen, wird im Jahr 1997 die ISO 2631-1 als grundle-

gende Norm verabschiedet [ISO 2631c]. Sie definiert die allgemein gültigen Bewer-

tungsmethoden und nennt grundlegende Anforderungen an Messverfahren, enthält

aber keine Beurteilungsgrenzwerte, sondern lediglich Informationen über mögliche

Auswirkungen von Ganzkörper-Vibrationen auf die Gesundheit. Um die Einführung

neuer Kennwerte auf Basis einer EU-Richtlinie (vgl. Kapitel 2.2.3) zu berücksichtigen,

wird die ISO 2631-1 im Jahr 2010 ergänzt [ISO 2361 Amd1]. Die VDI 2057 Blatt 1

greift die Inhalte der ISO 2631-1 auf, um „ein einheitliches Verfahren zur Beurteilung

der Einwirkung mechanischer Ganzkörper-Schwingungen auf den Menschen und

allgemeine Hinweise zur Ermittlung der Beurteilungsgrößen anzugeben“ [VDI 2057]

In folgenden Ausführungen werden zuerst die Grundlagen zur messtechnischen Er-

fassung der Ganzkörper-Vibrationen vorgestellt, um darauf aufbauend die Kennwer-

te nach ISO 2631-1 abzuleiten und die im deutschen Sprachgebrauch bekannte Ta-

gesexposition A 8( ) als Kenngröße für die Beanspruchung der Gesundheit über ei-

nen Arbeitstag von acht Stunden einzuführen. Im Fokus steht dabei der sitzende

Mensch. Die Einwirkung von Vibrationen innerhalb von Gebäuden wird aus der Be-

trachtung ausgeklammert, hierzu sei auf die ISO 2631-2 verwiesen [ISO 2631a]

2.2.2.1 Messung der Ganzkörper-Vibrationen

Während die ISO 2631-1 grundlegende und allgemeine Anforderungen an die Mes-

sung nennt, bietet die DIN EN 14253 eine praxisgerechte Anleitung zur Bewertung

der Einwirkung von Ganzkörper-Vibrationen am Arbeitsplatz, welche das Augenmerk

auf die Durchführung der Messung legt [DIN EN 14253].

Page 54: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

34

Um die Vibrationen quantifizieren zu können, bedient man sich der physikalisch ge-

richteten Größe der Beschleunigung a t( ), welche durch sog. Beschleunigungsauf-

nehmer messtechnisch erfasst werden kann. Diese Beschleunigungsaufnehmer

müssen in der Lage sein, die höchsten zu erwartenden Schwingungsamplituden zu

verarbeiten und einen ausreichenden Messbereich für tiefe Frequenzen aufweisen.

Sie sind so anzuordnen, dass sie die Vibrationen an der Schnittstelle zwischen

Mensch und Schwingungsquelle in allen drei Raumrichtungen erfassen. Dement-

sprechend hat die Messung bei sitzenden Personen auf dem Sitz zu erfolgen. Übli-

cherweise wird ein triaxialer Beschleunigungsaufnehmer zur Bestimmung der auftre-

tenden Beschleunigungen in den drei Raumachsen verwendet, der bei weichen und

gepolsterten Sitzen nach ISO 2631-1 10 in eine halbelastische Sitzscheibe gemäß

DIN EN 30326-1 [DIN EN 30326] zu integrieren ist (Abbildung 2-11).

Bei der Messung sind Situationen zu vermeiden, in denen der Benutzer den Kontakt

mit dem Beschleunigungsaufnehmer verliert, da sonst nicht die Beschleunigungen

gemessen werden, die die Person erfährt. Ebenso können durch Platznehmen auf

dem Sitz hohe Beschleunigungen eingeleitet werden, welche das Messergebnis ver-

fälschen. [DIN EN 14253]

Abbildung 2-11: Triaxialer Beschleunigungsaufnehmer in halbelastischer Messscheibe (Bildquelle: Metra Mess- und Frequenztechnik, [DIN EN 30326])

Grundlegende Anforderungen an die Mess- und Analysiergeräte werden in der

EN ISO 8041 definiert [DIN EN ISO 8041]. Auch das Messsystem ist in regelmäßigen

Abständen (z. B. jährlich oder alle zwei Jahre) nachzuprüfen, wobei die zutreffenden

Teile der ISO 5347 und der ISO 16063 anzuwenden sind.

Weitere Informationen zur Durchführung von Messungen findet der Anwender in

Teil 2 der Technischen Regeln zur Lärm- und Vibrations-Arbeitsschutzverordnung

(vgl. Kapitel 2.2.3, [Bun-2010c]). Diese erlauben neben den in Abbildung 2-11 be-

schriebenen Beschleunigungsaufnehmern samt zugehörigen Analysegeräten, wel-

che für fachkundige Messungen zu verwenden sind, auch den Einsatz vereinfachter

10 Die ISO 2631-1 verweist dabei auf die ISO 10326-1, welche seit 1994 zurückgezogen und durch

DIN EN 30326-1 ersetzt ist.

Ø75±5

Ø250±50

1,5

±0,2

12 m

ax

1

Page 55: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

35

Messgeräte, sog. Dosimetern (z. B. [Gra-2007; Gra-2008]), wobei dann von sog. ori-

entierenden Verfahren gesprochen wird.

Während die DIN EN 14253 darauf abzielt, die Belastungen (Immissionen) an einem

spezifischen Arbeitsplatz zu ermitteln, der sich u. a. durch die dort vorherrschenden

Randbedingungen auszeichnet, nimmt sich die DIN EN 1032 der Prüfverfahren zur

Bestimmung des in der Maschinenrichtlinie geforderten Schwingungsemissions-

werts an [DIN EN 1032]. Da die DIN EN 1032 wegen des spezifischen Einsatzes von

Flurförderzeugen nicht direkt angewendet werden kann, ist speziell für diese die

DIN EN 13059 eingeführt [DIN EN 13059]. Auf die Unterschiede zwischen Immissi-

ons- und Emissionswerten bei Flurförderzeugen wird gesondert in Kapitel 2.2.4 ein-

gegangen.

Im Idealfall wird die Tages-Schwingungsbelastung kontinuierlich über den Arbeitstag

gemessen. Da dies in der Praxis oft nicht realisierbar ist, sind geeignete Zeitab-

schnitte zu bestimmen, wobei Dauer und Anzahl so zu wählen sind, dass ein reprä-

sentativer Schwingungswert ermittelt werden kann. Als Mindestdauer sind aus sta-

tistischen Gründen drei Minuten anzusetzen [DIN EN 14253].

Neben der Dauer der Messung T ist ebenso die Einwirkungsdauer eT 24 h zu be-

stimmen, in welcher der Arbeitnehmer gegenüber den gemessenen Vibrationen ex-

poniert ist. Hierbei können unterschiedliche Verfahren wie Verwendung einer Stopp-

uhr, Auswertung von Videoaufnahmen oder Methoden der Arbeitserfassung zur An-

wendung kommen [DIN EN 14253]. Während kurze Schwingungsunterbrechungen in

der akuten Belastung eingeschlossen sind, werden längere schwingungsfreie Zeiten

nicht mit einbezogen [VDI 2057]. Im Normalfall ist die Einwirkungsdauer eT nicht mit

der Einsatzzeit auf einer Maschine gleichzusetzen. Abbildung 2-12 verdeutlicht den

von Mohr vorgestellten Zusammenhang zwischen der Einwirkungsdauer eT , der Ein-

satzzeit auf einer Maschine und dem Arbeitstag mit einer Schicht von acht Stunden

[Moh-2007].

Abbildung 2-12: Zusammensetzung von Arbeitstag, Einsatzzeit und Einwirkungsdauer (nach [Moh-2007])

Einsatzzeit

Arbeitstag (8 h)

vibrationsfreie Zeit (z. B. Pausen) Einwirkungsdauer Te

Page 56: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

36

2.2.2.2 Kennwertberechnung

Die Schwingungskennwerte werden nach erfolgter Messung einzeln für die drei Ko-

ordinatenachsen ermittelt. Grundlage ist hierbei das in Abbildung 2-13 dargestellte

biodynamische Koordinatensystem des menschlichen Körpers. Als grundlegende

Bewertungsmethode dient die Berechnung des Effektivwerts der frequenzbewerte-

ten Beschleunigung [ISO 2631c]. Da nicht alle Frequenzen einer mechanischen

Schwingung beim Menschen eine gleiche Beanspruchung hervorrufen, ist das ge-

messene Beschleunigungssignal ( )a t einer Frequenzbewertung zu unterziehen.

Hierbei wird das Signal entsprechend der frequenzabhängigen Beanspruchung ge-

wichtet und in seiner Bandbreite begrenzt, so dass die frequenzbewertete Be-

schleunigung ( )wa t resultiert. Je nach Beanspruchungskriterium, Einleitungsstelle

und Schwingungsrichtung sind auf Basis einer Vielzahl an Studien unterschiedliche

Bewertungsfunktionen in der ISO 2631-1 definiert. Bei Betrachtung des Beanspru-

chungskriteriums Gesundheit ist beim sitzenden Bediener für die x- und y-Achse die

Frequenzbewertungskurve dW und für die z-Achse die Frequenzbewertungskurve

kW zu verwenden (Abbildung 2-14). Eine mathematische Definition der Frequenzbe-

wertungskurven findet sich in ISO 2631-1 Anhang A.

Abbildung 2-13: Biodynamisches Koordinatensystem des menschlichen Körpers in sitzender Position gemäß [ISO 2631c] (Bild in Anlehnung an [ISO 2361 Amd1])

Diese Bewertungsfunktionen stellen einen Kompromiss dar und bilden nach Griffin

nicht zwangsläufig ein Optimum, da absehbar ist, dass passende Bewertungsfunkti-

onen wiederum vom Level anderer Variablen abhängig sind (z. B. in Abhängigkeit

der Amplitude) [Gri-2010]. Auch Seidel et al. können mittels individualisierter Finite-

x

y

z

Page 57: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

37

Elemente-Modelle des sitzenden Menschen aufzeigen, dass die Wk-Bewertung in

z-Richtung unterhalb einer Anregung von 5 Hz die Wirkung auf die Gesundheit un-

terschätzt und oberhalb von 5 Hz eher überschätzt [Sei-2004b]. Dennoch ist der

Nutzen des existierenden Verfahrens nicht zu vernachlässigen, es ist ebenso einfach

in Normen und Richtlinien zu hinterlegen wie in der praktischen Anwendung. Griffin

fasst diesen Zwiespalt treffend zusammen: „There is also a need to find a way of

communicating the uncertainty of understanding without underminding the useful

practical role of weightings for frequency, direction, and duration in standards” [Gri-

2010, S. 20].

Abbildung 2-14: Frequenzbewertungskurven Wd und Wk [ISO 2631c]

Der Effektivwert wTa der frequenzbewerteten Beschleunigung ( )wa t ist gleichbedeu-

tend mit dem quadratischen bzw. energieäquivalenten Mittelwert und ist definiert

als:

2

0

1( )

T

wT wa a t dtT

(2-1)

mit

( )wa t frequenzbewertete Beschleunigung als Funktion der Zeit

T Dauer der Messung

Unter der Voraussetzung, dass das in der Zeit T gemessene Beschleunigungssig-

nal ( )a t repräsentativ für die Belastung während der Einwirkungszeit eT ist, wird der

Effektivwert der frequenzbewerteten Beschleunigung wTa im Folgenden als energie-

äquivalenter Mittelwert wea für die Einwirkungsdauer eT bezeichnet.

-80

-60

-40

-20

0

20

0,1 1 10 100 1000

Fre

qu

en

zbew

ert

un

g [d

B]

Frequenz [Hz]

Wk

Wd

Wk

Wd

Page 58: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

38

Setzt sich die Einwirkungsdauer eT aus n Belastungsabschnitten iT zusammen, so

berechnet sich wea zu:

2,

1

1 n

we wT i i

ie

a a TT

(2-2)

mit n

e i

i 1

T T

(2-3)

Um die Belastung bzw. Beanspruchung von Personen mit Grenzwerten oder unter-

einander vergleichen zu können, ist die Beurteilungsbeschleunigung 0wa als Ge-

samtbelastung für die Beurteilungsdauer 0T zu bestimmen. Unter der Annahme,

dass die Wirkungen energieproportional sind, werden zwei Vibrationseinwirkungen

als äquivalent bezeichnet, wenn gilt:

2 21 1 2 2w wa T a T (2-4)

Auf Basis dieser Energieäquivalenz errechnet sich die Beurteilungsbeschleuni-

gung 0wa zu:

0

0

ew we

Ta a

T (2-5)

Bei mehreren Belastungsabschnitten n kann die Beurteilungsbeschleunigung 0wa

analog zu Formel (2-2) aus den zugehörigen frequenzbewerteten Beschleunigungen

berechnet werden.

20 ,

10

1 n

w wT i i

i

a a TT

(2-6)

Für eine Arbeitsschicht von acht Stunden ( 0T = 8 h) ergibt sich 0wa zu (8).wa

Das Ausmaß der Exposition gegenüber Ganzkörper-Vibrationen wird anhand der

Tagesexposition A 8( ) bewertet. Diese wird in Deutschland „ausgedrückt als die

äquivalente Dauerbeschleunigung für einen Zeitraum von acht Stunden, berechnet

als der höchste Wert der Effektivwerte der frequenzbewerteten [Beurteilungs-]Be-

schleunigungen in den drei orthogonalen Richtungen“, wobei diese mit Korrekturfak-

toren k in Abhängigkeit der Schwingungsrichtung zu multiplizieren sind. [Bun-

2007b].

Page 59: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

39

88 i w( ),iA max k a , ( , , )i x y z (2-7)

Auch wenn nach oben genannter Definition die Tagesexposition (8)A dem Maxi-

malwert der korrigierten Beurteilungsbeschleunigungen entspricht, ist es trotzdem

üblich, die Tagesexposition (8)A einzeln für die drei Schwingungsrichtungen x, y

und z zu bestimmen (Abbildung 2-13), da die Grenzwerte auch jeweils für die Koor-

dinatenachsen festgelegt sind, wie in folgendem Kapitel näher erläutert wird. Dies

entspricht auch der Normergänzung zur ISO 2631-1, die eine „daily vibration expo-

sure … (8)lA … for each direction l “ definiert [ISO 2631a]. Die Korrekturfaktoren für

die horizontalen Achsen sind zu xk = yk = 1,4 festgelegt, während in vertikaler

Richtung zk = 1,0 gilt [Eur-2002; Bun-2007b; ISO 2631a].

„Der internationale Kenntnisstand zeigt [jedoch] eine weitgehende Übereinkunft da-

hingehend, dass eine auf frequenzbewerteten Effektivwerten basierende Dosis im

Fall stoßhaltiger Ganzkörper-Vibrationen ein Gesundheitsrisiko nicht adäquat cha-

rakterisieren kann“, weswegen nach internationalem Konsens eine erste normative

Umsetzung zur Bewertung stoßhaltiger Ganzkörper-Vibrationen mit der ISO 2631-5

im Jahr 2004 vollzogen wird [Hin-2010]. Kern ist ein Risikofaktor, der die interne Be-

lastung, welche durch einfache Mehrkörpermodelle in x- und y-Richtung und durch

neuronale Netze in z-Richtung bestimmt wird, und die maximale Belastbarkeit der

Lendenwirbelsäule in Relation setzt, wobei sich die Grenzwerte für die kritischen

Tagesdosen und Risikofaktoren nur im informativen Anhang der Norm finden

[ISO 2631b]. Als alternative Beurteilungsmethode für stark stoßhaltig geprägte Be-

lastungen wird Teil 5 der ISO 2631 explizit in der Normergänzung zur ISO 2631-1

empfohlen [ISO 2631a].

Die Unzulänglichkeiten in der Bewertung stoßhaltiger Schwingungen ist schon bei

Verabschiedung der ISO 2631-1 im Jahr 1997 bekannt, so dass auch bereits in ihr

auf die Notwendigkeit zusätzlicher oder alternativer Bewertungsmethoden bei star-

ken Stößen oder transienten Schwingungen verwiesen wird. Als Kriterium für die

Anwendbarkeit der grundlegenden Bewertungsmethode dient nach der ISO 2631-1

der Scheitelfaktor ,FC auch Crest-Faktor genannt, welcher als ganzzahliger Teil des

Verhältnisses des Spitzenwertes des frequenzbewerteten Beschleunigungssignals

zu seinem Effektivwert definiert ist [DIN 1311].

w

F

wT

max a ( t )C

a (2-8)

Page 60: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

40

Für Schwingungen mit einem Scheitelfaktor FC 9 ist die grundlegende Bewer-

tungsmethode normalerweise ausreichend. Ansonsten ist eine der nachfolgend ge-

nannten zusätzlichen Methoden anzuwenden. [ISO 2631c]

Die Gleitende-Effektivwert-Methode berücksichtigt gelegentliche Stöße und tran-

siente Schwingungen durch die Wahl einer kurzen Integrationszeitkonstante in

Bezug zum Beobachtungszeitpunkt 0.t Bekannt sind dabei zwei unterschiedliche

Berechnungsansätze. Die ISO 2631-1 definiert für den gleitenden Effektivwert 0( )wa t

zuerst die Form der linearen Integration:

0

0

t2

w 0 w

t

1a t a t dt( ) ( )

(2-9)

Diese Form kann gemäß ISO 8041 [DIN EN ISO 8041] durch eine exponentielle In-

tegration angenähert werden, welche auch in VDI 2057-1 zur Anwendung kommt:

0 0

20

1( ) ( )

t t t

tw wa t a t e dt

(2-10)

Der Unterschied der Ergebnisse von Formel (2-9) und Formel (2-10) ist sehr klein für

die Anwendung auf Stöße kurzer Dauer im Vergleich zu und bis zu 30 % größer

für Stöße und transiente Schwingungen längerer Dauer. Eine allgemeingültige Fest-

legung für den Wert der Integrationszeitkonstanten kann aktuell nicht getroffen

werden. Die VDI 2057-1 empfiehlt bezüglich der „Prävention von Gesundheitsge-

fährdungen infolge der Einwirkung von Ganzkörper-Schwingungen“ 0,125 s bei

Anwendung von Formel (2-10). Als Kennwert dient der Maximalwert des gleitenden

Effektivwertes MTVV (Maximum Transient Vibration Value). Bei dessen Bestimmung

wird nach ISO 2631-1 eine Wahl von 1 s empfohlen.

0wMTVV max a ( t ) (2-11)

Eine weitere Methode ist nach ISO 2631-1 die Vierte-Potenz-Methode, welche durch

die Wahl der vierten anstatt der zweiten Potenz als Basis der Mittelung für den Be-

schleunigungs-Zeit-Verlauf für Spitzen empfindlicher ist als die grundlegende Be-

wertungsmethode. Die Schwingungsdosis der Vierten-Potenz-Methode VDV (Vibra-

tion Dose Value, Vibrationsdosiswert) besitzt die Einheit 175m s ,/ und wird mit der

Messdauer T definiert als:

Page 61: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

41

4

4

0

( )T

wVDV a t dt (2-12)

Tritt die Vibrationseinwirkung in mehreren Zeitabschnitten i unterschiedlicher Inten-

sität auf, berechnet sich der Gesamtschwingungsdosiswert totalVDV zu:

44total i

i

VDV VDV (2-13)

Nach ISO 2631-1 ist aus Erfahrung bekannt, dass die Verwendung der oben ge-

nannten zusätzlichen Bewertungsmethoden für die Beurteilung der Auswirkungen

der Schwingungen auf den Menschen im Hinblick auf Gesundheit oder Wohlbefin-

den erforderlich ist, wenn folgende Verhältnisse überschritten sind:

1,5wT

MTTV

a (2-14)

41,75

wT

VDV

a T

(2-15)

Hinz et al. weisen darauf hin, dass die Norm keinen Hinweis enthält, in welcher Ach-

se die Stoßhaltigkeit zu prüfen ist [Hin-2010]. Es findet sich zudem nur die Anmer-

kung, dass diese Verhältnisse nicht die Höhe der Vibrationsbelastung widerspiegeln,

sondern nur den Grad der Stoßhaltigkeit anzeigen [ISO 2631a].

Stoßhaltige Ganzkörper-Vibrationen sind seit Jahren Gegenstand zahlreicher wis-

senschaftlicher Forschungstätigkeiten, die auch mit Veröffentlichung der ISO 2631-5

noch lange nicht abgeschlossen sind. So berichten internationale Anwender, dass

„die Ergebnisse der Beurteilung von stoßhaltigen, beruflichen Ganzkörper-

Vibrationen mehrfach zu Unterschätzungen der Wirkungen geführt haben“, weswe-

gen neue Methoden entwickelt werden, die den individuellen Körperbau, typische

Fahrerhaltungen und eine Abschätzung möglicher gesundheitlicher Auswirkungen

ermöglichen [Hin-2010]. Auch für Johanning erscheint in der Prävention die neu ein-

geführte Risikobewertung nach ISO2631-5 mit der Bestimmung eines „response of

the bony vertebal endplate (hard tissue)“ oder „fatigue processes“ kritisch, „da in

diesem Zusammenhang keine klinisch relevanten Diagnosen in der Praxis zu erken-

nen sind“ [Joh-2013]. Eine alternative Methode zur ISO 2631-5 stellt nach Schust et

al. die DIN SPEC 45697 [DIN SPEC 45697] dar, deren zugrunde liegendes Modell im

Rahmen des EU-Projekts VIBRISK von Hinz et al. entwickelt wird [Hin-2007], wobei

die internen Belastungen mit Hilfe von Finite-Elemente-Modellen wie in [Hof-2010]

beschrieben berechnet werden [Sch-2013]. Eine umfangreiche Abhandlung zu stoß-

Page 62: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

42

haltigen Ganzkörper-Vibrationen stellen Hinz, Hofmann und Menzel in [Hin-2010]

vor. Mohr präsentiert die Methode des erweiterten Effektivwerts, bei dem der be-

kannte frequenzbewertete Effektivwert wTa beibehalten und nur um einen Instationa-

ritätsfaktor erweitert wird [Moh-2004]. Fritz wiederum schlägt eine kraftbezogene

Bewertung auf Basis eines biodynamischen Menschmodells vor und stellt zur Ab-

schätzung eines Gesundheitsrisikos einen kraftbezogenen Schwellwert vor [Fri-

2003; Fri-2007]. Hofmann und Wölfel wiederum präsentieren das Ant-

wort-Spektrenverfahren, das im Gegensatz zur Methode des Effektivwerts der fre-

quenzbewerteten Beschleunigung nicht nur einen Zahlenwert, sondern Kurvenver-

läufe als Ergebnis spektraler Betrachtung erzeugt, was ihrer Meinung nach „verläss-

lichere Beurteilung von Schwingungsexpositionen gewährleistet“ [Hof-2007].

2.2.3 Rechtliche Rahmenbedingungen

Zum Schutz der Arbeitnehmer existieren in Deutschland mehrere Vorkehrungen,

welche explizit oder auch nur implizit eine Grundlage für den Schutz gegen Vibrati-

onsbelastungen bilden. Anzuführen sind dabei staatliche Gesetze und Verordnungen

sowie die Unfallverhütungsvorschriften der Berufsgenossenschaften, welche alle

grundlegenden Arbeitsschutzpflichten des Arbeitgebers sowie Pflichten und Rechte

der Beschäftigten regeln. So verpflichtet die Unfallverhütungsvorschrift den Unter-

nehmer, dass er „die erforderlichen Maßnahmen zur Verhütung von Arbeitsunfällen,

Berufskrankheiten und arbeitsbedingten Gesundheitsgefahren sowie für eine wirk-

same Erste Hilfe zu treffen“ hat [Ber-2004, S. 3], was nach dem Stand der Technik

auch Vibrationen einschließt. Bereits das Arbeitsschutzgesetz aus dem Jahre 1996

verpflichtet die Arbeitgeber, eine Gefährdungsbeurteilung auch unter Berücksichti-

gung von Vibrationen gemäß dem Stand der Technik durchzuführen [Bun-1996],

worauf Mohr des Öfteren verweist [Moh-2007; Moh-2013]. Kaulbars geht hier sogar

noch weiter in der Zeit zurück und führt an, dass bereits in der Verordnung über Ar-

beitsstätten aus dem Jahr 1975 verankert ist, „dass Arbeitnehmer an ortsgebunde-

nen Arbeitsplätzen keinen unzuträglichen Schwingungen auszusetzen sind“ [Kau-

2007]. Konkrete Angaben zu Belastungsgrenzwerten bezüglich Vibrationen werden

dabei jedoch in keiner der angesprochenen Verordnungen genannt, so dass zwar

ein Schutz eingefordert wird, dieser jedoch faktisch nicht existiert. So kann man zu

Recht von einer „Lücke im deutschen Rechtssystem“ [Moh-2007] sprechen. Diese

fängt an sich zu schließen, als das Europäische Parlament im Jahr 2002 die Richtli-

nie 2002/44/EG über Mindestvorschriften zum Schutz von Sicherheit und Gesund-

heit der Arbeitnehmer vor der Gefährdung durch physikalische Einwirkungen (Vibra-

tionen) erlässt und die Mitgliedsstaaten auffordert, dieser durch entsprechende

Rechts- und Verwaltungsvorschriften spätestens ab den 6. Juli 2005 nachzukom-

men [Eur-2002]. Die EU stellt den Mitgliedstaaten dabei frei, die Tagesexpositi-

on (8)A entweder auf Basis des Effektivwerts der frequenzbewerteten Beschleuni-

Page 63: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

43

gung nach Formel (2-7) oder auf Basis des Vibrationsdosiswerts VDV gemäß For-

mel (2-12) zu bestimmen und nennt für beide Varianten Mindestgrenzwerte. Eine

erste Umsetzung in deutsches Recht erfolgt zum 19. August 2005 mit der Änderung

der Gesundheitsschutz-Bergverordnung [Ges-2007], für alle anderen Bereiche je-

doch erst im Jahr 2007 mit der Verabschiedung der Lärm- und Vibrations-Arbeits-

schutzverordnung (LärmVibrationsArbSchV) [Bun-2007b], womit die Gesetzeslücke

endgültig geschlossen ist. Die Lärm- und Vibrations-Arbeitsschutzverordnung ver-

pflichtet den Arbeitgeber, eine Gefährdungsbeurteilung und deren Dokumentation

nach inhaltlichen und formalen Vorgaben durchzuführen und entsprechende Maß-

nahmen abzuleiten, falls eine zu hohe Vibrationsbelastung vorliegt. Um Rechtssi-

cherheit für den Arbeitgeber in dieser neuen Situation zur Verfügung zu stellen, hat

der Ausschuss für Betriebssicherheit (ABS) unter Beteiligung des Ausschusses für

Arbeitsmedizin (AfAMed) im Jahr 2010 die Technischen Regeln zur Lärm- und Vibra-

tions-Arbeitsschutzverordnung (TRLV Vibrationen) verabschiedet, welche den Stand

der Technik, Arbeitsmedizin und Arbeitshygiene wiedergeben [Bun-2010c]. Durch

die Vermutungswirkung kann der Arbeitgeber bei Anwendung der Technischen Re-

geln und der dort beispielhaft genannten Maßnahmen davon ausgehen, die entspre-

chenden Arbeitsschutzvorschriften einzuhalten.

Die Gefährdungsbeurteilung umfasst nach den TRLV Vibrationen folgend genannte

Schritte [Bun-2010c]:

1. Festlegen der zu beurteilenden Arbeitsbereiche und Tätigkeiten

2. Ermitteln der Gefährdungen

3. Beurteilen der Gefährdungen

4. Festlegen konkreter Arbeitsschutzmaßnahmen

5. Durchführung der Maßnahmen

6. Überprüfen der Wirksamkeit der Maßnahmen

7. Fortschreiben der Gefährdungsbeurteilung

Bei der Ermittlung der Gefährdung fordern die TRLV Vibrationen nicht zwangsläufig

eine fachkundige eigene Vibrationsmessung, sollten für den zu untersuchenden Ar-

beitsplatz keine eigenen Messergebnisse zur Verfügung stehen, sondern erlauben

ausdrücklich die Nutzung fremder Informationsquellen, wobei stets die Vergleich-

barkeit der angegebenen Einsatz- und Betriebsbedingungen mit den Verhältnissen

vor Ort zu prüfen ist [Bun-2010c, S. 27–30]. Eine Übersicht über bekannte Vibrati-

onsbelastungen bei Flurförderzeugen mit sitzendem Bediener findet sich im folgen-

den Kapitel 2.2.4. Für die Beurteilung der Gefährdung sind nach der Lärm- und Vib-

rations-Arbeitsschutzverordnung der Effektivwert der frequenzbewerteten Beschleu-

nigung zur Berechnung der Tagesexposition A 8( ) sowie die dafür genannten

Page 64: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

44

Grenzwerte heranzuziehen. Hierbei ist zwischen dem Auslösewert und dem Exposi-

tionsgrenzwert zu unterscheiden. Deren Zahlenwerte sowie die zu ergreifenden

Maßnahmen hält Abbildung 2-15 fest, welche das Ampelprinzip der

TRLV Vibrationen aufgreift. Die Beurteilung hat für jede der Raumachsen (x, y, z) ge-

trennt zu erfolgen.

Abbildung 2-15: Forderungen zu Ganzkörper-Vibrationen nach [Bun-2010c]

Bei der Festlegung der Grenzwerte in der Lärm- und Vibrations-Arbeitsschutzverord-

nung macht die Bundesregierung von der in der Richtlinie 2002/44/EG genannten

Möglichkeit Gebrauch, „unter dem Aspekt des Schutzes der Arbeitnehmer vorteil-

haftere Bestimmungen beizubehalten oder zu erlassen, insbesondere die Festlegung

niedrigerer Werte für den täglichen Auslösewert oder den täglichen Expositions-

grenzwert für Vibrationen“ und reduziert den Grenzwert in Längsrichtung der Wirbel-

säule von 1,15 m/s2 auf 0,8 m/s2 (vertikale Richtung/z-Achse bezüglich des in Abbil-

dung 2-13 gezeigten Koordinatensystems). Für die im Kapitel 2.2.2 genannten zu-

sätzlichen Bewertungsmethoden bei stoßhaltigen Vibrationen sind in der Lärm- und

Vibrations-Arbeitsschutzverordnung keine Grenzwerte definiert. Ebenso erfolgt keine

Verankerung der ISO 2631-5 und der dort informativ genannten Grenzwerte.

Die Wahl des Effektivwerts der frequenzbewerteten Beschleunigung zur Berechnung

der Tagesexposition (8)A anstelle des Vibrationsdosiswerts VDV bleibt nicht ohne

Kritik. So stellt Bovenzi aufbauend auf der Vibrisk-Studie mit 537 Fahrern von mobi-

len Arbeitsmaschinen, darunter Flurförderzeuge, Müllfahrzeuge und Busse im ÖPNV

[Bov-2010], fest, dass nach der Bewertungsmethode gemäß der Lärm- und Vibrati-

ons-Arbeitsschutzverordnung 21 % der untersuchten Fahrer, die unter Rücken-

schmerzen leiden, nicht von Vorbeugemaßnamen profitieren, während sie bei Ver-

Expositionsgrenzwert

vertikal: A(8) = 0,8 m/s2

horizontal: A(8) = 1,15 m/s2

bei Feststellung SofortmaßnahmenArbeitsmedizinische

Pflichtuntersuchungen G46

Programm technischer/organisatorischer Maßnahmen

Unterrichtung und Unterweisung der Beschäftigten

allg. arbeitsmed. Beratung

Angebot arbeitsmedizinischer Vorsorgeuntersuchungen

Stand der Technik und mittelbare Gefährdungen beachten

Auslösewert

vertikal: A(8) = 0,5 m/s2

horizontal: A(8) = 0,5 m/s2

Page 65: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

45

wendung des Vibrationsdosiswerts VDV diese hätten nutzen können. Bovenzi hält

fest, dass „the measure of daily vibration exposure (A(8)max) and the exposure val-

ues (action value and limit value) chosen by the majority of Europen [sic] countries to

adopt the provisions of the EU Directive on mechanical vibration do not seem to be

adequately protective against the health risks form occupational exposure to whole

body vibration”. [Bov-2013]

Auch bei der Umsetzung der Lärm- und Vibrations-Arbeitsschutzverordnung existie-

ren noch deutliche Defizite, wie Mohr auf Basis von einer aktuellen Online-Befragung

des Landesamt für Arbeitsschutz Potsdam aus dem Jahr 2010 herausstellen kann,

deren Ergebnisse folgend dargelegt werden [Moh-2013]. Die lediglich 118 Antworten

von 4.000 angeschriebenen Firmen legen nahe, dass das Arbeitschutzgesetz „heute

praktisch in allen Betrieben bekannt ist, die LärmVibrationsArbSchV dagegen nur in

zwei von drei Betrieben mit Lärm- und/oder Vibrationsexposition“. Während mittler-

weile immerhin ca. ein Drittel der Arbeitgeber angibt, die TRLV Vibrationen zu ken-

nen, so sind einschlägige Normen wie die ISO 2631 oder die VDI 2057 nur ca. 10 %

bekannt. Immerhin gaben zwei Drittel der Befragten an, dass ihnen die

TRLV Vibrationen bei der Lärm- und Vibrationsbekämpfung geholfen haben. Auch

Wiegand stellt fest, dass sich die Gefährdungsbeurteilung mittlerweile als Instrument

etabliert hat, aber bezüglich einzelner Gefährdungsfaktoren wie Vibrationen nicht

angewandt wird [Wie-2010]. Aus einer von ihm vorgestellten anonymen Umfrage

unter 1.400 Sicherheitsfachkräften geht bei 355 Antworten hervor, dass zwar nur

2,4 % aller Sicherheitsfachkräften die Lärm- und Vibrations-Arbeitsschutz-

verordnung nicht bekannt ist, jedoch auch nur ein Drittel der Befragten diese in der

Gefährdungsbeurteilung anwendet. Auf Wissensfragen zum Thema Vibrationen ant-

worten über alle Fragen gemittelt nur durchschnittlich 55 % der Befragten richtig.

Grundsätzlich geht aus der Umfrage hervor, „dass das Thema Vibrationen für viele

Sicherheitsfachkräfte nicht sehr anschaulich ist und von daher Schwierigkeiten be-

stehen, Gefährdungen durch Vibrationen angemessen in der Gefährdungsbeurtei-

lung zu berücksichtigen“ [Wie-2010].

2.2.4 Ganzkörper-Vibrationen bei Flurförderzeugen

Im Bereich der Flurförderzeuge wurden über die vergangenen Jahre unterschied-

lichste Vibrationsmessungen vor allem auf Seiten der Hersteller, Betreiber oder Be-

rufsgenossenschaften durchgeführt und der interessierten Öffentlichkeit über Veröf-

fentlichungen zum Großteil zugänglich gemacht. Ziel dieses Kapitels ist, einen struk-

turierten Überblick über diese bekannten Messwerte sowie Aussagen zur Höhe der

Vibrationsbelastungen zu schaffen.

Page 66: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

46

Die in der Literatur veröffentlichten Vibrationswerte lassen sich dabei in folgende

Gruppen gliedern:

Messwerte zu einzelnen konkreten Fahrzeugen

Emissionswerte aus Angaben zur Maschinenrichtlinie

Immissionswerte (repräsentative Branchenmessungen)

Orientierungswerte (gemittelt über mehrere Fahrzeuge)

Gerade zum Zeitpunkt des Inkrafttretens der Lärm- und Vibrations-Arbeitsschutzver-

ordnung zeigen einige Autoren mögliche Fahrerbelastungen anhand von Messungen

an einzelnen Fahrzeugen, wobei meist keine umfänglichen Angaben zu den vorlie-

genden Randbedingungen der Messungen gemacht werden. So beobachtet Tödter

beim Indoor-Einsatz eines Gabelstaplers in der Produktion eine Tagesexposition von

(8)A = 0,35 m/s2 sowie beim Outdoor-Einsatz auf mäßigen Beton- und Asphaltflä-

chen einen kritischen Wert von (8)A = 0,65 m/s2 und zeigt ergänzend weitere

exemplarische Messungen für Elektro- und Verbrenner-Gabelstapler, bei denen je-

weils die Effektivwerte in z-Richtung dominieren [Töd-2007a]. Auch Riedmaier ermit-

telt bei Messungen in einer Brauerei mit einem Verbrenner-Gabelstapler Vibrations-

kennwerte, vergleicht dabei unterschiedliche Sitze und ermittelt Belastungen11 zwi-

schen wea = 0,31–0,55 m/s2 [Rie-2005a]. Detaillierte Messungen an einem Verbren-

ner-Gabelstapler mit einer Tragfähigkeit von 1.600 kg stellen Schäfer et al. vor, ge-

ben aber bei Variation unterschiedlicher Parameter wie Bodenbeschaffenheit und

Fahrgeschwindigkeit nur die gemessenen Beschleunigungen am Montagepunkt des

Sitzes an der Fahrerkabine an, so dass der Praktiker diese Erkenntnisse nicht zur

Gefährdungsbeurteilung nutzen kann [Sch-2010b]. Sayn et al. stellen ohne Be-

schreibung des Einsatzszenarios exemplarische Messungen an drei Gabelstaplern

vor und ermitteln dabei Belastungen von wea = 0,31–0,55 m/s2, wobei kaum Unter-

schiede zwischen den Koordinatenachsen zu verzeichnen sind [Say-2013]. Ab-

schließend zu den Einzelmessungen seien im Bereich der Schubmaststapler Anga-

ben von Tödter [Töd-2007a] sowie Egberts und Testing [Egb-2012] genannt, welche

Maximalbelastungen zwischen wea = 0,3–0,4 m/s2 ermitteln. Eine Sammlung von

etwa 10.000 Datensätzen zu 137 Fahrzeuggruppen im Bereich der Ganzkörper-

Vibrationen stellt das Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfall-

versicherung (IFA) mit der Vibrations-Expositions-Datenbank VIBEX bereit. Die Da-

ten basieren auf Messungen zusammen mit Unfallversicherungsträgern oder im

Rahmen von Forschungsprojekten und stehen nicht der Öffentlichkeit, sondern nur

den Unfallversicherungsträgern zur Verfügung [Ins-2013]. Eine öffentlich zugängliche

11 Es ist anzunehmen, dass es sich hierbei nicht um Tagesexpositionswerte handelt, sondern um

die Messergebnisse auf der beschriebenen Teststrecke. Eine exakte Erläuterung des Autors un-terbleibt.

Page 67: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

47

Datenbank mit Einzelmesswerten in englischer Sprache ist die „Whole-Body/Hand

and Arm Vibration Database” des Department of Public Health and Clinical Medicine

der Umeå University in Schweden [Dep-2014], welche jedoch kaum Angaben zu

Flurförderzeugen enthält.

Auch die Hersteller von Maschinen sind nach der neuen Maschinenrichtlinie

2006/42/EG verpflichtet, die Vibrationsemission ihrer Fahrzeuge in der Betriebsanlei-

tung anzugeben [Eur-2006]. Dies dient bei Vibrationen u. a. als Basis zum Vergleich

von Maschinen untereinander und zum Einkauf von Maschinen [Fac-2013]. Die Ma-

schinenrichtlinie fordert, dass ab einem gemessenen Effektivwert der frequenzbe-

werteten Beschleunigung größer als 0,5 m/s2 dieser unter Angabe der Messunsi-

cherheit anzugeben ist und andernfalls ein Hinweis auf die Unterschreitung der

Grenzen zu erfolgen hat [Eur-2006, S. 56]. Die Messung dieser Kennwerte ist gene-

rell in der DIN EN 1032 geregelt [DIN EN 1032], wobei für Flurförderzeuge mit der

DIN EN 13059 eine maschinenspezifische Messnorm gemäß der DIN EN 1032 zur

Verfügung steht [DIN EN 13059], welche für den Betriebszustand Fahren in Abhän-

gigkeit von Flurförderzeugparametern wie Reifen oder Bauart die Versuchsdurchfüh-

rung zur Bestimmung des Vibrationskennwerts regelt. Kern ist die Fahrt über

Schwellen definierter Höhe, wobei an dieser Stelle für eine detaillierte Beschreibung

auf Kapitel 6.3.1 verwiesen wird, da die DIN EN 13059 als Grundlage für Messungen

im Rahmen dieser Untersuchung dient. Bezüglich der Gefährdungsbeurteilung durch

den Arbeitgeber ist jedoch anzumerken, dass die Vibrationsemissionsangabe des

Maschinenherstellers nicht mit der Vibrationsexposition der Arbeitnehmer verwech-

selt werden darf, worauf auch explizit im Leitfaden für die Anwendung der Maschi-

nenrichtlinie 2006/42/EG [Eur-2010, S. 228] sowie in den TVRL Vibrationen [Bun-

2010c, S. 30] eingegangen wird. Grundsätzlich gilt natürlich, dass die Maschine so

konstruiert und gebaut sein muss, „dass Risiken durch Maschinenvibrationen insbe-

sondere an der Quelle so weit gemindert werden, wie es nach dem Stand des tech-

nischen Fortschritts und mit den zur Verringerung von Vibrationen verfügbaren Mit-

teln möglich ist“ [Eur-2006, S. 56]. Grundlegenden Anforderungen der Maschinen-

richtlinie 2006/42/EG bezüglich Vibrationen samt einer kurzen Inhaltsübersicht findet

sich auch in Anhang B der DIN EN 12786 [DIN EN 12786]. Abschließend ist festzu-

halten, dass die Angaben in der Bedienungsanleitung, welche auf einer einfachen

Schwellenüberfahrt beruhen, nicht für die Ermittlung der Tagesexposition (8)A bei

Fahrern von Flurförderzeug herangezogen werden dürfen, da sie nicht die tatsäch-

lich vorherrschenden Betriebsbedingungen berücksichtigen. Für einen Vergleich

zwischen Fahrzeugen sind die Kennwerte jedoch auf Grund ihrer genormten Ermitt-

lung geeignet.

Page 68: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

48

Immissionswerte sind unter typischen Betriebsbedingungen gemäß dem Stand der

Technik an „vergleichbaren Arbeitsmitteln und unter vergleichbaren Einsatzbedin-

gungen“ gemessene Vibrationswerte [Bun-2010c, S. 28]. In Normalfall handelt es

sich hierbei nicht um Einzelmessungen, sondern um Messreihen an vergleichbaren

repräsentativen Arbeitsplätzen mit typischen Betriebsbedingungen, welche z. B. für

Erdbau- und Straßenbaumaschinen über die Technische Spezifikation

CEN/TS 15730 [DIN CEN/TS 15730] verfügbar sind. Dieser Ansatz wird im Bereich

der Flurförderzeuge von der damaligen Großhandels- und Lagerei-Berufsgenossen-

schaft12 unter der Annahme, „dass innerhalb einer Branche ‚ähnliche betriebliche

Verhältnisse‘ und ‚ähnliche Einsatzbedingungen‘ und somit auch ‚ähnliche Tages-

Vibrationsexpositionswerte‘ vorliegen“, aufgegriffen [Sch-2007a]. So führen Schäfer

et al. insgesamt 115 Messungen an Gabelstaplern im Baustoffgroßhandel, Portal-

staplern und Portalkranen im Hafenumschlag sowie Mobilbaggern im Schrotthandel

durch und können diesen Ansatz bestätigen [Sch-2007b]. Bei den dafür in den Jah-

ren 1988 bis 2003 messtechnisch erfassten 26 Gabelstaplern im Baustoffgroßhandel

handelt es sich um Gabelstapler diverser Hersteller mit Tragfähigkeiten zwischen 1,5

und 3,5 Tonnen, wobei in 21 Fällen Gabelstapler mit Dieselmotoren zum Einsatz

kommen. Die Messdauer der Einzelmessungen beträgt zwischen 35 und 144 Minu-

ten bei einer gesamten Messdauer von etwa 37 Stunden. Da die Autoren gleichzeitg

die mittlere Einwirkungsdauer von 3,5 Stunden mit einer Variation von einer bis 6,5

Stunden bestimmen, können sie auf die Tagesexposition (8)A schließen, welche in

Abbildung 2-16 dargestellt sind.

Abbildung 2-16: Häufigkeitsverteilung der Tagesexposition A(8) für die messtechnisch erfassten Ga-belstaplerfahrer im Baustoffgroßhandel nach [Sch-2007b]

Die Bundesanstalt für Arbeitsschutz und Arbeitsmedizin stellt im Rahmen der Tech-

nischen Regeln zur Lärm- und Vibrations-Arbeitsschutzverordnung ebenso Immissi-

12 Die Großhandels und Lagerei-Berufsgenossenschaft fusionierte zum 01.01.2008 mit der Einzel-

handels-Berufsgenossenschaft zur Berufsgenossenschaft Handel und Warendistribution (BGHW).

0

2

4

6

8

10

12

14

Anza

hl d

er

Mess

ung

en

Tagesexposition A(8) [m/s2]

Page 69: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

49

onswerte in Form von branchenbezogenen Gefährdungstabellen zur Verfügung

[Bun-2010b]. Diese basieren ausschließlich auf der vorab genannten Technischen

Spezifikation CEN/TS 15730 für Erdbau- und Straßenbaumaschinen und auf den

Untersuchung von Schäfer et al. für Gabelstapler im Baustoffgroßhandel, Portalstap-

ler und Portalkrane im Hafenumschlag sowie Mobilbagger im Schrotthandel [Sch-

2007b]. Des Weiteren sind Messungen von Schäfer et al. bei Schubmaststaplern in

fünf Unternehmen des Lebensmittelgroßhandels bekannt [Sch-2007a]. Im Ergebnis

lassen sich mittlere Effektivwerte der frequenzbewerteten Beschleunigung von ca.

wea = 0,3 m/s2 in jeder der drei Raumachsen und ebenfalls mittlere Tagesexpositio-

nen von (8)A = 0,3 m/s2 festhalten. Für sich im Einsatz befindliche Gabelstapler in

Speditionsbetrieben, dem Lebensmittel- und dem Getränkehandel verfolgt die Be-

rufsgenossenschaft Handel und Warendistribution (BGHW) das Ziel branchenbezo-

gener Messungen weiter [Rok-2013]. Auch Bovenzi führt im Rahmen einer Studie im

Zuge des VIBRISK-Projekts Messungen bei Gabelstaplerfahren in der Marmorpro-

duktion (awe = 0,95 m/s2, 5 Fahrzeuge) in Papierfabriken (awe = 0,28 m/s2, 8 Fahr-

zeuge) und in Werften (awe =0,40 m/s2, 8 Fahrzeuge) durch, wobei jeweils die Belas-

tung in vertikaler Richtung dominiert [Bov-2006]. Speziell für die Abschätzung der

Belastung auf alten Gabelstaplern aus Ostimporten oder Eigenproduktion der neuen

Bundesländer kann auf eine Studie an 25 Gabelstaplerfahrern von Knoll et al. zu-

rückgegriffen werden [Kno-1996].

Als letzte Gruppe der Messwerte sind die Orientierungswerte zu nennen. Diese sind

nicht zu verwechseln mit den Messergebnissen orientierender Verfahren (vgl. Kapi-

tel 2.2.2.1), sondern unterscheiden sich zu den branchenbezogenen Immissionswer-

ten in einer wesentlich allgemeingültigeren Beschreibung der vorliegenden Betriebs-

bedingungen, so dass eine gesicherte Übertragbarkeit auf den eigenen Anwen-

dungsfall nicht immer gegeben ist. Ausgewählte Orientierungswerte werden auch

von Bundesanstalt für Arbeitsschutz und Arbeitsmedizin im Rahmen der

TRLV Vibrationen zur Verfügung gestellt [Bun-2010b]. Für Flurförderzeuge kann der

Anwender dabei auf Angaben für Gabelstapler, Portalstapler und Schubmaststapler

zurückgreifen, welche in Tabelle 2-5 wiedergegeben werden.

Page 70: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

50

Tabelle 2-5: Orientierungswerte für die Gefährdungsbeurteilung bei Ganzkörper-Vibrationen nach [Bun-2010b]

Gerät- oder Maschinenart

Tätigkeit/ Bemerkung

Belastungs- stufe

awx [m/s2]

awy [m/s2]

awz [m/s2]

TAusl. [h]

TGrenz. [h]

Gabelstapler

Fahrbahn

glatt/eben

hoch 0,3 0,3 0,6 5,6 >12

mittel 0,2 0,2 0,4 10,6 >12

gering 0,1 0,1 0,3 >12 >12

Fahrbahn

normal/

leicht uneben

hoch 0,5 0,6 1,0 2,1 5,4

mittel 0,3 0,4 0,7 3,6 9,3

gering 0,2 0,2 0,5 7,7 >12

Fahrbahn

uneben/

beschädigt

hoch 0,7 0,7 1,6 0,8 2,0

mittel 0,5 0,5 1,1 1,6 4,2

gering 0,4 0,3 0,6 5,4 >12

Portalstapler unspezifiziert

hoch 0,8 0,6 1,0 1,5 5,5

mittel 0,5 0,4 0,6 3,4 >12

gering 0,3 0,2 0,3 >12 >12

Schubmast-,

Regal-,

Vierwegestapler

unspezifiziert

hoch 0,7 0,8 1,1 1,6 4,2

mittel 0,4 0,4 0,6 5,6 >12

gering 0,1 0,0 0,1 >12 >12

Die Angaben im Bereich der Gabelstapler beruhen auf 70 in der CD „Schwingungen

und Vibrationen am Arbeitsplatz“ der Vereinigung der Metall-Berufsgenossen-

schaften veröffentlichten Messungen [Ver-2008]. Die 10 Datensätze der Portalstapler

sowie die 63 der Schubmast-, Regal- und Vierwegstaplern entstammen dem BGIA-

Report 6/2006 [Chr-2006]. Am Beispiel der Orientierungswerte wird die Unsicherheit

des Anwenders bezüglich der Übertragbarkeit deutlich. Zwar werden Belastungsstu-

fen in der Unterteilung hoch, mittel und gering genannt, jedoch erfolgt keine weitere

Spezifizierung der vorliegenden Arbeitsbedingungen. Die hierbei hinterlegten Effek-

tivwerte beruhen zudem nicht auf Messungen für diese Belastungsstufen, sondern

leiten sich über die Standardabweichung (Gabelstapler) sowie die kleinsten und

größten Messwerte (Portalstapler, Schubmaststapler) ab. Bei Schubmast-, Regal-

und Vierwegestaplern sind die Einsatzbedingungen zudem nicht näher spezifiziert.

Neben den explizit als Orientierungswerte im Rahmen der TRLV Vibrationen veröf-

fentlichten Daten existieren weitere Messwerte, die sich auch dieser Kategorie zu-

ordnen lassen. Nach Christ et al. treten bei Gabelstaplern in vertikaler Richtung Be-

lastungen von awe = 0–2,25 m/s2 auf [Chr-2006]. Auch im EU-Handbuch zum Thema

Ganzkörper-Vibration finden sich Belastungsangaben zu Gabelstaplern (awe = 0,3–

1,6 m/s2), Schubmaststaplern (awe = 0,3–2,8 m/s2) und Kommissionierstaplern (awe =

0,2–1,1 m/s2) auf Basis von Messungen aus den Jahren 1997–2005 in Schwingungs-

laboren unterschiedlicher Institute, wobei der Hinweis erfolgt, dass die Angaben nur

Page 71: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

51

der Veranschaulichung des Sachverhalts dienen und „möglicherweise nicht für alle

Maschinenbetriebsweisen repräsentativ“ sind [Bun-2007a, S. 40]. All diese Angaben

verdeutlichen, dass Orientierungswerte allerhöchstens einen Eindruck vermitteln

können, ob überhaupt mit Grenzwertüberschreitungen zu rechnen ist.

Das Landesamts für Arbeitsschutz Potsdam stellt im Internet mit dem Katalog re-

präsentativer Lärm- und Vibrationsdaten am Arbeitsplatz (KarLA) weitere Messwerte

bereit, die mehreren der vorab genannten Kategorien zuzuordnen sind [Lan-2015].

So sind für Flurförderzeuge im Bereich der Emissionswerte 23 Datensätze eines

Herstellers (Schwingungskennwerte nach DIN EN 13059) anzutreffen. Bei den Im-

missionswerten wird zwischen repräsentativen Werten (Messdatum 1995–2005, kei-

ne Datensätze für Flurförderzeuge), orientierenden Werten (Messdatum 1980–2000,

4 Datensätze) und retrospektiven Werten (Katalogdaten und Messprotokolle von

Betrieben und wissenschaftlichen Einrichtungen der ehemaligen DDR, Messdatum

1980-2000, 145 Datensätze) unterschieden.

Neben den veröffentlichten Messwerten finden sich in der Literatur auch grundle-

gende Aussagen zur Höhe der Vibrationsbelastung bei Flurförderzeugen in unter-

schiedlicher Präzisierung, welche folgend diskutiert werden sollen. Bei einigen Auto-

ren scheint Einigkeit zu herrschen, dass alleine die Beschaffenheit der Fahrbahn

ausschlaggebend ist, wenn ansonsten normale Betriebsbedingungen vorliegen. So

kommt Eicheldinger anhand von Messungen der Audi AG zur pauschalen Aussage,

dass im Normallfall die Anforderungen an die Lärm- und Vibrationsarbeitsschutzver-

ordnung eingehalten werden, wenn „in den Betrieben die Gabelstapler entsprechend

den Herstellervorschriften gewartet und betrieben werden, die Fahrer auf die richtige

Sitzeinstellung achten und mit angepasster Geschwindigkeit über gute Verkehrswe-

ge fahren“ [Eic-2008]. Auch Neugebauer trägt vor, dass bei Gabelstaplern, Diesel-

und Elektrokarren sowie Niederhubwagen nur Fahrten „auf unebenem Untergrund“

gefährdend sind [Neu-2009b]. Diese Grundaussage findet sich auch auf Seiten der

Flurförderzeughersteller: „Die auf den Bediener einwirkenden Vibrationen bei Ge-

gengewichtstaplern (mit SE-Bereifung) auf gutem Asphalt oder Betonböden (eben

und ohne Hindernisse und Ausbesserungsstellen) ist ebenfalls als unkritisch zu be-

werten“ [Jun-2013]. Ebenso wird im Merkblatt zu der Berufskrankheit Nr. 2110 der

Anlage der Berufskrankheiten-Verordnung (BKV) dieses Argument aufgegriffen, da

„z. B. bei Fahrern von (...) Gabelstaplern auf ebenen Fahrbahnen (...) mit schwin-

gungsgedämpften Fahrersitzen keine hinreichende gesicherten gesundheitsschädli-

chen Auswirkungen durch Schwingungen beobachtet worden“ sind [Bun-2005]. Es

sei jedoch angemerkt, dass sich die Aussage nur auf die Schädigung der Gesund-

heit und nicht auf das Erreichen von Auslöse- oder Grenzwerten bezieht. Tödter

stellt die Behauptung auf, dass „in höchstens 20 % der Fälle der Auslösewert er-

Page 72: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2 Stand der Technik und Forschung

52

reicht wird“ [Töd-2007b], was jedoch keine Aussage liefert, wann dies der Fall ist

und für welche Bereiche dies zutrifft. Die bis zu dieser Stelle zitierten Aussagen ge-

ben den Betreibern von Flurförderzeugen nur bedingt eine Hilfestellung im Zuge der

Gefährdungsbeurteilung an die Hand, da die Betrachtungsebene zu pauschal bleibt

und nicht nachweisbar untermauert wird. Wesentlich mehr Relevanz besitzen jedoch

die Aussagen von Rokosch et al., die auf Grund von branchenspezifischen Messun-

gen im Bereich Spedition/Logistik, Lebensmittel-, Getränke- und Baustoffhandel zu

dem Ergebnis kommen, dass „die Gabelstapler in den Handelsunternehmen eine

Tendenz zu Werten unterhalb des Auslösewerts nach der Lärm- und Vibrations-

Arbeitsschutzverordnung“ zeigen [Rok-2013, S. 105].

Ergänzend sei erwähnt, dass die Fahrzeugschwingungen auch in das Hand-Arm-

System durch das Betätigen von Steuerhebeln und Lenkrädern eingeleitet werden.

Untersuchungen zeigen jedoch, dass die Stärke der beschriebenen Hand-Arm-

Schwingungen üblicherweise geringer als 2,5 m/s2 ist [DIN EN 13059].

An generellem Informationsmaterial über Ganzkörper- und Hand-Arm-Vibrationen

am Arbeitsplatz besteht kein Mangel. Als Beispiele seien genannt:

Technische Regeln zur Lärm- und Vibrations-Arbeitsschutzverordnung (TRLV

Vibrationen) [Bun-2010c]

Handbuch zum Thema Ganzkörper-Vibration der europäischen Kommission,

angepasst an die LärmVibrationsArbSchV [Bun-2007c]

Leitfaden für die Gefährdungsbeurteilung in Klein- und Mittelbetrieben – Ge-

fährdungen durch Ganzkörper- und Hand-Arm-Vibrationen der Internationalen

Vereinigung für Soziale Sicherheit (IVSS) [Int-2010]

Broschüre „Lärm und Vibrationen am Arbeitsplatz“ [Neu-2009a]

Handbuch Vibrationen am Arbeitsplatz der Berufsgenossenschaft Handel und

Warendistribution (BGHW) [Sch-2010a]

CD „Schwingungen und Vibrationen am Arbeitsplatz“ der Vereinigung der

Metall-Berufsgenossenschaften [Ver-2008]

Fachbereichs-Informationsblätter zur Prävention bei Vibrationseinwirkungen

bei der Arbeit der DGUV [Deu-2014]

Als abschließendes Resümee ist festzuhalten, dass eine Vielzahl an grundlegenden

Informationen zum Thema Ganzkörper-Vibrationen vorhanden sind, die die Betreiber

von Flurförderzeugen an das doch noch neue Thema hinführen und auf wichtige

Stellgrößen wie die Beschaffenheit der Fahrbahn oder die richtige Sitzeinstellung

hinweisen. Im Zuge einer Gefährdungsbeurteilung ist es für Betreiber von Flurförder-

Page 73: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

2.2 Ganzkörper-Vibrationen

53

zeugen jedoch weiterhin schwer, verlässliche und vor allem vergleichbare Vibrati-

onsdaten zu beziehen, um eigene fachkundige Messungen zu umgehen. Einen viel-

versprechenden Ansatz bilden die von der Berufsgenossenschaft Handel und Wa-

rendistribution initiierten branchenspezifischen Messungen, da diese auf einer brei-

ten Datenbasis fußen und die branchenspezifischen Einsatzbedingungen berück-

sichtigen.

Page 74: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 75: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

55

3 Forschungslücke und Aufgabenstellung

Vor allem seit dem Inkrafttreten der Lärm- und Vibrations-Arbeitsschutzverordnung

setzen sich unterschiedliche Autoren in Fachartikeln mit der Vibrationsexposition

von Fahrern von Flurförderzeugen auseinander. Die daraus resultierenden Erkennt-

nisse hinsichtlich der tatsächlichen Höhe der Vibrationsbelastung in Form von Aus-

sagen zur Tagesexposition (8)A sind bereits im Stand der Technik und Forschung

zusammengefasst. Im Gegensatz dazu fokussiert dieses Kapitel den aktuellen Wis-

sensstand zu Einflussfaktoren auf die Vibrationsexposition von Fahrern von Flurför-

derzeugen, um darauf aufbauend die Forschungslücke und die Aufgabenstellung der

vorliegenden Arbeit abzuleiten. Die detaillierte Betrachtung der Einflussfaktoren stellt

ebenso eine elementare Grundlage für die spätere Untersuchung dar.

3.1 Einflussfaktoren auf die Schwingungsbelastung

Ziel und Inhalt dieses Kapitels ist, mögliche Einflussfaktoren auf die Belastung des

Fahrers durch Ganzkörper-Vibrationen systematisch zu sammeln, zu bewerten und

die Faktoren zu ermitteln, die im Rahmen der vorliegenden Arbeit untersucht werden

sollen. Als Erhebungsmethode wird das von Schmidt vorgestellte Dokumentenstudi-

um angewandt, wobei die Auswertung strukturiert erfolgt und ausschließlich Ganz-

körper-Vibrationen bei Flurförderzeugen fokussiert werden [Sch-2009b, S. 230ff].

Den Nachteilen dieser Methode wie fehlende Vollständigkeit sowie fehlende Aktuali-

tät wird dadurch begegnet, dass alle relevanten Fachzeitschriften und Fachtagungen

der Branche einbezogen werden, die Branchenkenntnis der Industrievertreter, die

das zu Grunde liegende Forschungsprojekt begleiten, genutzt und die Fachliteratur

laufend hinsichtlich neuer Veröffentlichungen verfolgt wird.

Wie bereits erwähnt ist im Umfeld der Verabschiedung der Lärm- und Vibrations-

Arbeitsschutzverordnung im Jahre 2007 eine Sensibilisierung der Logistik-Branche

bezüglich der Belastung durch Ganzkörper-Vibrationen festzustellen, so dass rele-

vante Fachbeiträge vor allem in diesem Zeitraum anzutreffen sind. Die im Rahmen

des Dokumentenstudiums identifizierten Fachbeiträge lassen sich unterschiedlichen

Autorengruppen zuordnen. Zu nennen sind Publikationen von Autoren der Berufs-

genossenschaften Handel und Warendistribution [Sch-2007b; Sch-2007c; Sch-

2009a; Sch-2010b; Sch-2010c; Sch-2010a; Rok-2013] sowie Holz und Metall [Neu-

2009b; Neu-2010], von einem Anwender [Eic-2007; Eic-2008], von Flurförderzeug-

herstellern [Rie-2005a; Lin-2007; STI-2007; Töd-2007b; Töd-2007a; Lin-2008; Jun-

2013], von (Forschungs-)Instituten [Ber-2003; Ber-2005; Vor-2007c; Vor-2007d] so-

Page 76: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3 Forschungslücke und Aufgabenstellung

56

wie von unabhängigen Fachjournalisten [Egb-2012]. Somit ist sichergestellt, dass im

Rahmen des Dokumentenstudiums unterschiedliche Sichtweisen auf das Thema

Ganzkörper-Vibrationen bei Flurförderzeugen berücksichtigt sind. Allen Beiträgen ist

gemein, dass in unterschiedlicher Detailtiefe verschiedene Einflussfaktoren auf die

Vibrationsbelastung des Fahrers genannt werden, wobei nur in Ausnahmefällen eine

quantitative Bewertung erfolgt. Herauszuheben sind die Untersuchungsergebnisse

von Schäfer et al. an Gabelstaplern mit einer Tragfähigkeit von 1,6 t, welche weit

detaillierter Aufschluss über relevante Einflussfaktoren liefern als Veröffentlichungen

anderer Autoren und folgend diskutiert werden [Sch-2010c]. Ergebnis des Doku-

mentenstudiums ist eine Sammlung postulierter Einflussfaktoren auf die Höhe der

Fahrerbelastung durch Ganzkörper-Vibrationen, die um eigene Betrachtungen er-

gänzt wird.

Diese Sammlung ist in geeigneter Form darzustellen, um sowohl eine Strukturierung

der Einflussfaktoren vorzunehmen als auch zu verdeutlichen, welche Einflussfakto-

ren von den Autoren am meisten genannt werden. Zur Darstellung der Kausalbezie-

hung zwischen den Ursachen (Einflussfaktoren) und der Wirkung (Höhe der Tages-

exposition A 8( )) eignet sich das sog. Ursache-Wirkungs-Diagramm, welches auch

nach seinem Erfinder Kaoru Ishikawa als Ishikawa-Diagramm bzw. gemäß seinem

Aussehen als Fischgräten-Diagramm bezeichnet wird und in welchem die Einfluss-

größen als Pfeile in unterschiedlichen Ebenen dargestellt werden [Sch-2009b,

S. 230ff]. Die Wahl der Tagesexposition (8)A als Zielgröße ist bewusst gewählt, um

nicht nur Einflussfaktoren auf die Höhe der momentanen Belastung bei einer Ar-

beitsaufgabe (Effektivwert der frequenzbewerteten Beschleunigung )wTa zu berück-

sichtigen, sondern im Sinne einer allumfassenden Betrachtung auch organisatori-

sche Aspekte wie z. B. die Einwirkungsdauer sowie den Arbeitsablauf einzubezie-

hen. Zudem kann anhand der Tagesexposition (8)A die Gefährdung der Vibrations-

exposition beurteilt werden. Die gewählte Darstellung berücksichtigt nicht den Be-

einflussungsgrad, sofern dieser genannt wird, sondern nur die Nennung an sich.

Das in Abbildung 3-1 dargestellte Ishikawa-Diagramm orientiert sich an den klassi-

schen Hauteinflussgrößen, den „Sieben M“ [Zol-2002, S. 115]. Da Einflüsse der Grö-

ßen Methode, Material und Messbarkeit vernachlässigt werden können, resultieren

die vier Haupteinflussgrößen Maschine, Mensch, Management und Umwelt, welche

jeweils mehrere Nebenursachen aufweisen, die wiederum weitere Ausprägungen

besitzen können. Gleichzeitig ist im Diagramm vermerkt, welche Einflussfaktoren

von den unterschiedlichen Autoren genannt werden. Einige Autoren publizieren ihre

Erkenntnisse oftmals in mehreren Fachbeiträgen mit teilweise überschneidendem

Inhalt. In diesen Fällen wird jeweils nur eine Nennung pro Autor und Einflussgröße

vermerkt, da ansonsten die Anzahl der Publikationen Einfluss auf die Anzahl der

Page 77: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3.1 Einflussfaktoren auf die Schwingungsbelastung

57

Nennungen nehmen würde. Von Interesse ist jedoch die Anzahl der Nennungen über

die Gesamtheit der Autoren. Quellen, welche keinen weiteren Beitrag zu den Ein-

flussfaktoren liefern, weil diese von den Autoren bereits genannt sind, werden der

Vollständigkeit halber jedoch angeführt. Als implizite Nennung eines Einflussfaktors

wird auch gewertet, wenn ein Autor auf einen Aspekt eingeht und dessen Wichtig-

keit betont (z. B. die regelmäßige Unterweisung der Fahrer), ohne ihn explizit als Ein-

flussfaktor zu nennen. Neben der Angabe der Einflussfaktoren (Kreise) ist ebenso

vermerkt, wenn ein Autor einen Einfluss ausschließt (Quadrat) bzw. diesen ausdrück-

lich als sehr gering bezeichnet. Neben den aus dem Dokumentenstudium identifi-

zierten Einflussgrößen wird Abbildung 3-1 um eigene Überlegungen ergänzt, um ei-

ne umfassende Basis für die Ableitung der Aufgabenstellung zu schaffen.

Als Nachteil dieser Darstellungsform mit der gewählten Detailtiefe in Abbildung 3-1

ist kritisch anzuführen, dass die Autoren ihre Aussagen teilweise auf Aspekte der

Nebeneinflüsse beziehen, welche aus Gründen der Übersichtlichkeit nicht aufge-

schlüsselt und somit nur zusammenfassend gekennzeichnet werden können. Eben-

so liegen den Behauptungen nicht immer die gleichen Begriffsdefinitionen zu Grun-

de. Deswegen ist Abbildung 3-1 zusammen mit der folgenden detaillierten Ausei-

nandersetzung zu betrachten. Hierbei wird auch darauf eingegangen, dass einige

der genannten Faktoren sich ein- oder gegenseitig beeinflussen.

Literaturquellen für Diagramm:

Flurförderzeug-Hersteller: [Lin-2007; Lin-2008; STI-2007; Jun-2013; Rie-2005a; Töd-

2007a; Töd-2007b]

Anwender: [Eic-2007; Eic-2008]

BG: [Rok-2013; Sch-2010c; Sch-2007c; Sch-2010a; Neu-2010; Neu-2009b; Sch-

2009a; Sch-2010b; Sch-2007b]

Sonstige: [Egb-2012; Ber-2003; Ber-2005; Vor-2007d; Vor-2007c; Fis-2001; Pol-

2008; Mey-2004a; Kum-2005]

Page 78: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3 Forschungslücke und Aufgabenstellung

58

Abbildung 3-1: Einflussfaktoren auf die Vibrationsbelastung des Fahrers

Ta

ge

s-

exp

osit

ion

A(8

)

Ma

sc

hin

e

Ko

nsti

tuti

on

Me

nsc

h

Um

we

lt

Fa

hrv

erh

alt

en

Fa

hre

rsit

z

(Kö

rpe

rha

ltu

ng

)

Fa

hrz

eu

g-

ko

nfi

gu

rati

on

Fed

era

rt

Fahrg

esc

hw

in-

dig

keit

Gew

ichts

-ein

stellu

ng

Fa

hrb

ah

n

Lag

eru

ng

Kab

ine

Reifen

Ein

zelh

ind

ern

isse

unre

gelm

äßig

eU

neb

enheiten

Ein

wir

ku

ng

sd

au

er

Arb

eit

sa

bla

uf/

tig

ke

itsm

ix

Arb

eit

sa

ufg

ab

e

Fa

hrz

usta

nd

Bela

dung

Fahrt

richtu

ng

Ste

llung

Hub

gerü

st

Ma

na

ge

me

nt

Un

terw

eis

un

g d

er

Fa

hre

r

Wa

rtu

ng

szu

sta

nd

Fahre

nLast

hand

ling

Mo

torleerlauf

Fa

hrz

eu

gty

p

Antr

ieb

sart Leb

ensd

auer

Qualit

ät/

Wart

ung

szust

and

Ab

stim

mung

[Eic

-2007

][E

ic-2

008

]

Nenntr

ag

fähig

keit

Auto

r sc

hlie

ßt

Ein

fluss

aus

od

er

bezi

ffert

ihn a

ls g

erin

g.

Auto

r nen

nt

Ein

fluss

Flu

rfö

rde

rze

ug

he

rste

lle

r

[Lin

-2007

][L

in-2

008

][S

TI-

2007]

[Jun-2

013

]

[Rie

-2005

a]

[Tö

d-2

007

a]

[Tö

d-2

007

b]

An

we

nd

er

Be

rufs

ge

no

sse

nsc

ha

fte

n

[Ro

k-2

013

][S

ch-2

01

0c]

[Sch-2

00

7c]

[Sch-2

01

0a]

[Neu-2

010

]

[Neu-2

009

b]

[Sch-2

009

a]

[Sch-2

010

b]

[Sch-2

007

b]

So

nsti

ge

[Eg

b-2

012

][B

er-

2003

][B

er-

2005

][V

or-

2007

d]

[Vo

r-2007

c]

[Fis

-2001

]

[Po

l-200

8]

[Mey-

2004

a]

[Ku

m-2

00

5]

Page 79: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3.1 Einflussfaktoren auf die Schwingungsbelastung

59

3.1.1 Haupteinflussgröße Maschine

Der Haupteinflussgröße Maschine mit den meisten aller Nennungen sind die fünf

Nebenursachen Fahrzeugkonfiguration, Fahrersitz, Fahrzeugtyp, Wartungszustand

und Fahrzustand zuzuordnen. Während im Fahrzeugtyp eine generelle Unterschei-

dung zwischen dem Gerätetyp an sich, z. B. Gabel- oder Schubmaststapler, getrof-

fen wird, beziehen sich die erwähnten Ausprägungen im Bereich der Fahrzeugkonfi-

guration auf Details der Fahrzeugkonstruktion sowie der Ausstattung.

Mehrere Autoren nennen den Fahrzeugtyp als Einflussgröße, konkretisieren die Aus-

sage aber kaum. Teilweise erfolgt eine Überlagerung zwischen Typ und Hersteller

des Fahrzeugs [Lin-2007], und größtenteils werden mit der Nennung des Fahr-

zeugtyps unterschiedliche Bereifung und Einsatzbedingungen impliziert [Fis-2001;

Eic-2007]. Tödter sieht nur geringe Unterschiede zwischen verschiedenen Staplerty-

pen [Töd-2007a].

Die Fahrzeugkonfiguration, die die konstruktiven Merkmale abdeckt, wird von den

Autoren oft angeführt, jedoch teilweise ohne nähere Begründung wie in [Neu-2009b;

Egb-2012]. Auch ohne nähere Erläuterung wird postuliert, dass sich die Vibrations-

belastung auf Basis der Nenntragfähigkeit abschätzen lässt [Ber-2003]. Vor allem

von Seiten der Flurförderzeughersteller werden elastisch gelagerte Kabinen positiv

hervorgehoben. Tödter schätzt jedoch realistisch ein, dass wegen der kurzen Fe-

derwege eine Vermeidung der Schwingungen nicht realisierbar ist [Töd-2007b]. Die

von Riedmaier angesprochene Schwingungsreduktion kann jedoch erreicht werden

[Jun-2013]. Egberts und Testing stellen bei Messungen an unterschiedlichen

Schubmaststaplern fest, dass kaum ein Einfluss seitens Eigengewicht und Masthö-

he zu verzeichnen ist [Egb-2012].

Viele Autoren erwähnen zudem den Reifen als ausschlaggebendes Element, da er

die Schnittstelle zwischen Fahrzeug und Fahrbahn bildet, setzen sich aber höchs-

tens damit auseinander, dass die bei den Geräten der Lagertechnik verbreiteten Po-

lyurethanreifen weniger dämpfende Eigenschaften besitzen als Superelastik- oder

Luftreifen13 [Fis-2001; Ber-2003; Töd-2007b; Töd-2007a; Jun-2013]. Lediglich Schä-

fer et al. ermitteln an einem Elektro-Gabelstapler mit einer Tragfähigkeit von 1,6 t,

dass bei geringen Fahrgeschwindigkeiten die Vibrationsbelastung zwischen Luft-

und Superelastikreifen nahezu identisch ist und lediglich bei größeren Fahrge-

schwindigkeiten mit Luftreifen geringere Messwerte am Fahrzeug zu verzeichnen

sind, wobei ein signifikanter Unterschied der auf der Sitzoberfläche aufgezeichneten

Messwerte nicht festzustellen ist [Sch-2010c].

13 Weitere Informationen zu der Bereifung von Flurförderzeugen finden sich in Kapitel 5.2.1.

Page 80: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3 Forschungslücke und Aufgabenstellung

60

Die Antriebsart wird mit in die Überlegungen aufgenommen, da teilweise die An-

nahme zu vernehmen ist, dass Flurförderzeuge mit verbrennungsmotorischem An-

trieb auf Grund der durch den Motor induzierten Schwingungen eine höhere Vibrati-

onsbelastung aufweisen. Diese Vibrationen sind zwar spürbar, leisten jedoch keinen

nennenswerten Beitrag zur Vibrationsbelastung, wie anhand einer exemplarischen

Messung an einem der späteren Versuchsfahrzeuge, einem Gabelstapler mit einer

Traglast von 3,5 t und Dieselmotor, gezeigt werden kann. Die gemessene Vibrati-

onsbelastung bei Stillstand des Fahrzeug mit wTa = 0,05 m/s2 auf Grund der Vibrati-

onen des Motors geht bei Fahraufgaben im Messrauschen unter [Fis-2010c].

Alle Autoren sind sich einig, dass dem Sitz im Flurförderzeug eine äußerst wichtige

Rolle zukommt, da er bis auf Reifen und Kabinenlagerung das einzige schwin-

gungsmindernde Element darstellt. Hierbei sind die Aspekte der Sitzabstimmung,

der Federart, des Wartungszustands, der Gewichtseinstellung und der Lebensdauer

zu berücksichtigen.

Grundlegende Voraussetzung für eine optimale Schwingungsreduktion des Sitzes ist

dessen Abstimmung auf das Fahrzeug und die zu erwartenden Anregungsspektren,

was u. a. Tödter fordert [Töd-2007b]. Denn jeder Sitz, der vereinfacht einen Ein-

massenschwinger darstellt, kann die in ihn eingeleiteten Schwingungen nur effektiv

mindern, wenn seine Eigenfrequenz deutlich unter dem Anregungsspektrum liegt

[Die-1992; Fis-2001]. Diese Tatsache wird bei einem Blick auf Abbildung 3-2 deut-

lich, die das Zusammenspiel der Übertragungsfunktion des Fahrersitzes mit dem

Anregungsspektrum aus der Fahrzeugkabine veranschaulicht.

Abbildung 3-2: Übertragungsverhalten von Fahrersitzen bei unterschiedlichen Dämpfungsgraden (in Anlehnung an [Fis-2001; Pol-2006])

IsolationVerstärkung

2

0

1

2

3

4

0 1 2 3

Am

plit

ud

enve

rhältnis

[-]

Frequenzverhältnis

D = 0,2

D = 0,4

D = 0,6

Flurförderzeug

D

D

D

0

Sitz

Page 81: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3.1 Einflussfaktoren auf die Schwingungsbelastung

61

Ein Sitz kann Schwingungen erst ab einer Anregungsfrequenz mindern, die größer

als das 2 -fache seiner Eigenfrequenz ist14. Bewährt haben sich in der Praxis Ei-

genfrequenzen von ca. 1,5 Hz [Die-1992]. Die Auslegung des Dämpfers stellt nach

Fischer deswegen immer einen Kompromiss dar, da auch die breitspektrale Anre-

gung bei Stößen zu berücksichtigen ist, die eine höhere Dämpfung erfordert [Fis-

2001]. Dies korrespondiert mit Untersuchungsergebnissen bei der Rampenüberfahrt

von Gabelstaplern, bei der sich auf Grund der Stöße eine härtere Dämpfung als bes-

ser geeignet herausgestellt hat [Ber-2005].

Bezüglich der Federart werden üblicherweise Sitze mit mechanischer Feder und

Luftfeder unterschieden. Ein einheitliches Bild zeichnet sich hier nicht ab. Schäfer et

al. stellen anhand von Messungen an zwei Sitzen heraus, dass der luftgefederte Sitz

die Vibrationen stärker mindert als der Sitz mit mechanischer Federung, wobei es

sich um Sitze unterschiedlicher Komfortklassen handelt [Sch-2010c]. Die Versuche

werden auf einer mit Betonverbundpflaster belegten Teststrecke mit mehreren klei-

neren Bodenwellen durchgeführt, stoßhaltige Anregungen sind somit nicht enthal-

ten. Eicheldinger kann dies nicht bestätigen, denn „die Messungen zeigten, dass mit

beiden Technologien sehr gute Dämpfungswerte in identischer Größe erreichbar

sind“, hebt aber das subjektiv bessere Gefühl des Fahrers hervor, mit einem „be-

sonderen Sitz“ zu arbeiten [Eic-2008].

Viele, aber nicht alle Autoren erkennen, dass die Gewichtseinstellung, d. h. die An-

passung des Federpakets an das spezifische Fahrergewicht, unerlässlich ist. Eine

Wertung gegenüber anderen Einflussfaktoren erfolgt nicht, da die richtige Gewichts-

einstellung als Grundvoraussetzung gesehen wird [Eic-2007; Lin-2007; Töd-2007a;

Rok-2013]. Das Ausmaß einer falschen Gewichtseinstellung wird nur selten quantita-

tiv beziffert, lediglich Polster und Schäfer et al. zeigen anhand von exemplarischen

Probandenmessungen, dass sich die Schwingungsabsorption halbieren bzw. ganz

verloren gehen kann [Pol-2008; Sch-2010b]. Trotz dieser Erkenntnisse zeigt die Pra-

xis leider, dass die Fahrer die Gewichtseinstellung kaum berücksichtigen, wie Ei-

cheldinger berichtet [Eic-2007] und Polster in einer Nutzerstudie aufzeigen kann, in

der lediglich 3 Gabelstaplerfahrer von 25 beobachteten unaufgefordert den Sitz auf

ihr Körpergewicht einstellten [Pol-2008]. Hier besteht weiterhin Aufklärungsbedarf.

Auch die Wartung der Sitze als Voraussetzung, die guten Dämpfungseigenschaften

während der Nutzungszeit zu erhalten, wird explizit angesprochen [Töd-2007a; Rok-

2013] bzw. wie von Eicheldinger eindringlich gefordert [Eic-2007], denn „gefederte

Sitze verändern ihr Schwingverhalten im Laufe ihrer Lebensdauer in nur sehr gerin-

gem Maße“ [Mey-2004a]. Diese Erkenntnis fußt auf einer Studie mit über 20 Sitzen

14 Zur sog. Fußpunktanregung eines Einmassenschwingers siehe [Hol-2007, S. 97–99].

Page 82: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3 Forschungslücke und Aufgabenstellung

62

bei teilweise mehr als 6.000 Betriebsstunden [Kum-2005; Mey-2004a]. Vorausset-

zung ist natürlich, dass Schäden behoben werden, aber diese „sind für den Maschi-

nenführer deutlich erkennbar“ [Mey-2004a].

Ein weiterer wichtiger Nebeneinfluss ist der Fahrzustand des Flurförderzeugs, wobei

folgend vor allem auf die Fahrgeschwindigkeit, die Beladung sowie am Rande die

Fahrtrichtung und die Stellung des Hubgerüsts eingegangen wird.

Die Fahrgeschwindigkeit nimmt unter den genannten Aspekten die Vorreiterrolle ein

und hat nach Schäfer et al. „den zweitgrößten Einfluss“ auf die Vibrationsexposition

der Flurförderzeugfahrer [Sch-2010c], wobei wiederum einige Autoren keine explizi-

ten Gründe angeben bzw. den Einfluss konkretisieren [Lin-2007; Vor-2007c; Neu-

2009b; Jun-2013]. Eicheldinger erwähnt, dass sich die Belastung bei Maximalge-

schwindigkeit gegenüber Schrittgeschwindigkeit verdreifachen kann, überlagert die-

se Aussage jedoch auch mit einer Verschlechterung des Bodens [Eic-2007]. Tödter

wiederum spricht davon, „dass die Schwingungsbelastung proportional bzw. leicht

überproportional mit der Fahrgeschwindigkeit zunimmt“, ohne die These mit Mess-

ergebnissen zu belegen [Töd-2007a, S. 42]. Schäfer et al. dagegen können ihre an-

fänglich verallgemeinernde Aussage, „dass für eine bestimmte Fahrzeugart die Vib-

rationseinwirkung auf den Fahrer umso größer ist, […] je höher die Fahrgeschwin-

digkeit ist“ [Sch-2007b] anhand weiterer Reihenmessungen untermauern, welche

ausführlich in [Sch-2010c] vorgestellt werden. Anhand von Fahrten mit einem Elekt-

ro-Gabelstapler mit einer Tragfähigkeit von 1,6 t über die bereits erwähnte Testtre-

cke aus Betonverbundpflaster mit kleineren Bodenwellen und bei unterschiedlichen

Fahrgeschwindigkeiten können die Autoren zeigen, dass für diesen Fall die fre-

quenzbewerteten Beschleunigungen, gemessen am sog. Sitzmontagepunkt 15 und

auf dem Sitz, linear mit der Fahrgeschwindigkeit steigen, wobei die Zunahme auf

dem Sitz weniger stark ausgeprägt ist als auf dem Fahrzeug selbst. Ein weniger de-

tailliertes Bild zeichnen Egberts und Testing anhand vergleichender Messungen an

Schubmaststaplern auf einem Betonboden eines Lagers, der „eben und frei von Ab-

senkungen“ ist. Sie messen Schwingungswerte in z-Richtung, „die sowohl bei ho-

hen als auch bei niedrigen Fahrgeschwindigkeiten nahezu unverändert sind“, um

abschließend festzustellen, dass „die Geschwindigkeit sicherlich eine wichtige Rolle

spielt“ [Egb-2012].

Hinsichtlich des Einflusses der Beladung existieren unterschiedliche Ansichten. So

nennt Neugebauer explizit den Beladungszustand („kann unterschiedlich wirken“)

[Neu-2009b], während Schäfer et al. eine differenziertere Betrachtung vornehmen

15 Als Sitzmontagepunkt wird ein fester Punkt in der Fahrbahnkabine direkt neben dem Sitz be-

zeichnet (vgl. Kapitel 5.2.3.3).

Page 83: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3.1 Einflussfaktoren auf die Schwingungsbelastung

63

und wiederum zwischen dem Sitzmontagepunkt und der Sitzoberfläche unterschei-

den [Sch-2010c], worauf folgend Bezug genommen wird: Nur bei Maximalge-

schwindigkeit sind „die frequenzbewerteten Beschleunigungen am Sitzmontage-

punkt ohne Beladung des Gabelstaplers bis zweimal so hoch wie die frequenzbe-

werteten Beschleunigungen am Sitzmontagepunkt mit Beladung des Gabelstap-

lers“. „Diese Abhängigkeit vom Beladungszustand ist auf den Sitzen nicht festzustel-

len“. Die Autoren zeichnen vielmehr ein konträres Bild, d. h. „die Sitze mindern die

eingeleiteten Vibrationen besser, wenn das Fahrzeug unbeladen ist“.

Die Fahrtrichtung sowie die Stellung des Hubgerüsts werden in der Fachliteratur

nicht erwähnt, erscheinen jedoch einer Betrachtung wert, da Gabelstapler bei einge-

schränkten Sichtverhältnissen oftmals entgegen der üblichen Bewegungsrichtung

rückwärts fahren [Ber-2012, S. 23]. Die Stellung des Hubgerüsts fokussiert vor allem

auf die Neigung, da mit angehobener Last nicht gefahren werden darf [Ber-2012,

S. 18].

Als letzter Nebeneinfluss im Bereich Maschine ist der Wartungszustand des Flurför-

derzeugs zu nennen, der explizit nur von Eicheldinger als Voraussetzung für eine

Einhaltung der Forderungen der Lärm- und Vibrations-Arbeitsschutzverordnung ge-

nannt wird [Eic-2008]. Es ist anzunehmen, dass weitere Nennungen unterbleiben, da

dies als Selbstverständlichkeit gesehen wird.

3.1.2 Haupteinflussgröße Mensch

Im Rahmen des Dokumentenstudiums kristallisieren sich vier Faktoren heraus, die

dem Haupteinfluss Mensch zuzuordnen sind, der als direkte Einflussgröße eine eher

untergeordnete Position einnimmt. Das oftmals angesprochene Fahrverhalten ist

zwar durchaus relevant für die Höhe der Vibrationsexposition, bedingt diese aber

über die Einflussgrößen Fahrgeschwindigkeit und Wahl der Fahrbahn. Deswegen

sind die Nennungen eher als Apell an die Vernunft der Fahrer zu verstehen [Eic-

2007; Töd-2007a; Sch-2010a; Egb-2012].

Die Konstitution des Fahrers wird lediglich in [Lin-2007] thematisiert, wobei mit der

unbegründeten Aussage „Zudem spüren große, kräftige Fahrer Erschütterungen

stärker als kleinere, leichtere Personen“ eine Vermischung zwischen der subjektiven

Wahrnehmung des Fahrers und der tatsächlichen Belastung vorgenommen wird,

was beim Leser leicht zu Verwirrung führen kann. Ist der Sitz richtig an das Fahrer-

gewicht angepasst, sollte der Einfluss der Konstitution des Fahrers vernachlässigbar

sein, wobei sich sicherlich kleine Schwankungen im Sitzübertragungsverhalten ein-

stellen, da bei sich verändernder Konstitution auch das Schwingungssystem

Mensch-Sitz trotz Anpassung der Feder eine Änderung erfährt. Möglich ist zudem,

Page 84: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3 Forschungslücke und Aufgabenstellung

64

dass sich unterschiedlich große Personen auch unterschiedlich am Fahrzeug ab-

stützen und so ein Teil der Schwingung nicht nur über den Sitz eingeleitet wird.

Auch die Körperhaltung wird explizit von zwei Autoren der betrachteten Literatur

angesprochen, die den Einfluss jedoch richtigerweise nicht auf die Tagesexpositi-

on (8)A beziehen, sondern auf die Höhe der Schwingungsbelastung [Vor-2007d]

oder als weiteren Faktor für die Gefährdungsbeurteilung nennen [Neu-2009b], wes-

wegen dieser Nebeneinfluss in der Darstellung in Klammern dargestellt wird. Der

Einfluss der Körperhaltung auf die resultierende Belastung ist unbestritten, wie be-

reits in Kapitel 2.2.1 dargelegt ist.

3.1.3 Haupteinflussgröße Umwelt

Der Haupteinflussgröße Umwelt ist zwar nur eine relevante, aber durchaus entschei-

dende Nebeneinflussgröße zuzuordnen: die Fahrbahn. Alle Autoren, die sich umfas-

send den Ganzkörper-Vibrationen bei Flurförderzeugen widmen, sprechen diesen

Faktor an, unterscheiden sich aber stark in ihrer Aussagekraft. So wird der Einfluss

lediglich angesprochen [Fis-2001; Vor-2007c; Jun-2013] oder die Notwendigkeit

„guter Verkehrswege“ genannt [Eic-2007]. Egberts und Testing attestieren der Fahr-

bahn „einen möglicherweise spürbaren Einfluss“ [Egb-2012]. Weiterhin werden rein

qualitative Aussagen wie „Eine ebene Fahrbahn wird den Fahrer deutlich weniger

belasten als eine mit Schlaglöchern übersäte Wegstrecke“ [Lin-2007] oder „Schon

eine geringe Fahrbahnverschlechterung kann leicht zu einer Verdoppelung der

Schwingungsbelastung führen“ ([STI-2007], vgl. ebenso [Töd-2007a]) getätigt.

Grundsätzlich lassen sich Unebenheiten von Fahrbahnoberflächen aufgliedern in

unregelmäßige Unebenheiten (periodisch und/oder stochastisch) und herausragende

Einzelhindernisse16, wobei die Autoren meist nicht in dieser Detaillierungsebene be-

richten. Lediglich Eicheldinger spricht explizit Dehnungsfugen und Löcher an [Eic-

2008], die Neugebauer um Kanten an Toreinfahrten, Schienen und abgesackte Bo-

denplatten ergänzt [Neu-2009b], welche den Einzelhindernissen zuzuordnen sind.

Auch in [Ber-2005] wird die Überfahrt von Rampen mit Gabelstaplern in den Vorder-

grund gestellt. Eine Wertung dieser Einflussfaktoren nehmen die genannten Autoren

nicht vor.

Präzisere Aussagen liefern wiederum Schäfer et al., die anhand einer Messreihe mit

einem mit Dieselmotor ausgestatteten Gabelstapler mit einer Tragfähigkeit von 1,6 t

bei einer Fahrgeschwindigkeit von etwa 10 km/h feststellen, dass die gemessenen

frequenzbewerteten Beschleunigungen wTa auf ebenem Estrichboden am gerings-

16 Diese von Braun und Gerz getroffene Unterteilung [Bra-1988] wird in Kapitel 5.2.2 näher erläutert.

Page 85: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3.1 Einflussfaktoren auf die Schwingungsbelastung

65

ten sind, gefolgt in aufsteigender Reifenfolge der Belastung von Betonverbundpflas-

ter im Freien, einem betonierten Freigelände mit Löchern und Ausbrüchen sowie

einem Bahnübergang mit Gleisen und Torführungen [Sch-2010c]. Sie kommen

ebenso zu dem Schluss, dass im Rahmen ihrer Untersuchung „die Fahrbahnbe-

schaffenheit offensichtlich den größten Einfluss auf die Vibrationsexposition der Ga-

belstaplerfahrer hat“ [Sch-2010c, S. 265].

Abschließend bleibt festzuhalten, dass starker Konsens darin besteht, dass die

Fahrbahnbeschaffenheit einen großen – wenn nicht den größten – Einfluss auf die

Belastung der Fahrer durch Ganzkörper-Vibrationen hat. Eine qualitative Aussage

treffen jedoch nur Schäfer et al. für einen Gabelstapler bei einer einzigen Fahrge-

schwindigkeit [Sch-2010c].

3.1.4 Haupteinflussgröße Management

In der Haupteinflussgröße Management sind alle Nebeneinflussgrößen zusammen-

gefasst, die der Betreiber mit Hilfe organisatorischer Maßnahmen steuern kann.

Von grundlegender Bedeutung ist dabei die Arbeitsaufgabe für den Gabelstaplerfah-

rer an sich, die u. a. vorgibt, in welchen Betriebszuständen sich das Flurförderzeug

befindet. Unterschieden wird hierbei üblicherweise zwischen dem Fahren, dem Mo-

torleerlauf und dem Heben und Senken, hier als Lasthandling bezeichnet. An sich

besteht Konsens, dass im Motorleerlauf und beim Lasthandling keine signifikante

Vibrationsbelastung auftritt, wobei nur wenige Autoren wie Vorwerk und Tödter dies

explizit nennen [Töd-2007a; Vor-2007d]. Diese Aussagen gelten als gesichert, da

auch die DIN EN 13059 erwähnt, dass „nur das Fahren den Fahrer mit deutlichen

Ganzkörperschwingungen“ belastet [DIN EN 13059]. Tödter geht sogar weiter und

führt an, dass „Vibrationen aus dem Beschleunigen und Verzögern während der

Fahrt … für den Gabelstapler in den meisten Fällen von untergeordneter Relevanz“

sind [Töd-2007a]. Einen anderen Tenor schlagen Egberts und Testing an, da nach

ihnen „Einfluss auf das Maß der Vibration ... die Ausführung der Vorgänge Heben,

Senken, Ausschieben und Einfahren des Masts und natürlich das Fahren“ hat [Egb-

2012]. In diesem Zusammenhang stellen sie beim Heben der Gabel mit und ohne

Last sowohl an der Mastkette als auch an den Mastübergängen spürbare Vibratio-

nen fest, beziffern diese aber nicht auf die messbare Belastung des Fahrers.

Eng verknüpft mit der Arbeitsaufgabe ist der Arbeitsablauf an einem Tag, der sich im

Normalfall aus einem Mix unterschiedlicher Arbeitsaufgaben zusammensetzt und

nach Schäfer et al. mitentscheidend für die Vibrationsbelastung der Fahrer ist [Sch-

2007c]. Einen Hinweis über die Verteilung von Fahrt- und Stillstandszeiten über ei-

nen kompletten Arbeitstag liefern Schäfer und Kany: „Als Richtwert kann gelten,

Page 86: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3 Forschungslücke und Aufgabenstellung

66

dass sich die tägliche Arbeitszeit eines Staplerfahrers zu etwa gleichen Teilen in

Fahrtätigkeit mit und ohne Last, Aufnahme und Absetzen von Lasten und Still-

standszeiten des Staplers aufteilt“ [Sch-2009a]. Dies wird in der DIN EN 12053 be-

stätigt, in der für Gabelstapler und Schubmaststapler zwischen den Betriebszustän-

den Heben (18 %), Leerlauf (58 %) und Fahren (24 %) unterschieden wird [DIN

EN 12053, S. 18]. Grundsätzlich beeinflusst die Vorgabe des Arbeitsablaufs, mit

welchem Flurförderzeug welche Lasten über welchen Untergrund mit welcher Fahr-

geschwindigkeit bewegt werden, womit es sich um einen indirekten Einflussfaktor

handelt.

Ebenso wird durch die Organisation der Arbeitsabläufe festgelegt, wie lange der

Fahrer gegenüber bestimmten Belastungen exponiert ist. Auf die Tagesexpositi-

on (8)A nimmt die Einwirkungsdauer eT einen entscheidenden Einfluss, was aus

derer Definition in den Formeln (2-6) und (2-7) klar ersichtlich ist. Diesen Zusam-

menhang verdeutlicht Abbildung 3-3 und stellt grafisch einen Bezug zwischen der

Einwirkungsdauer eT und der gemessenen Beschleunigung wea her. Die Bedeutung

der Einwirkungsdauer eT wird von mehreren Autoren entweder durch Formeln [Sch-

2007b], grafisch [Eic-2007; Vor-2007c] oder reine Nennung [Töd-2007a; Neu-2009b]

angesprochen.

Abbildung 3-3: Einfluss von Einwirkungsdauer und Vibrationsbelastung auf die Tagesexposition A(8) (Darstellung in Anlehnung an [Bun-2007a])

Als letzter Einflussfaktor seitens organisatorischer Maßnahmen ist die Unterweisung

der Fahrer zu nennen, welche häufig eingefordert wird [STI-2007; Töd-2007a; Eic-

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 1 2 3 4 5 6 7 8

gew

ichte

ter

Eff

ektivw

ert

aw

e [m

/s2]

Einwirkungsdauer Te [h]

< 0,5 m/s2

0,5 … 0,8 m/s2

0,8 … 1,15 m/s2

> 1,15 m/s2

ewe

TA 8 a

8h( )

Page 87: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3.2 Aufgabenstellung

67

2008]. Hierbei sind zwei Aspekte herauszuheben. Zum einen ist den Fahrern die po-

tentielle Gefährdung bewusst zu machen, damit sie selbstständig zu einer gesunden

Vibrationsbelastung beitragen, und zum anderen sind ihnen dann die nötigen Mini-

mierungsmöglichkeiten zu nennen und zu erklären. Ein erster Schritt ist hierzu das

Handbuch Vibrationen am Arbeitsplatz von Schäfer et al. [Sch-2010a].

3.2 Aufgabenstellung

Die im vorigen Kapitel detailliert dargelegte Auswertung des Dokumentenstudiums

sowie eigener Überlegungen verdeutlicht, dass sich bereits Autoren unterschiedli-

cher Bereiche mit den Einflussfaktoren auf die Fahrerbelastung durch Ganzkörper-

Vibrationen auseinander gesetzt haben. Viele Autoren äußern sich jedoch – falls

überhaupt eine Wertung vorgenommen wird – rein qualitativ bezüglich einzelner Ein-

flussgrößen und vermeiden zudem, einen Vergleich zwischen den einzelnen Größen

herzustellen; teilweise existieren sogar gegenteilige Aussagen. Von dieser durch

zahlreiche Zitate belegten Betrachtungsebene setzen sich ausschließlich Schäfer et

al. ab, die den Einfluss der Fahrbahnbeschaffenheit, der Fahrgeschwindigkeit, des

Beladungszustands, der Art der eingesetzten Reifen und des Sitzes exemplarisch

anhand von Messungen an Gabelstaplern mit einer Tragfähigkeit von 1,6 t präzisie-

ren, was in Kapitel 3.1 ausgiebig diskutiert wird [Sch-2010c].

Trotz der Arbeiten Schäfers et al. bleibt festzuhalten, dass auch acht Jahre nach In-

krafttreten der Lärm- und Vibrations-Arbeitsschutzverordnung detailliertes Wissen

über einzelne Einflussfaktoren spärlich gesät ist. An dieser Stelle setzt vorliegende

Arbeit an und stellt sich als Ziel, aufbauend auf den Erkenntnissen des Dokumen-

tenstudiums folgende Forschungsfrage zu beantworten:

Welche Faktoren bestimmen maßgeblich in welcher Höhe die Vibrations-

exposition von Fahrern von typischen Flurförderzeugen mit Fahrersitz und

wie beeinflussen sich diese Faktoren gegenseitig?

Es versteht sich von selbst, dass die Aussagen auf einer möglichst breiten Datenba-

sis zu treffen und abzusichern sind. Während für Schubmaststapler bis jetzt kaum

gesicherte Aussagen bezüglich der Einflussgrößen vorliegen, sind im Rahmen der

Arbeit die von Schäfer et al. herausgearbeiteten Erkenntnisse zu erweitern. Der An-

spruch liegt hierbei darin, Parameter vollumfänglicher gegeneinander zu variieren

und gegenseitige Abhängigkeiten deutlich herauszustellen. Die erste Forschungsfra-

ge ist an dieser Stelle bewusst allgemein formuliert und bedarf zur Beantwortung

einer Vorauswahl der konkret zu untersuchenden Einflussfaktoren, um sich in Fol-

Page 88: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3 Forschungslücke und Aufgabenstellung

68

gendem auf diese Aspekte zu beschränken. Diese Auswahl wird basierend auf der

Diskussion der identifizierten Einflussfaktoren in Kapitel 3.1 getroffen und im Ergeb-

nis in Tabelle 3-1 festgehalten. Es werden nur Einflussfaktoren in die Betrachtung

einbezogen, deren Ausprägungen eindeutig beschrieben werden können. Aspekte

wie das Fahrverhalten oder die Arbeitsaufgabe werden nicht explizit untersucht, sie

resultieren aber in unterschiedlichen Ausprägungen der zu untersuchenden Einfluss-

faktoren. Die Einwirkungsdauer ist bereits theoretisch abgehandelt und bedarf keiner

weiteren Untersuchung (vgl. Abbildung 3-3). Damit erhält die erste Forschungsfrage

den Charakter eine Hypothese mit mehreren Teilaspekten: Die in Tabelle 3-1 ge-

nannten Einflussfaktoren beeinflussen die Vibrationsexposition von Fahrern von Flur-

förderzeugen mit Fahrersitz.

Tabelle 3-1: Zu untersuchende Einflussfaktoren auf die Vibrationsexposition

Einflussfaktor Detaillierung Erklärung

Fahrbahn

Einzelhindernisse zu spezifizieren in der Planung,

vgl. Kapitel 4.4 unregelmäßige Uneben-

heiten

Betriebszustand

Fahrgeschwindigkeit 0–Maximalfahrgeschwindigkeit

Beladungszustand 0–Nennlast

Fahrtrichtung vorwärts/rückwärts

Neigung Hubgerüst minimale–maximale Stellung

Fahrersitz und Fahrer

Baugröße verfügbarer Federweg, Art der Feder

Gewichtseinstellung korrekte Einstellung durch Fahrer

Konstitution Fahrer Gewicht des Fahrers

Fahrzeugkonfiguration

Reifen Dämpfung und Steifigkeit,

nur Superelastik-Reifen

Kabinenlagerung vorhanden ja/nein;

Dämpfung und Steifigkeit

Fahrzeugtyp Gabelstapler/

Schubmaststapler

Es bleibt für die weitere Planung der Untersuchung festzuhalten, dass die Einfluss-

faktoren, die sog. unabhängigen Variablen, sowohl nominal- als auch verhältnisska-

liert sind17. Die Beantwortung dieser Forschungsfrage bzw. der Nachweis der Hypo-

these soll zum einen ermöglichen, effektive Maßnahmen zu ergreifen, um die Vibra-

tionsexposition der Fahrer zu minimieren und zum anderen eine fundierte Entschei-

dungsgrundlage bieten, ob bekannte Messwerte einer Arbeitsumgebung auf einen

anderen Einsatzfall übertragen werden können.

17 Zur Definition der unterschiedlichen Skalenniveaus siehe [Eid-2011, S. 75–78].

Page 89: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

3.2 Aufgabenstellung

69

Wenn die Einflussfaktoren auf die Vibrationsexposition des Fahrers identifiziert und

nach Möglichkeit quantifiziert sind, interessiert vor allem den Praktiker, ob und mit

welcher Sicherheit auf Basis dieses Wissens die Vibrationsexposition des Fahrers

auch abgeschätzt werden kann. Dies führt zur zweiten Forschungsfrage dieser Ar-

beit:

Wie kann auf Basis dieser Erkenntnis die Vibrationsbelastung der Flurför-

derzeugfahrer mit Fahrersitz abgeleitet werden?

Es wäre vermessen anzunehmen, dass eine exakte Vorhersage der Vibrationsexpo-

sition auf Basis bekannter Randbedingungen möglich ist, da wie in Kapitel 3.1 dar-

gestellt zu viele Faktoren deren Höhe beeinflussen. Das vordergründige Ziel dieser

Fragestellung kann deswegen nur sein, generell zu prüfen, ob eine Abschätzung

möglich und sinnvoll ist.

Wie eingangs erwähnt erfolgt im Rahmen dieser Arbeit explizit eine Fokussierung auf

typische Flurförderzeuge mit Fahrersitz, da sich diese Gruppe hinsichtlich des Einlei-

tungspunkts in den Körper und auch des Einsatzbereichs der Fahrzeuge deutlich

von Flurförderzeugen mit stehendem Fahrer unterscheidet und die vorgenommene

Beschränkung eine fundierte Betrachtung innerhalb einer in sich geschlossenen Ar-

beit ermöglicht.

Gemäß den Ausführungen in Kapitel 2.2.2 existieren mehrere Verfahren, um die Be-

lastung des Menschen hinsichtlich Ganzkörper-Vibrationen zu bewerten. Im Rahmen

dieser Arbeit erfolgt in Anlehnung an die Lärm- und Vibrations-

Arbeitsschutzverordnung die Betrachtung auf Basis des Effektivwerts der frequenz-

bewerteten Beschleunigung ,wTa da dieser Wert für die Gefährdungsbeurteilung re-

levant ist und einen objektiv bestimmbaren Kennwert auf Basis von Beschleuni-

gungssignalen darstellt. Zudem ist somit ein Vergleich zu anderen Arbeiten möglich.

Page 90: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 91: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

71

4 Planung der Untersuchung

Nachdem die Aufgabenstellung definiert und der Wissensstand zu den Einflussfak-

toren auf die Vibrationsexposition der Fahrer diskutiert ist, folgt als nächster Schritt

im eingeschlagenen Forschungsvorgehen gemäß Abbildung 1-3 die Planung der

Untersuchung, bei der folgende Fragen zu berücksichtigen sind:

1. Auf Basis welcher Datengrundlage sollen die Forschungsfragen beant-

wortet werden und wie werden die Daten erhoben?

2. Wie erfolgt die Auswertung der Daten, um statistisch abgesicherte Aus-

sagen hinsichtlich der Forschungsfragen treffen zu können?

Folgende Ausführungen nehmen darauf Bezug und widmen sich in Kapitel 4.1 zuerst

der Wahl der Forschungsmethoden, bei der eine Entscheidung sowohl für die Erhe-

bung der Daten als auch für deren spätere Auswertung getroffen wird. Im Anschluss

erfolgt in den Kapiteln 4.2 und 4.3 eine Eingrenzung der Stichprobe hinsichtlich der

zu untersuchenden Flurförderzeuge und Sitze, während in Kapitel 4.4 wegen der

großen Bedeutung der Fahrbahnbeschaffenheit typische Fahrbahnoberflächen im

Einsatzgebiet der Flurförderzeuge analysiert werden, um abschließend in Kapitel 4.5

nochmals den Untersuchungsraum mit den zu untersuchenden Einflussfaktoren auf-

zuspannen.

4.1 Auswahl der Forschungsmethoden

4.1.1 Datenerhebung

Bei der nach Eid erwähnten Auswahl einer Erhebungsmethode (vgl. Kapitel 1.3) ste-

hen zwei Alternativen zur Diskussion, die die Bestimmung des Effektivwerts der fre-

quenzbewerteten Beschleunigung wTa ermöglichen: die Messung der auftretenden

Beschleunigung im Rahmen von Fahrversuchen mit realen Fahrzeugen oder die

Überführung von Fahrzeugen in ein geeignetes Simulationsmodell zur Berechnung

der Beschleunigungswerte.

Um die erste Forschungsfrage zu beantworten, muss die Erhebungsmethode eine

Parametervariation der zu untersuchenden Einflussfaktoren ermöglichen. Von Inte-

resse sind Betriebsparameter wie der Beladungszustand oder die Fahrgeschwindig-

keit, die Beschaffenheit der Fahrbahn sowie die Konstruktions- bzw. die Ausstat-

Page 92: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4 Planung der Untersuchung

72

tungsmerkmale des Fahrzeugs wie Reifen, Kabinenlagerung oder Sitz. Grundsätzlich

ist die Reproduzierbarkeit der erzielten Ergebnisse sicherzustellen, womit Störgrö-

ßen auf ein Minimum zu beschränken sind. Das subjektive Empfinden des Fahrers

wird im Rahmen der Untersuchung nicht adressiert und stellt entsprechend keine

Anforderung an die Erhebungsmethode dar.

Beide Alternativen erfüllen prinzipiell o. g. Anforderungen. Die Vorteile einer Mes-

sung im Rahmen experimenteller Untersuchungen „sind die ‘unvereinfachten‘ realen

Verhältnisse des Objekts“ sowie der wegfallende Modellierungsaufwand [Dre-2006,

S. 6]. Dank einer standardisierten Messtechnik und einer definierten Vorgehensweise

zur Erfassung der Ganzkörper-Vibrationen (vgl. Kapitel 2.2.2) ist auch die Erfassung

mit Sensoren kaum mit Unsicherheiten behaftet. Als nachteilig ist jedoch anzufüh-

ren, dass Störgrößen auch auf definierten Versuchsstrecken nicht gänzlich ausge-

schlossen werden können. So ist z. B. auf eine gleichmäßige Reifentemperatur zu

achten, die von der Fahrzeugnutzung und der Außentemperatur beeinflusst wird.

Auch ist bei unterschiedlichen Versuchsfahrern nicht auszuschließen, dass die

Fahrweise trotz definierter Vorgaben das Messergebnis beeinflusst. Als größtes Hin-

dernis ist der hohe Aufwand bei der Parametervariation anzuführen [Dre-2006, S. 6].

Während Betriebsparameter wie Fahrgeschwindigkeit und Beladungszustand noch

relativ einfach variiert werden können, gestaltet sich ein Wechsel der Reifensteifig-

keit oder der Fahrzeuglagerung ebenso schwierig wie der des Fahrbahnprofils mit

unterschiedlichen unregelmäßigen oder herausragenden Hindernissen.

Deswegen lohnt es, die Nutzung von Simulationsmodellen in Betracht zu ziehen.

Simulationsmodelle, die heutzutage ausschließlich computergestützt erstellt und

berechnet werden, bieten den unschlagbaren Vorteil einer effizienten Durchführung

von Parameterstudien, da die unterschiedlichsten Parameter einfach und schnell

ohne Umbaumaßnahmen im Gegensatz zum realen Fahrzeug variiert werden kön-

nen. Zusätzlich ermöglicht die virtuelle Messung weitreichende Analysemöglichkei-

ten ohne zusätzliche Messtechnik und schließt Störgrößen aus, da nur die im Modell

abgebildeten Systeme einen Einfluss auf das Berechnungsergebnis nehmen. Dem-

gegenüber ist abzuwägen, ob der im Normalfall hohe Aufwand für die Modellbildung

und die anschließende Validierung diese Vorteile überwiegt. Ebenso kann ein Simu-

lationsmodell die Realität nur annähern. Die simulierten Belastungen des Fahrers

bewegen sich somit stets in einem Unsicherheitsbereich.

Die Untersuchungen von Schäfer et al. bezüglich unterschiedlicher Einflussfaktoren

zeigen, wie schwierig auf Grund des hohen Versuchsaufwands die Generierung ei-

ner breiten Datenbasis auf Testrecken ist [Sch-2010b]. Vor allem die Fahrt mit glei-

chen Fahrzeugen über unterschiedliche Fahrbahnoberflächen bedeutet einen erheb-

Page 93: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4.1 Auswahl der Forschungsmethoden

73

lichen logistischen Aufwand und ist auf dem zur Verfügung stehenden Versuchsge-

lände nur bedingt realisierbar. Diese Gründe verknüpft mit dem wertvollen Vorteil,

effizient Parameterstudien durchführen zu können, führen zu der Entscheidung, die

Fahrerbelastung auf Basis von Simulationsmodellen zu berechnen.

Somit verbleibt nur noch die offene Frage nach der Wahl des Modellierungsansat-

zes. Mechanische Systeme wie Flurförderzeuge, die vornehmlich durch ihre Bauteile

mit Massenträgheit und Elastizität gekennzeichnet sind, können unter Berücksichti-

gung weiterer Einflüsse wie Dämpfung und äußerer Kraftanregung je nach Zielset-

zung durch unterschiedliche Ersatzsysteme abgebildet werden (Abbildung 4-1).

Abbildung 4-1: Eigenschaften mechanischer Systeme nach [Sch-2004]

Für die Berechnung der am Fahrer auftretenden Beschleunigung während dynami-

scher Fahrvorgänge bei Variation der in Tabelle 3-1 genannten Parameter bieten

sich Mehrkörpersysteme an, die klassisch aus massebehafteten Köpern und masse-

losen Bindungs- und Kopplungselementen bestehen [Sch-2004; Ril-2010]. Flurför-

derzeuge zeichnen sich durch vorwiegend sehr starre Bauteile aus, so dass eine

dynamische Simulation mit Finite-Elemente-Modellen nicht problemgerecht ist.

Durch sog. hybride Mehrkörpermodelle ist es trotzdem möglich, elastische Struktu-

ren zu berücksichtigen, insofern dies bei der Modellerstellung relevant wird. Mehr-

körpersysteme bieten zudem die Voraussetzung, den für Ganzkörper-Vibrationen

relevanten Frequenzbereich zwischen 0,5–80 Hz im Modell abzudecken. Für vorlie-

gende Arbeit wird auf das Simulationspaket ADAMS der Firma MSC-Software Cor-

poration zurückgegriffen. Als Berechnungsergebnis eines Flurförderzeug-

Mehrkörpersystems stehen Zeitreihen mit Beschleunigungswerten an vorher defi-

nierten „Messpunkten“ zur Verfügung. Da umgangssprachlich bei der Berechnung

eines Ersatzmodells von Simulation gesprochen wird, findet auch in weiteren Aus-

führungen der Begriff Simulationsergebnis Verwendung.

mechanische Systeme

Trägheit Elastizität Viskosität Kraft

Feder Dämpfer Lagerreaktion

Finite-Elemente-Systeme

AntriebstarrerKörper

elastischerKörper

kontinuierliche Systeme

Mehrkörpersysteme

Page 94: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4 Planung der Untersuchung

74

4.1.2 Datenauswertung

Bei der Auswertung der Simulationsergebnisse sind zwei Aspekte zu berücksichti-

gen. In einem ersten Schritt müssen die Zeitreihen mit den zugehörigen Parameter-

einstellungen aufbereitet werden, damit im zweiten Schritt mit Hilfe statistischer Me-

thoden die Hypothesen getestet werden können.

Die Aufbereitung der Daten erfordert vornehmlich die Berechnung des Effektivwerts

der frequenzbewerteten Beschleunigung wTa gemäß Formel (2-1). Hierfür wird auf

die Software DIAdem der Firma National Instruments zurückgegriffen, welche zum

einen Funktionen für die Frequenzbewertung nach ISO 2631-1 und zum anderen mit

Hilfe von Skripten eine Möglichkeit zur automatisierten Verarbeitung bereitstellt.

In der Hypothese der Forschungsfrage werden Einflussfaktoren auf die Vibrations-

exposition des Flurförderzeugfahrers postuliert. Es ist also zu prüfen, inwieweit die in

Tabelle 3-1 aufgeführten und in folgenden Kapiteln zu detaillierenden Einflussfakto-

ren (die sog. unabhängigen Variablen) die Vibrationsexposition (die sog. abhängige

Variable), ausgedrückt durch den Effektivwert der frequenzbewerteten Beschleuni-

gung ,wTa beeinflussen. Der Aufgabenstellung der ersten Forschungsfrage „in wel-

cher Höhe“ folgend ist der Einfluss zudem zu quantifizieren. Je nach Art des Ein-

flussfaktors bzw. dessen Skalenniveau kann eine Quantifizierung auf unterschiedli-

chen Ebenen erfolgen:

1. Liegt überhaupt ein Einfluss vor, d. h. kann die Hypothese bestätigt wer-

den, und welche Bedeutung nimmt dieser Einflussfaktor gegenüber den

anderen Parametern der Betrachtung ein?

2. Wie ändert sich bei Variation eines Parameters die Belastung des Fah-

rers? (z. B.: Eine Verdopplung der Fahrgeschwindigkeit führt zu einer

doppelt so hohen Belastung.)

Für beide Fragestellungen eigenen sich nach Backhaus et al. aus dem Bereich der

multivariaten Analysemethoden die sog. strukturen-prüfenden Verfahren, „deren

primäres Ziel in der Überprüfung von Zusammenhängen zwischen Variablen liegt“

[Bac-2011, S. 13]. Eine Auswahl der Verfahren hat u. a. auch auf Basis der Skalenni-

veaus der unabhängigen und abhängigen Variablen zu erfolgen. Die abhängige Vari-

able, der Effektivwert der frequenzbewerteten Beschleunigung ,wTa weist als inter-

vallskalierte Größe metrisches Skalenniveau auf.

Zur Beantwortung der ersten Forschungsfrage werden in einem vorgelagerten

Schritt die sog. Effekte der Einflussfaktoren untersucht, die ein Maß für die Wirkung

Page 95: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4.2 Auswahl der Flurförderzeuge

75

auf das Systemverhalten darstellen und im Effekt-Diagramm anschaulich dargestellt

und analysiert werden können. Üblicherweise versteht man unter einem Effekt die

Differenz zweier Mittelwerte bei unterschiedlichen Faktoreinstellungen (vgl. Kapi-

tel 7.1.1). Im Rahmen dieser Fragestellung werden alle unabhängigen Variablen be-

rücksichtigt, es liegt somit sowohl metrisches als auch nominales Skalenniveau vor.

Unter Berücksichtigung dieser Prämissen empfiehlt sich nach Backhaus et al. eben-

so die mehrfaktorielle Varianzanalyse – „ein Verfahren, das die Wirkung einer (oder

mehrerer) unabhängiger Variablen auf eine (oder mehrere) abhängige Variablen un-

tersucht“ [Bac-2011, S. 158]. Die Varianzanalyse beruht auf der Unterteilung der Ge-

samtabweichung aller Beobachtungen (Messungen) in einen erklärten Anteil durch

die unabhängigen Variablen und einen nicht erklärten Anteil zufällig äußerer Einwir-

kungen. Somit lässt sich abschätzen, wie in welchem Maße die Variation der abhän-

gigen Variablen durch die Variation einer unabhängigen Variablen erklärt wird. Ob

ein statistisch signifikanter Einfluss vorliegt wird durch einen F-Test ermittelt. Zur

weiteren Erklärung der mehrfaktoriellen Varianzanalyse sei auf eine kurze Einführung

in Kapitel 7.1.1 und auf [Eid-2011; Bac-2011] verwiesen.

Um sich der Quantifizierung auf Betrachtungsebene 2 zu nähern bietet sich die Re-

gressionsanalyse an. Um die Wirkung einzelner Einflussfaktoren deutlich zu machen

ist eine Beschränkung des Betrachtungsraums empfehlenswert. Die zum Einsatz

kommende lineare Regression fußt auf dem Ziel, die unabhängige Variable durch

eine Linearkombination der abhängigen Variablen – skaliert mit den jeweiligen Re-

gressionskoeffizienten – und einem konstanten Glied bestmöglich zu schätzen. Bei

der Regressionsanalyse ist zu prüfen, ob zum einen die abhängige Variable von dem

Regressionsmodell als Ganzes hinreichend genau erklärt wird (F-Test) und zum an-

deren wie gut die einzelnen Variablen des Regressionsmodells zur Erklärung der ab-

hängigen Variablen beitragen (t-Test, Konfidenzintervall) [Bac-2011]. Zur weiteren

Erklärung der linearen Regressionsanalyse wird auf eine kurze Einführung in Kapi-

tel 7.2.2 sowie wiederum auf [Eid-2011; Bac-2011] verwiesen.

Die Durchführung der beschriebenen multivariaten Analysemethoden erfolgt compu-

tergestützt mit der Software SPSS der Firma IBM (Version 22).

4.2 Auswahl der Flurförderzeuge

Nach der Entscheidung, die Einflussfaktoren auf die Vibrationsexposition der Flur-

förderzeugfahrer mit Hilfe der Mehrköpersimulation zu erforschen, hat eine konkrete

Auswahl der Untersuchungsobjekte zu erfolgen. Auf Grund des hohen Modellie-

rungsaufwands ist es zweckmäßig, sich auf für die Population repräsentative Flur-

Page 96: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4 Planung der Untersuchung

76

förderzeuge zu fokussieren. Reihenuntersuchungen mit einer Vielzahl unterschiedli-

cher Flurförderzeuge sind mit dieser Erhebungsmethode nicht zielführend und ste-

hen auch nicht im Vordergrund dieser Arbeit. Hierfür sei auf die Branchenmessun-

gen von Schäfer et al. verwiesen, bei denen unterschiedliche Flurförderzeuge eines

Typs und ähnlicher Traglastklasse untersucht werden [Sch-2007a; Sch-2007b].

Bei der Auswahl der repräsentativen Fahrzeuge mit Fahrersitz wird berücksichtigt,

dass sich sowohl die entsprechenden Flurförderzeugtypen als auch die konkret

ausgewählten Modelle in Deutschland einer starken Verbreitung erfreuen. Hinsicht-

lich des ersten Kriteriums seien die Ausführungen aus Kapitel 2.1 ins Gedächtnis

gerufen. Bezogen auf die Benutzungsart ist die Gruppe der stapelnden Flurförder-

zeuge am stärksten vertreten (vgl. Abbildung 2-1). Hinsichtlich der Bereiche Gabel-

stapler und Lagertechnik ist eine leichte Dominanz der Lagertechnik in den Absatz-

zahlen in Deutschland festzuhalten (vgl. Abbildung 2-8), bei genauerer Aufschlüsse-

lung nach den WITS-Klassen innerhalb Westeuropas und der Fokussierung auf aus-

schließlich Geräte mit Fahrersitz sind Gabelstapler gegenüber Elektro-

Schmalgangstaplern jedoch dreimal so stark vertreten (vgl. Abbildung 2-7). Da auch

der Einfluss des Fahrzeugtyps im Fokus der Untersuchung steht und somit mindes-

tens zwei unterschiedliche Flurförderzeugtypen auszuwählen sind, ist die Wahl re-

präsentativer Fahrzeuge sowohl im Bereich der Gablelstapler als auch der Elektro-

Schmalgangstapler sinnvoll.

Eine genauere Aufschlüsselung von Verkaufs- bzw. Bestandszahlen als in Kapi-

tel 2.1.2 vorgestellt, ist auf Basis öffentlicher Quellen nicht möglich. Deswegen wird,

um ein konkretes Modell innerhalb der identifizierten Flurförderzeugtypen auszuwäh-

len, auf die StaplerFacts zurückgegriffen [N.-2012]. Hierbei handelt es sich um eine

Datenbank der Fachzeitschrift Staplerword, in der Hersteller Flurförderzeuge aus

ihrer Produktpalette eintragen können und die nach Bachmann ein „fast aktuelles

Abbild der Branche“ darstellt [Bac-2012]. In die Auswertung werden alle Flurförder-

zeuge aufgenommen, die in Europa zu beziehen sind. Fahrzeuge mit einer Zulas-

sung für den explosionsgeschützten Bereich werden auf Grund ihrer geringen Ver-

breitung ausgeklammert. Es wird darauf hingewiesen, dass die Auswertung somit

nicht nach der Anzahl der verkauften Fahrzeuge, sondern nach den unterschiedlich

gemeldeten Modellen vorgenommen wird. Dabei wir angenommen, dass eine hohe

Anzahl an Modellen als Indiz für eine große Verbreitung der Flurförderzeuge interpre-

tiert werden kann. Unter einem Modell wird ein Flurförderzeug einer bestimmten Be-

nutzungsart (vgl. Abbildung 2-1) mit spezifischer Nennlast, Maximalfahrgeschwin-

digkeit, Antriebsart und Fahrzeuglänge bezeichnet.

Page 97: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4.2 Auswahl der Flurförderzeuge

77

4.2.1 Gabelstapler

In Deutschland ist wie in Westeuropa grundsätzlich von einer gleichmäßigen Vertei-

lung von Elektro- und Verbrenner-Gabelstaplern auszugehen (vgl. Abbildung 2-7).

Eine klare Präferenz der Verbrenner-Gabelstapler wie in Asien oder Amerika liegt

nicht vor (vgl. Abbildung 2-5). Bei Betrachtung der in [N.-2012] gemeldeten Daten

liegt es nahe, eine Differenzierung nach der Art des Antriebs sowie der Anzahl der

Räder bei elektrisch angetriebenen und nach Art des Treibstoffs bei verbrennungs-

motorisch angetriebenen Gabelstaplern vorzunehmen (Abbildung 4-2). Kennzeich-

nend für die große Verbreitung dieses Typs ist, dass nach [N.-2012] 45 Hersteller

Gabelstapler in insgesamt 1.448 unterschiedlichen Ausprägungen für den europäi-

schen Markt produzieren.

Abbildung 4-2: Gemeldete Gabelstaplermodelle nach [N.-2012]

Mit insgesamt 61 % stellen die Verbrenner-Gabelstapler die Mehrheit dar. Es er-

scheint zweckmäßig, im Rahmen der Untersuchung auf Grund der hohen Verbrei-

tung der Gabelstapler zwei Modelle dieser Flurförderzeugart zu untersuchen, so

dass in einem ersten Schritt die Auswahl auf einen Verbrenner-Gabelstapler mit Die-

sel als Treibstoff sowie einen Elektro-Gabelstapler eingegrenzt wird. Zur weiteren

Spezifizierung erfolgt eine detailliertere Betrachtung hinsichtlich der Tragfähigkeit,

einem der wichtigsten Auswahlkriterien für Flurförderzeuge.

Die Häufigkeitsverteilung der in [N.-2012] gemeldeten unterschiedlichen 3-Rad- und

4-Rad-Elektro-Gabelstapler bis zu einer Tragfähigkeit von 5.000 kg von 31 unter-

schiedlichen Herstellern ist in Abbildung 4-3 dargestellt. Von insgesamt

563 gemeldeten Flurförderzeugtypen weisen 9 % Traglasten zwischen 5.500 kg und

35.000 kg und werden der Übersichtlichkeit halber nicht dargestellt. Hierbei handelt

es sich zudem um Sonderanwendungen mit normalerweise geringen Stückzahlen.

12%

27%

39%

22% Elektro (3-Rad)

Elektro (4-Rad)

Verbrenner (Diesel)

Verbrenner (Treibgas LPG)

Page 98: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4 Planung der Untersuchung

78

Abbildung 4-3: Tragfähigkeitsverteilung der in [N.-2012] gemeldeten 3- und 4-Rad-Elektro-Gabel-staplermodelle bis 5.000 kg Tragfähigkeit

Bei einem Mittelwert von 2.469 kg weisen mehr als die Hälfte der gemeldeten Mo-

delle Traglasten bis zu einschließlich 2.000 kg auf. In Anbetracht der Tatsache, dass

bei Flurförderzeugen mit geringeren Traglasten mit höheren Stückzahlen zur rechnen

ist, wird als Untersuchungsobjekt ein Elektro-Gabelstapler mit einer Tragfähigkeit

von 2.000 kg ausgewählt. Der größeren Verbreitung wegen wird eine Ausführung mit

vier Rädern, d. h. einer Pendelachse, gewählt. Gemäß der Namenskonvention nach

VDI 3586 handelt es sich um einen EFG 20 (vgl. Kapitel 2.1.1).

Für den Bereich der Verbrenner-Gabelstapler verdeutlicht Abbildung 4-4 die Häufig-

keitsverteilung der in [N.-2012] gemeldeten unterschiedlichen Modelle bis zu einer

Tragfähigkeit von 13.000 kg von 32 unterschiedlichen Herstellern.

Abbildung 4-4: Tragfähigkeitsverteilung der in [N.-2012] gemeldeten Verbrenner-Gabelstapler-modelle bis 13.000 kg Tragfähigkeit

0%

5%

10%

15%

0 500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Häufig

keit

Tragfähigkeit [kg]

0%

5%

10%

1.000 3.000 5.000 7.000 9.000 11.000 13.000

Häufig

keit

Tragfähigkeit [kg]

Page 99: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4.2 Auswahl der Flurförderzeuge

79

Von insgesamt 885 gemeldeten Flurförderzeugtypen weisen 16 % Traglasten zwi-

schen 13.500 kg und 100.000 kg auf und werden der Übersichtlichkeit wegen nicht

dargestellt. Diese größere Anzahl an Typen mit deutlich höherer Tragkraft führt zu

einem Mittelwert von 7.663 kg. Es ist jedoch davon auszugehen, dass Flurförder-

zeuge mit hohen Tragfähigkeiten in geringer Stückzahl verkauft werden. Unter Be-

achtung des Medians von 4.000 kg dient die Verfügbarkeit geeigneter Versuchsfahr-

zeuge als weiteres Auswahlkriterium, so dass ein Flurförderzeug mit einer Tragfähig-

keit von 3.500 kg ausgewählt wird. Wegen der größeren Verbreitung wird als Treib-

stoffart wie bereits erwähnt Diesel gewählt. Gemäß der Namenskonvention nach

VDI 3586 handelt es sich um einen DFG 35 (vgl. Kapitel 2.1.1).

Abbildung 4-5 zeigt die für die Untersuchung auf Basis vorher genannter Kriterien

ausgewählten Flurförderzeuge von zwei unterschiedlichen Herstellern. Beide Gabel-

stapler verfügen über ein Zweifachteleskop-Hubgerüst ohne Freihub (vgl. Kapitel

5.2.5). Für die Bereifung wird der in Europa gängige Superelastikreifen gewählt, mit

welchem nahezu jeder Gabelstapler ausgestattet ist.

Abbildung 4-5: Untersuchte Gabelstapler EFG 20 (links) und DFG 35 (rechts) (Bildquellen: eigene Darstellung, Linde Material Handling GmbH)

4.2.2 Elektro-Schmalgangstapler

Im Bereich der Elektro-Schmalgangstapler wird bereits in Kapitel 2.1.2 der Schub-

maststapler als klassischer Vertreter der Lagertechnikgeräte mit Fahrersitz identifi-

ziert und näher beschrieben. Entsprechend leicht fällt die Wahl, auch diesen Fahr-

zeugtyp in die Untersuchung aufzunehmen, wobei ein Modell dieses Typs auf Grund

der einheitlichen Bauweise als ausreichend erachtet wird. Für eine konkrete Auswahl

wird wiederum die Häufigkeitsverteilung bezüglich der Tragfähigkeit der in [N.-2012]

gemeldeten 137 unterschiedlichen Modelle von 18 Herstellern in Augenschein ge-

nommen (Abbildung 4-6).

Page 100: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4 Planung der Untersuchung

80

Abbildung 4-6: Tragfähigkeitsverteilung der in [N.-2012] gemeldeten Schubmaststaplermodelle

Auffällig ist eine geringe Spannweite sowie eine Konzentrierung auf Tragfähigkeiten

im Bereich von 1.000 kg und 2.000 kg bei einem Median von 1.600 kg. Ergänzend

wird ein Blick auf die möglichen Maximalfahrgeschwindigkeiten (ohne Last) der auf

dem Markt erhältlichen Schubmaststapler geworfen (Abbildung 4-7).

Abbildung 4-7: Verteilung der Maximalfahrgeschwindigkeiten ohne Last der in [N.-2012] gemeldeten Schubmaststaplermodelle

Auf Basis dieser Marktübersicht und in Anbetracht der Verfügbarkeit geeigneter Ver-

suchsfahrzeuge wird ein Fahrzeug mit einer Traglast von 1.400 kg und einer Maxi-

malfahrgeschwindigkeit von 14 km/h in der Bauform mit ungelenkten Stützrollen

sowie einem Dreifachteleskop-Hubgerüst mit vollem Freihub (vgl. Kapitel 5.2.5) in

das Untersuchungsspektrum aufgenommen (Abbildung 4-8). Gemäß der Namens-

konvention nach VDI 3586 handelt es sich um einen EFM 14 (vgl. Kapitel 2.1.1).

0%

10%

20%

30%

1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000

Häu

fig

keit

Tragfähigkeit [kg]

0%

10%

20%

30%

6 7 8 9 10 11 12 13 14 15

Häufig

keit

Maximalfahrgeschwindigkeit ohne Last [km/h]

Page 101: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4.3 Auswahl der Fahrersitze

81

Abbildung 4-8: Untersuchter Schubmaststapler EFM 14 (Bildquelle: STILL GmbH)

4.3 Auswahl der Fahrersitze

Eines der wichtigsten Ausstattungsmerkmale bei Flurförderzeugen mit sitzendem

Bediener ist der Fahrersitz, welchem auch ein hoher Einfluss auf die Vibrationsexpo-

sition des Fahrers zugeschrieben wird (vgl. Kapitel 3.1.1). Da nach Tabelle 3-1 auch

die Baugröße des Fahrersitzes zu erforschen ist, werden unterschiedliche Sitze in

das Untersuchungsspektrum aufgenommen. Flurförderzeugsitze stellen vor allem

Anforderungen an eine gute Schwingungsisolation bei geringer Bauhöhe sowie eine

Schnelleinstellung der Federung [Pol-2008]. Sitze für Kompaktgeräte werden übli-

cherweise mit einer mechanischen Federung in Form einer Stahlfeder ausgestattet,

welche im Normalfall auf den auf Flurförderzeugen verbauten Sitzen anzutreffen ist.

Seit einigen Jahren wird zudem über den Einsatz einer Luftfederung bei Flurförder-

zeugen berichtet, eine starke Verbreitung kann noch nicht festgestellt werden. Ein

eindeutiger Einfluss der Federart ist bis jetzt nicht feststellbar, was bereits in Kapi-

tel 3.1.1 diskutiert ist. Um zum einen bestmöglich den Status Quo beim Betreiber in

den Vordergrund zu stellen und zum anderen das Untersuchungsspektrum auf eine

Federart bei unterschiedlichen Baugrößen zu begrenzen, wird eine Auswahl von drei

typischen Flurförderzeugsitzen mit mechanischer Feder getroffen (Abbildung 4-9).

Alle Sitze verfügen ausschließlich über eine mechanische Federung und Dämpfung

in vertikaler Richtung (z-Achse) und stellen unterschiedliche Federwege zur Verfü-

gung. Sitze mit Horizontalfederung (x-Achse) werden auf Grund ihrer noch geringen

Verbreitung auf Flurförderzeugen nicht untersucht.

Page 102: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4 Planung der Untersuchung

82

Abbildung 4-9: Untersuchte Sitze MSG 20 (links), MSG 65 (Mitte) und MSG 85 (rechts) (Bildquelle: Grammer AG)

Die Forderung nach geringer Bauhöhe bei guter Schwingungsisolation stellen nicht

nur Flurförderzeuge an Fahrzeugsitze, sondern auch andere Fahrzeuggruppen.

Deswegen kommen die in Abbildung 4-9 gezeigten Sitze auch bei kompakten Bau-

maschinen wie Walzen und Minibaggern (MSG 20 und MSG 65) sowie Kompakt-

und Radladern (MSG 65) zum Einsatz. Der etwas höher bauende Sitz MSG 85 kann

entsprechend mehr Federweg zur Verfügung stellen und wird deswegen auch in

Traktoren, Mähdreschern, Baggern und Radladern eingesetzt.

4.4 Fahrbahnoberflächen im Einsatzgebiet der Flurförderzeuge

Flurförderzeuge bewegen sich je nach Erfordernis sowohl außerhalb von Produkti-

onshallen auf allgemeinen Verkehrsflächen als auch innerhalb der Hallen auf im

Normalfall speziellen Industrieböden. Nachfolgend wird zuerst kurz der Aufbau und

die Auslegung der typischen Verkehrsflächen Asphalt, Beton und Pflaster behandelt,

um anschließend auf deren Ebenheitstoleranzen, mögliche Schadensbilder und typi-

sche einzelne Hindernisse, welche ebenso die Ebenheit der Fahrbahnoberfläche

durchbrechen, einzugehen.

Sowohl im Straßenverkehr als auch im industriellen Umfeld sind Verkehrsflächen aus

verschiedenen Schichten aufgebaut [For-2001]. Der Oberbau besteht aus einer oder

mehreren Tragschichten sowie einer Deckschicht, sorgt für den Abbau und die Ver-

teilung der durch den Verkehr erzeugten Spannungen und ist somit wesentlich für

die Langlebigkeit und Widerstandsfähigkeit einer Verkehrsfläche verantwortlich [Vel-

2008]. Die Belastungen der Industrieböden unterscheiden sich jedoch deutlich von

denen der Straßenverkehrsflächen. Ausschlaggebend für die Auslegung sind häufig

die sehr hohen Punktlasten durch Regale, Container, Gitterboxen und Flurförder-

zeuge, die öfters eine dickere Ausführung der Tragschicht erfordern [Czi-1999].

Page 103: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4.4 Fahrbahnoberflächen im Einsatzgebiet der Flurförderzeuge

83

Asphaltdecken sind die am häufigsten verwendeten Straßendecken. Während das

viskoelastische Verformungsverhalten zum einen eine Anpassung an langsam auf-

tretende Verformungen ermöglicht, können sich zum anderen besonders beim Auf-

treten großer Lasten, z. B. bei Standflächen für LKWs oder bei häufigen Brems- und

Anfahrvorgängen, Spurrinnen bilden. Die Unebenheit, die wie bei allen Bodenbelä-

gen mit einer so genannten Lattenmessung oder einem Planografen bestimmt

wird18, darf für Deckschichten auf einer 4 m langen Messstrecke 4 mm nicht über-

schreiten [For-2007, S. 42]. Zusätzliche Unebenheiten können durch Risse verur-

sacht werden, die in einigen Fällen aufgrund der Alterung und der dadurch verringer-

ten Klebkraft des Bitumens entstehen. Einen detaillierten Überblick über weitere

Schadensarten bietet Tabelle 4-1. [Vel-2008]

Tabelle 4-1: Auswahl von Schadensarten und Ursachen bei Asphalt nach [Vel-2008]

Schadensbild Schadensursache

Netzrisse fehlerhafte Konstruktion der Schichten (Tragschicht, Frostschutz-schicht)

Kontraktionsrisse (quer, Abstand von 5–30 m)

verhärtetes Bitumen durch Alterung und dadurch Anstieg der Riss-temperatur, was im Winter zu deren Unterschreitung führt

Ermüdungsrisse (längs)

Ermüdung des Asphalts durch Belastung. Aus Mikrorissen durch Biegezugspannung aus Verkehr und Zugspannung aus Abkühlung entstehen makroskopische Risse.

Spurrinnen infolge viskosen Fließens

fehlerhafte Zusammensetzung des Asphalts und spurfahrender Schwerverkehr, langandauernde Belastungen, zusätzliche horizontale Belastungen, Verkehrsfreigabe bei noch warmer Deckschicht

Spurrinnen infolge Nach-verdichtung

Nachverdichtung der unterschiedlichen Schichten

Wellen, Waschbretter fehlerhafte Zusammensetzung des Asphalts in Zonen mit besonders hohen Brems- und Anfahrkräften

Schlaglöcher ungenügender Schichtverbund und Ablösen der Deckschicht von den darunter liegenden Schichten

Bei Industrieböden aus Beton kann nach Freimann die Auslegung bei Platten ohne

stützende Funktion in einem Gebäude nach den Grundsätzen des Straßenbaus er-

folgen [Fre-2006]. Während im Betonstraßenbau die unbewehrte Betondecke auf

einem sehr gut tragfähigen Unterbau den Standard darstellt, kommen in Produkti-

ons- und Lagerhallen üblicherweise Betonbodenplatten in unterschiedlichen Kon-

struktionen (z. B. bewehrt mit Betonstahlmatten oder mit Walzbeton) entsprechend

der physikalischen und chemischen Beanspruchung zum Einsatz [Loh-2012].

Grundsätzlich darf die Oberflächenebenheit einer Betonfahrbahn nach der entspre-

chenden VOB Teil C auf einer Messstrecke von 4 m um maximal 10 mm abweichen

[DIN 18316], was in der Regel auch für Industrieböden nach DIN 18202 Gültigkeit

besitzt [DIN 18202]. Für extreme Anforderungen, wie sie in Hochregallagern beste-

18 Zur näheren Erläuterung von Lattenmessung und Planograf siehe [Ger-1991; Vel-2008, S. 257]

sowie Kapitel 7.2.1.

Page 104: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4 Planung der Untersuchung

84

hen, existiert mit der DIN 15185 eine gesonderte Norm. In dieser ist festgelegt, dass

auf 4 m Messstrecke die Abweichung maximal 5 mm betragen darf [DIN 15185].

Diese Anforderungen sind nur mit erheblichem Aufwand durch den Einbau zusätzli-

cher Schichten, z. B. aus Kunstharzestrich, erfüllbar. Häufige Schäden und Fehler

bei Betonplatten stellt Tabelle 4-2 dar. [Loh-2012]

Tabelle 4-2: Schadensbilder und Ursachen bei monolithischen Betonplatten [Czi-1999]

Schadensbild Schadensursache

durchgehende Risse Zwängungsspannungen aus Schwinden oder Temperatur größer als Betonzugfestigkeit; auftretende Biegezugspannungen aus Las-ten größer als Betonbiegezugfestigkeit

Oberflächenrisse Frühschwinden des Betons, ungleichmäßiges Schwinden

Verwölbungen ungleichmäßiges Schwinden, ungleichmäßiges Abkühlen oder Er-wärmen

Absenkungen ungleichmäßige, irreversible Setzung unterschiedlicher Plattenfel-der bei Belastung

übermäßiger Abrieb, Ausbrüche

Betonmatrix ist nicht in der Lage die rollende, schlagende oder stoßende Dauerbelastung aufzunehmen. Zementgebundene Ma-trix ist für die chemische Beanspruchung nicht geeignet.

Um ungewollte Risse zu vermeiden wird üblicherweise auf eine Konstruktion mit Fu-

gen, die Längenänderungen wie z. B. aufgrund von Temperaturschwankungen aus-

gleichen, zurückgegriffen. Dabei unterscheidet man zwischen Raum-, Press- und

Scheinfugen. Raumfugen trennen die Betonbodenplatte von festen Bauten wie z. B.

Stützen oder Seitenwänden oder verschieden belastete Flächen untereinander.

Pressfugen entstehen, wenn zwei Betonplatten zu unterschiedlichen Zeitpunkten

hergestellt werden. Raum- und Pressfugen werden normalerweise gegen eindrin-

gendes Wasser gesichert und sind ähnlich im Aufbau. Nach Lohmeyer und Ebeling

sind Pressfugen in der Regel ca. 4–8 mm und Raumfugen je nach Erfordernis 5–

20 mm dick. Die VOB Teil C fordert für Raumfugen eine Mindestdicke von 12 mm

[DIN 18316]. Scheinfugen führen zu einem kontrollierten Riss durch die gesamte Di-

cke der Platte und verhindern so sich unkontrolliert ausbreitende Risse auf Grund

von Zugspannungen, die während des Abkühlprozesses entstehen. Sie werden etwa

60 mm tief und ca. 4 mm breit zeitnah nach dem Einbau in den sich erhärtenden

Beton geschnitten. Für eine Abdichtung, die erst später vorgenommen werden kann,

ist ein Nachschnitt mit 8 mm Breite erforderlich, wovon jedoch bei starker mechani-

scher Beanspruchung abgesehen werden sollte. Häufigkeit und Verteilung der Fu-

gen hängen von der Plattendicke und der Plattenfläche ab. Jede Fuge stellt jedoch

auch eine Konstruktionsschwachstelle dar, so dass es im Fugenbereich von Indus-

trieböden zu den in Tabelle 4-3 genannten Schäden kommen kann. [Loh-2012]

Page 105: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4.4 Fahrbahnoberflächen im Einsatzgebiet der Flurförderzeuge

85

Tabelle 4-3: Schäden im Fugenbereich von Industrieböden [Czi-1999]

Schadensbild Schadensursache

Ausbrüche im befahrenen Bereich der Fugen

Verwendeter Beton kann die schlagenden Belastungen von hartbe-reiften Flurförderzeugen nicht aufnehmen; kein Schutz der Fuge mit Profilen.

Verkantungen der Bodenfel-der (Höhenversprünge, Aus-brüche)

Ungenügend verdichteter Untergrund in Kombination mit einem Öff-nen der Scheinfuge, so dass keine Querkraftübertragung mehr mög-lich ist und der Untergrund verschieden stark nachverdichtet wird.

Rissbildung im Estrich Scheinfugen von Estrich und Betonplatte stimmen nicht überein.

Risse im Bereich der Fugen-dichtungsmassen

zu geringe Fugenbreite und/oder zu frühes Nachschneiden und Ver-dichten der Betonplatte

starker Oberflächenverschleiß unzureichende Verdichtung der Übergangsschicht

Bei Pflasterdecken ist zwischen Natursteinpflaster, umgangssprachlich bekannt als

Kopfsteinpflaster, und Betonsteinpflaster zu unterscheiden, wobei im industriellen

Bereich ausschließlich letztgenanntes zum Einsatz kommt. Betonverbundpflaster-

steine verhindern ein Verschieben der Steine durch horizontale Lasten. Die je nach

Verbundtyp entstehenden Fugen (Horizontalverbund, Vertikalverbund) sind nicht

ausschlaggebend für die Schwingungsanregung von Flurförderzeugen. Bei Beton-

steinpflasterdecken darf nach DIN 18318 die Unebenheit auf einer 4 m langen

Messstrecke wiederum nicht größer als 10 mm und die Höhendifferenz zwischen

benachbarten Betonpflastersteinen nicht größer als 2 mm sein. Ebenso dürfen Ab-

weichungen der Oberfläche von der Sollhöhe an keiner Stelle mehr als 20 mm be-

tragen. Fugen müssen eine Breite von 3–5 mm und bei Steinen mit einer Nenndicke

größer 120 mm eine Breite von 5–8 mm aufweisen [DIN 18318]. Die bei Pflasterde-

cken im Industriebreich relevanten und häufig auftretenden Schäden sind detailliert

in Tabelle 4-4 dargelegt.

Tabelle 4-4: Schäden in Pflasterdecken nach [Men-2009]

Schadensbild Schadensursache

Verdrückungen (Spurrin-nen)

Grundsätzlich falsche Auslegung der Konstruktion und hohe vertika-le Last, die zum Versagen einer Schicht führt oder zu einer übermä-ßigen Nachverdichtung.

Höhenunterschie-de/Stolperkanten zwischen Pflastersteinen/-platten

unterschiedlich dicke Steine, ungleichmäßig verdichtete Bettung

Unebenheiten ungleichmäßig verdichtete Bettung

herausstehende Einbauten ungleichmäßig verdichtete Tragschicht

gebrochene Pflaster-steine/-platten

zu geringe Festigkeit/Dicke, Materialfehler, ungleichmäßiges Auflager

Nachfolgend genannte Einzelhindernisse sind nicht auf Schädigungen im Fahrbahn-

belag zurückzuführen, sondern zu unterschiedlichen Zwecken absichtlich baulich

eingebracht. Herauszuheben sind die Muldenrinne, die Schlitzrinne und die Kasten-

Page 106: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4 Planung der Untersuchung

86

rinne. Muldenrinnen sind grundsätzlich überfahrbar, sorgen aber für starke Erschüt-

terungen, sind so nur in Zonen mit wenig oder langsam fahrendem Verkehr geeignet

und in Betonausführung nach DIN 483 bei einer Muldentiefe von 30 mm meistens

300–500 cm breit [DIN 483] (vgl. Abbildung 4-10 in gepflasterter Ausführung). Die

Kastenrinne besitzt einen Rinnenkörper aus faserverstärktem Beton mit einer Abde-

ckung aus Gusseisen für höhere Belastungen und wird üblicherweise für die Ent-

wässerung von Zufahrten und Plätzen sowie Anliegerstraßen eingesetzt, während

die ca. 1–3 cm breite Schlitzrinne insbesondere bei Industrieanlagen verwendet wird

[Men-2009]. Abbildung 4-10 zeigt den Aufbau der genannten Rinnen. Der Einbau der

Rinnen erfolgt grundsätzlich 5–10 mm unterhalb der umgebenden Verkehrsfläche,

damit das Wasser auch bei Nachsetzungen des Bodens noch abfließt [Men-2009].

Abbildung 4-10: Mulden- (links), Schlitz- (Mitte) und Kastenrinne (rechts) [Men-2009]

Weitere typische Hindernisse in Industriebtrieben stellen Schienen dar, wobei es

sich entweder um einen klassischen Bahnübergang oder um in die Straße eingelas-

sene Schienen handelt. Bahnübergänge werden heutzutage hauptsächlich durch

Gleiseindeckungssysteme, die auf vorhandene Gleise aufgebracht werden, realisiert

[Fre-2008]. Technisch bedingt sollten auf der Schieneninnenseite mindestens 45 mm

breite und 38 mm tiefe Spurrillen vorhanden sein [Fie-2012]. Als Richtwert für den

Abstand der Schienenkopfinnenflächen und damit der Fugen dient die Normalspur-

weite von 1435 mm, welche von ca. 60 % aller Bahnen genutzt wird [Fie-2012].

Abschließend sei noch die Torschwelle als häufig auftretendes Hindernis erwähnt.

Während bei innerbetrieblichen Toren selten ein Niveauunterschied existiert und

somit nur die vorab erwähnten Fugen auftreten, sind vor allem im Übergang zum

Außenbereich starke Höhenunterschiede die Regel, bei denen die Bodenbeläge

durch den Einbau von Stahlprofilen gestützt werden. Diese Sprünge im Bodenprofil

Muldenrinne Kastenrinne

b = 50...100 cm≥ 10 cm

≥ 10 cm

Schlitzrinne

1...3 cm

Ø = 10 cm

t = 3 cm...b/15

Page 107: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4.5 Versuchsplan

87

sind nicht genormt und können entsprechend in unterschiedlichen Höhen vorkom-

men.

Zusammenfassend bleibt festzuhalten, dass industrielle Fahrbahnen, die den gülti-

gen Normen genügen, auf einer Messstrecke von 4 m um maximal 10 mm abwei-

chen dürfen. Diese Toleranz im Bereich der unregelmäßigen Unebenheiten wird au-

genscheinlich vor allem im Außenbereich jedoch öfters überschritten, was überwie-

gend auf Schäden der Fahrbahn zurückzuführen ist (z. B. Spurrillen). Diese Schäden

stellen je nach Ausprägung zusammen mit den genannten Fugen und Sprüngen im

Torbereich Einzelhindernisse dar, welche das Flurförderzeug in Schwingung verset-

zen. Es ist davon auszugehen, dass normalerweise eher ebene Fahrbahnen vorlie-

gen, die durch Einzelhindernisse unterbrochen sind.

4.5 Versuchsplan

Nachdem die zu untersuchenden Einflussfaktoren in Tabelle 3-1 sowie die Flurför-

derzeuge und die Fahrersitze festgelegt sind, ist ein Versuchsplan zu erstellen, um

die Simulationsmodelle zum einen zielgerichtet modellieren und zum anderen die

Berechnung und Auswertung effizient durchführen zu können. Im Vordergrund steht

dabei in einer ersten Versuchsreihe die Identifikation der Haupteinflussfaktoren beim

Status Quo aktueller Fahrzeugtypen, d. h. die in Kapitel 4.2 ausgewählten Flurför-

derzeuge werden in ihrer jeweiligen Konfiguration als Basis genommen.

Im Rahmen dieser ersten Studie werden alle Einflussfaktoren aus Tabelle 3-1 be-

rücksichtigt. Lediglich die Gewichtseinstellung des Fahrersitzes wird ausgeklam-

mert, da diese zielgerichteter in einer sitzspezifischen Versuchsreihe unabhängig

vom Flurförderzeug untersucht werden kann. Tabelle 4-5 gibt einen ersten Überblick

über die konkret zu untersuchenden Einflussfaktoren und berücksichtigt dabei die

Vorauswahl von Flurförderzeug und Fahrersitz in den vorangegangenen Kapiteln.

Die Einflussfaktoren besitzen sowohl metrisches als auch nominales Skalenniveau

und können teilweise innerhalb ihres Wertebereichs beliebig viele Werte annehmen.

Sie können in fahrzeugunabhängige und fahrzeugabhängige Faktoren unterteilt wer-

den. Zu erstgenannten sind neben dem Flurförderzeug selbst die Fahrtrichtung und

der Fahrer zu zählen. Auch die Fahrbahn ist grundsätzlich unabhängig vom auf ihr

fahrenden Flurförderzeug, wobei sich die Einsatzbereiche und damit Bodenbeschaf-

fenheiten je Flurförderzeugtyp unterscheiden können. Alle weiteren Faktoren sind in

ihrem Wertebereich abhängig vom jeweiligen Flurförderzeug, z. B. hinsichtlich der

maximalen Nennlast und Fahrgeschwindigkeit, der typischen Bereifung als auch der

verfügbaren Bauhöhe für den Sitz. Für die weiteren Betrachtungen wird es deswe-

Page 108: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4 Planung der Untersuchung

88

gen als zweckmäßig gesehen, die drei Flurförderzeuge getrennt mit jeweils einem

eigenen Versuchsplan gleicher Generierungsvorschrift zu untersuchen, um die Un-

abhängigkeit der resultierenden zehn Faktoren zu gewährleisten.

Tabelle 4-5: Einflussfaktoren der ersten Versuchsreihen

Nr. Einflussfaktor Wertebereich

fahrzeug-

unabhängig

1 Fahrzeugtyp Gabelstapler, Schubmaststapler

2 Fahrzeug EFG 20, DFG 35, EFM 14

3 Fahrbahnanregung beliebige Anregungen

4 Fahrtrichtung vorwärts, rückwärts

5 Fahrer leicht–schwer [kg]

fahrzeug-

abhängig

6 Last 0–Nennlast [kg]

7 Fahrgeschwindigkeit 0–Maximalfahrgeschwindigkeit [km/h]

8 Neigung Hubgerüst min–max [°]

9 Reifen: Steifigkeit Bereich um übliche Steifigkeit [N/m]

10 Reifen: Dämpfung Bereich um übliche Dämpfung [N∙s/m]

11 Kabinenlagerung vorhanden, nicht vorhanden

12 Sitz MSG 20, MSG 65, MSG 85

Gleichzeitig ist bei einer solch hohen Anzahl an Faktoren eine sinnvolle Wahl der

Faktorstufen g (mit g 1 G,..., ) innerhalb ihres Wertebereichs zu wählen, um zum

einen den Berechnungsaufwand zu begrenzen und zum anderen die Anzahl der Ver-

suche überhaupt beherrschbar zu machen. Mit nur zwei Stufen je Faktor kann be-

stimmt werden, welche der Faktoren hauptsächlich Einfluss nehmen, wie groß ihre

linearen Effekte auf die Zielgröße sind und welche Stufeneinstellung zu günstigen

Zielgrößen führen [Kle-2011, S. 23]. Dieser Ansatz 2G wird im Rahmen der ersten

Versuchsreihe verfolgt. Bei der Wahl der Stufen wird auf einen genügend großen

Abstand zwischen den Stufen geachtet, um potentiell auftretende Effekte abbilden

zu können. Im Normalfall folgt die Stufenwahl der Einstellung „gering“ und „hoch“.

Tabelle 4-6 hält das Ergebnis der Faktorstufenwahl fest, das im Folgenden näher

erläutert wird.

Es ist davon auszugehen, dass ohne eine ausreichend starke Anregung des Fahr-

zeugs durch die Fahrbahn keine Schwingungen auftreten und somit keine Belastung

auf den Fahrer wirkt. Deswegen ist auch in der Einstellung „gering“ auf eine wahr-

nehmbare Anregung des Fahrzeugs Wert zu legen. Als Anregungsart bietet sich die

Schwellenüberfahrt als ein Stellvertreter der identifizierten sog. Einzelhindernisse an.

Die Höhe der Schwelle ist fahrzeugspezifisch festzulegen, da unterschiedlich große

Reifendurchmesser und -beschaffenheiten vorliegen (Tabelle 4-7). Als Szenario wird

Page 109: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4.5 Versuchsplan

89

die gerade Fahrt über eine 25 m lange Teststrecke mit zwei gleich hohen Schwellen

gewählt, was sich bei der Bestimmung eines fahrzeugspezifischen Schwingungs-

werts gemäß [DIN EN 13059] bewährt hat und in Kapitel 6.3.1 näher erläutert wird.

Die Fahrtrichtung wird hierbei zwischen vorwärts und rückwärts19 variiert.

Tabelle 4-6: Fahrzeugabhänge Wahl der Faktorstufen

Nr. Einflussfaktor Stufe 1 Stufe 2

3 Fahrbahnanregung kleine Schwelle große Schwelle

4 Fahrtrichtung vorwärts rückwärts

5 Fahrer leicht schwer

6 Last 0,2 ∙ nennm 0,8 ∙ nennm

7 Fahrgeschwindigkeit 0,4 ∙ maxv 0,9 ∙ ,Fahr maxv

8 Neigung Hubgerüst 0,1 ∙ max 0,9 ∙ max

9 Reifensteifigkeit 1,0 ∙ ,Reifen grundc 1,4 ∙ ,Reifen grundc

10 Reifendämpfung 1,0 ∙ ,Reifen grundd 2,0 ∙ ,Reifen grundd

11 Kabinenlagerung vorhanden nicht vorhanden

12 Sitz kleine Baugröße große Baugröße

Beim Fahrer wird zwischen einer „leichten“ und einer „schweren“ Person unter-

schieden. Die Zuordnung der Körpergewichte erfolgt im Zuge der Modellierung in

Kapitel 5.2.4 (Tabelle 5-5). Transportierte Last und Fahrgeschwindigkeit werden in

Abhängigkeit der Nennlast nennm und der Maximalfahrgeschwindigkeit maxv gesetzt.

Das Hubgerüst wird entsprechend der Fahrsituation in Richtung Kabine geneigt. Als

Bezugsgröße wird der maximal mögliche Neigungswinkel max des Flurförderzeugs

herangezogen. Der errechnete Stellweg durch den Hydraulikzylinder dient dabei als

Eingangsparameter. Beim Reifen erscheint es zielführend, sich am Status Quo der

Grundausstattung der Flurförderzeuge zu orientieren und diese Reifen hinsichtlich

größerer Steifigkeit und Dämpfung zu variieren. Beide Größen sind dabei unabhän-

gig zu sehen, d. h. die Reifenparameter sind jeweils so einzustellen, dass sich z. B.

bei erhöhter Steifigkeit die Dämpfung nicht ändert, wenn es die Faktorstufe nicht

vorsieht. Das Reifenmodell muss somit eine Parametrierung dieser Größen zulassen.

Beide Gabelstapler verfügen bauseits über eine Kabinenlagerung durch unterschied-

liche Gummilager bzw. Gummipuffer. In der Faktorstufe „vorhanden“ sind die Simu-

lationsmodelle mit entsprechenden elastischen Lagerstellen versehen, wobei sich

die Kenngrößen aus den real verbauten Lagerelementen ergeben. In der zweiten

Faktorstufe „nicht vorhanden“ werden die Bauteile starr miteinander gekoppelt. Der

Schubmaststapler EFM 14 verfügt über keine Kabinenlagerung, somit entfällt für ihn

dieser Faktor im Rahmen der Versuchsreihe. Bedingt durch die Platzverhältnisse in

19 Zur verwendeten Bezeichnung der Fahrtrichtung beim Schubmaststapler vgl. Kapitel 6.3.1.

Page 110: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4 Planung der Untersuchung

90

der Kabine können nicht alle Sitze auf jedem Flurförderzeug zum Einsatz kommen.

Die in Tabelle 4-7 getroffene Zuordnung zu den Faktorstufen orientiert sich am ver-

fügbaren Bauraum und dem gängigem Einsatz auf den Flurförderzeugen.

Tabelle 4-7: Faktorstufen Fahrbahn und Sitz nach Flurförderzeug

Nr. Einflussfaktor EFG 20 DFG 35 EFM 14

1 Fahrbahn (Schwellenhöhe) 4 mm, 9 mm 6 mm, 11 mm 2 mm, 7 mm

9 Sitz MSG 20, MSG 65 MSG 65, MSG 85 MSG 20, MSG 65

Es ist zu erwarten, dass die Berechnung einer Faktorstufenkombination eine Re-

chenzeit zwischen 10–30 Minuten erfordert. Bei einer automatisierten Erstellung der

Simulationsläufe, Berechnung und Auswertung ist die Rechenzeit somit kein aus-

schlaggebendes Kriterium bei der Generierung des Versuchsplans. Der Einsatz von

sog. Screening Versuchsplänen, bei denen dank spezieller Generierungsvorschriften

nicht alle Faktoren gegeneinander variiert werden müssen [Sie-2010, S. 26–56], ist

nicht erforderlich. Es wird deswegen ein vollständig faktorieller Versuchsplan für je-

des Fahrzeug erstellt, so dass sich für die Gabelstapler EFG 20 und DFG 35

Fakm = 102 = 1024 und für den Schubmaststapler Fakm = 92 = 512 Faktorstufenkom-

binationen ergeben. Damit stehen ausreichend Gleichungen zur Verfügung, um die

Haupteffekte samt aller möglichen Wechselwirkungen innerhalb eines Fahrzeugs zu

untersuchen.

Störgrößen sind bei der Berechnung nicht zu erwarten, da alle nicht zu verändern-

den Parameter konstant gehalten werden. Eine Berechnung eines Szenarios mit

denselben Parametern hat stets dasselbe Ergebnis zur Folge. Eine Streuung auf

Grund nicht zu beeinflussender Faktoren liegt nicht vor. Auf eine Wiederholung einer

Simulation mit gleichen Parametern zur Erzielung von 1K Beobachtungswerten

kann somit verzichtet werden ( 1)K . Damit entspricht die Anzahl N der Versuche

bzw. der Simulationsläufe der Anzahl der Faktorstufenkombinationen .Fakm Für die

erste Versuchsreihe sind somit N = 2560 Simulationen durchzuführen.

Sind die Haupteffekte identifiziert, werden diese in weiteren Versuchsreihen näher

untersucht. Hierbei wird die Anzahl der Faktorstufen erhöht, so dass auch explizit

untersucht werden kann, ob nur der angenommene lineare Einfluss oder ein Einfluss

höherer Ordnung vorliegt. Auch für diese Fälle wird ein vollständig faktorieller Ver-

suchsplan erstellt, der detailliert im weiteren Verlauf der Arbeit in Kapitel 7.2 darge-

legt wird.

Selbst wenn in der ersten Versuchsreihe Fahrer und Sitz im Zuge der Gesamtfahr-

zeugsimulation mit aufgenommen sind, ist es sinnvoll, diese nochmals losgelöst

Page 111: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

4.5 Versuchsplan

91

vom Fahrzeug zu untersuchen und die Sitze über einen definierten Zeitraum mit

fahrzeugtypischen Erregerschwingungen zu beaufschlagen. Dabei kann der noch

offenen Fragestellung nach dem Einfluss der Gewichtseinstellung nachgegangen

werden, die gegenüber dem Fahrergewicht variiert wird. Es ergibt sich das in Tabel-

le 4-8 dargestellte Untersuchungsspektrum für das Fahrer-Sitz-System.

Tabelle 4-8: Untersuchungsspektrum Fahrer-Sitz-System

Nr. Einflussfaktor Faktorstufen

1 Fahrer leicht, mittel, schwer

2 Sitz MSG 20, MSG 65, MSG 85

3 Gewichtseinstellung leicht – schwer in 5 kg Abstufung

Page 112: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 113: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

93

5 Modellbildung der Flurförderzeuge

Auf Basis der in Kapitel 4.1.1 dargelegten Überlegungen erfolgt die Erhebung der

Daten mit Hilfe der Mehrkörpersimulation. Zu Beginn wird in Kapitel 5.1 eine kurze

Einführung in die Theorie der Mehrkörpersimulation gegeben sowie die Vorgehens-

weise bei der Erstellung der Mehrkörpermodelle dargelegt. Auch wenn die unter-

suchten Flurförderzeuge bauliche Differenzen aufweisen, so kann bei der Modeller-

stellung in vielen Bereichen auf gleiche Modellierungsprinzipien zurückgegriffen

werden. Die Modellbildung dieser Teilkomponenten wird in Kapitel 5.2 beschrieben.

Anschließend folgt der Aufbau der einzelnen Simulationsmodelle der Flurförderzeuge

in Kapitel 5.3.

5.1 Mehrkörpersimulation

5.1.1 Mehrkörpersysteme

Ein Mehrkörpersystem ist die physikalische Beschreibung eines technischen Sys-

tems durch Körper und deren Verbindungen. Mehrkörpersysteme bestehen im All-

gemeinen aus massebehafteten starren oder elastischen Körpern, masselosen Bin-

dungs- und Koppelelementen sowie weiteren von außen eingeprägten Kräften

(Abbildung 5-1). Die Bindungs- und Koppelelemente können an diskreten Punkten

Einzelkräfte und -momente verursachen. Die Starrkörper sind durch die Lage ihres

Schwerpunkts und ihre Masseeigenschaften bestimmt. [Sch-2004]

Abbildung 5-1: Prinzipskizze eines Mehrkörpersystems

In Abhängigkeit der verwendeten Körper kann eine Unterscheidung zwischen star-

ren, elastischen und hybriden Mehrkörpersystemen getroffen werden. Während star-

Körperstarr

Körper

starr

Körperstarr

Gelenk

Kontakt

Dämpfer

Feder

Umwelt

Körperelastisch

Page 114: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

94

re Mehrkörpersysteme lediglich aus Starrkörpern bestehen, setzen sich elastische

Mehrkörpersysteme ausschließlich aus Einzelkörpern zusammen, die sich selbst

verformen können. Eine Kombination aus beiden stellt das hybride Mehrkörpersys-

tem dar, welches sowohl Starrkörper als auch elastische Kontinua enthält und von

Schiehlen und Eberhard auch als flexibles Mehrkörpersystem bezeichnet wird [Sch-

2004, S. 8]. Dies reduziert die Abbildung elastischer Körper auf die relevanten Berei-

che und befriedigt die Forderung nach geringst möglichem Aufwand bei maximaler

Transparenz und Wirklichkeitsnähe des Systems im Hinblick auf die Problemstellung

[Pfe-1992]. Eine gängige Methode zur Vereinfachung von elastischen und hybriden

Modellen ist die Diskretisierung elastischer Körper in endliche starre Abschnitte,

welche durch Federkräfte und -momente gekoppelt werden.

Gängige Bindungselemente schränken je nach Wertigkeit eine bestimmte Anzahl an

Freiheitsgraden zwischen zwei Körpern oder dem Körper und der Umwelt explizit

ein. Im Normalfall stehen diesen Bindungselementen reale technische Umsetzungen

wie Scharniere oder Kugelgelenke gegenüber. Während holonome Bindungen die

relative Lage der Körper zueinander festlegen, schränken nichtholonome Bindungen

ausschließlich die Geschwindigkeit ein [Sch-2004].

Koppelelemente zwischen zwei Körpern übertragen Kräfte und werden von Rill und

Schaeffer auch als elastische Verbindungselemente bezeichnet [Ril-2010]. Gängige

Beispiele sind Feder-Dämpfer-Elemente oder Kontaktformulierungen. Es handelt

sich letztendlich stets um Kraftformulierungen zwischen zwei Punkten eines Körpers

mit vorgegebenen Wirkrichtungen.

5.1.2 Kinematische Struktur und Bewegungsgleichungen

Die kinematische Struktur eines Mehrkörpersystems ist im Allgemeinen durch die

Anzahl der Starrkörper ,Kn die Anzahl der Gelenke Gn sowie deren jeweilige Frei-

heitsgrade Gif festgelegt. Da Gelenke die relative Lage zweier Starrkörper zueinan-

der einschränken, sind Zwangsbedingungen für diese gesperrten Freiheitsgrade zu

formulieren [Sch-2004]. Die Anzahl r aller Zwangsbedingungen eines Mehrkörper-

systems errechnet sich bei räumlicher Betrachtung folglich zu:

1

6Gn

Gi

i

r f

(5-1)

Die Anzahl Systemf der unabhängigen verallgemeinerten Freiheitsgrade des Mehrkör-

persystems kann somit nach dem Grübler-Kutzbach-Kriterium [Grü-1917; Wal-2004]

wie folgt bestimmt werden.

Page 115: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.1 Mehrkörpersimulation

95

1

6 6 6Gn

System K K gi

i

f n r n f

(5-2)

Das Grübler-Kutzbach-Kriterium setzt jedoch voraus, dass keine redundanten La-

gerreaktionen im Modell enthalten sind. Ist dies der Fall, bestimmt sich die tatsächli-

che Anzahl der Freiheitsgrade tatf mit der Anzahl der redundanten Bindungen redn

nach [Ril-2010] zu:

1

6 6 6Gn

tat K red K Gi red

i

f n r n n f r

(5-3)

Redundante Bindungen sind bei der Modellierung zu vermeiden, auch wenn die ein-

gesetzte Software MSC.ADAMS diese erkennt und aus den Gleichungen eliminiert.

Um die Bewegungsgleichungen für Mehrkörpersysteme aufzustellen existieren in

Abhängigkeit der Komplexität des zu Grunde liegenden Systems unterschiedliche

Prinzipien. Hängen die äußeren Kräfte nicht von Reaktionskräften im System ab,

spricht man von idealen Systemen. Schielen und Eberhard unterteilen diese idealen

Systeme weiter in gewöhnliche Mehrkörpersysteme mit proportional-differentiellem

Verhalten der äußeren Kräfte und ausschließlich holonomen Bindungen und in all-

gemeine Mehrkörpersysteme, die diese beiden Bedingungen nicht erfüllen. Während

für erstgenannte die Bewegungsgleichungen mit den Newton-Eulerschen-

Gleichungen gebildet werden können, wenden sie für die allgemeinen Mehrkörper-

systeme das Prinzip von Jourdain an. Bei nichtidealen Systemen sind die äußeren

Kräfte auch von den Reaktionskräften abhängig, was z. B. bei Reibungskräften der

Fall ist und eine Kopplung der Bewegungs- und Reaktionsgleichungen zur Folge hat.

[Sch-2004]

Die Mehrkörpersimulationssoftware MSC.ADAMS formuliert die Bewegungsglei-

chungen für alle freigeschnittenen Starrkörper nach den Lagrangeschen Gleichun-

gen zweiter Art in Körperkoordinaten, was zu einem differenziell-algebraischen Glei-

chungssystem führt. In der einfachsten Form lauten diese nach [McC-1998; Neg-

2004]:

Tq

d L LQ

dt qq

(5-4)

Dabei steht L als Differenz von kinetischer und potentieller Energie für die sog. Lag-

range-Funktion und q für die Spaltenmatrix der generalisierten Lagekoordinaten.

Mit q q

werden die Richtungen der Reaktionskräfte der Bindungsgleichungen

Page 116: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

96

abgebildet, während die zugehörigen Lagrange Multiplikatoren enthält. Alle äuße-

ren aufgeprägten Kräfte und Momente finden sich in der Spaltenmatrix ,Q die Gravi-

tationskräfte wiederum sind in Lq

berücksichtigt. Wie auch Biermann im Rahmen

seiner Arbeit vorstellt führt die Substitution idqidt

u 0 mit der Geschwindigkeit u

der Starrkörper zu einem System von Differenzialgleichungen 1. Ordnung:

1

0r

ji ii j

j i

dI EF

dt q q

1, ,6 Ki n (5-5)

Die zeitliche Ableitung des Impulses idI

dt ist als Trägheitskraft der translatorischen

Koordinaten interpretierbar, während in der partiellen Ableitung der Energie iE nach

der Position iq die aus Potentialen stammenden Kräfte wie Gewichtskräfte oder Fe-

derkräfte enthalten sind. Die äußeren eingeprägten Kräfte werden wiederum

durch iF repräsentiert. Die aus den r Zwangsbedingungen resultierenden Reakti-

onskräfte werden auch hier durch den Lagrange Multiplikator j in ihrem Betrag und

durch die partielle Ableitung der Bindungsgleichung j

iq

in ihrer Richtung be-

schrieben. [MSC-2003; Bie-2010]

Auf die Erstellung eines stark vereinfachten Ersatzmodells für ein Flurförderzeug und

die Ableitung der Bewegungsgleichungen sei an dieser Stelle verzichtet. Stattdessen

wird auf das von Schmalzl erstellte einfache analytische Modell eines

Schmalgangstaplers mit Hilfe der Lagrangeschen Gleichung verwiesen [Sch-2006].

Zur Lösung der differenziell-algebraischen Gleichungssysteme stellt das Programm

MSC.ADAMS unterschiedliche Integratoren zur Verfügung, welche entweder auf der

impliziten oder expliziten Gleichungsform beruhen. Da mit einem numerisch steifen

System zu rechnen ist, wird der GSTIFF-Integrator verwendet [Gea-1971]. Dieser

basiert auf dem Rückwärtsdifferenzenverfahren (Backward Differentiation Formula,

BDF), welches zu der Gruppe der Mehrschrittverfahren gehört, die sich die grundle-

genden Idee zu eigen machen, Informationen aus weiter zurückliegenden Integrati-

onsschritten zu nutzen. Gleichzeitig handelt es sich bei dem GSTIFF-Integrator um

ein Prädiktor-Korrektor Verfahren. Der Prädiktor stellt dem iterativ arbeitenden Kor-

rektor Startwerte zur Verfügung, die bereits nah an der Lösung des Anfangswert-

problems liegen, während der Korrektor das nichtlineare Gleichungssystem löst

[MSC-2010b].

5.1.3 Vorgehen bei der Erstellung der Mehrkörpersysteme

Da die Mehrkörpersimulation genutzt wird, um die in Tabelle 3-1 genannten Einfluss-

faktoren auf die Vibrationsexposition zu untersuchen, können aus dieser Aufstellung

die Anforderungen an die Mehrkörpermodelle abgeleitet werden. Es sind die unter-

Page 117: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.1 Mehrkörpersimulation

97

schiedlichen baulichen Parameter des Flurförderzeugs genannt, welche im Modell

hinreichend genau abzubilden sind und die Möglichkeit einer Variation zulassen. Um

die resultierenden Belastungen des Fahrers zu ermitteln, sind entsprechende

schwingungsfähige Modelle für Sitz und Fahrer zu integrieren. Eine Untersuchung

der Anregung durch Bodenunebenheiten, die explizit Stoßbelastungen durch die

Überfahrt scharfkantiger Hindernisse einschließen, bedingt die Notwendigkeit von

geeigneten Straßen- und Reifenmodellen. Grundsätzlich ergibt sich die Erfordernis,

Vibrationen in einem Frequenzbereich von mindestens 0,5–80 Hz berechnen zu kön-

nen.

Nach Dresig kann der Modellierer entweder eine induktive oder eine deduktive Mo-

dellbildungs-Strategie verfolgen. Während bei der induktiven Modellbildung ein Mi-

nimalmodell als Ausgangspunkt mit einer kleinen Anzahl an Freiheitsgraden schritt-

weise unter Berücksichtigung von Berechnungs- und Messergebnissen gemäß den

Anforderungen erweitert wird, folgt die deduktive Modellbildung dem Weg vom all-

gemeinen (überdimensionalen) Modell zum speziellen (einfachen, adäquaten) Mo-

dell. Im letzteren Fall werden im Startmodell „alle physikalischen Effekte berücksich-

tigt, von denen man meint, daß sie von Einfluß auf das Ergebnis sein könnten“. Die

somit möglichen unwesentlichen Einflussgrößen verkomplizieren das Modell unnötig

und führen zu umfangreichen Gleichungen. [Dre-2006]

Im Rahmen der vorliegenden Arbeiten erfolgt die Modellbildung auf Basis der ein-

gangs genannten Anforderungen, d. h. es liegen Annahmen über die möglichen Ein-

flussfaktoren vor. Zudem erfolgt vorab ein fachlicher Austausch mit Experten, so

dass u. a. bekannt ist, dass bestimmte Bauteile nicht als starr angenommen werden

können und dass das Hubgerüst mit Spiel zu modellieren ist, um z. B. das „Sprin-

gen“ des Gabelträgers bei Fahrten ohne Last abbilden zu können. Auf Basis dieses

Wissens wird die deduktive Modellbildungs-Strategie gewählt. Dies bedeutet jedoch

nicht, dass das komplette Modell aufgebaut und dann erst getestet wird, sondern es

werden die in Abbildung 5-2 gezeigten Entwicklungsschritte in sich steigernder

Komplexität durchlaufen, um Modellierungsfehler früh zu erkennen und zu beseiti-

gen.

Page 118: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

98

Abbildung 5-2: Schritte zur Berechnung eines Mehrkörpersystems

Auf Basis der genannten Problemstellung bzw. der abgeleiteten Aufgabenstellung

und der sich damit für das Modell ergebenden Anforderungen wird das mechani-

sche Modell aufgebaut. Bei Mehrkörpermodellen ist dies die hinreichend genaue

physikalische Beschreibung des technischen Systems durch (starre und elastische)

Körper und deren Verbindungselemente sowie äußere Kräfte und Momente. Das

mechanische Modell selbst kann in zwei Entwicklungsstufen unterteilt werden. Den

Anfang bildet das konzeptionelle Modell, welches den Aufbau des Modells auf theo-

retischer Ebene – meist in Form von Skizzen oder einzelnen Kraftformulierungen –

beschreibt. Darauf aufbauend wird mit entsprechender Software das Simulations-

modell als ablauffähiges Modell erstellt, um mit ihm weitere Experimente durchfüh-

ren zu können. Gemäß Kapitel 4.1.1 wird das Softwarepaket ADAMS der Firma

MSC-Software Corporation verwendet, wobei die Modellerstellung im sog. Prepro-

cessor ADAMS/View erfolgt. Das konzeptionelle Modell ist gegenüber der Realität

(Problemstellung) und das Simulationsmodell gegenüber dem konzeptionellen Mo-

dell zu verifizieren (vgl. Kapitel 6.1).

Anhand des Aufbaus des mechanischen Modells, d.h. der Verbindung von starren

und elastischen Körpern mit Koppel- und Bindungselementen, werden die Bewe-

gungsgleichungen des Systems nach Formel (5-4) abgeleitet. Resultat ist das ma-

thematische Modell in Form von differenziell-algebraischen Gleichungssystemen,

welches wie in Kapitel 5.1.2 beschrieben durch numerische Integration mit dem sog.

Solver berechnet wird. Im Normalfall übernimmt der Solver die Erstellung der Bewe-

gungsgleichungen aus dem Simulationsmodell. Dafür bereitet die Software, in der

das Simulationsmodell erstellt wird, im Rahmen des sog. Preprocessings das Modell

in einer solchen Form auf, dass es vom Solver weiterverarbeitet werden kann.

Ergebnis

SimulationsmodellmechanischesModell

konzeptionelles Modell

mathematisches Modell

Berechnung

Problemstellung Validierung

Verifikatio

n

Verifi-kation

Page 119: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

99

Als Ergebnisse der Berechnung liegen die einzelnen Kräfte sowie Position, Ge-

schwindigkeit und Beschleunigung der einzelnen Körper für jeden Zeitschritt vor.

Üblicherweise werden weitere Zustandsgrößen besonderer Verbindungselemente

wie z. B. die Verformung einer Feder in der Ergebnisdatei abgelegt. Mit Hilfe einer

geeigneten Software werden im Postprocessing die Ergebnisse visualisiert und auf-

bereitet (vgl. Kapitel 4.1.2, Software DIAdem der Firma National Instruments). An-

hand der vorliegenden Berechnungsergebnisse des Simulationsmodells ist dieses

gegenüber der Realität zu validieren (vgl. Kapitel 6.2).

5.2 Modellierung gemeinsamer Teilkomponenten

Unabhängig vom jeweiligen Gesamtfahrzeugmodell wird folgend in Anlehnung an

die Erstveröffentlichung des zu Grunde liegenden Forschungsprojekts in [Gün-2011]

auf die Modellierung einzelner gemeinsamer Teilkomponenten eingegangen. Wichti-

ge Punkte sind hierbei die Abbildung von Reifen (Kapitel 5.2.1) und Fahrbahn (Kapi-

tel 5.2.2) sowie des Mensch-Sitz-Systems (Kapitel 5.2.3 und Kapitel 5.2.4). An-

schließend erfolgt eine genauere Betrachtung des Hubgerüsts (Kapitel 5.2.5) sowie

weiterer Komponenten der Fahrzeugstruktur (Kapitel 5.2.6 und Kapitel 5.2.7), um

abschließend auf die Bestimmung der Fahrzeugmassen einzugehen (Kapitel 5.2.8).

5.2.1 Reifen

Bei einer fahrdynamischen Betrachtung nehmen die Reifen als einzige Schnittstelle

zwischen Fahrzeug und Boden eine Schlüsselstellung ein. Indem sie Kräfte und

Momente, die durch das Beschleunigen, Bremsen, Kurvenfahren, Eigen- und Last-

gewicht entstehen, zwischen Fahrzeug und Boden übertragen, bestimmen sie maß-

geblich die Leistungsfähigkeit, die Sicherheit und den Komfort des Fahrzeugs.

Die Bereifung von Flurförderzeugen kann nach VDI 2196 gemäß ihrer Bauart in Luft-

reifen, Solidreifen (auch unter dem Namen Superelastikreifen bekannt), Vollgummi-

reifen und Polyurethanreifen eingeteilt werden [VDI 2196]. Bei den zu untersuchen-

den Gabelstaplern kommen ausschließlich Superelastik- und beim Schubmaststap-

ler Polyurethanreifen zum Einsatz, weshalb die Modellbildung auf diese beiden Rei-

fentypen beschränkt wird.

Superelastikreifen bestehen aus mehreren radialen Schichten unterschiedlicher

Gummimischungen, welche zur Einstellung verschiedener Eigenschaften dienen

(Abbildung 5-3). Während die innere Schicht den festen Sitz auf der Felge herstellt,

werden durch die hochelastische Zwischenschicht Rollwiderstand und Schwin-

gungskomfort gezielt beeinflusst. Der außen liegende Laufstreifen beinhaltet das

Page 120: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

100

Profil und gibt die Abriebfestigkeit vor. Historisch sind die Superelastikreifen aus voll

ausgefüllten Luftreifen zur Vermeidung von Luftverlust entstanden. Die geringere

Einfederung bei Lastaufnahme ist günstig für die Verwendung bei Gabelstaplern. Da

Reifen, die auf öffentlichen Straßen gefahren werden dürfen, ein bestimmtes Min-

destarbeitsvermögen besitzen müssen, verfügen alle Superelastikreifen über eine

sog. 60-Joule-Leiste, deren Oberkannte die maximale Abfahr- und Nachschneide-

grenze darstellt [VDI-2011].

Abbildung 5-3: Seitenansicht und Aufbau eines Superelastikreifens nach [Con-2008]

Bei den im Rahmen dieser Arbeit betrachteten Polyurethanreifen wird der weichelas-

tische Bandagenwerkstoff Polyurethan entweder direkt auf die Felge aus Stahl bzw.

Gusswerkstoff beschichtet oder als auswechselbare Laufbelagsbandage hergestellt,

die vor allem im amerikanischen Markt anzutreffen ist [Dol-2011]. Durch die höhere

Materialsteifigkeit und den einschichtigen, flachen Aufbau resultiert eine noch gerin-

gere Einfederung bei Lastaufnahme im Vergleich zu den Superelastikreifen. Entspre-

chend geringer ist jedoch auch die Dämpfung, weswegen Polyurethanreifen im

Normalfall ausschließlich in Hallen mit befestigten Industriefußböden zum Einsatz

kommen. Bekannt sind diese Reifen u. a. unter dem Namen Vulkollan®-Reifen.

Hierbei handelt es sich jedoch um ein Produkt der Bayer MaterialScience AG. Auch

wenn umgangssprachlich die Bezeichnung Rollen für Polyurethanreifen verbreitet

ist, wird im Rahmen dieser Arbeit der einheitliche Begriff Reifen verwendet

5.2.1.1 Auswahl des Reifenmodells

In dynamischen Simulationen wird der Reifen zunehmend als eigenständiges Objekt

betrachtet, wobei sich der Modellierer meist existierender Reifenmodelle bedienen

kann, die über definierte Schnittstellen in die Simulationsumgebung integriert wer-

den. Aufgabe des Reifenmodells ist es – sozusagen in Form einer Black Box – in der

Simulation die Reifenkräfte und -momente zu berechnen. Als Eingangsgrößen die-

nen die Position und die Orientierung der Felgenmitte sowie die Translations- und

Winkelgeschwindigkeit der Felge. Zudem erhält das Reifenmodell Informationen

60-Joule-Leiste

Laufstreifen

hochelastische Zwischenschicht

Flankenschutz

Drahtkern

Felge BodenHaltewulst

Page 121: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

101

über die Straße (Höhenprofil, Reibwert), worauf gesondert in Kapitel 5.2.2 eingegan-

gen wird. Unter Beachtung von eventuellen modellabhängigen Zustandsgrößen be-

rechnet das Reifenmodell für jeden Simulationsschritt die Felgenkräfte

und -momente und liefert diese an die Simulationssoftware zurück (Abbildung 5-4).

Abbildung 5-4: Reifenmodell als Black Box nach [Gip-2010]

Für die unterschiedlichen Fragestellungen in der Fahrzeugtechnik wie die Untersu-

chung der Fahrdynamik, des Komforts oder der Akustik existieren bereits verschie-

dene spezifische Reifenmodelle, die sich hinsichtlich des verwendeten methodi-

schen Ansatzes klassifizieren lassen. So finden Finite-Elemente(FE)-Modelle, kennli-

nienbasierte Modelle und Mehrkörpermodelle mit unterschiedlichem Modellierungs-

grad Anwendung. Wie Abbildung 5-5 verdeutlicht, gibt es kein allgemeingültiges

Modell für den gesamten Frequenzbereich. So besitzen nach Meywerk komplexere

Modelle mit über 100 Freiheitsgraden für kleine Frequenzen nur eine eingeschränkte

Gültigkeit [Mey-2007a, S. 248]. Bei der Auswahl eines geeigneten Reifenmodells

werden die eingangs in Kapitel 5.1.3 genannten Anforderungen berücksichtigt. Be-

sonders relevant ist hierbei das Überfahren von stoßartigen Hindernissen wie z. B.

Torschwellen und Fugen bei einer akzeptablen Rechenzeit.

Zustandsgrößen

Position Felgenmitte

Felgenorientierung

Felgengeschwindigkeit

Felgenwinkel-geschwindigkeit

Straße: Höhenprofil, Reibwert

Felgenkräfte

Felgenmomente

Page 122: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

102

Abbildung 5-5: Einordnung der Modellierungsansätze nach Komplexität (Freiheitsgrade) und Dyna-mik (nach [Amm-2005])

Klassische Reifenmodelle vereinfachen den Reifen zu mehr oder weniger komplexen

Ersatzmodellen, ohne sich um die innere Dynamik des Reifens zu kümmern. Vertre-

ter dieses Modelltyps sind z. B. die Reifenmodelle des Entwicklers Pacejka, welche

unter dem Namen „Magic Formula“ bekannt sind [Bak-1987; Pac-1989; Pac-1993],

oder das Modell UA-Tire der Universität von Arizona [Gim-1988]. Das vertikale Rei-

fenverhalten wird dabei durch ein parallel geschaltetes Feder-Dämpfer-System mit

teilweise nichtlinearer Kennlinie dargestellt. Da diese Reifenmodelle keine Informati-

on über den inneren Aufbau des Reifens besitzen, sind ihre Parameter vollständig

durch Messungen zu bestimmen. Ihr Vorteil liegt zum einen in der kurzen Rechen-

zeit, zum anderen sind viele kommerzielle Modelle im Bereich der Luftreifen verfüg-

bar. Bei kennlinienbasierten Modellen werden die Eigenschaften des gesamten Rei-

fens in einem einzigen Punkt, dem Kontaktpunkt bzw. Schwerpunkt der Radauf-

standsfläche, abgebildet. Die korrekte Erfassung von kurzwelligen Bodenunebenhei-

ten wie z. B. Torschwellen ist somit nicht gewährleistet. Durch ein erweitertes Ab-

tastmodell können zwar stufenförmige Unebenheiten erfasst werden, die Gültigkeit

auf beliebige kurzwellige Hindernisse ist jedoch nicht gegeben, da die abgebildete

Dynamik bis ca. 10 Hz als beschränkendes Element auftritt [Mey-2007a]. Als Vertre-

ter der Bürsten- oder Ringmodelle ist das Swift-Reifenmodell als Erweiterung des

Magic-Formula-Reifenmodells zu nennen. Das starre Rad wird hier durch einen

ebenfalls starren Kreisring, der jedoch elastisch auf der starren Felge gelagert ist,

ersetzt [Oos-2000]. Die Erfassung von stufenförmigen Hindernissen erfolgt nach

Meywerk jedoch wie bei den Kennlinienmodellen durch einen einfachen Ersatzme-

chanismus und ist somit stark eingeschränkt [Mey-2007a].

3 10 30

10

100

1.000

· Komfort- undSchwingungsanalyse

· Lebensdauer

· Fahrdynamik

· Fahrstabilität

· Auslegung

· Regelungssysteme

Pacejka,Kennlinien

Bürsten- u. Ringmodelle

Mehrkörper-modelle

Finite-Elemente-Modelle

Frequenz [Hz]

Ko

mp

lexität

(Anza

hl d

er

Fre

iheitsg

rad

e)

Page 123: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

103

Eine neue Generation der „Komfort“-Modelle beschreibt den Reifen anhand struk-

turmechanischer Modelle. Ist die Eigendynamik des Reifenkörpers von Interesse, so

werden Mehrkörper-Reifenmodelle mit geeignetem Detaillierungsgrad verwendet.

Der Reifen wird hierfür in eine Vielzahl von Einzelmassen zerteilt, die räumlich be-

weglich miteinander gekoppelt und über Feder-Dämpfer-Elemente verbunden sind.

Die Struktur ist gröber als bei Finite-Elemente-Modellen. Solche Modelle sind durch

ihr physikalisches Systemverhalten definiert, da eine kennlinienartige Abbildung der

vielen Einzelkörper nicht praktikabel ist. Als bekannte Vertreter sind DNS-Tire [Gip-

1987; Gip-1996] sowie FTire [Gip-1999; Gip-2005; Gip-2006] von Gipser zu nennen,

wobei das Augenmerk der Modelle klar auf der Nachbildung von Luftreifen im Be-

reich Automobil, LKW und Motorrad sowie Flugzeug liegt.

Finite-Elemente-Reifenmodelle sind besonders aufwändig, da ihnen physikalische

Materialeigenschaften zu Grunde liegen, und besonders für Fragestellungen geeig-

net, die das lokale Deformationsverhalten oder das akustische Verhalten des Reifens

betreffen. Durch ihren meist hohen strukturellen Aufwand führen FE-Modelle zu rela-

tiv hohen Rechenzeiten und werden daher in der Regel zur Untersuchung vom Fahr-

zeug freigestellter Räder verwendet. Als Teil eines Mehrkörper-Gesamtfahrzeugmo-

dells für die Fahrdynamik sind FE-Modelle heute noch wenig geeignet. Als Vertreter

ist das Modell RMOD-K zu nennen [Oer-2001].

Auf ein existierendes Reifenmodell für die Beschreibung von Superelastik- und Po-

lyurethanreifen kann nicht zurückgegriffen werden, da kein Modell verfügbar ist,

welches den genannten Anforderungen genügt. Das in Kapitel 2.1.3 vorgestellte Rei-

fenmodell von Busch und Bruns auf Basis neuronaler Netze [Bus-2012] besitzt aus-

schließlich Gültigkeit für niederfrequente Querdynamik und ist als Vertreter der

Kennlinien- oder Bürstenmodelle nicht für die Überfahrt von Hindernissen geeignet.

Das mittlerweile von Günthner et al. vorgestellte Mehrkörperreifenmodell für vertikal-

dynamische Untersuchungen [Gün-2013] ist zu Beginn der Durchführung der Unter-

suchungen noch nicht bekannt. Für vorliegende Arbeit wird deshalb das Mehrkör-

per-Reifenmodell FTire [Cos-2010a] (Version 2.11) gewählt, dessen Einsatzgebiet

üblicherweise die Modellierung von Luftreifen darstellt [Gip-2010].

Die Modellbildung des Reifenmodells FTire für den Luftreifen beruht auf der Nach-

bildung des Stahlgürtels als dehnbarer und flexibler Ring, welcher mit verteilten Bie-

gesteifigkeiten in radialer, tangentialer und axialer Richtung ausgestattet und durch

verteilte Steifigkeiten an die Felge gekoppelt ist (Abbildung 5-6 links). Alle Steifigkei-

ten sind vom Reifeninnendruck abhängig. Die numerische Approximation des Rings

erfolgt je nach Genauigkeitsanforderung durch 50 bis 150 Punktmassen, die sog.

Gürtelelemente. Jedem Gürtelelement werden ebenso je nach Genauigkeitsanforde-

Page 124: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

104

rung eine bestimmte Anzahl an masselosen Laufstreifen- oder Kontaktelementen

zugeordnet (Abbildung 5-6 rechts). Diese sind durch nichtlineare Federn und Dämp-

fer in radialer, tangentialer und axialer Richtung mit dem Gürtelelement und dessen

Nachbarn verbunden. Die radiale Einfederung der Laufstreifenelemente ist von dem

Höhenprofil der Fahrbahn und der Position und Orientierung der Gürtelelemente ab-

hängig. Scher- und Reibkräfte beeinflussen die tangentiale und radiale Auslenkung.

[Gip-2010]

Abbildung 5-6: Vereinfachte Darstellung der „in-plane“-Gürteldiskretisierung (links) und Kontaktele-mente (rechts) (nach [Gip-2010])

Durch eine Modellanpassung des Entwicklers an die Anforderungen von Reifen aus

Vollmaterial kann in einer ersten Näherung das Verhalten von Superelastik- und Po-

lyurethanreifen durch ein physikalisches Ersatzmodell abgeleitet werden. Bei der

Berechnung der Kräfte in der FTire-Routine für diesen Reifentyp FTire/solid wird das

Verhalten des gesamten Reifenunterbaus (Gürtel, Karkasse, Seitenwand, Innenvo-

lumen, Innendruck) unterdrückt. Die Kontaktelemente sind mit entsprechender Ge-

ometrie und Steifigkeit direkt mit der Felge verbunden. Hierbei wird der Vorteil der

physikalischen Modellbildung anstatt der empirischen Beschreibung ausgenutzt.

Das Reifenverhalten kann somit auch in Betriebspunkten vorhergesagt werden, wel-

che nicht durch Messung gestützt sind. Das Reifenmodel FTire bietet weiterhin den

Vorteil, dass es mit unterschiedlichen Straßenformaten interagieren kann (vgl. Kapi-

tel 5.2.2).

Aus zeitlichen und finanziellen Gründen ist eine ausgiebige Untersuchung der ver-

wendeten Reifen auf Trommelprüfständen, wie z. B. in [Köh-1998] beschrieben,

nicht möglich. Kleine Reifendurchmesser in Kombination mit hohen Radlasten stel-

len zusätzlich besondere Anforderungen an mögliche Prüfstände dar. Aus diesem

Grund wird die Validierung des Reifenmodells auf die Abbildung der radialen Steifig-

keit und Dämpfung reduziert, welche für den Fokus der Hindernisüberfahrt von ho-

her Relevanz sind. Die verfügbare Literatur über das Verhalten von Superelastikrei-

cbend

cbelt

ctang

crad

Page 125: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

105

fen zu Vergleichszwecken beschränkt sich zum Zeitpunkt der Untersuchung auf das

mittlerweile 27 Jahre alte Standardwerk von Rappen [Rap-1988].

5.2.1.2 Geometrie

Die Geometrie von Superelastikreifen wird in Anlehnung an den Luftreifen durch die

in Abbildung 5-7 dargestellten relevanten Größen definiert.

Abbildung 5-7: Geometrie von Superelastikreifen (nach [Con-2008])

Eine wesentliche Größe, welche oftmals für die Bezeichnung von Reifen Verwen-

dung findet, ist das Querschnittsverhältnis : .H B Für Superelastikreifen gelten die

gleichen Bezeichnungen wie für Diagonal-Luftreifen mit der Angabe der Felgenbreite

als Ergänzung [Con-2008]. Diese sind nicht einheitlich, da für Luftreifen im Laufe der

Entwicklung unterschiedliche Bezeichnungen vergeben worden sind, die auch heute

nebeneinander verwendet und entsprechend adaptiert werden. Die in Abbildung 5-7

genannten Größen werden in dem jeweiligen reifenspezifischen Tire Property File

hinterlegt und um Angaben zum Laufflächenanteil der profilierten Superelastikreifen

ergänzt.

5.2.1.3 Steifigkeit

Die radiale Steifigkeit eines Reifens Reifenc als Quotient von Radlast ReifenF und der

dabei resultierenden Einfederung Reifenf wird in der Regel auf Trommelprüfständen

gemessen und kann für die verwendeten Superelastikreifen über die jeweiligen Rei-

fenhersteller bezogen werden. Durch eine sich vergrößernde Aufstandsfläche bei

zunehmender Last weisen Reifen eine progressive Steifigkeitskennlinie mit in erster

Näherung linearem Verhalten im Arbeitspunkt auf. Da bei Hindernisüberfahrt auch

H

B

DFelge

rstat

fReifen

DA

DA Reifen-AußendurchmesserB QuerschnittsbreiteH ReifenhöheDFelge FelgendurchmesserbFelge FelgenbreitefReifen Einfederung unter Lastrstat statischer HalbmesserH:B Querschnittsverhältnis

bFelge

Page 126: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

106

ein Abheben der Reifen möglich ist, sind alle Betriebszustände zu berücksichtigen,

was durch den physikalischen Modellaufbau des verwendeten Reifenmodells jedoch

sichergestellt ist.

Als Stellgröße für die Reifensteifigkeit Reifenc im Reifenmodell FTire/solid dient die

Shore-Härte eines einzelnen Gummi-Elements. Zur Bestimmung der korrekten Pa-

rametereinstellungen wird in der Mehrkörpersimulationsumgebung ein virtueller

Trommelprüfstand aufgebaut (Abbildung 5-8). Durch einen iterativen Abgleich der

Einfederung Reifenf von Berechnung und Datenblatt und entsprechender Modellan-

passung wird ein gutes Abbild der radialen Steifigkeit erreicht.

Abbildung 5-8: Virtueller Trommelprüfstand

Für die Polyurethanreifen sind keine Herstellerangaben bezüglich der radialen Stei-

figkeit Reifenc verfügbar. Aus diesem Grund werden die Reifen einzeln auf einem

Druckprüfstand vermessen (Abbildung 5-9), wobei mit geeigneter Sensorik die

Druckkraft ReifenF und die resultierende Einfederung des Reifens Reifenf aufgezeichnet

wird. In der Auswertung wird berücksichtigt, dass die Kraft normalerweise über die

Achse eingeleitet wird. Der Abgleich der Steifigkeit mit dem Reifenmodell FTire/solid

erfolgt ebenso wie beim Superelastikreifen durch eine iterative Anpassung der Sho-

re-Härte der einzelnen Gummielemente.

FReifen

fReifen

Page 127: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

107

Abbildung 5-9: Messung der radialen Steifigkeit eines Polyurethanreifens

5.2.1.4 Dämpfung

Ein weiterer relevanter Parameter ist das Dämpfungsverhalten der Reifen, da dieses

vor allem bei Superelastikreifen maßgeblich das Schwingungsverhalten des Fahr-

zeugs beeinflusst. Im Gegensatz zur Steifigkeit liegen über die Dämpfung keine Her-

stellerangaben vor. Einziger Anhaltspunkt im Bereich der Superelastikreifen sind

zum Zeitpunkt der Modellerstellung im Rahmen dieser Arbeit die Forschungsergeb-

nisse von Rappen (Abbildung 5-10). Im Rahmen seiner Untersuchungen wird der

Reifen über eine Wippe auf einem Trommelprüfstand positioniert und durch ein Hin-

dernis auf der Trommel angeregt, worauf ein freies Ausschwingen erfolgt und die

Dämpfung abgeleitet werden kann [Rap-1988].

Abbildung 5-10: Dämpfungsfaktoren unterschiedlicher Reifen [Rap-1988]

5.00-8 18x7-8 7.00-12 23x9-10

Däm

pfu

ng

sfakto

r d

Reifen [N

∙s/m

]

6.000

4.000

2.000

0

Reifengröße

Page 128: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

108

Da sich im Zuge der Gesamtfahrzeugsimulation der Reifen als eines der Schlüs-

selelemente für eine gute Übereinstimmung von Modell und Realität herauskristalli-

siert und die in Abbildung 5-10 dargestellten Dämpfungsfaktoren einen breiten Be-

reich abdecken, wird im Rahmen von Einzelversuchen das Dämpfungsverhalten der

verwendeten Reifen exakt bestimmt. Die Untersuchung beschränkt sich aus Zeit-

und Kostengründen auf den nur durch das Eigengewicht belasteten Zustand bei

Stillstand. Da die Untersuchungen von Rappen hinsichtlich des Gewichtseinflusses

auf ein konstantes Lehr’sches Dämpfungsmaß hinweisen [Rap-1988], kann der in

Abbildung 5-11 gezeigte Versuchsaufbau als ausreichend betrachtet werden.

Abbildung 5-11: Messaufbau zur Bestimmung der Reifendämpfung

Die Reifen werden einzeln über eine Wippe aufgehängt, vertikal ausgelenkt und

sprungartig fallen gelassen. Ein Seilzugwegaufnehmer bestimmt die Position der

Felgenmitte während des freien Ausschwingens, woraus auf Basis des Abklingver-

haltens auf die Dämpfung geschlossen werden kann20.

Die Dämpfung des Reifens wird im Reifenmodell FTire/solid über den Parameter

„damping tread rubber“ tread beeinflusst, welcher auch als Relaxationszeit bezeich-

net wird und die Längenänderung Gs t( ) eines Gummielements nach erfolgter Deh-

nung beschreibt [Cos-2010a].

,0( ) tread

t

G Gs t s e (5-6)

20 Zur Bestimmung der Dämpfung aus Ausschwingversuchen vergleiche [Dre-2007, S. 48 ff].

Seilzugwegaufnehmer

Page 129: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

109

Wie bei der Steifigkeitsmessung wird von diesem Ausschwingversuch eine Mehr-

körpersimulation durchgeführt. Durch eine Anpassung von tread und dem Vergleich

von berechneten und gemessenen Werten wird eine sehr gute Näherung der Dämp-

fungseigenschaften des Reifens erreicht.

5.2.1.5 Fahrantrieb

Die betrachteten Flurförderzeuge verfügen mit hydrostatischem Antrieb mit Diesel-

motor sowie mit verschiedenen elektrischen Drehstrommotoren über unterschiedli-

che Fahrantriebe. Da vornehmlich stationäre Fahrzustände bei konstanter Fahrge-

schwindigkeit untersucht werden sollen, kann auf eine Modellierung der jeweiligen

Motorcharakteristik verzichtet werden. Der Antrieb der Reifen erfolgt somit durch die

Vorgabe der Drehwinkelgeschwindigkeit der Felgen. Hierbei wird der auftretende

Schlupf sowie der sich einstellende dynamische Rollradius dynr zur Erreichung einer

bestimmten Fahrgeschwindigkeit berücksichtigt. Die Haft- und Gleitreibung wird mit

Erfahrungswerten in Orientierung nach [Bei-1976] angesetzt.

5.2.2 Fahrbahn

Um die in Tabelle 3-1 geforderten Anregungen durch die Fahrbahn detailliert unter-

suchen zu können, ist diese im Rahmen der Modellierung hinreichend genau in der

Simulationsumgebung abzubilden. Dabei ist ein Modellierungsverfahren zu wählen,

welches unterschiedliche Typen von Fahrbahnprofilen abdeckt und eine computer-

gestützte Generierung der Fahrbahnoberflächen erlaubt.

Für die Angabe von Unebenheiten einer zweidimensionalen Fahrbahnoberfläche ist

eine Bezugsfläche erforderlich, bei Einspurfahrzeugen ist eine Beschränkung auf

eine Bezugslinie ausreichend. Abweichungen der Oberfläche von der Bezugslinie

gelten dann als Unebenheiten h x . Dies ergibt eine Fülle an Wertepaaren (Messort

und Unebenheit) und macht eine Datenreduktion durch alternative Beschreibungs-

formen wünschenswert. [Bra-1991]

Heutige Fahrbahnoberflächenmodelle beschreiben nach Braun und Gerz die Un-

ebenheiten in drei Anteilen [Bra-1988]:

regellose Unebenheiten

periodische Unebenheiten

herausragende Einzelhindernisse

Page 130: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

110

Folgende Ausführungen erläutern, auf welche Beschreibungsformen für Fahrbahn-

oberflächen zurückgegriffen werden kann und gehen dann näher auf die theoreti-

schen Grundlagen zur Beschreibung der drei Unebenheitstypen ein. Abschließend

folgt die softwaregestützte Generierung von Fahrbahnoberflächen zur Durchführung

der Parameterstudie.

5.2.2.1 Straßenmodelle für die Mehrkörpersimulation

Die Wahl des Straßenmodells richtet sich nach den Anforderungen der jeweiligen

Fahrzeugsimulation und dem Profil der Fahrbahnen. So kann es durchaus ausrei-

chend sein, anstatt der bewährten Reifen- und Straßenmodelle aus der Fahrzeug-

technik selbst die nötige Funktionalität durch ein Feder-Dämpfer-Element für den

Reifen und eine entsprechende Anregungsfunktion für die Fahrbahn herzustellen,

wie Beha [Beh-1989] und Schmalzl [Sch-2006] anhand ihrer Arbeiten demonstrieren.

Die Verwendung eines der in Kapitel 5.2.1 beschriebenen Reifenmodelle erfordert

jedoch die Wahl eines dafür kompatiblen Straßenmodells. In der Simulationsumge-

bung MSC.ADAMS stehen hierfür u. a. definierte 2D-Beschreibungsformen zur Ver-

fügung. Diese unterstützen gängige Einzelhindernisse wie Bordsteinkanten oder

Schwellen. Auch die Beschreibung einer ideell ebenen Fahrbahn sowie die Vorgabe

eines Höhenprofils für die einzelnen Fahrspuren sind möglich [MSC-2010a]. Des

Weiteren gibt es eine Vielzahl an extern programmierten Straßenmodellen, welche

mit Hilfe einer standardisierten Schnittstelle, dem Standard Tyre Interface (STI) als

Ergebnis des internationalen TYDEX Workshops, mit dem Reifenmodell kommuni-

zieren [Oos-1997; Bes-2005].

Möchte man auf die Reduzierung der Fahrbahnoberfläche durch einzelne Fahrspu-

ren verzichten und die komplette Oberfläche abbilden, sind dreidimensionale Be-

schreibungsformen erforderlich. Hierbei kommen oft triangulierungsbasierte Modelle

zum Einsatz. Diese bedingen nach Gipser in Kombination mit dem Reifenmodell

FTire höhere Rechenzeiten durch die Ermittlung der jeweiligen Dreiecke für die Kon-

taktflächen [Gip-2006]. Als Konsequenz dessen und zur Vermeidung großer Daten-

mengen wird die Verwendung eines optimierten Straßenmodells gefordert, welches

auf einem Rechteckgitter in der x-y-Ebene mit konstanter Gitterweite basiert. Eine

lokale Gitterverfeinerung ist dementsprechend nicht möglich und als Nachteil bei

weit verstreuten Hindernissen zu sehen, für die wiederum die triangulierungsbasier-

ten Modelle von Vorteil sind [Gip-2006]. Auf diesem System basieren zwei unter-

schiedliche Formatvarianten. Zum einen ist die Curved Regular Grid (CRG) Straßen-

datei zu nennen, welche von der Forschung der Daimler AG in Zusammenarbeit mit

der TÜV Süd AG definiert wird [Rau-2007] und mit einem eigens hierfür entwickelten

Messfahrzeug durch laseroptische Messung erstellt werden kann [Amm-2004; Sch-

Page 131: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

111

2007d]. Aus Kostengründen ist eine Vermessung repräsentativer realer Teststrecken

mit dieser Technik nicht möglich. Zum anderen stellen die FTire-Entwickler selbst

ein solches Straßenformat mit der Regular Grid Road (RGR) bereit [Cos-2010b]. Die-

ses wird im Rahmen der Arbeit zur Beschreibung von dreidimensionalen Stra-

ßenunebenheiten verwendet, wobei das Höhenprofil wie folgend beschrieben syn-

thetisch generiert wird.

5.2.2.2 Periodische Unebenheiten

Die einfachste Form einer periodischen Unebenheit kann nach Mitschke und Wallen-

towitz in Form einer Wellenfahrbahn durch eine harmonische Funktion h x darge-

stellt werden [Mit-2004]. Formel (5-7) beschreibt hierzu den Höhenverlauf h t im

Zeitbereich, wie er sich bei Überfahrt darstellt.

ˆ sinh t h t (5-7)

Unebenheiten sind auf Grund ihres Charakters jedoch vom Weg x abhängig, wel-

cher über die Fahrgeschwindigkeit Fahrv mit der Zeit t verknüpft ist. Durch Einfüh-

rung der Wegkreisfrequenz mit

2

L

(5-8)

lässt sich die wegabhängige Unebenheitsfunktion h x mit der Wellenlänge L be-

schreiben zu:

ˆ sinh x h x (5-9)

Üblicherweise dominieren gegenüber der reinen sinusförmigen Anregungen periodi-

sche Anregungen mit mehreren Frequenzen, weswegen die allgemeine periodische

Unebenheitsfunktion mit der Periodenlänge X eingeführt wird. Diese periodische

Unebenheitsfunktion lässt sich durch ein diskretes Amplitudenspektrum ˆih mit Hilfe

der Fourier-Reihe und der Phasenverschiebung nach Formel (5-10) beschreiben.

Abbildung 5-12 verdeutlicht die Zusammenhänge graphisch.

1

ˆ sinn

i i

i

h x h i x

(5-10)

Page 132: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

112

Abbildung 5-12: Periodische Unebenheitsfunktion (links) und zugehöriges diskretes Amplitudenspekt-rum (rechts) (nach [Mit-2004])

5.2.2.3 Regellose Unebenheiten

In der Realität kommen reine Wellenfahrbahnen bzw. periodische Unebenheitsfunk-

tionen nur selten vor. Im Normallfall handelt es sich im Allgemeinen um unregelmä-

ßige Unebenheiten. Durch die Annahme langer Periodenlängen X kann ein Über-

gang zwischen der periodischen und der völlig unregelmäßigen Unebenheitsfunktion

vollzogen werden. Diese auch regellos genannten Unebenheiten enthalten gleichzei-

tig Anteile aller Wellenlängen L mit vom Weg x abhängigen Amplituden ˆ .Lh x Aus

diesen schwankenden Amplituden kann für schmale Wellenlänge-Bereiche L eine

spektrale Dichte h als Mittelwert der regellosen Unebenheiten der gesamten

Messstrecke abgeleitet werden [Mit-2004; Ben-2010].

Die spektrale Dichte enthält keine Phasenwinkelinformationen zwischen den einzel-

nen Amplituden, so dass eine Rückführung in den ursprünglichen Unebenheitsver-

lauf nicht mehr möglich ist. Sie bietet aber den Vorteil einer Vergleichsgröße für un-

terschiedliche Unebenheitsverläufe und dient als Basis für die Ableitung von Kenn-

zahlen.

Durch die Auswertung einer Vielzahl an Messungen unterschiedlicher Fahrbahnober-

flächen stellt Braun fest, dass die Größe der Unebenheitsdichte mit wachsender

Wegkreisfrequenz bzw. kleiner werdender Wellenlänge L abnimmt (Abbil-

dung 5-13) und dass sich die spektrale Dichte h näherungsweise durch die

Formel

0

0

w

h h

(5-11)

beschreiben lässt [Bra-1969]. Hierbei bedeuten:

Weg x

Periodenlänge X

Un

eb

en

heit h

(x)

0

Un

eb

en

heitsam

plit

ud

e ĥ

i

Zeitkreisfrequenz

Wegkreisfrequenz

w 2w 3w 4w

Ω 2Ω 3Ω 4Ω

ĥ1

ĥ2

ĥ3

ĥ4

Page 133: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

113

0

11

m Bezugs-Wegkreisfrequenz der Wellenlänge 0L = 2 ∙ ∙1 m

0h Unebenheitsmaß U als Maß für den Unebenheitspegel bei der

Bezugs-Wegkreisfrequenz 0. Steigende Werte bedeuten un-

ebenere Oberflächen.

w Welligkeit als Maß für die Neigung der Näherungsgeraden. Mit zu-

nehmendem w erhöht sich der Anteil langer Wellen.

Anschaulich bedeutet dies, dass die spektrale Dichte in doppellogarithmischer Dar-

stellung in erster Näherung die Form einer Geraden besitzt (Abbildung 5-13). Als

charakteristische Größen zur Beschreibung des Oberflächenprofils einer Fahrspur

mit beliebigen regellosen Unebenheiten verbleiben somit nur die Welligkeit w sowie

das Unebenheitsmaß 0 .hU Erstere definiert die Steigung der Geraden, wäh-

rend das Unebenheitsmaß U die Lage der Geraden in doppellogarithmischer Dar-

stellung festlegt (Abbildung 5-13).

Abbildung 5-13: Spektrale Dichte der Unebenheiten ( )h in Abhängigkeit der Wegkreisfrequenz ([Bra-1969], Darstellung basierend auf [Mit-2004]) mit Markierung der Kenngrößen

10-3

10-2

10-1

100

103

102

101

sp

ektr

ale

Uneb

enheitsd

ichte

Фh(Ω

) [c

m3]

Wegkreisfrequenz Ω=2 /L [m-1]

Unebenheitswellenlänge L [m]

10-2 10-12 4 6 2 4 6 100 1012 4 6 2 4 6 102

628

400

200

100

62

,8 40

20

10

6,2

8 4 2 10

,628

0,4

0,2

0,1

5

Фh(Ω0)

sehr guter Asphalt-Betonguter Zementbetonmittlerer Macadammittleres Pflasterunbefestigter Weg

Ω0

w

Page 134: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

114

Braun charakterisiert bestimmte Straßenoberflächen basierend auf Messwerten an-

hand von Mittelwerten des Unebenheitsmaßes U und der Welligkeit w (Tabelle 5-1)

[Bra-1969]. Auf Basis eines noch größeren Kollektivs an Messstrecken beziffern

Braun und Hellenbroich die durchschnittliche Welligkeit auf w = 2,14 und stellen

fest, dass die w-Werte ungefähr normalverteilt sind [Bra-1991]. Für eine mittlere

„Normstraße“ wird w = 2 angesetzt [Zel-2009], so dass als ausschlaggebende Grö-

ße das Unebenheitsmaß U verbleibt. Darauf setzt der in Tabelle 5-2 dargestellte

Vorschlag zur Klassifizierung von Fahrbahnunebenheiten auf. Weitere detaillierte

Messergebnisse von Straßenunebenheiten auf vor allem Autobahnen, Bundes-,

Land- und Kreisstraßen können [Bra-1966; Bra-1991] entnommen werden.

Tabelle 5-1: Mittelwerte zur Beschreibung von Fahrbahnspektren für Fahrbahnen verschiedener Bauart und unterschiedlichem Oberflächenzustand nach [Bra-1969] (entnommen aus [Mit-1984])

Fahrbahnbauart Fahrbahnzustand (Subjektivurteil)

Mittelwert

w [-] h (Ω0) [cm3]

Zementbeton sehr gut 2,29 0,6

gut 1,97 4,5

mittel 1,97 8,7

schlecht 1,72 56

Asphalt-Beton sehr gut 2,2 1,3

gut 2,18 6

mittel 2,18 22

Macadam21 gut 2,26 9

mittel 2,26 21

schlecht 2,15 43

sehr schlecht 2,15 158

Pflaster gut 1,75 14

mittel 1,75 23

schlecht 1,81 36

sehr schlecht 1,81 323

unbefestigte Fahrbahnen gut 2,25 32

mittel 2,25 155

schlecht 2,14 602

sehr schlecht 2,14 16300

21 Unter Macadam versteht man eine heute nicht mehr übliche Bauweise von Straßen aus mehreren

Schichten unterschiedlich großer, gebrochener und verdichteter Gesteinskörnungen, wobei als Bindemittel meistens Teerpech oder Bitumen eingesetzt wird. [Vel-2008, S. 167f.]

Page 135: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

115

Tabelle 5-2: Vorschlag zur Klassifizierung von Fahrbahnunebenheiten nach [ISO 8608] (entnommen aus [Mit-2004])

Klassifi-zierung

Unebenheitsmaß U Subjektivurteil für Ebenheit untere Grenze Mittelwert obere Grenze

A 0 1 2 sehr gut

B 2 4 8 gut

C 8 16 32 mittel

D 32 64 128 schlecht

E 128 256 512 sehr schlecht

5.2.2.4 Herausragende Einzelhindernisse

Herausragende Einzelhindernisse konstruktiver (z. B. Schwellen, Kanaldeckel) oder

zufälliger Natur (z. B. Schlaglöcher) werden durch die Beschreibung anhand der

spektralen Dichte weitgehend unterdrückt und müssen gesondert betrachtet wer-

den.

Mathematisch betrachtet können diese Unebenheiten durch eine Rechteckfunktion

beschrieben werden, die jedoch im Normalfall wegen der steilen Flanken nicht im

Einklang mit vereinfachenden Modellüberlegungen des anzuregenden Fahrzeugs

stehen, weswegen Mitschke et al. sie mit einer Trapezfunktion ersetzen [Mit-1995].

Üblich ist auch die Modellierung durch halbe Sinuswellen oder die Ersetzung von

Sprungfunktionen durch Arkustangens-Funktionen wie bei [Beh-1989] oder [Sch-

2006].

Da ein Reifenmodell verwendet wird, bei dem der Reifen frei auf dem Untergrund

abrollen kann, ist eine Hindernisanpassung zur Vermeidung numerischer Probleme

bei Zwangsführungen nicht erforderlich. Dies hat zum Vorteil, dass die Modellierung

der Fahrbahn unabhängig vom betrachteten Flurförderzeug bzw. Reifen vollzogen

werden kann. Eine Austauschbarkeit der zu erzeugenden Bodenprofile zwischen

den einzelnen Fahrzeugmodellen ist somit gewährleistet.

5.2.2.5 Generierung von Fahrbahnen für die Simulation

Speziell angepasste Bodenmodelle für regellose oder einzelne herausragende Hin-

dernisse sind verfügbar, z. B. [MSC-2010a; Cos-2010b]. Die Beschreibung der Un-

ebenheit erfolgt dabei z. B. anhand der Straßenklasse nach ISO 8608 oder der Hö-

he, der Breite und der Position der Schwelle. Da mit diesen Lösungen auf Grund der

spezifischen Beschreibungssprache Hinderniskombinationen nicht möglich sind,

wird eine andere Modellierungsform erarbeitet. Ziel ist die Verknüpfung einer ideell

ebenen Fahrbahn mit h x = 0 m oder regellosen Unebenheiten mit einzelnen her-

Page 136: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

116

ausragenden Hindernissen beliebiger Form. Es bietet sich an, die spezifischen Hö-

henprofile selbst zu erzeugen und diese in geeigneter Form in einem der gängigen

Bodenmodelle zu hinterlegen.

Somit muss zuallererst eine durch die beiden Kenngrößen Unebenheitsmaß U und

Welligkeit w charakterisierte Oberfläche in ein Höhenprofil umgewandelt werden.

Zunächst wird im Folgenden der einfachste Fall einer Bezugslinie gemäß den Aus-

führungen von Schuknecht et al. betrachtet [Sch-1991], der auch von Schmalzl im

Rahmen seiner Untersuchungen Anwendung findet [Sch-2006].

Die regellosen Unebenheiten stellen einen skalaren stochastischen Prozess dar. Die

Höhenverläufe h x des zu Grunde liegenden als auch des zu erzeugenden Profils

können durch eine endlose Reihe harmonischer Funktionen (Fourier-Reihe) ausge-

drückt werden. Wie bereits erwähnt ist, auf Grund der verlorenen Phasenverschie-

bung, die Rückführung eines gemessenen Höhenprofils in den Zeitbereich nicht

möglich, aber sehr wohl die Erzeugung eines adäquaten Profils „gleicher Uneben-

heit“, d. h. mit identischem Spektraldichteverlauf. Da die spektrale Dichte eine konti-

nuierliche Funktion darstellt22, sind alle Frequenzen von null bis unendlich in infinite-

simal kleinen Schritten zu berücksichtigen. In der Praxis ist dies nicht zielführend,

sondern es reicht aus, „näherungsweise ein statistisch gleichwertiges Höhenprofil“

mit einer diskreten Anzahl N unterschiedlicher Wegkreisfrequenzen zu erzeugen

[Sch-1991], welches den gleichen Spektraldichteverlauf aufweist und alle relevanten

Frequenzkomponenten berücksichtigt.

0

1

ˆ( ) sinN

n n n

n

h x h h x

(5-12)

mit

0h Nulllage des Höhenprofils in globalen Koordinaten

n Wegkreisfrequenz der n-ten Sinusfunktion

ˆnh Amplitude der n-ten Sinusfunktion

n Phase der n-ten Sinusfunktion

Bei der Diskretisierung des kontinuierlichen Spektrums in N unterschiedliche Weg-

kreisfrequenzen führen Schuknecht et al. „diskrete Wegkreisfrequenzbänder, in de-

nen die spektrale Unebenheitsdichte als konstant angenommen wird“, ein. Die

spektrale Unebenheitsdichte innerhalb eines solchen Frequenzbandes mit unterer

22 Eine ausführliche Herleitung der spektralen Dichte der Fahrbahnunebenheiten findet sich in [Mit-

2004, S. 289–301].

Page 137: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

117

Grenze ,a n und oberer Grenze ,e n kann mit Hilfe eines Bandeffektivwerts eff nh ,

angegeben werden. Dieser berechnet sich zu:

,

,

2,

e n

a n

eff n hh h d

(5-13)

Es resultiert in jedem Band n eine Sinusschwingung mit der mittleren Wegkreisfre-

quenz n und der Amplitude ˆ ,nh deren Effektivwert eff nh , obiger Gleichung ent-

spricht. In der doppellogarithmischen Darstellung der spektralen Dichte entspricht

dies der Annäherung der als Gerade auftretenden Unebenheitsdichte durch eine

Treppenfunktion mit einer konstanten Bandbreite (Abbildung 5-14). Somit gilt fol-

gender Zusammengang zwischen unterer Grenze ,a n und oberer Grenze ,e n des

n-ten Frequenzbandes:

,

,

.e n

a n

b const

(5-14)

Dieses Verhältnis b wird als Bandfaktor bezeichnet, der ein Maß für die Bandbreite

darstellt. Je näher sich der Bandfaktor dem Wert 1 nähert, umso schmäler werden

die Bänder, was eine feinere Abstufung zur Folge hat. Im Rahmen dieser Arbeit wird

auf den von Schuknecht et al. empfohlenen Bandfaktor von b = 1,1 zurückgegriffen

[Sch-1991].

Abbildung 5-14: Diskretisierung der spektralen Dichte (in Anlehnung an [Sch-1991])

10-1

100

101

103

102

sp

ektr

ale

Un

eb

en

heitsd

ich

te Ф

h(Ω

) [c

m3]

Wegkreisfrequenz Ω=2 /L [m-1]

10-1 2 4 6 6100 1012 4 810-2

8

Ωa,n

Ωn

Ωe,n

Page 138: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

118

Die mittlere Wegkreisfrequenz n ergibt sich als geometrisches Mittel der beiden

Grenzen:

, ,

1log log

2n a n e n (5-15)

Als Generierungsvorschrift ergibt sich aus (5-14) folgender Zusammenhang für die

Anfangsfrequenzen der Bänder in Bezug zur kleinsten zu berücksichtigenden Fre-

quenz min :

1 1, 1 , ,0

n na n a n a minb b b

(5-16)

Die zugehörige Amplitude der Unebenheit ˆnh der n -ten Wegkreisfrequenz n

ergibt sich aus dem vorgestellten Effektivwert mit der Beziehung

,ˆ 2n eff nh h (5-17)

und der Lösung des Integrals für die Unebenheitshöhe mit der diskretisierten Un-

ebenheitsdichte unter Zuhilfenahme des Unebenheitsmaßes 0hU und der

Welligkeit w zu:

0

0

1ˆ 2

w

nn h nh b

b

(5-18)

Abschließend ist noch der durch die N Frequenzbänder betrachtete Wegfrequenz-

bereich ,1 ,a e N passend zum jeweiligen Anwendungsfall zu wählen, der sich

nach dem für das zu untersuchende Fahrzeug relevanten Zeitfrequenzbereich rich-

tet. Für die zu modellierenden Flurförderzeuge wird der in der Fahrzeugtechnik übli-

che Frequenzbereich zwischen minf = 1 Hz bis maxf = 25 Hz herangezogen [Mit-2004].

In Anlehnung an [Mit-1995; Sch-2006] ergibt sich die Anregung Fahrbf eines Fahr-

zeugs bei Fahrt mit der Fahrgeschwindigkeit Fahrv über eine wellige Fahrbahn mit der

Wellenlänge L zu:

Fahr FahrFahrb

Fahrb

v vf L

L f (5-19)

Unter Berücksichtigung der minimalen und maximalen Fahrgeschwindigkei-

ten ,Fahr minv und ,Fahr maxv zusammen mit dem zu betrachtenden Frequenzbereich

ergibt sich die Forderung an Wellenlängen im Bereich zwischen minL und maxL für

das zu erstellende Höhenprofil:

Page 139: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

119

,Fahr minmin

max

vL

f (5-20)

,Fahr maxmax

min

vL

f (5-21)

Folglich sind in der Fourier-Reihe die Wegkreisfrequenzen min und max zu berück-

sichtigen:

1min

maxL (5-22)

1max

minL (5-23)

Bei den zu betrachtenden Fahrgeschwindigkeiten von ,Fahr minv = 4 km/h und

Fahr,maxv = 22 km/h resultieren min = 0,16 ∙ 1/m und max = 22,5 ∙ 1/m. Da die spekt-

rale Dichte keine Phasenwinkelinformationen enthält, kann die Phase n des n-ten

Frequenzbands mit Hilfe eines Zufallsgenerators im Bereich 0–2 erzeugt werden.

Vorangehende Überlegungen beziehen sich wie einführend erwähnt auf eine Be-

zugslinie und beschreiben die Unebenheiten auf dieser in Längsrichtung. Auch wenn

Messungen von Braun zeigen, dass die Unebenheitsspektren paralleler Fahrspuren

auf einer vermessenen Fahrbahn keine nennenswerten Unterschiede aufzeigen 23

[Bra-1966], so sind dennoch Abweichungen im Höhenprofil festzustellen. Diese

Quereigenschaften können nach Ammon und Bormann nicht mit der einfachen pa-

rametrischen Näherung von Braun in Längsrichtung beschrieben werden [Amm-

1991], so dass üblicherweise die in [Bor-1978] eingeführte Kohärenzfunktion

,h ps verwendet wird, welche die beiden Fahrspuren mit Spurweite ps in Bezug

setzt.

,lr

h p

l r

s

(5-24)

l und r sind dabei die spektralen Dichten der linken und rechten Spur und lr

das zugehörige Kreuzspektrum. Ammon und Bormann können auf Basis eines er-

weiterten Unebenheitsmodells in [Amm-1991] eine parametrische Näherungsfunkti-

on für die Kohärenzfunktion ,h s aus Formel (5-24) aufstellen zu

23 Weiterhin ist bekannt, dass auf Verkehrsstraßen im Laufe der Zeit die Hauptrollspuren unebener

werden und entsprechend stärkere Abweichungen quer zur Fahrtrichtung auftreten [Bra-1991].

Page 140: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

120

0

, 1

pw

a

ph p

p p

ss

s

(5-25)

mit der Bezugswegkreisfrequenz p und den Konstanten a , p und 0ps = 1 m sowie

der bereits bekannten Welligkeit .w Durch die Vermessung von Straßen unter-

schiedlicher Klassifizierungen (Feldweg, Land- und Bundesstraße) können sie als

Wertebereiche für p = 0,73–3,3 1/m, a = 0,56–0,97 und p = 0,45–0,88 angeben.

Die detaillierte Auswertung weiterer Messdaten ist bis auf [Amm-2004] nicht be-

kannt, so dass für vorliegende Untersuchung unter der Annahme tendenziell ebener

Böden p = 0,75 1/m, a = 0,60 und p = 0,50 gewählt wird. Abbildung 5-15 zeigt

nach Formel (5-25) berechnete Kohärenzfunktionen ,h ps für Spurweiten im re-

levanten Bereich der untersuchten Fahrzeuge24. Zusätzlich ist der auf Basis der

Fahrgeschwindigkeiten zu beachtende Wegkreisfrequenzbereich dargestellt.

Abbildung 5-15: Kohärenzfunktion nach Formel (5-25) mit Ωp = 0,75 1/m, a = 0,60, p = 0,50 und w = 2

Abbildung 5-15 verdeutlicht grafisch den Zusammenhang der Unebenheitsfunktio-

nen zweier paralleler Fahrspuren auf einer Fahrbahnoberfläche. Deutlich erkennbar

ist, dass sehr lange Wellenlängen korreliert sind und kurze nicht. Bezüglich der Ge-

nerierung von Fahrbahnoberflächen für die Simulation bedeutet dies, dass die Un-

terschiede in den Unebenheitsprofilen bei gleichen spektralen Dichten nur durch die

Phasenverschiebung beeinflusst werden können. Auch hierfür schlagen Schuknecht

et al. ein Berechnungsverfahren vor, bei dem für die zweite Spur alle Sinusschwin-

gungen aus Formel (5-12) in zwei Teilschwingungen zerlegt werden [Sch-1991]. Die

24 Eine Gegenüberstellung der Ergebnisse der Näherungsformel und der gemessenen Kohärenzen

kann [Amm-1991] entnommen werden.

10-1 100 101 102

Wegkreisfrequenz Ω=2 /L [m-1]

Ko

häre

nzf

unktio

n γ

h [-]

Ωmin Ωmax

0

0,25

0,5

0,75

1s = 0,5

s = 1

s = 1,5

sp

sp

sp

Page 141: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

121

Amplitude der sich in Phase befindlichen ersten Teilschwingung wird in Abhängig-

keit der Spurweite nach Formel (5-25) bestimmt. Die Phase der zweiten Teilschwin-

gung ist zufällig, ihre Amplitude wird „unter der Bedingung berechnet, daß die vek-

torielle Summe der beiden Teilschwingungen wieder eine Schwingung mit der

Amplitude der ersten Spur ergeben muß“ [Sch-1991].

Für die Erstellung von Fahrbahnoberflächen für die Mehrkörpersimulation wird ein

Rechentool entworfen, in welches die beschriebenen Berechnungsvorschriften für

periodische und regellose Unebenheiten unter Beachtung der Kohärenz zweier

Fahrspuren hinterlegt sind. Zusätzlich können dem diskretisierten Höhenprofil einer

regellosen Unebenheit herausragende Hindernisse hinzugefügt werden. Das Re-

chentool unterstützt in der Ausgabe unterschiedliche Beschreibungsformen für Bo-

denmodelle aus [MSC-2010a].

5.2.3 Sitz

Für die Bestimmung der Fahrerbelastung ist die Beschleunigung an der Einleitstelle

in den menschlichen Körper zu bestimmen. Dies ist bei einem sitzenden Bediener

auf der Sitzoberfläche, so dass auch in der Mehrkörpersimulation die Beschleuni-

gungen an dieser Stelle zu berechnen und auszuwerten sind. Dies bedingt die For-

derung, auch den Sitz hinreichend genau als Mehrkörpermodell abzubilden. In Fol-

gendem werden Modellaufbau und Parameterbestimmung der drei verwendeten

Sitze MSG 20, MSG 65 und MSG 85 beschrieben. Auf Grund der Zielstellung, unter-

schiedliche Sitze im Rahmen einer Gesamtfahrzeugsimulation zu untersuchen, ist

der Detaillierungsgrad des zu erstellenden Modells nicht zu fein zu wählen.

5.2.3.1 Modellaufbau

Wie in Kapitel 4.3 dargelegt werden nur Sitze mit mechanischer Stahlfeder in die

Untersuchung einbezogen. Um bei geringer Bauhöhe einen möglichst großen Fe-

derweg bereitstellen zu können, sind die mechanische Feder sowie der hydraulische

Dämpfer meist horizontal eingebaut. Während sich der konstruktive Aufbau der be-

trachteten Sitze unterscheidet, kann deren Funktion und Wirkungsweise jedoch auf

ein einheitliches mechanisches Ersatzsystem reduziert werden. Die Ausprägungen

der einzelnen Komponenten sind dann an den jeweiligen Sitz durch Einstellung der

spezifischen Kennwerte anzupassen.

Durch das Polster und die mechanische Feder besitzt der Fahrersitz zwei translato-

rische Freiheitsgrade in z-Richtung senkrecht zur Sitzebene. Das Spiel in der Kine-

matik sowie die Elastizität der Sitzstruktur bedingen eine mögliche Verdrehung des

Sitzes um die horizontalen Achsen. Diese Größen werden in dem mechanischen Er-

Page 142: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

122

satzmodell berücksichtigt, welches mit seinen einzelnen Elementen in Abbil-

dung 5-16 dargestellt ist. Translatorische Nachgiebigkeiten in x- oder y-Richtung

sind in dem Modell nicht abgebildet, da diese als sehr klein anzunehmen sind und

Sitze mit einer Horizontalfederung in x-Richtung nicht Bestandteil der Untersuchung

sind.

Abbildung 5-16: Mechanisches Ersatzmodell des Sitzes

Die untere Sitzplatte wird auf der Motorhaube oder der Sitzplatte des Flurförder-

zeugs befestigt. Auf dieser ist im Modell mit zwei Rotationsfreiheitsgraden sowie

zwei Torsionsfedern ein Zwischenelement verbunden, welches eine Rotationsnach-

giebigkeit des Sitzes um die x- und y-Achse ermöglicht.

Auf dem Zwischenelement beginnt der Aufbau der vertikalen Federung. Hierbei ist

zu berücksichtigen, dass der vertikale Federweg durch beiderseitige Endanschläge

in Form von Gummipuffern limitiert ist. Dies führt zu Nichtlinearitäten in der Feder-

Dämpfer-Kraft ,S FDF des Sitzes:

, , ,D ,

, , , ,

, , ,D ,

o S o Vor S F S S o

S FD Vor S F S D o S o

Vor S F u S u S S u

s s c s s c s d d

F s s c s d s c

s s c s s c s d d

für

o

o u

u

s s

s s s

s s

(5-26)

mit

,S Fc Federsteifigkeit der mechanischen Feder

, ,S oc ,S uc Federsteifigkeit der oberen und unteren Gummipuffer

S Dd , Dämpfungskonstante des eingebauten Dämpfers

, ,S od Sd ,u Dämpfungskonstante der Gummipuffer

Vors vorgespannte Länge der mechanischen Feder

Zwischenelement

obere Sitzplatte

untere Sitzplatte

dS,Pol

cS,y, dS,yx

z

y

FS,FD,rück

cS,Pol

cS,F dS,D

cS,o, dS,o

cS,u, dS,u

Sitzpolster

cS,x, dS,x

FS,FD

u

s

Page 143: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

123

Abbildung 5-17 verdeutlicht schematisch den nichtlinearen Verlauf der Federkennli-

nie ,S FDF mit s = 0 auf Grund der Endanschläge am Sitz. Es sei darauf hingewiesen,

dass der Schnittpunkt mit der Ordinate von der Vorspannung der Feder abhängt,

weswegen folgend gezielt die Rückstellkraft des Sitzes , ,S FD rückF behandelt wird.

Abbildung 5-17: Schematische Federkennlinie aus Endanschlägen und mechanischer Feder für un-terschiedliche Gewichtseinstellungen ( s = 0)

Die einzelnen Steifigkeiten sowie die Dämpferkonstante des eingebauten Dämpfers

können mit experimentellen Versuchen bestimmt werden, welche im anschließenden

Abschnitt der Parameterbestimmung erläutert werden. Die Federsteifigkeit ,S Fc der

mechanischen Feder ist nicht zwangsläufig konstant, sondern kann je nach Bauart

des Sitzes von dem eingestellten Fahrergewicht SEm abhängen.

, , , , ,0S F S F SE SE S Fc c m c (5-27)

Ein Sitz gilt als optimal eingestellt, wenn er dem Fahrer entlang der z-Achse in bei-

den Richtungen einen gleich großen Federweg zur Verfügung stellt. In

Abbildung 5-17 ist dieser Arbeitspunkt markiert. Dessen Position APs berechnet sich

zu:

0

02

u

AP

s ss s

(5-28)

Da das Sitz-Mehrkörpermodell in seiner Ausgangslage in der Position der maxima-

len Ausfederung ( s = 0) erstellt ist, ergibt sich die Rückstellkraft des Sitzes , ,S FD rückF

dementsprechend zu:

für leichten Fahrer

für schweren Fahrer

s [mm]

Fed

erk

raft

FS

,FD [N

]

cS,F

cS,u, cS,F

cS,o, cS,F

so su smaxsAP

Page 144: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

124

, , , , ,S FD rück S FD S F VorF F F (5-29)

Die Rückstellkraft ,S F,VorF ist wiederum abhängig von der gewählten Gewichtseinstel-

lung.

, , , ,

1

2SE

S F Vor S oben max S F

mit

mF g m s c

p

(5-30)

mit

,S obenm mitschwingende Masse des Sitzes [kg]

SEm Gewichtseinstellung am Sitz [kg]

mitp Faktor zum Ausgleich der mitschwingenden Masse eines Men-

schen auf dem Sitz, Erfahrungswert mitp = 1,3

Das Sitzpolster aus Schaumstoff bildet die Schnittstelle zum menschlichen Körper.

Die Abbildung des Kontaktverhaltens zwischen dem Gesäß des Fahrers und dem

Sitzpolster ist Bestandteil zahlreicher Forschungsarbeiten, in denen im Normalfall

auf eine Modellierung mit Hilfe von Finite-Elemente-Strukturen zurückgriffen wird.

So bildet z. B. das Ganzkörper-Menschmodell COSYMAN [Sch-2002b] die Schnitt-

stelle zum Sitz durch die Schale der H-Punkt-Messpuppe [SAE J826] ab. Weitere

anatomische Modelle des Gesäßbereichs sind von Moes [Moe-2000], Verver [Ver-

2004] und Mergl [Mer-2006] veröffentlicht. Auch Rützel stellt ein hochauflösendes

FE-Kontaktmodell im Rahmen seiner Dissertation vor [Rüt-2007]. Die erwähnten

Modellierungsansätze sind entweder für die gewählte Abstraktionsebene zu detail-

liert oder unzureichend für eine Übernahme veröffentlicht, so dass sie nicht in die

vorliegende Fahrzeugsimulation integriert werden können, was die Forderung nach

einem einfachen Ersatzmodell erhebt. Liebherr weist im Rahmen einer Studie über

das Sitzpolster eines MSG 95-Sitzes nach, dass dessen Übertragungsverhalten dem

eines fußpunkterregten Ein-Massenschwingers mit einem Voigt-Kelvin-Modell (pa-

rallele Anordnung von Feder und Dämpfer) ähnelt [Lie-2000]. Auf Grund der Ähnlich-

keit der im Rahmen dieser Arbeit untersuchten Sitze wird dieser Modellansatz über-

nommen, der ebenfalls von Hauck bei einem Simulationsmodell für einen Traktorsitz

Anwendung findet [Hau-2001]. Auch Hix et al. greifen bei der Modellierung eines

LKW-Fahrersitzes auf einen Ein-Massenschwinger mit konstanten Dämpfungsfakto-

ren zurück [Hix-2000]. Die Rückstellkraft des Polsters ergibt sich somit zu:

, , ,S Pol s Pol S PolF u c u d (5-31)

Das Menschmodell ist am Gesäß fest mit dem Polster durch Sperrung aller Frei-

heitsgrade verbunden.

Page 145: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

125

5.2.3.2 Parameterbestimmung

Zur Bestimmung der Steifigkeits- und Dämpfungskenngrößen werden die drei unter-

suchten Sitze im Versuchslabor des Sitzherstellers, der Firma Grammer AG aus Am-

berg, vermessen. Soweit möglich werden die jeweiligen Komponenten wie Feder

und Dämpfer einzeln untersucht.

Die Steifigkeit der mechanischen Feder ,S Fc sowie die Dämpfungskonstante ,S Fd

des hydraulischen Dämpfers werden mit Hilfe von Zug-Druck-Versuchen bestimmt.

Hierfür wird das Polster vom Sitz entfernt und mit einem Stempel auf die obere Sitz-

platte eine Kraft aufgebracht, welche zusammen mit der Wegänderung aufgezeich-

net wird (Abbildung 5-22 links). Der wechselseitige Ausbau von Feder und Dämpfer

ermöglicht eine getrennte Untersuchung dieser Komponenten. Die Bestimmung der

Federkennlinie der mechanischen Feder erfolgt bei unterschiedlichen Gewichtsein-

stellungen am Sitz. Abbildung 5-18 zeigt die Federkennline des Sitzes MSG 85. Die-

ser weist für unterschiedliche Gewichtseinstellungen SEm am Sitz eine gleiche Stei-

figkeit der Feder ,S Fc auf. Lediglich der Arbeitspunkt wird durch Anpassung der Vor-

spannung verschoben. Gut zu erkennen sind ebenso die steiferen Endanschläge

,S oc und , .S uc

Abbildung 5-18: Federkennlinie des MSG 85 für unterschiedliche Gewichtseinstellungen

Im Gegensatz dazu weisen die Sitze MSG 65 und MSG 20 für verschiedene Ge-

wichtseinstellungen SEm neben einer unterschiedlichen Vorspannung auch eine ver-

änderte Federsteifigkeit ,S Fc auf. Dieses Verhalten ist im Modell durch Formel (5-27)

hinterlegt. Abbildung 5-19 zeigt beispielhaft die Federkennline des Sitzes MSG 65.

Page 146: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

126

Abbildung 5-19: Federkennlinie des MSG 65 für unterschiedliche Gewichtseinstellungen

Auch bei der Charakteristik des hydraulischen Dämpfers sind Unterschiede zwi-

schen den Sitzen zu verzeichnen. Die Form der Kraft-Weg-Kurve des Dämpfers bei

den Sitzen MSG 65 und MSG 85 lässt auf einen degressiv eingestellten Dämpfer

schließen (Abbildung 5-20). Aus der Dämpfungskraft kann nach [Rei-2005] der

Dämpfungsexponent sowie der Dämpfungsfaktor S Dd , bestimmt werden.

Abbildung 5-20: Dämpferkennlinie des MSG 65 mit Anregungsprofil

Die Bestimmung des Dämpfungsfaktors ,S Dd beim Sitz MSG 20 erfolgt nach dem

Ansatz der viskosen Dämpfung mit Hilfe der Verlustenergie aus der in Ab-

bildung 5-21 dargestellten Hysterese-Kurve nach [Dre-2007].

Anregungsprofil

Zeit [s]

Weg

[m

m]

|v| = 100 mm/s

Page 147: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

127

Abbildung 5-21: Dämpferkennlinie des MSG 20 mit Anregungsprofil

Für die Bestimmung der Längs- und Querstabilität ,S xc und S yc , werden die Sitze mit

einer konstant ansteigenden Kraft bis zu einem Moment von 150 Nm belastet

(Abbildung 5-22 rechts), um aus den resultierenden Kraft-Weg-Diagrammen eine

lineare Ersatzsteifigkeit abzuleiten.

Abbildung 5-22: Versuchsaufbau zur Bestimmung der Kennlinien für Feder und Dämpfer (links) sowie der Seitenstabilität (rechts)

Eine Bestimmung der dynamischen Eigenschaften der Sitzpolster durch Einzelmes-

sungen ist wegen fehlender Verfügbarkeit der Versuchsstände nicht möglich. Des-

wegen wird auf die Untersuchungen des Sitzpolsters vom Sitz MSG 95 von Liebherr

zurückgegriffen [Lie-2000], in der Steifigkeit und Dämpferkonstante für das hier ver-

wendete Kelvin-Modell bestimmt sind.

Durch die vorgestellten Messungen können alle Parameter des Modells aus Abbil-

dung 5-16 bestimmt werden. Für die Validierung der Modelle ist es jedoch hilfreich,

auf weitere Messergebnisse zurückgreifen zu können, welche nicht für die Parame-

terbestimmung verwendet werden. Aus diesem Grund werden weitere dynamische

Anregungsprofil

Zeit [s]

Weg

[m

m]

T = 1,2 sA = 15 mm

AT

Page 148: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

128

Versuche zur Bestimmung der Eigenfrequenzen der Sitze sowie deren Übertra-

gungsfaktoren durchgeführt, die folgend beschrieben werden.

Wie jedes mechanisches Schwingungssystem reagiert der Sitz in Abhängigkeit der

Anregungsfrequenz, was man sich zur Bestimmung der Eigenfrequenz zu Nutze

macht, bei der der Sitz mit einer festen Prüfmasse von 75 kg belastet und die Ge-

wichtseinstellung des Sitzes entsprechend angepasst wird. Die Anregung der Sitz-

basis (vgl. Abbildung 5-24) erfolgt auf einem Schwingtisch in vertikaler Richtung mit

einem Sinus-Sweep, welcher ein Frequenzband von 0,5–4,5 Hz durchläuft. Durch

Betrachtung der Antwort, der Wegänderung der oberen Sitzplatte bzw. deren Be-

schleunigung, im Frequenzbereich lässt sich die Eigenfrequenz der Sitze anhand der

Maxima im Kurvenverlauf ermitteln (Abbildung 5-23).

Abbildung 5-23: Übertragungsverhalten der Sitze MSG 20, MSG 65 und MSG 85

Tabelle 5-3 fasst die Werte der Sitz-Eigenfrequenzen zusammen.

Tabelle 5-3: Eigenfrequenzen der Sitze MSG 20, MSG 65 und MSG 85

MSG 20 MSG 65 MSG 85

2,1 Hz 1,7 Hz 1,4 Hz

5.2.3.3 Sitzübertragungsfaktor

Durch einen Vergleich von Anregung und Antwort lässt sich gleichermaßen die

schwingungsabsorbierende Wirkung des Sitzes bzw. sein Übertragungsverhalten

bestimmen. Für den Anwender ist jedoch nicht interessant, wie dieses im Detail von

der Anregungsfrequenz abhängt, sondern wie gut der Sitz bei einem bestimmten

praktischen Anwendungsfall die eingeleiteten Schwingungen absorbieren kann. Eine

Page 149: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

129

Aussage hierzu bietet der sog. Sitzübertragungsfaktor, auch SEAT-Wert (Seat Effec-

tive Amplitude Transmissibility) genannt, der gemäß DIN EN 30326-1 als das Ver-

hältnis der Effektivwerte der frequenzbewerteten Beschleunigungen auf dem Sitz

wSa und auf dem Schwingtisch wPa bei Anregung mit stochastischen Prüf-Erreger-

schwingungen definiert ist [DIN EN 30326]. Für die Frequenzbewertung werden die

in ISO 2361-1 definierten Bewertungsfilter verwendet [ISO 2631c].

wS

wP

aSEAT

a (5-32)

Die Messung erfolgt auf einem Schwingtisch mit einer Versuchsperson in natürlicher

und aufrechter Haltung (Abbildung 5-24).

Abbildung 5-24: Messaufbau und Haltung der Versuchsperson zur Messung des SEAT-Werts (nach [DIN EN 30362-1/A2])

Die Beschleunigungen auf dem Sitz werden mit Hilfe eines Beschleunigungsauf-

nehmers in einer halbelastischen Messscheibe gemäß Abbildung 2-11 gemessen.

Die Messstelle auf dem Schwingtisch wird auch als Sitzmontagepunkt bezeichnet.

Durch die Verwendung von für den Einsatzbereich typischen stochastischen Prüf-

Erregerschwingungen wird sichergestellt, dass alle relevanten Frequenzen des An-

wendungsfalls und somit die frequenzabhängigen Federungseigenschaften des Sit-

zes hinreichend berücksichtigt sind. Durch die Bildung des Effektivwerts der fre-

quenzbewerteten Beschleunigung erfolgt eine Reduktion auf einen aussagekräftigen

Kennwert.

Aufbauend auf der allgemeinen Norm DIN EN 30326-1 sind speziell für Flurförder-

zeuge die Prüf-Erregerschwingungen und der Ablauf der Messung in der

DIN EN 13490 definiert. Die dort formulierten Prüf-Erregerschwingungen „beruhen

auf einer sehr großen Anzahl von Messungen, die an Flurförderzeugen im Einsatzfall

1 Rückenlehne

2 Sitzfläche

3 Messscheibe für Beschleunigungsaufnehmer auf der Sitzfläche (S)

4 Sitzfederweg

5 Beschleunigungsaufnehmer auf dem Schwingtisch (P)

6 Sitzbasis

7 Schwingtisch

1

2

3

4

5

6

7

x

z

Page 150: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

130

unter harten, aber typischen Betriebsbedingungen durchgeführt wurden“ [DIN

EN 13490]. Für die zu untersuchenden Sitze werden durch den Sitzhersteller die

SEAT-Werte jeweils für die Spektralklassen IT 1 und IT 2 bestimmt (Abbildung 5-25).

Abbildung 5-25: Spektrale Leistungsdichte (PSD) der Prüf-Erregerschwingungen der Spektralklassen IT 1 und IT 2 nach [DIN EN 13490]

Für die Sitze ergeben sich die in Tabelle 5-4 dargestellten SEAT-Werte. Zu erwäh-

nen ist hierbei, dass die Versuchsperson für den leichten Fahrer ein Körpergewicht

von 60 kg (52–55 kg nach DIN EN 13490) und die für den schweren Fahrer ein Kör-

pergewicht von 120 kg (98–103 kg nach DIN EN 13490) besitzt.

Tabelle 5-4: SEAT-Werte der untersuchten Fahrersitze

Sitz

IT 1 IT 2

leichter Fahrer

schwerer Fahrer

leichter Fahrer

schwerer Fahrer

MSG 20 0,61 0,64 0,77 0,67

MSG 65 0,34 0,27 0,50 0,43

MSG 85 0,57 0,43 0,69 0,55

Die SEAT-Werte der drei Sitze unterschreiten die in der DIN EN 13490 geforderten

Grenzen (IT 1 ≤ 0,7 und IT 2 ≤ 0,8). Erkennbar sind die höheren SEAT-Werte beim

Anregungsspektrum IT 2. Dies ist damit zu erklären, dass das Amplitudenmaximum

des IT 1-Prüfspektrums weiter von der Sitzeigenfrequenz entfernt liegt und somit der

Sitz die eingeleiteten Schwingungen besser absorbieren kann. Die Ergebnisse wei-

sen zudem auf einen Einfluss des Körpergewichts auf den SEAT-Wert hin. Da es

sich hierbei um Stichproben mit Probanden handelt, kann keine allgemeine Aussage

ohne weiterführende Reihenuntersuchung getroffen werden. Die ermittelten Werte

liegen jedoch im von Polster vorgestellten Größenbereich des SEAT von 0,3–0,7 bei

Sitzen von Gabelstaplern vergleichbarer Tragfähigkeiten [Pol-2008]. Bei Messungen

an einem luftgefederten Sitz vom Typ MSG 75G stellen Schäfer et al. zudem einen

0

PS

D [(m

/s2)2

/Hz]

Frequenz [Hz]

0 2 4

0,2

0,4

0,6

0,8

6 8 10 12 14 16 18 20

IT 1IT 2

Page 151: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

131

Einfluss des Effektivwerts der frequenzbewerteten Beschleunigung am Sitzmonta-

gepunkt auf den SEAT-Wert fest. Dieser sinkt mit zunehmendem Effektivwert [Sch-

2010b].

5.2.4 Fahrer

Um im Rahmen der Simulation die Beschleunigungen an der Einleitstelle in den

menschlichen Körper berechnen zu können, ist auch der Fahrer mit seinem Schwin-

gungsverhalten in das Mehrkörpermodell zu integrieren. Hierfür eignen sich sog. bi-

odynamische Menschmodelle, welche über die nötigen mechanischen Eigenschaf-

ten verfügen, das menschliche Schwingungsverhalten abzubilden [Rüt-2007].

Eine zweckmäßige Klassifizierung biodynamischer Menschmodelle stellt nach Rützel

die Unterteilung in deskriptive und prädikative Modelle dar [Rüt-2007]. Deskriptive

Modelle finden Verwendung, um eine oder mehrere Größen der Realität abzubilden,

während prädikative Modelle die Möglichkeit bieten, unbekannte Größen wie innere

Körperkräfte zu bestimmen, welche durch Messungen am realen System nicht er-

fasst werden können. Bei einem prädikativen Modell handelt es sich zwangsläufig

auch um ein anatomisches Modell, welches auf der menschlichen Anatomie und

Physiologie beruht. Zu beachten ist, dass nicht jedes anatomische Modell automa-

tisch prädikativen Charakter besitzt. Modelle, welche nicht direkt auf der Anatomie

des Menschen aufbauen, sondern aus einfachen Ersatzsystemen bestehen, werden

auch als phänomenologische Modelle bezeichnet. Sie geben eine oder mehrere Ei-

genschaften des menschlichen Schwingungsverhaltens wieder und besitzen somit

deskriptiven Charakter.

Im Rahmen dieser Untersuchungen ist von Interesse, welche Antwort der Körper auf

eine Anregung liefert, damit die Beschleunigungen an der Einleitstelle in den

menschlichen Körper möglichst realitätsnah berechnet werden können, und nicht

die im menschlichen Körper als Folge der eingeleiteten Beschleunigungen auftre-

tenden Kräfte. Die Verwendung deskriptiver bzw. phänomenologischer Modelle ist

somit ausreichend. Die einzige Forderung an das Menschmodell ist die Abbildung

der dynamischen Eigenschaften des menschlichen Körpers.

Das dynamische Verhalten des menschlichen Körpers kann durch die mechanische

Eingangsimpedanz Z f wiedergegeben werden. Diese ist gemäß ISO 5982 definiert

als das komplexe Verhältnis von der Kraft einF f zur der Schwinggeschwindig-

keit einv f an der Einleitungsstelle in den menschlichen Körper [ISO 5982].

Page 152: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

132

ein

ein

F fZ f

v f (5-33)

Die mechanische Eingangsimpedanz ist in eindeutiger Weise mit einer weiteren ge-

bräuchlichen Größe verknüpft, der scheinbaren Masse M f [ISO 5982].

2

ein

ein

F f Z fM f j

a f f

(5-34)

Dabei ist eina f die Beschleunigung an der Einleitstelle in den menschlichen Körper.

Kennlinien der vorgestellten Größen finden sich in der DIN 45676 [DIN 45676], wel-

che auch wesentliche Inhalte der ISO 5982 [ISO 5982] berücksichtigt. Messergeb-

nisse speziell für PKW-Sitze stellen Hinz et al. in [Hin-2004] vor und weisen auf ge-

schlechtsspezifische Unterschiede hin. Fleury untersucht die dynamische Masse

des sitzenden Menschen in horizontaler Richtung für unterschiedliche Haltungen

und Sitzkonfigurationen einschließlich Horizontalfederung und identifiziert zwei Ei-

genbewegungen mit einer Pendelbewegung des Oberkörpers und einer „Hin- und

Hertranslationsbewegung des Gesäßes und der Oberschenkel relativ zur Sitzfläche“

[Fle-2004]. Für Flurförderzeugsitze sind keine Untersuchungen bezüglich der

scheinbaren Masse bekannt.

Beide Größen sind vom Körperbau der betrachteten Person abhängig. In der Nor-

mung und Literatur wird dazu übergegangen, das Körpergewicht des Menschen in

drei Klassen einzuteilen. Auf diese Unterteilung wird auch in der vorliegenden Arbeit

zurückgegriffen, wobei folgende Festlegung nach Tabelle 5-5 getroffen wird.

Tabelle 5-5: Einteilung der Fahrer nach Körpergewicht

mittlere Körpermasse Bezeichnung

55 kg leichter Fahrer

75 kg mittlerer Fahrer

98 kg schwerer Fahrer

Hierbei ist zu erwähnen, dass der Personenkreis der Fahrer von Flurförderzeugen

eher beim Typ des schweren Fahrers anzusehen ist, denn Körpergewichte größer

100 kg sind nicht selten. Die entspricht auch den aktuellen Entwicklungen, nach de-

nen der Mensch tendenziell größer und breiter wird [Küc-2010].

Für die Nachbildung des sitzenden Fahrers ist ein biodynamisches Menschmodell

gesucht, welche die Impedanz Z f für unterschiedliche schwere Personen hinrei-

chend genau wiedergibt. Zur Verdeutlichung zeigt Abbildung 5-26 die Impedanz für

Page 153: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

133

die drei unterschiedlich schweren Fahrer basierend auf Reihenmessungen bei nicht

angelehnten und auf einer harten Oberfläche sitzenden Personen [DIN 45676]. Die

gewählte Simulationsumgebung MSC.ADAMS stellt selbst kein biodynamisches

Menschmodell zur Verfügung, so dass ein aus der Literatur bekanntes Modell zu

übernehmen ist.

Abbildung 5-26: Impedanz für unterschiedlich schwere Fahrer bei Erregung in z-Richtung nach [DIN 45676]

Ganzkörpermodelle des sitzenden Menschen sind in der Fachwelt in großem Um-

fang publiziert, so dass eine umfassende Darstellung im Rahmen dieser Arbeit nicht

möglich ist. Neben einer folgenden Kurzdarstellung der wichtigsten biodynamischen

Menschmodelle sei auf die Dissertation von Rützel [Rüt-2007] verwiesen, welche

eine umfassende Beschreibung enthält. Im Vordergrund der Betrachtung stehen im

Folgenden Menschmodelle für den Einsatz in der Computersimulation und keine

realen mechanischen Modelle, deren Einsatz zur Prüfung von Fahrersitzen erforscht

wird (vgl. z. B. [Man-1996; Kin-2004]).

Im Bereich der anatomischen Modelle ist das dynamische dreidimensionale FE-

Modell von Buck [Buc-1997] zu nennen, welches von Pankoke [Pan-2003] zu einer

Modellfamilie mit unterschiedlicher Anthropometrie und Haltung erweitert wird, die

durch eine Schnittstelle zum dreidimensionalen Menschmodell RAMSIS [For-1995]

vorgegeben werden können [Pan-2002]. Aufbauend auf der Arbeit von Pankoke de-

tailliert Rützel [Rüt-2007] den Gesäß- und Rückenbereich sowie das Bauchraummo-

dell. Diese Modelle sind auch unter dem Namen CASIMIR bekannt. Als weitere ana-

tomische Modelle mit dem Fokus auf der Analyse der Lendenwirbelsäule sind die

Modelle von Schube [Sch-2002a], Grundendahl [Gru-2004] und Verver [Ver-2004] zu

nennen.

0

Betr

ag

[N

s/m

]

Frequenz [Hz]

0 2 4

1.000

2.000

3.000

4.000

6 8 10 12 14 16 18 20

55 kg

75 kg

98 kg

Page 154: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

134

Neben der Modellierung als FE-Struktur können biodynamische Menschmodelle

auch als Mehrkörpermodell aufgebaut sein. So stellen z. B. Bitter et al. 2005 im

Rahmen eines FAT-Forschungsprojekts ein numerisches Menschmodell aus

18 Starrkörpern mit insgesamt 16 Freiheitsgraden vor, welches mit Messungen an

einer Versuchsperson validiert wird [Bit-2005]. Das mittlerweile kommerziell erhältli-

che Software-Paket MADYMO zur Insassenanalyse basiert auf den Arbeiten von

Happee et al., die auf Basis der RAMSIS-Daten des 50. Perzentils Manns ein Starr-

körpermodell mit einer umgebenden Haut aus Dreiecken ableiten [Hap-1998; Hap-

2000].

Ebenso sind Modelle möglich, bei denen eine Kopplung zwischen Mehrkörper- und

FE-Modell realisiert wird. Ein Vertreter dieser Gattung ist das Menschmodell CO-

SYMAN [Sch-2002b], welches auf das biomechanische 3D-Mehrkörper-

Menschmodell DYNAMICUS der Software alaska zurückgreift. Zur Simulation der

Polsterauflagen und der Unterfederung von Fahrzeugsitzen kommt ein von der Firma

Johnson Controls GmbH entwickeltes FE-Programm zur Anwendung.

Neben den anatomischen Modellen existiert eine Vielzahl an phänomenologischen

Modellen. Ein guter Überblick über 16 lineare und nichtlineare Modelle wird von Li-

ang und Chiang gegeben [Lia-2006]. Das einfachste Modell zur Wiedergabe der me-

chanischen Eingangsimpedanz stellt der 1962 von Coermann vorgestellte fußpunkt-

erregte Einmassenschwinger dar [Coe-1962], der von Suggs et al. um eine auf dem

Sitz befindliche Fußpunktmasse erweitert wird [Sug-1969]. Wei und Griffin unterzie-

hen die Modelle mit und ohne Fußpunktmasse 1998 einer systematischen Untersu-

chung [Wei-1998]. Eine Zuordnung der Massen zu einzelnen Körperelementen führt

1992 Knoblauch durch, um auf Basis des mathematischen Modells einen Hardware-

Schwingungsdummy zu entwerfen [Kno-1992]. Modelle für die Nachbildung in hori-

zontaler Richtung sind ebenso vorhanden, z. B. [Man-1999]. Rützel stellt 2007 in

seiner Dissertation einen modalen Ansatz zur Beschreibung des menschlichen

Schwingungsverhaltens mit einer Fußpunktmasse und n Systemen mit jeweils ei-

nem Freiheitsgrad vor und weist für Personen in PKW-typischer Haltung die Fähig-

keit des Verfahrens zur quantitativen Charakterisierung des Schwingungsverhaltens

nach [Rüt-2007]. Auch in Nomen sind neben Antwortkurven für das Schwingungs-

verhalten Vorschläge für mathematisch-mechanische Ersatzmodelle zu finden. So

wird in der ISO 5982 für einen Menschen mit 75 kg Körpergewicht ein System aus

vier Massen vorgestellt, welches durch Anpassung der Masse 3m auf andere Kör-

pergewichte übertragen werden kann ([ISO 5982],Abbildung 5-27 rechts). Die Masse

2m repräsentiert dabei den Kopf. Auch in der DIN 45676 findet sich ein Vorschlag

für ein Ersatzmodell [DIN 45676], bei dem drei Massen über Feder-Dämpfer-Paare

Page 155: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

135

auf einer Fußmasse schwingen. Eine Auswahl der vorgestellten phänomenologi-

schen Menschmodelle zeigt Abbildung 5-27.

Abbildung 5-27: Auswahl phänomenologischer Menschmodelle

Der Erwerb umfangreicher kommerzieller Menschmodelle im Rahmen des zu Grunde

liegenden Forschungsprojekts ist nicht möglich. Mangels belastbarer Daten aus den

genannten Veröffentlichungen zur Nachbildung der vorgestellten Schwingungsmo-

delle wird auf das in der DIN 45676 vorgestellte mechanische Ersatzmodell zurück-

gegriffen, auch wenn dessen Gültigkeit nur im Frequenzbereich von 1–20 Hz für auf

einer harten Oberfläche sitzende nicht angelehnte Personen nachgewiesen ist. Das

in Abbildung 5-28 schematisch dargestellte Ersatzmodell wird auf dem Sitzmodell

(Abbildung 5-16) mittig positioniert, wobei die Einzelkörper entlang einer gemeinsa-

men Achse angeordnet werden.

Abbildung 5-28: Mechanisches Ersatzmodell für den sitzenden Fahrer gemäß [DIN 45676]

Für die nach Tabelle 5-5 getroffene Unterteilung hinsichtlich des Körpergewichts

können die Parameter des Schwingungsmodells der [DIN 45676] entnommen wer-

den.

5.2.5 Hubgerüst

Die Vorrichtung eines Flurförderzeugs zum Aufnehmen, Heben und Senken der Last

wird als Hubgerüst oder auch als Hubanlage bezeichnet. Im Folgenden werden des-

sen Aufbau und die Modellierung als Mehrkörpermodell beschrieben.

Rützel

m1 ...

m0

mn m3

m0

m1

m2

ISO 5982

m1

m0

m2

Suggs et al.

m

Coermann

m0

m3m2m1

c3 d3c2 d2c1 d1

Page 156: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

136

5.2.5.1 Mechanischer Aufbau

Das Hubgerüst besteht aus mindestens einem am Flurförderzeug befestigten (Au-

ßen-)Rahmen, in dem je nach Bedarf ein oder mehrere Rahmen, die sich jeweils

über zwei Rollenpaare ineinander abstützen, teleskopartig verfahren werden können.

Aus diesem Grund spricht man von Teleskop-Hubgerüsten. Der Gabelträger mit den

Gabelzinken wird im innersten Rahmen, dem sog. Innenrahmen, über am Gabelträ-

ger angebrachte Rollenpaare geführt. Durch die Rollenführung sind die Mastrahmen

als offene Profile, welche über mindestens zwei Querträger miteinander verbunden

werden, auszuführen. [Wit-2002]

Kaufmann beschreibt und benennt die bekannten Bauformen in Abhängigkeit der

zum Einsatz kommenden Hubrahmen und der Anordnung der Hubzylinder in [Kau-

2013, S. 33–49]. Abbildung 5-29 beschränkt sich dagegen auf ein Dreifachteleskop-

Hubgerüst mit vollem Freihub (Triplex-Hubanlage), welches die Vorteile geringer

Bauhöhe bei hoher Hubhöhe kombiniert, sowie das bei Gabelstaplern weit verbreite-

te Zweifachteleskop-Hubgerüst (Simplex-Vollfreisicht-Hubanlage).

Abbildung 5-29: Allgemeiner Aufbau eines Dreifachteleskop-Hubgerüsts (links) und eines Zweifachte-leskop-Hubgerüsts (rechts), (Darstellung nach [Wit-2002])

Ein Dreifachteleskop-Hubgerüst mit vollem Freihub besteht aus einem Außenrahmen

und zwei innenliegenden Rahmen, dem Mittelrahmen und dem Innenrahmen. Mit

Hilfe des Freihubzylinders, welcher sich auf dem unteren Querträger des Innenrah-

mens abstützt, sowie der Freihubkette wird der Gabelträger für den Freihub ausge-

fahren. Als Freihub bezeichnet man den Hub des Gabelträgers ohne Änderung der

Hubgerüsthöhe. Die Enden der Kette, welche über eine an der Oberseite der Kol-

benstange drehbar gelagerte Umlenkrolle geführt wird, sind am Freihubzylinder und

Außenrahmen

Masthubzylinder

Mittelrahmen

Masthubkette

Freihubzylinder

Innenrahmen

Gabelträger

Freihubkette

Außenrahmen

Masthubzylinder

Hubkette

Innenrahmen

Gabelträger

Page 157: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

137

am Gabelträger angeschlagen. Dies bedingt eine doppelt so schnelle Hubbewegung

des Gabelträgers im Vergleich zum Hubkolben. Die Masthubzylinder heben den Mit-

telrahmen, auf welchem sich zwei drehbar gelagerte Umlenkrollen für die Masthub-

ketten befinden, die zum einen an der Oberseite des Außenrahmens und zum ande-

ren an der Unterseite des Innenrahmens angeschlagen sind, so dass Mittel- und In-

nenrahmen gleichzeitig (mit unterschiedlichen Geschwindigkeiten) ausfahren. [Wit-

2002]

Bei den untersuchten Flurförderzeugen besitzt der Schubmaststapler das beschrie-

bene Dreifachteleskop-Hubgerüst mit vollem Freihub. Die beiden Gabelstapler sind

mit einem Zweifachteleskop-Hubgerüst ausgestattet. Dieses besteht aus einem Au-

ßen- und Innenrahmen, wobei der Innenrahmen durch die Masthubzylinder ausge-

fahren wird. Über an ihm befestigte drehbar gelagerte Umlenkrollen wird der Gabel-

träger mit Hilfe der Hubketten bewegt (Abbildung 5-29 rechts).

Um das Hubgerüst in Fahrtrichtung neigen zu können, wird es im Fahrzeugrahmen

gelagert. Üblicherweise kommt dabei ein geteiltes Gleitlager mit zwei Lagerschalen

zum Einsatz [Kau-2013, S. 40]. Über zwei an jeden Seiten angeordnete hydraulische

Neigezylinder kann der Neigewinkel gesteuert werden.

5.2.5.2 Hydraulikzylinder

Die für das Heben der Last benötigte Kraft wird durch eine Hydraulikpumpe sowie

Hydraulikzylinder erzeugt. Bis auf den Freihub kommen symmetrisch zur Mittelachse

jeweils zwei baugleiche Zylinder zum Einsatz. Die Hydraulikzylinder bestehen aus

Kolben und Rohr und werden durch Schläuche mit der Hydraulikpumpe sowie den

Steuerventilen verbunden. In der Kompressibilität des im Umlauf befindlichen Ölvo-

lumens sowie der Elastizität der verwendeten Schläuche liegt die Gesamtelastizität

der Hydraulik für die Hub- und Neigebewegung begründet. Es gilt, diese Eigen-

schaften im Mehrkörpermodell hinreichend genau abzubilden.

In grundlegenden Untersuchungen haben bereits Beisteiner [Bei-1994], Witala [Wit-

2002] und Mittwollen [Mit-2007] die Charakteristika der Hydraulikzylindersteifigkeiten

herausgearbeitet und mit Messwerten hinterlegt. So zeigt Mittwollen am Beispiel

eines Neigezylinders, dass die Steifigkeit der Ölsäule im Hydraulikzylinder um eine

Größenordnung größer ist als die der Schläuche [Mit-2007]. Witala stellt zudem im

Rahmen seiner Untersuchungen deutlich den Einfluss der Hubhöhe auf die Steifig-

keit heraus, welche mit zunehmender Hubhöhe abnimmt [Wit-2002]. Auch Messun-

gen von Schmalzl an dem Hubgerüst eines Schmalgangstaplers bestätigen dieses

Verhalten [Sch-2006].

Page 158: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

138

Idealisiert kann die Elastizität der einzelnen Hub- und Neigezylinder sowie der zum

Einsatz kommenden Schläuche als Voigt-Kelvin-Modell (parallele Anordnung von

linearem Feder- und Dämpferelement) abgebildet werden, welches Kolben und Rohr

miteinander verbindet. Zwischen den Elementen Rohr und Kolben werden bis auf

den translatorischen Freiheitsgrad entlang der Symmetrieachse der Bauteile alle

restlichen durch ein entsprechendes Verbindungselement gesperrt. Abbildung 5-30

verdeutlicht das realisierte Ersatzmodell.

Abbildung 5-30: Ersatzmodell eines Hydraulikzylinders

Im Rahmen dieser Untersuchungen werden die einzelnen Kenngrößen selbst expe-

rimentell bestimmt und mit den Referenzwerten aus [Wit-2002; Mit-2007] auf Validi-

tät überprüft. Da das Schwingungsverhalten während der Fahrt untersucht werden

soll, ist es ausreichend, die Steifigkeiten für geringe Hubhöhen zu bestimmen. Dazu

wird der Gabelträger mit unterschiedlichen Lasten bis zur Höhe der Nennlast des

Hubgerüsts beaufschlagt, während zeitgleich mit Hilfe von Wegsensoren die Einfe-

derung von Gabelträger und Innenrahmen gemessen wird. Abbildung 5-31 zeigt die

Kraft-Einfederungskurve eines untersuchten Freihubzylinders und verdeutlicht den

linearen Verlauf der Steifigkeitskennlinie.

Abbildung 5-31: Steifigkeitskennlinie eines Freihubzylinders

Translational Joint

dZyl

cZylKolben Rohr

Page 159: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

139

Je nach Position der Sensoren kann die Steifigkeit der Hydraulikzylinder direkt aus

der Messung bestimmt oder aus der ermittelten Gesamtsteifigkeit des Systems er-

rechnet werden. Bei letzterem kann man sich des von Schmalzl aufgestellten Ersatz-

systems bedienen (Abbildung 5-32).

Abbildung 5-32: Ersatzmodell für Hubhydraulik und Hubkette (in Anlehnung an [Sch-2006])

Die Steifigkeit des Gesamtsystems ,HG gesc stellt sich als Funktion der Einzelsteifig-

keiten von Masthubkette und Hubhydraulik dar [Sch-2006, S. 76].

,,

, ,

,

1 4

Kette vHG ges

Kette v Kette v

Kette h Zyl

cc

c c

c c

(5-35)

Bei bekannter Kettensteifigkeit ,Kette vc und ,Kette hc kann durch Auflösen der Glei-

chung (5-35) die Steifigkeit der Hydraulikzylinder bestimmt werden.

Die Dämpfung Zyld der Hydraulikzylinder wird durch Ausschwingversuche der Ga-

belträger identifiziert und mit den Ergebnissen der Arbeit von Witala validiert. Die

Dämpfungsfaktoren im Bereich von Zyld = 3–11 N∙s/mm [Wit-2002] können für die

vorliegende Untersuchung angewendet werden.

5.2.5.3 Hubkette

Die über Umlenkrollen geführten Hubketten halten bzw. bewegen den Mast oder

den Gabelträger. Hierbei ergibt sich eine kinematische Kopplung. Fährt bei einem

Zweifachteleskop-Hubgerüst der Innenrahmen um eine Längeneinheit aus, so be-

wegt sich der Gabelträger um zwei Längeneinheiten entlang des Masts nach oben.

Diese kinematische Kopplung ist im Mehrkörpermodell ebenso zu berücksichtigen

wie die Elastizität der Kette.

cKette,v cZyl cKette,h

FKette

Hubkette

Hubzylinder

Page 160: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

140

Die Hubkette kann Zugkräfte, jedoch keine Druckkräfte aufnehmen. Deswegen wird

eine Modellierung gemäß [Wit-2002, S. 66–68] gewählt. Die Kette wird im vorderen

Bereich in zwei Teile aufgeteilt, wobei einer drehbar mit der Umlenkrolle und ein Teil

drehbar mit dem Gabelträger verbunden wird (Abbildung 5-34 rechts). Damit die

Kette nur Zugkräfte aufnehmen kann, ist ihre Steifigkeit im Gegensatz zu einer linea-

ren Feder im Druckbereich auf den Wert Null zu setzen. Abbildung 5-33 stellt die

Kennlinie des reinen Zug-Stabs der eines Zug-Druck-Stabs gegenüber.

Abbildung 5-33: Kennlinien eines Zug-Druck-Stabs (links) und eines reinen Zug-Stabs (rechts)

Realisiert wird dieses Verhalten über eine Kraft zwischen den Verbindungspunkten

der Kettenteile. Die Kettenkraft KetteF berechnet sich zu

Kette Kette Zug KetteF c x d x, (5-36)

Die Größe x beschreibt die relative Verschiebung der Verbindungspunkte in Ket-

tenlängsrichtung. Die Dämpfung Ketted wird nicht nur auf den Zugbereich be-

schränkt. Sie ist geschwindigkeitsproportional und wirkt auch einer Bewegung der

Kette im Druckbereich durch Reibung in der Führung und den Gliedern entgegen. Im

Rahmen der Simulation wird eine geringe Dämpfung angesetzt.

Um Unstetigkeiten bei der Integration zu vermeiden, wird ein stetig differenzierbarer

Übergang der Steifigkeit ,Kette Zugc im Nulldurchgang gewählt.

,Zug ,0,0, ,1Kette min Kettec STEP x x c (5-37)

Der in Formel (5-37) verwendete Ausdruck STEP beschreibt eine durch ein kubi-

sches Polynom realisierte stetig differenzierbare Funktion mit einem Sprung zwi-

schen den Wertepaaren 0 0,x y und 1 1,x y . Die STEP-Funktion wird allgemein be-

schrieben als:

Δx [m]

F [N] c [N/m]

Δx [m] Δx [m] Δx [m]

F [N] c [N/m]

Page 161: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

141

0

20 0 1 1 0

1

,x , , , 3 2

y

STEP x y x y y

y

für

0

0 1

1

x x

x y x

x x

(5-38)

mit

1 0y y

0

1 0

x x

x x

Somit wirkt erst ab einem individuell klein gewählten minx die tatsächliche Steifig-

keit der Kette .Kettec Diese wird aus Herstellerangaben für die spezifische Kettenstei-

figkeit , ,Kette spezc welche im Labor für ein 1 m langes Kettenstück ermittelt wird, in

Kombination mit der gesamten Einbaulänge Kettel bestimmt.

,Kette spezKette

Kette

cc

l (5-39)

Zur Berücksichtigung der kinematischen Kopplung werden in den Arbeiten von

Schmalzl [Sch-2006, S. 75] und Witala [Wit-2002, S. 66–68] die Umlenkrollen als

Wippe modelliert. Um auch größere Einfederungen der Hydraulikzylinder abdecken

zu können, kommt im Rahmen dieser Arbeit der in Abbildung 5-34 rechts dargestell-

te Ansatz zum Tragen. Im Mehrkörpermodell wird nur der vordere Teil der Kette ab-

gebildet. Da die Umlenkrolle Längenänderungen der hinteren Kette auf Grund von

Dehnung als Wegverschiebung direkt auf die vordere Kette überträgt, kann die Stei-

figkeit der hinteren Kette bei der im vorderen Teil modellierten Kette berücksichtigt

werden. Des Weiteren wird neben der Aufteilung des Kettenstücks zur Integration

des Feder-Dämpfer-Elements das obere Teilstück ein erneutes Mal aufgetrennt.

Durch den Einsatz des Verbindungselements „Coupler“ kann die Relativbewegung

von Kolben und Zylinder des Hydraulikzylinders mit der Verschiebung dieser beiden

Teilstücke gekoppelt werden. Eine Einfederung der Hubzylinder um die Längenän-

derung Zylx hat folglich eine Einfederung des Gabelträgers um Zyl2 x zur Folge.

Page 162: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

142

Abbildung 5-34: Mechanischer Aufbau (links) und Ersatzmodell (rechts) von Hubkette und Hubzylin-der

5.2.5.4 Mastspiel durch Rollenkontakte

Innen- und Außenrahmen sowie der Gabelträger stützen sich gegenseitig durch

Laufrollen in den Mastprofilen ab. Durch eine Schrägstellung der Rollen in Kombina-

tion mit einem entsprechenden Mastquerschnitt werden hierbei sowohl Kräfte in

Fahrzeuglängsrichtung als auch in Querrichtung übertragen. Zur Vermeidung von

Reibungsverlusten sind die Rollen mit Spiel angeordnet. Dies hat zur Folge, dass

eine Rolle jeweils nur an einer Seite des Mastprofils anliegt. Abbildung 5-35 zeigt

beispielhaft einen Schnitt durch Führungsrolle und Mast.

Durch das Führungsspiel entsteht eine Nichtlinearität in der Steifigkeit des Hubge-

rüstes, welche das Schwingungsverhalten des Fahrzeugs beeinflusst. Diese Nichtli-

nearität wird im Mehrkörpermodell im Sinne der deduktiven Modellbildungsstrategie

berücksichtigt. Da vornehmlich Zustände untersucht werden sollen, bei denen sich

das Hubgerüst in Fahrposition befindet, kann auf eine elastische Modellierung der

einzelnen Hubrahmen verzichtet werden, auf die z. B. Schmalzl in seiner Arbeit zu-

rückgreift [Sch-2006]. Diese werden folglich als Starrkörper modelliert.

Anschlagam Gabelträger

Anschlagam Gabelträger

Anschlagam Außenrahmen

HubketteΔxZyl

Hubzylinder

Innenrahmen

Umlenkrolle

Hubkette

Hubzylinder

Innenrahmen

Umlenkrolle

Außenrahmen Außenrahmen

cKette,Zug

dKette

cZyl

dZyl

ΔxZyl

Page 163: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

143

Abbildung 5-35: Führungsrolle und Mast

Bei der Modellierung des Führungsspiels ist eine geeignete Kraftformulierung für

den auftretenden Kontakt zwischen Rolle und Mastprofil zu wählen. Ein kurzer und

prägnanter Überblick über unterschiedliche Verfahren zur Berechnung von Kontakt-

kräften im Hinblick auf den Einsatz in der Mehrkörpersimulation findet sich in [Hip-

2004, S. 28–53]. Auf Grund der verhältnismäßig einfachen Geometrie der Kontaktflä-

chen und der guten Effizienz in Bezug auf die Rechenzeit wird das Verfahren des

Starrkörperkontakts gewählt, für welches die verwendete Simulationssoftware

MSC.ADAMS ein geeignetes Kraftelement zur Verfügung stellt. Dieses verwendet

die sog. Impact-Kontaktformulierung, bei der nur eine Kraft zwischen zwei Körpern

wirkt, wenn sich diese zu durchdringen versuchen. Definiert man Kg als Durchdrin-

gung der Körper ( Kg > 0 bei Durchdringung) und NF als Normalkraft ( NF > 0 für

Durchdringung), so berechnet sich die Normalkraft zu:

,,0,0, , KeN Kontakt K K K,max Kontakt max

dgF c g STEP g g d

dt (5-40)

mit

Kontaktc Kontaktsteifigkeit

e positiver Wert als Kraftexponent

,K maxg Schwellwert für die maximale Dämpfung Kontakt,maxd

Kontakt,maxd maximale Dämpfung

Außenmast

Führungsrolle

Innenmast

Y-S

pie

l

X-Spiel

x y

Page 164: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

144

Zur Bestimmung der jeweiligen Kontaktsteifigkeit kann die Theorie von Hertz heran-

gezogen werden25. Es wird dabei homogenes, isotropes Material sowie die Gültig-

keit des Hookeschen Gesetzes vorausgesetzt. Diese Kriterien sind in dem vorlie-

genden Fall erfüllt. Nach Löhr errechnet sich mit Hilfe einer einfachen Geometriebe-

trachtung die während des Stoßvorgangs auftretende Verformung und die für die

Definition erforderliche Ersatzsteifigkeit Kontaktc zu [Löh-2002, S. 51–53]:

*

22 1

bKontakt

l Ec

(5-41)

mit

Querdehnungszahl [-] ( = 0,3 für beide Körper)

1,E 2E E-Modul der Kontaktkörper [N/mm2], 1 2

1 2

* 2 E E

E EE

bl Lagerrollenbreite [mm]

Die Dämpfung im Kontakt kann nicht gemessen werden und ist erfahrungsgemäß

beim Stoß zweier starrer Körper gering. Zum Zwecke einer stabilen Simulation wird

eine geringe Dämpfung verwendet.

Das Führungsspiel in Längs- und Querrichtung wird getrennt voneinander durch je-

weils ein Kontaktelement realisiert. Hierbei werden nicht die importierten CAD-

Daten, sondern Konstruktionselemente der Simulationsumgebung verwendet, um

eine schnelle und effiziente Berechnung der Kontaktkräfte zu erreichen. Das Spiel in

den Führungen wird den Konstruktionszeichnungen entnommen und am realen

Fahrzeug überprüft. Die Messung der Spiele ist jedoch mit einer großen Ungenauig-

keit behaftet. Verschmutzungen, elastische Verformung der Führung sowie ferti-

gungsbedingte Abweichungen des Kammermaßes der Profile können das Messer-

gebnis verfälschen [Wit-2002, S. 25]. Die ermittelten Spiele bewegen sich im Bereich

der auch in [Wit-2002, S. 25] vermessenen Werte. Im Durchschnitt wird ein Spiel von

0,4 mm in Längs- und 0,7 mm in Querrichtung angesetzt. Abbildung 5-36 zeigt die

Modellierung des Spiels einer Rolle in Längs- und Querrichtung durch zwei einzelne

Rollen (Zylinderelemente) sowie die zugehörigen Kontaktelemente bzw. Laufschie-

nen in Prinzipdarstellung und in der Realisierung im Simulationsprogramm

MSC.ADAMS.

25 Heinrich Hertz beschreibt seine Theorie in [Her-1882], eine prägnante Zusammenfassung findet

sich in [Dub-2011, S. C34-C35].

Page 165: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

145

Abbildung 5-36: Anordnung der Elemente zur Realisierung des Spiels im Hubgerüst

5.2.6 Lagerung von Kabine und Pendelachse

Bei Gabelstaplern aktueller Baureihen wird die Kabine durch den Einsatz von Gum-

milagern vom Fahrwerk entkoppelt. Sowohl die Gestaltung der einzelnen Lagerele-

mente als auch das Gesamtkonzept variieren je nach Hersteller. So ist bei dem Ga-

belstapler DFG 35 die Antriebsachse über zwei radiale Gummilager vom Fahr-

zeugchassis entkoppelt. Ebenso verfügen die Anschlusspunkte der am Dach ange-

ordneten Neigezylinder über Gummilager. Bei dem betrachteten Gabelstapler

EFG 20 ist die Kabine samt Motorabdeckung und dem darauf montierten Fahrersitz

durch einzelne Gummilager im Fahrzeugchassis aufgehängt. In den jeweiligen Mehr-

körpermodellen sind die einzelnen Lagercharakteristika in Form von teils nichtlinea-

ren Kennlinien hinterlegt und durch Kraftgesetzte abgebildet. Können die Kennlinien

keinen Datenblättern entnommen werden, werden Druckversuche zu deren Bestim-

mung durchgeführt.

Beide Gabelstapler verfügen zudem über zwei Hinterräder, welche an einer sog.

Pendelachse befestigt sind. Diese wird im Gegengewicht von je zwei Gummilagern

aufgenommen, welche eine Drehung um die Fahrzeuglängsachse erlauben. Deren

Drehsteifigkeit und radiale Steifigkeit werden durch Messungen bestimmt und sind

im Mehrkörpermodell ebenso als Kraftgesetze hinterlegt.

5.2.7 Fahrzeugstruktur

Die Fahrzeugstruktur der betrachteten Flurförderzeuge ist in der Regel sehr steif

aufgebaut, so dass für die zu Grunde liegende Problemstellung eine Modellierung

als Starrkörper als ausreichend angesehen werden kann. Bestimmte Bauteile bedür-

Y-Spiel

X-S

pie

l

Führungsrolle

Kontaktelement

Page 166: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

146

fen jedoch einer Modellierung als elastischer Körper, worauf nachfolgend eingegan-

gen und am Beispiel der auskragenden Radarme des EFM 14 detailliert beschrieben

wird. Durch die Integration von elastischen Körpern ergeben sich hybride Mehrkör-

permodelle.

5.2.7.1 Auskragende Radarme des EFM 14

In Expertengesprächen stellt sich heraus, dass sich die auskragenden Radarme des

EFM 14 bei Fahrt über Einzelhindernisse verformen können. Dies wird zum Anlass

genommen, die Radarme als elastische Körper abzubilden. Eine praktikable Mög-

lichkeit hierfür stellt die Einbindung sog. flexibler Körper in das Mehrkörpersystem

dar. Hierfür werden die einzelnen Radarme als Finite-Elemente-Modell abgebildet.

Verwendung finden hierbei Balkenmodelle, welche auf Basis der zur Verfügung ge-

stellten CAD-Daten erstellt werden (Abbildung 5-37).

Abbildung 5-37: Finite-Elemente-Modell eines Radarms

Da herkömmliche Finite-Elemente-Modelle für eine effiziente Einbindung in ein

Mehrkörpersystem zu viele Freiheitsgrade besitzen, ist eine Reduktion ohne Beein-

flussung des dynamischen Verhaltens erforderlich. Als gängige Methode bietet sich

hierfür die Craig-Bampton-Reduktion an [Cra-1968].

Mit Hilfe der eingesetzten Software I-deas kann diese Reduktion automatisiert voll-

zogen und ein sog. Superelement erzeugt werden. Der Datenaustausch mit der

Mehrkörpersimulationssoftware MSC.ADAMS erfolgt über ein sog. modal neutral

file. Dabei handelt es sich um ein plattformunabhängiges Austauschformat, welches

die reduzierte Massen- und Steifigkeitsheitsmatrix sowie die Eigenformen

und -frequenzen des abgebildeten Bauteils enthält. Die Einbindung selbst erfolgt

über einen Import mit dem Werkzeug ADAMS/Flex. Der generierte flexible Körper

kann über im Finite-Elemente-Modell erzeugte Knoten, auf welche die Freiheitsgrade

des Superelements reduziert sind, mit anderen Körpern über die gängigen Verbin-

dungselemente gekoppelt werden. Bei der Verwendung des C++-Solvers treten

hierbei kaum Restriktionen im Vergleich zur Verbindung zweier Starrkörper auf.

Page 167: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

147

Der Schubschlitten wird durch Rollen in dem U-Profil des Radarms geführt. Um die-

se spielbehaftete Führung in der Simulation als Starrkörperkontakt abzubilden, wer-

den in Anlehnung an [Sch-2006, S. 77–79] an den in Fahrposition befindlichen Rol-

lenpositionen (Schubschlitten eingefahren) Knoten im Finite-Elemente-Modell er-

stellt, an welche Teilstücke des Führungsprofils als Starrkörper angeschlossen wer-

den. Zwischen Führungsrollen und Starrkörperstücken wird eine Impact-Kontakt-

formulierung gemäß Formel (5-40) definiert.

Abbildung 5-38: Als flexibler Körper eingebundener Radarm mit Anschluss zu Führungsprofilen und Rollen

5.2.7.2 Motorabdeckung/Sitzplatte

Beim Gabelstapler DFG 35 wird der Sitz auf einer Motorabdeckung aus dünnwandi-

gem Stahlblech befestigt. Im Zuge der Modellbildung wird beschlossen, auch diese

als flexiblen Körper in das Modell einzubinden, da im ersten Schritt einer Validierung

zu geringe berechnete Beschleunigungen am Sitzmontagepunkt festgestellt werden.

Auf Basis der vorliegenden CAD-Datei der Motorabdeckung wird diese mit Hilfe der

Software I-deas als Finite-Elemente-Modell auf Basis von Volumenelementen abge-

bildet. Dabei werden die Anschlusspunkte zum Rahmen und Fahrzeugsitz als Kno-

ten definiert (Abbildung 5-39).

Page 168: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

148

Abbildung 5-39: Finite-Elemente-Modell der Motorhaube des DFG 35 mit Anschlussknoten

Die Montage des Fahrersitzes beim Schubmaststapler EFM 14 erfolgt auf einer hori-

zontalen Platte aus gebogenem Stahlblech, die am Rahmen der Fahrzeugkabine

durch Schraubverbindungen befestigt ist. Auch hier ist davon auszugehen, dass ei-

ne Modellierung als Starrkörper nicht ausreichend ist. Dementsprechend wird eben-

falls mit der Software I-deas ein Finite-Elemente-Modell mit passenden Anschluss-

knoten erstellt (Abbildung 5-40). Auf Grund der einfacheren Struktur der Sitzplatte

erfolgt die Modellierung mit Schalenelementen. Bei der Motorabdeckung des

DFG 35 ist dies aus Zeitgründen nicht vertretbar.

Abbildung 5-40: Finite-Elemente-Modell der Sitzplatte des EFM 14 mit Anschlussknoten

Die Einbindung in die Mehrkörpersimulationssoftware ADAMS erfolgt jeweils analog

zu dem geschilderten Vorgehen bei den Radarmen des EFM 14.

5.2.8 Bestimmung von Masse und Schwerpunkt

Je nach Qualität und Aufbau der CAD-Daten können nach erfolgtem Import der Ge-

ometrie im Preprocessor ADAMS/View Masse, Massenträgheitsmoment und Lage

Page 169: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.2 Modellierung gemeinsamer Teilkomponenten

149

des Schwerpunkts auf Basis der Bauteildichte berechnet werden. Ist dies nicht

möglich, sind diese Größen mit Hilfe einer CAD-Software zu bestimmen und dem

Bauteil im Mehrkörpermodell zuzuweisen. Da die Detailtiefe der CAD-Modelle unter-

schiedlich ist bzw. nicht jedes einzelne Element in das Mehrkörpermodell übernom-

men werden soll, um die Überschaubarkeit zu gewährleisten, sind die so ermittelten

Werte für Masse und Schwerpunkt einer gewissen Unsicherheit unterworfen.

Um sicherzustellen, dass Gesamtmasse und Schwerpunkt des Fahrzeugmodells mit

der Realität übereinstimmen, werden durch eigene Messungen die notwendigen

Größen bestimmt (Abbildung 5-41). Zum Einsatz kommt dabei ein mobiles Messsys-

tem der Firma Dini Argeo, welches aus vier Wägeplattformen und einer Auswer-

teeinheit besteht. Um die Maximallast einer Wägeplattform nicht zu überschreiten,

werden diese gegebenenfalls parallel geschaltet.

Abbildung 5-41: Messung der Achslasten des EFG 20 mit Hilfe von Wägeplattformen

Durch die Erfassung der wirkenden Kräfte an jedem Reifen kann neben der Fahr-

zeugmasse auch der Schwerpunkt in x- und y-Richtung berechnet werden. Für die

Bestimmung der vertikalen Schwerpunktlage werden auch Messungen durchge-

führt, bei denen sich das Flurförderzeug in einer um seine Querachse geneigten Po-

sition befindet. So ist mit einer gewissen Messunsicherheit auch die Bestimmung

der z-Koordinate des Schwerpunkts möglich. Die ermittelten Werte werden mit den

aus den CAD-Daten errechneten abgeglichen und das Fahrzeug wird um eine Aus-

Page 170: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

150

gleichsmasse an passender Position ergänzt, so dass Gesamtschwerpunkt und

Fahrzeugmasse des Modells mit der des realen Fahrzeugs übereinstimmen.

5.3 Simulationsmodelle der Flurförderzeuge

5.3.1 Gabelstapler

Die Antriebsachse des Gabelstaplers DFG 35 ist über zwei radiale Gummilager im

Fahrzeugrahmen befestigt, welche auch eine Drehbewegung um die Antriebslängs-

achse ermöglichen. Gegengewicht und Fahrzeugrahmen sind dagegen fest mitei-

nander verbunden. Die Neigung des Zweifachteleskop-Hubgerüsts, bei dem der Au-

ßenrahmen fest mit der Antriebsachse verschraubt ist, wird durch zwei Hydraulikzy-

linder realisiert, welche am Dach der Fahrzeugkabine befestigt sind. Die in Kapi-

tel 5.2.7 beschriebene Motorabdeckung ist fest im Fahrzeugrahmen gelagert. Der

Dieselmotor ist über drei elastische Lagerstellen mit Fahrzeugrahmen und Gegen-

gewicht verbunden, in welchem auch die Pendelachse befestigt ist. Der Aufbau des

Zweifachteleskop-Hubgerüsts ist Kapitel 5.2.5 zu entnehmen. Abbildung 5-42 zeigt

das Mehrkörpermodell des DFG 35 mit Fahrer und Sitz, das bei 81 Starrkörpern,

einem flexiblen Körper und 95 Bindungselementen unterschiedlicher Wertigkeit nach

dem Grübler-Kutzbach-Kriterium über 114 Freiheitsgrade verfügt.

Abbildung 5-42: Mehrkörpermodell des Gabelstaplers DFG 35

Der EFG 20 verfügt über einen anderen Fahrzeugaufbau, da die Antriebsachse eine

starre Einheit mit Gegengewicht und Fahrzeugchassis bildet, auf welchem über drei

Lagerstellen die Fahrerkabine angebunden ist. Die Hydraulikzylinder für die Neigung

x

z

y

Page 171: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5.3 Simulationsmodelle der Flurförderzeuge

151

sind im unteren Bereich des Außenrahmens am Hubgerüst angebracht, welcher

drehbar an der Antriebsachse gelagert ist. Der EFG 20 verfügt ebenso über eine

Pendelachse für die Hinterreifen. Der Fahrersitz ist auf der als starr anzunehmenden

Bodenplatte der Fahrzeugkabine montiert. Das Mehrkörpermodell des EFG 20 ist

Abbildung 5-43 zu entnehmen und verfügt samt Fahrer und Sitz bei 72 Starrkörpern

und 92 Bindungselementen unterschiedlicher Wertigkeit nach dem Grübler-

Kutzbach-Kriterium über 68 Freiheitsgrade.

Abbildung 5-43: Mehrkörpermodell des Gabelstaplers EFG 20

5.3.2 Schubmaststapler

Der Schubmaststapler EFM 14 besitzt wie in Kapitel 2.1.2 erläutert eine andere Bau-

form. Die Hauptkomponente bildet die Fahrerkabine inklusive Batterie, an welcher

die beiden auskragenden Radarme befestigt sind, die wie beschrieben als flexible

Körper in das Modell integriert sind und über Rollenkontakte den Schubschlitten in

Fahrposition aufnehmen. Das Dreifachteleskop-Hubgerüst mit vollem Freihub ist am

Schubschlitten drehbar befestigt, so dass es durch zwei weitere Hydraulikzylinder

geneigt werden kann. Neben den beiden Lastrollen an den auskragenden Radarmen

besitzt der EFM 14 ein drehbar gelagertes Antriebsrad. Abbildung 5-44 zeigt das

Mehrköpermodell des Schubmaststaplers EFM 14 mit Fahrer und Sitz, das bei

70 Starrkörpern, 3 flexiblen Körpern und 96 Bindungselementen unterschiedlicher

Wertigkeit nach dem Grübler-Kutzbach-Kriterium über 190 Freiheitsgrade verfügt.

xz

y

Page 172: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

5 Modellbildung der Flurförderzeuge

152

Abbildung 5-44: Mehrkörpermodell des Schubmaststaplers EFM 14

xz

y

Page 173: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

153

6 Verifikation und Validierung der Simulationsmodelle

Bevor mit den Simulationsmodellen Parameterstudien durchgeführt werden können,

ist zu überprüfen, inwieweit diese korrekte Abbilder der Realität hinsichtlich der Un-

tersuchungsziele darstellen. Die dazu notwendigen Schritte werden unter dem

Oberbegriff Verifikation und Validierung zusammengefasst. Anzumerken ist, dass

eine vollständige Korrektheit eines Modells formal nicht nachzuweisen ist, sondern

dass immer subjektiv vom Modellierer entschieden wird, welche Schritte im Rahmen

der Verifikation und Validierung unternommen werden. Im Vordergrund steht des-

wegen nicht „der formale Nachweis der Validität eines Modells, sondern der Nach-

weis seiner Glaubwürdigkeit“ [Rab-2008, S. 2]. Einige Autoren wie z. B. Carson wer-

ten ein Modell als glaubwürdig, wenn es ausreichend genau ist und als Abbild der

Realität dient, um die eingangs adressierte Fragestellung beantworten zu können

[Car-1989]. Es ist also sicherzustellen, dass das Modell das Verhalten des Original-

systems im Hinblick auf die Untersuchungsziele genau genug und fehlerfrei wider-

spiegelt [VDI 3633-1]. Dieser Prozess gliedert sich in zwei Teilschritte. Während bei

der Verifikation überprüft wird, ob ein Modell die zugrundeliegenden Anforderungen

der Realität erfüllt, erfolgt im Rahmen der Validierung die Überprüfung der hinrei-

chenden Übereinstimmung von Simulationsmodell und dem zu Grunde liegenden

technischen System (Realität).

Für „die Prüfung dieser hinreichenden Übereinstimmung von Modell und Original“

[VDI 3633-1] werden für die Validierung Referenzmessungen durchgeführt, so dass

die Ergebnisse der Simulationsrechnung mit diesen gegenübergestellt werden kön-

nen. „Da das abstrahierte und idealisierte Modell nicht alle Aspekte und Einflussgrö-

ßen berücksichtigen kann“, ist „eine vollständige Übereinstimmung zwischen Origi-

nal und Modell“ nur eingeschränkt möglich und bewegt sich eher „innerhalb eines

als akzeptierbar vorgegebenen Toleranzrahmens“ [VDI 3633-1]. Die Teilkomponen-

ten Reifen, Fahrer und Sitz (Kapitel 6.2) werden, soweit möglich, durch Einzelversu-

che validiert, um den Fokus gezielt auf diese Komponente legen und Störgrößen

anderer Bauteile ausschließen zu können. Für die Validierung des Gesamtfahrzeugs

werden Fahrversuche durchgeführt und den Berechnungsergebnissen gegenüber-

gestellt (Kapitel 6.3). Nach Aussagen, welche Auswirkungen stochastische Startpa-

rameter auf die Simulationsergebnisse nehmen (Kapitel 6.4), wird der Validierungs-

prozess abschließend hinsichtlich der durchzuführenden Studien bewertet (Kapi-

tel 6.5).

Page 174: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

154

6.1 Verifikation der Simulationsmodelle

Wenn im Prozess der Verifikation überprüft wird, ob ein Modell die zugrundeliegen-

den Anforderungen der Realität widerspiegelt, wird vor allem untersucht, ob das

„Modell von einer Beschreibungsart in eine andere Beschreibungsart korrekt trans-

formiert wurde“ [Rab-2008, S. 14]. In Bezug auf das in Abbildung 5-2 vorgestellte

Vorgehen bei der Erstellung eines Mehrkörpermodells wird bei der Verifikation den

Fragestellungen nachgegangen, ob das konzeptionelle Modell die Realität und das

Simulationsmodell das konzeptionelle Modell korrekt beschreibt.

Das Mehrkörpersystem des Gesamtfahrzeugs setzt sich aus einzelnen Teilkompo-

nenten zusammen, deren Modellbildung in Kapitel 5.2 dargelegt wird. Diese Kom-

ponenten werden als eigenständige Teil-Mehrkörpermodelle gesehen. Dementspre-

chend erfolgt deren Modellbildung in einem ersten Schritt getrennt vom Gesamt-

fahrzeug. Auf Basis der vorliegenden Problemstellung werden die mechanischen

Ersatzmodelle abgeleitet (konzeptionelles Modell) und mit Hilfe des Softwarepakets

für die Mehrkörpersimulation MSC.ADAMS in ein Simulationsmodell überführt. Im

Rahmen der Verifikation erfolgt hierbei die Prüfung, ob das Ersatzmodell das Verhal-

ten des realen Systems widerspiegelt. Als Beispiel sei das Hubgerüst erwähnt, bei

dem mit Hilfe der Berechnungsergebnisse im Postprocessor überprüft werden kann,

ob sich die einzelnen Komponenten gemäß der Realität zueinander bewegen und

somit die Kinematik richtig abgebildet ist. Für diese Art der Verifikation müssen die

Berechnungsergebnisse des (Teil-)Modells vorliegen.

Bei der Erstellung des Simulationsmodells ist der Modellierer auf die von der Soft-

ware MSC.ADAMS zur Verfügung gestellten Bindungselemente angewiesen. Durch

das Verbinden von Körpern durch die sog. Joints wird die Anzahl der Systemfrei-

heitsgrade reduziert. Hierbei ist darauf zu achten, keine redundanten Verbindungen

zu erzeugen. Es werden deswegen nur die erforderlichen Freiheitsgrade durch ein

Verbindungselement gesperrt. Eine Überprüfung des Modells auf redundante Ver-

bindungsgleichungen erfolgt durch die Ausgabe der Systemfreiheitsgrade nach dem

Grübler-Kutzbach-Kriterium (vgl. Formel (5-2) in Kapitel 5.1.2) sowie durch die Soft-

ware selbst.

Das mathematische Modell wird von dem Programmteil ADAMS/Solver automatisch

gemäß Formel (5-4) erzeugt und kann vom Anwender nicht eingesehen werden,

weswegen eine Verifikation der Bewegungsgleichungen vom Modellierer nicht

durchgeführt werden kann.

Page 175: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6.2 Validierung der Teilkomponenten

155

Im Rahmen der Verifikation erfolgt zudem die Untersuchung hinsichtlich nummeri-

scher Stabilität und Zuverlässigkeit der Berechnung. Dies wird durch zahlreiche Re-

chenläufe mit unterschiedlichsten Anfangsbedingungen und Parameterspezifikatio-

nen realisiert. Des Weiteren erfolgt eine Überprüfung, ob die Berechnungsergebnis-

se sinnvoll und plausibel erscheinen und keine klar ersichtlichen Mängel enthalten.

6.2 Validierung der Teilkomponenten

6.2.1 Reifen

Die Eigenschaften des Reifenmodells FTire/solid werden durch eine Vielzahl an Pa-

rametern beeinflusst, so dass für eine exakte Abstimmung des Modells dement-

sprechend umfangreiche Messungen notwendig sind. Da dies aus Zeit- und Kos-

tengründen im zugrunde liegenden Projekt nicht möglich ist, werden nach Festle-

gung der Geometriegrößen durch Anpassung der Parameter Shore-Härte und

„damping tread rubber“ tread die Kenngrößen Steifigkeit Reifenc und Dämpfung Reifend

eingestellt, anhand derer ein Modellabgleich durchgeführt werden kann.

Für die Superelastikreifen liegen Messwerte der Hersteller von einem Trommelprüf-

stand vor. Dieser Prüfstand wird in der Simulation abgebildet (Abbildung 5-8). Ein

Vergleich von Herstellerkennlinien und Simulationsergebnissen ergibt eine gute

Übereinstimmung zwischen dem gewählten Modellansatz samt Parameterkonfigura-

tion und Realität, was Abbildung 6-1 beispielhaft verdeutlicht.

Abbildung 6-1: Vergleich von Herstellerkennlinie (Messung) und Simulationsergebnis bei einem Su-perelastikreifen

Page 176: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

156

Da für die Polyurethanreifen keine Herstellerangaben bezüglich der radialen Steifig-

keit verfügbar sind, werden eigene Messungen durchgeführt (Abbildung 5-9). Der

Abgleich erfolgt wiederum über eine Gegenüberstellung von Mess- und Simulati-

onsergebnis des virtuellen Prüfstands, wobei der Modellansatz bestätigt wird.

Auch für die Bestimmung der Dämpfung werden sowohl mit Superelastik- als auch

mit Polyurethanreifen Fallversuche, die ein Ausschwingen der Reifen ermöglichen,

durchgeführt (Abbildung 5-11). Ein Abgleich mit den Simulationsergebnissen des

virtuellen Pendants ergibt eine gute Übereinstimmung mit den Messungen. Abbil-

dung 6-2 verdeutlicht dies beispielhaft für einen Superelastikreifen.

Abbildung 6-2: Validierung der Reifendämpfung anhand eines Ausschwingversuchs

Grundsätzlich werden für die Validierung ausschließlich Messungen herangezogen,

welche nicht für die Parametereinstellung dienen. Somit wird überprüft und sicher-

gestellt, dass das Modell einen weiten Bereich abdeckt (z. B. unterschiedliche Fall-

höhen bei der Validierung der Dämpfung).

6.2.2 Fahrer

Das mechanische Ersatzmodell des sitzenden Fahrers wird aus der DIN 45676 ent-

nommen und kann somit als ausreichend erprobt angenommen werden [DIN 45676].

Darüber hinaus enthält die DIN 45676 Angaben zur Modellgüte und ermöglicht damit

deren Einschätzung. Abbildung 6-3 verdeutlicht die gute Übereinstimmung für die

erste Eigenfrequenz der Impedanz am Beispiel des Modells für einen schweren Fah-

rer mit einer Körpermasse von 98 kg. Angaben zur Phase und zum leichten und mitt-

leren Fahrer sind [DIN 45676, S. 22–24] zu entnehmen.

Page 177: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6.2 Validierung der Teilkomponenten

157

Abbildung 6-3: Betrag der Impedanzen der Schwingungsmodelle des sitzenden Menschen für 98 kg Körpermasse im Vergleich mit den Sollkurven

Gleichzeitig wird aus den Abweichungen von Mehrmassenmodell und Messergeb-

nissen ersichtlich, dass das dynamische Verhalten des menschlichen Körpers nicht

durch eine einzige Kurve verallgemeinernd abgebildet werden kann, sondern dass

auf Grund der interindividuellen Unterschiede deutliche Streubereiche auftreten. Die

hier verwendeten Menschmodelle bilden den Mittelwert der Messungen jedoch hin-

reichend genau nach.

6.2.3 Sitz

Die Modelle für die drei Sitze MSG 20, MSG 65 und MSG 85 werden wie in Kapi-

tel 6.2.3 beschrieben auf Basis der Messungen für die mechanische Sitzfeder, den

Sitzdämpfer sowie die Längs- und Seitenstabilität erstellt. Die Validierung der Mehr-

körpermodelle erfolgt durch Vergleich von Messungen und Simulationsergebnis der

Sitzeigenfrequenz und des Sitzübertragungsfaktors (SEAT). Als Optimierungsziel

wird eine ausreichende Übereinstimmung von Mehrkörpermodell und realem Sitz in

Bezug auf die Eigenfrequenz gesetzt.

Bei den Sitzen MSG 20 und MSG 65 wird im Zuge der Iteration die aus den Mes-

sungen identifizierte Sitzsteifigkeit korrigiert. Abbildung 6-4 zeigt die Eigenfrequen-

zen der drei Sitze im Vergleich zu den Messungen im Prüflabor.

0

Betr

ag

[N

s/m

]

Frequenz [Hz]

0 2 4

1.000

2.000

3.000

4.000

6 8 10 12 14 16 18 20

Standardabweichung

Sollkurve

Ersatzmodell

Page 178: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

158

Abbildung 6-4: Gegenüberstellung der Eigenfrequenzen der Sitze MSG 20, MSG 65 und MSG 85 von Simulation und Messung

Nach dem Abgleich der Eigenfrequenz wird die Übereinstimmung der SEAT-Werte

geprüft. Hierbei ergibt sich gemäß Tabelle 6-1, dass die Mehrkörpermodelle der Sit-

MSG 20

MSG 65

MSG 85

Page 179: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6.3 Validierung der Simulationsmodelle durch Fahrversuche

159

ze die eingeleiteten Schwingungen stärker dämpfen als in der Realität. Die beste

Annäherung ist beim Sitz MSG 85 festzustellen. Bezüglich der Abweichungen ist ein

Gewichtsunterschied zwischen Simulation (98 kg) und Messung (120 kg) beim

schweren Fahrer anzuführen. Die Sitze sind jeweils auf das Körpergewicht ange-

passt. Da aus Zeitgründen durch die am Projekt beteiligte Firma nur jeweils eine

Messung durchgeführt wird, können die Werte der Messung einer nicht zu beziffern-

den Streuung unterworfen sein. Auf weitere Messungen kann im Rahmen dieser Ar-

beit nicht zurückgegriffen werden.

Tabelle 6-1: Vergleich der Sitzübertragungsfaktoren

Sitz

IT 1 IT 2

leichter Fahrer schwerer Fahrer leichter Fahrer schwerer Fahrer

Mess. Sim. Mess. Sim. Mess. Sim. Mess. Sim.

MSG 20 0,61 0,31 0,64 0,26 0,77 0,54 0,67 0,46

MSG 65 0,34 0,15 0,27 0,17 0,50 0,25 0,43 0,29

MSG 85 0,57 0,41 0,43 0,39 0,69 0,55 0,55 0,40

Es bleibt festzuhalten, dass an dieser Stelle Schwächen des Menschmodells und

des Mensch-Sitz-Kontakts am Polster deutlich werden. Da aus Kostengründen auf

kein detaillierteres Modell zurückgegriffen werden kann, kommen die beschriebenen

Ersatzmodelle für Fahrer und Sitz zum Einsatz. Bei der Bewertung der Simulations-

ergebnisse wird dieses Verhalten berücksichtigt. Um die Modellqualität der Sitze zu

verbessern, sind weitere Untersuchungen durchzuführen (z. B. Bestimmung der

SEAT-Werte ohne Polster und mit fester Prüfmasse), was dem Autor im Rahmen

dieser Arbeit nicht möglich ist.

6.3 Validierung der Simulationsmodelle durch Fahrversuche

Bei der Validierung der Gesamtfahrzeugmodelle wird der Fokus auf den späteren

Untersuchungsraum gelegt, für den die Mehrkörpermodelle hinreichend genau ab-

gebildet sein müssen. Nach Kapitel 3.1.4 ist der Betriebszustand Fahren relevant für

die Belastung des Fahrers durch Ganzkörper-Vibrationen, so dass die in Tabelle 3-1

genannten zu untersuchenden Einflussfaktoren ausschließlich im Bereich von Fahr-

aufgaben, bei denen die Flurförderzeuge durch Bodenunebenheiten in Schwingung

versetzt werden, zu betrachten und die Mehrkörpermodelle folglich für diese An-

wendungsfälle zu validieren sind. Folgende Ausführungen stellen zuerst die dafür

verwendete Teststrecke sowie die Messtechnik vor und gehen dann auf den Ver-

gleich von Messung und Simulationsergebnis ein. Für die Durchführung der Fahrver-

Page 180: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

160

suche stehen die in Abbildung 4-5 und Abbildung 4-8 genannten Flurförderzeuge als

Versuchsfahrzeuge zur Verfügung.

6.3.1 Teststrecke

Voraussetzung für die Verwendung von Referenzmessungen für eine Validierung

sind gleichbleibende Messbedingungen, weswegen die Messungen mit den drei

Versuchsfahrzeugen auf einer einheitlichen Teststrecke durchgeführt werden. Als

Fahrbahn dient eine ebene Betonoberfläche ohne Versiegelung im Außenbereich,

auf welcher mit Hilfe von Halfenschienen Hindernisse befestigt werden können. Dies

ermöglicht einen modularen und individuellen Aufbau der Teststrecke, da für jedes

Fahrzeug Hindernisse sowie Beschleunigungs- und Bremsstrecke optimal eingestellt

werden können. Die Fahrbahn weist normale Gebrauchsspuren auf.

Um eine Vergleichbarkeit der Schwingungskennwerte sicherzustellen, welche die

Hersteller von Flurförderzeugen nach der Maschinenrichtlinie angeben müssen, de-

finiert die DIN EN 13059 ein Verfahren zur Messung der Vibrationsbelastung im Be-

triebszustand Fahren [DIN EN 13059] (vgl. Kapitel 2.2.4). In Abhängigkeit von der

Fahrzeugbauart, der Reifenart und des mittleren Raddurchmessers werden Fahrge-

schwindigkeit und Abmessungen der Teststrecke vorgegeben. Kernpunkt ist die in

Abbildung 6-5 dargestellte Überfahrt von zwei rechteckigen Schwellen mit einer

Breite von 150 mm.

Abbildung 6-5: Teststrecke mit Schwellen gemäß DIN EN 13059 [DIN EN 13059]

Dieser genormte Aufbau der Teststrecke wird für die Durchführung von Referenz-

messungen übernommen. Im Gegensatz zur Norm werden jedoch Fahrgeschwin-

digkeit und Beladungszustand variiert, um auch diese Parameter in die Validierung

einbeziehen zu können. Die Entfernungen der Schwellen sowie die Schwellenhöhe

ist Tabelle 6-2 zu entnehmen.

l2l1

lges

Beschleunigen Bremsen

Start Ziel

hSchwelle

Page 181: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6.3 Validierung der Simulationsmodelle durch Fahrversuche

161

Tabelle 6-2: Fahrzeugabhängige Dimensionierung der Teststrecke nach DIN EN 13059 [DIN EN 13059]

Parameter EFM 14 EFG 20 DFG 35

Länge der Versuchsstrecke gesl [m] 25 25 25

Abstand der 1. Schwelle 1l [m] 5 5 5

Abstand der 2. Schwelle 2l [m] 10 10 10

Höhe der Schwellen Schwelleh [mm] 5 8 8

Mit dem Gabelstapler DFG 35 werden zudem auch Untersuchungen mit einer

Schwellenhöhe von 10 mm durchgeführt, um noch stärkere Schwingungen in das

Fahrzeug zu induzieren. Für Beschleunigen und Bremsen steht ausreichend Fahr-

strecke zur Verfügung. Neben der reinen Schwellenüberfahrt werden für die Validie-

rung zusätzlich Sprunganregungen untersucht, die durch Auslegen von Platten zwi-

schen den Stahlschwellen realisiert werden. Die Länge der Platten wird so gewählt,

dass das Fahrzeug nach der Anregung ausschwingen kann. In folgenden Ausfüh-

rungen wird explizit auf die Schwellenüberfahrt eingegangen. Abbildung 6-6 zeigt

die beispielhafte Durchführung der Referenzmessungen mit den Versuchsfahrzeu-

gen.

Abbildung 6-6: Versuchsdurchführung der Referenzmessungen

Bezüglich der Bezeichnung der Fahrtrichtung gelten für die weiteren Ausführungen

folgende Konventionen, da vor allem bei den Geräten der Lagertechnik oftmals un-

terschiedliche Begriffsverständnisse vorliegen. Beim Schubmaststapler werden die

Fahrtrichtungen Power Unit First (PUF) und Forks First (FF) eingeführt. Bei erst ge-

nannter liegen Antriebseinheit sowie Fahrzeugbatterie und bei letztgenannter die

Gabelzinken bzw. Lastgabeln in Fahrtrichtung vorne. Zur Vollständigkeit enthält Ab-

bildung 6-7 auch die Fahrtrichtungsdefinition für Gabelstapler mit dem bekannten

vorwärts und rückwärts. Wird bei Gabelstaplern keine Fahrtrichtung angegeben, ist

von einer Vorwärtsfahrt auszugehen.

Page 182: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

162

Abbildung 6-7: Definition der Fahrtrichtung (Bildquelle: Jungheinrich AG)

6.3.2 Messtechnik und Datenaufbereitung

Um Simulationsergebnis und Messung auf Übereinstimmung zu überprüfen, sind

Vergleichsgrößen erforderlich. Da es sich um Schwingungsvorgänge handelt, bietet

sich auch hier wie bei der Bestimmung der Vibrationsbelastung selbst die physikali-

sche Größe Beschleunigung an. Aus diesem Grund werden auf acht Kanälen Be-

schleunigungssignale an ausgewählten Orten am Flurförderzeug gemessen. Ver-

wendung findet hierbei ein mobiles und modulares Messsystem der Firma National

Instruments, welches die Erfassung und Verarbeitung unterschiedlicher Eingänge

ermöglicht. Abbildung 6-8 zeigt die einzelnen Bestandteile des Messsystems.

Abbildung 6-8: Bestandteile des verwendeten modularen Messsystems

vorwärts rückwärts Forks First(FF)

Power Unit First(PUF)

1

2

54

3 6

Page 183: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6.3 Validierung der Simulationsmodelle durch Fahrversuche

163

Die Basis bildet das CompactDAQ-Chassis (2) mit acht Steckplätzen für unter-

schiedliche I/O-Module, dessen Stromversorgung eine mobile Batterie (6) sicher-

stellt. Im vorliegenden Fall werden für den Anschluss der Beschleunigungssensoren

zwei Vierkanal IEPE-Beschleunigungsmesser-Module (3) verwendet, welche eine

Abtastrate von bis zu 51,2 kHz pro Kanal ermöglichen. Die Beschleunigungen auf

der Sitzoberfläche und auf der Standplattform werden mit Hilfe eines in ein Sitzkis-

sen integrierten triaxialen Beschleunigungsaufnehmer (5) nach DIN EN 30326-1 des

Herstellers Metra Mess- und Frequenztechnik in Radebeul e.K. gemessen (vgl. Kapi-

tel 2.2.2). Für die Erfassung von Fahrzeugschwingungen an unterschiedlichen

Messpunkten kommen einzelne Piezo-Beschleunigungsaufnehmer (4) zum Einsatz,

welche mit Hilfe von Haftmagneten an der Fahrzeugstruktur befestigt werden.

Die jeweiligen Messpunkte werden fahrzeugspezifisch gewählt, wobei stets die Be-

schleunigungen auf der Sitzoberfläche in den drei Raumachsen (Messstelle Sitzkis-

sen) und am Sitzmontagepunkt in z-Richtung erfasst werden (Abbildung 6-9). Bei

den Gabelstaplern werden weitere Beschleunigungssensoren an der Vorder- und

Hinterachse sowie auf dem Gegengewicht positioniert. Beim Schubmaststapler er-

folgt eine Messung auch an den auskragenden Radarmen sowie an der Fahrerkabi-

ne.

Abbildung 6-9: Messung auf dem Sitz und am Sitzmontagepunkt

Für die Datenverarbeitung, Visualisierung und Bedienung ist ein Notebook (1) erfor-

derlich. Dieses wird an den Testfahrzeugen mit Hilfe von Halterungen befestigt, so-

dass eine Bedienung während der Fahrt ohne Beeinträchtigung des Fahrers möglich

ist. Mit Hilfe der Software LabView wird auf die I/O-Module (3) im CompactDAQ-

Chassis (2) zugegriffen und eine individuelle Messapplikation erstellt, welche die

Versuchsfahrer bei der Aufzeichnung und Auswertung der Messdaten unterstützt.

Der Testfahrer gibt über eine entsprechende Bedienoberfläche alle relevanten Ver-

Page 184: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

164

suchsparameter ein, so dass diese zusammen mit den Messwerten in einer Datei

gespeichert werden.

Die Fahrversuche werden mit konstanter Fahrgeschwindigkeit, die in entsprechen-

den Fahrprogrammen der Fahrzeugsteuerung hinterlegt wird, durchgeführt. Da es

sich hierbei meist um Vorgaben bezüglich der Motordrehzahl handelt, wird die tat-

sächliche Fahrgeschwindigkeit mit Hilfe geeigneter Messtechnik überprüft und ne-

ben den Beschleunigungswerten aufgezeichnet, um den Einfluss von Schlupf sowie

verändertem Reifendurchmesser erkennen und korrigieren zu können. Die Messung

erfolgt berührungslos durch einen Radarsensor für Landmaschinen, dessen Monta-

gehöhe und gültiger Fahrgeschwindigkeitsbereich auf die betreffenden Flurförder-

zeuge übertragbar ist. Mit Hilfe der Messapplikation wird die Ausgangsspannung

des Sensors in eine Geschwindigkeitsgröße umgewandelt. Abbildung 6-10 zeigt die

Montage des Radarsensors am Fahrzeug.

Abbildung 6-10: Radarsensor in Prinzipdarstellung (links) und auf dem Flurförderzeug montiert (rechts) (Bildquelle: DICKEY-john Corp, eigene Darstellung)

6.3.3 Durchführung der Referenzmessungen

Bei den Referenzmessungen, die zwei unterschiedlich schwere Fahrer bei trocke-

nem Wetter auf der in Kapitel 6.3.1 beschriebenen Teststrecke durchführen, wird auf

gleichbleibende Randbedingungen geachtet, damit keine Verfälschung durch Stör-

größen auftritt. So werden z. B. die Flurförderzeuge erst eine gewisse Zeit gefahren,

bis die Reifen auf Betriebstemperatur sind. Neben der Variation der Parameter Fahr-

geschwindigkeit und Beladung werden zudem die Sitze getauscht und Versuche bei

Schwellenüberfahrt und Sprunganregung durchgeführt. Die Sitze befinden sich im

Neuzustand und sind bisher nur durch die Versuche für die Parameterbestimmung

der Mehrkörpermodelle beansprucht. Die Fahrtrichtung ist normalerweise vorwärts

bzw. Power Unit First, vor allem beim Schubmaststapler werden die Hindernisse

auch in Richtung Forks First überfahren. Es werden jeweils mehrere Messungen zu

Page 185: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6.3 Validierung der Simulationsmodelle durch Fahrversuche

165

einer Parametereinstellung durchgeführt, um trotz aller Vorsicht auftretende Störun-

gen identifizieren zu können.

Die Reproduzierbarkeit von Messergebnissen bei identischer Parametereinstellung

ist sehr hoch. Verdeutlicht wird dies durch Abbildung 6-11, die die Beschleuni-

gungsverläufe mehrerer Messungen einer Parametereinstellung gegenübergestellt

und eine sehr gute Übereinstimmung der einzelnen Messfahrten bestätigt.

Abbildung 6-11: Versuchswiederholungen bei gleicher Parametereinstelllung, DFG 35, Schwellen-überfahrt, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Antriebsachse über Gummi-lager (z)

6.3.4 Vergleichsrechnungen

Die Validierung erfolgt nicht nur für eine Parametereinstellung, sondern wird für un-

terschiedliche Fahrgeschwindigkeiten und Beladungszustände durchgeführt. Be-

trachtet werden dabei nicht nur die auftretenden Beschleunigungen am Fahrer, son-

dern an allen repräsentativen Messpunkten. Gleichzeitig handelt es sich um einen

iterativen Prozess. Bei ungenügender Übereinstimmung von Modell und Realität

werden je nach Bedarf Parametereinstellungen kontrolliert und angepasst oder es

wird der Modellierungsgrad erhöht, insofern dies trotz der deduktiven Modellbil-

dungs-Strategie nötig ist. Hieraus resultieren der detaillierte Aufbau von Hubgerüst

und Fahrzeugstruktur. Ein Abgleich zwischen Simulations- und Messergebnis erfolgt

sowohl im Zeit- als auch im Frequenzbereich.

6.3.4.1 Gabelstapler DFG 35

Für den Gabelstapler DFG 35 wird eine ausreichend gute Übereinstimmung zwi-

schen Realität und Modell erreicht. Als Beispiel zeigt Abbildung 6-12 die Gegen-

Page 186: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

166

überstellung von Simulationsergebnis und Messung einer Schwellenüberfahrt ge-

messen an der Antriebsachse in z-Richtung.

Abbildung 6-12: Vergleich von Messung und Simulation bei Schwellenüberfahrt 10 mm, DFG 35, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Antriebsachse (z)

In der Realität befindet sich das Fahrzeug stets leicht in Schwingung. Je nachdem in

welchem Schwingungszustand der Reifen auf das Hindernis trifft, kann die Antwort

des Fahrzeugs auf die Anregung variieren. Deswegen wird neben einer an der Reali-

tät angelehnten leicht unebenen Fahrbahn auch wie in Abbildung 6-12 dargestellt

eine Simulationsrechnung auf einer ideell ebenen Fahrstrecke durchgeführt, um das

Augenmerk auf die Stoßanregung zu richten. Somit ist gewährleistet, dass das Fahr-

zeugmodell im ausgeschwungenen Zustand auf das Hindernis trifft.

Ein Abgleich der Modelle erfolgt wie erwähnt nicht nur im Zeitbereich durch Ver-

gleich der Beschleunigungswerte, sondern auch im Frequenzbereich. Hierfür werden

mit Hilfe einer schnellen Fourier-Transformation (FFT) die Frequenzanteile der be-

rechneten und gemessenen Beschleunigungen ermittelt und gegenübergestellt. Ab-

bildung 6-13 zeigt zur Verdeutlichung die Beträge der Amplitude an der An-

triebsachse bei Schwellenüberfahrt. Die charakteristischen Frequenzen werden

durch das Simulationsmodell abgebildet.

Page 187: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6.3 Validierung der Simulationsmodelle durch Fahrversuche

167

Abbildung 6-13: Vergleich von Messung und Simulation im Frequenzbereich bei Schwellenüberfahrt 10 mm, DFG 35, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Antriebsachse (z)

Auch der Vergleich der Beschleunigungen am Sitzmontagepunkt verdeutlicht, dass

das Gesamtfahrzeugmodell die Realität hinreichend genau widerspiegelt (Ab-

bildung 6-14).

Abbildung 6-14: Vergleich von Messung und Simulation bei Schwellenüberfahrt 10 mm, DFG 35, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Sitzmontagepunkt (z)

Größere Abweichungen sind am Messpunkt auf der Sitzoberfläche festzustellen

(Abbildung 6-15). Zum einen ist festzuhalten, dass die Amplituden in der Simulation

unterhalb derer der Messung liegen. Dieses Verhalten kann bereits in der Einzelvali-

dierung des Sitzes identifiziert werden. Zum anderen beeinflusst der Fahrer sein

Schwingungsverhalten auch darüber, wie er sich mit Händen und Füßen am Fahr-

zeugrahmen und Lenkrad abstützt (vgl. z. B. [Fle-2004; Fis-2010b]). Diese Einflüsse

können im Rahmen dieser Untersuchung nicht abgebildet werden. Durch die Kennt-

Page 188: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

168

nis der SEAT-Werte aus der Sitzvermessung kann jedoch eine Aussage über die

Belastung des Fahrers bei Kenntnis der Beschleunigungen am Sitzmontagepunkt

getroffen werden.

Abbildung 6-15: Vergleich von Messung und Simulation bei Schwellenüberfahrt 10 mm, DFG 35, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Sitzkissen (z)

Auch die Schwingungen am Messpunkt Sitzkissen (x) werden unzureichend durch

das verwendete Sitz-Mensch-Modell wiedergegeben, das sich deutlich schneller

beruhigt als in Realität (Abbildung 6-16). Hierbei ist festzuhalten, dass das gewählte

Menschmodell nur Schwingungsfreiheitsgrade in z-Richtung besitzt.

Abbildung 6-16: Vergleich von Messung und Simulation bei Schwellenüberfahrt 10 mm, DFG 35, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Sitzkissen (x)

Da für den gezeigten Modellabgleich des DFG 35 eine ideal ebene Fahrbahn ange-

nommen wird, um Störeinflüsse aus regellosen Unebenheiten zu vermeiden, und

Page 189: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6.3 Validierung der Simulationsmodelle durch Fahrversuche

169

das Fahrzeug senkrecht auf die Schwelle trifft, erfolgt keine Stoßanregung quer zur

Fahrbahnrichtung. Lediglich durch eine außermittige Lage des Schwerpunkts sowie

die Rollenkontakte im Hubgerüst erfolgt eine Beschleunigung in y-Richtung, so dass

sehr geringe Beschleunigungen am Messpunkt Sitzkissen (y) resultieren. Dies ist

auch der Fall, wenn eine leicht unebene Fahrbahn der Güte „Zementbeton sehr gut“

verwendet wird (vgl. Tabelle 5-1).

Vergleicht man beim Versuch der Schwellenüberfahrt die Effektivwerte der fre-

quenzbewerteten Beschleunigung wTa für unterschiedliche Lasten und Fahrge-

schwindigkeiten, so sind jeweils in z-Richtung am Messpunkt der Vorderachse

ca. 2 %, am Sitzmontagepunkt ca. 8 % und am Sitzkissen ca. 30 % Abweichung im

Mittel zwischen Messung und Simulation festzuhalten.

6.3.4.2 Gabelstapler EFG 20

Auch beim Gabelstapler EFG 20 ist eine gute Übereinstimmung zwischen Messung

und Berechnungsergebnis der Simulation zu beobachten. Exemplarisch zeigt Abbil-

dung 6-17 den Vergleich bei Überfahrt einer Schwelle von 8 mm Höhe bei Transport

der Nennlast gemessen an der Antriebsachse des Gabelstaplers. Im Gegensatz zum

DFG 35 erfolgen die hier gezeigten Referenzfahrten in der Simulation auf einer Fahr-

bahn mit der Güte eines sehr guten Zementbetons (vgl. Tabelle 5-1).

Abbildung 6-17: Vergleich von Messung und Simulation bei Schwellenüberfahrt 8 mm, EFG 20, Last 2000 kg, Fahrgeschwindigkeit 8 km/h, Antriebsachse (z)

Auch am Sitzmontagepunkt wird das Schwingungsverhalten hinreichend genau ab-

gebildet (Abbildung 6-18). Weniger zufriedenstellend sind ebenso wie beim Gabel-

stapler DFG 35 die Beschleunigungsverläufe am Messpunkt Sitzkissen, die in allen

Page 190: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

170

drei Raumrichtungen die Belastungen unterschätzen und nicht gesondert dargestellt

werden.

Abbildung 6-18: Vergleich von Messung und Simulation bei Schwellenüberfahrt 8 mm, EFG 20, Last 2000 kg, Fahrgeschwindigkeit 8 km/h, Sitzmontagepunkt (z)

Bei einem Vergleich der Effektivwerte der frequenzbewerteten Beschleunigung wTa

für den Versuch der Schwellenüberfahrt bei unterschiedlichen Lasten und Fahrge-

schwindigkeiten sind jeweils in z-Richtung am Messpunkt der Antriebsachse

ca. 2 %, am Sitzmontagepunkt ca. 15 % und am Sitzkissen ca. 50 % Abweichung

im Mittel zwischen Messung und Simulation festzuhalten.

6.3.4.3 Schubmaststapler EFM 14

Analog zu den Gabelstaplern werden auch beim Schubmaststapler zu ausgewählten

Parametereinstellungen Mess- und Simulationsergebnisse an unterschiedlichen

Messpunkten gegenübergestellt (Abbildung 6-19). Der Messpunkt Fahrerkabine be-

findet sich im Bereich der Kabine des Schubmaststaplers und repräsentiert das

Schwingungsverhalten der Fahrzeugstruktur. Eine ausreichende Übereinstimmung

ist für diesen Messpunkt gegeben, auch wenn die in der Simulation errechneten Ef-

fektivwerte der frequenzbewerteten Beschleunigung wTa die Realität um 30 % im

Mittel überschätzen.

Page 191: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6.3 Validierung der Simulationsmodelle durch Fahrversuche

171

Abbildung 6-19: Vergleich von Messung und Simulation bei Schwellenüberfahrt 5 mm, EFM 14, Last 1400 kg, Fahrgeschwindigkeit 6 km/h, Fahrtrichtung FF, Fahrerkabine (z)

Eine noch bessere Übereinstimmung ist am Messpunkt Sitzmontagepunkt gegeben,

d. h. an der Einleitungsstelle der Fahrzeugschwingungen in den Sitz, die in Abbil-

dung 6-20 dargestellt ist. An dieser Stelle ist eine mittlere Abweichung von 10 %

feststellbar, wobei das Simulationsmodell die Belastung tendenziell unterschätzt.

Abbildung 6-20: Vergleich von Messung und Simulation bei Schwellenüberfahrt 5 mm, EFM 14, Last 1400 kg, Fahrgeschwindigkeit 6 km/h, Fahrtrichtung FF, Sitzmontagepunkt (z)

Am Messpunkt Sitzkissen stellt sich durch die Verwendung der gleichen Sitzmodelle

das bereits bei den Gabelstaplern bekannte Verhalten dar (Abbildung 6-21).

Page 192: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

172

Abbildung 6-21: Vergleich von Messung und Simulation bei Schwellenüberfahrt 5 mm, EFM 14, Last 1400 kg, Fahrgeschwindigkeit 6 km/h, Fahrtrichtung FF, Sitzkissen (z)

Die Belastung wird in der Simulationsrechnung gleichbleibend stark unterschätzt, im

Mittel bis zu über 50 %. Deutlich erkennbar sind die durch die Schwellenüberfahrt

eingeleiteten Stöße, vor allem bei der Überfahrt durch das Antriebsrad, welches sich

unter dem Fahrer befindet. In der Realität beruhigen sich die Schwingungen lang-

samer als in der Simulationsrechnung. Auch hier stützt sich der Fahrer in der Realität

am Fahrzeug ab und beeinflusst so sein Schwingungsverhalten und die resultieren-

de Beschleunigung am Messpunkt. Diese Effekte können auch beim Schubmast-

stapler nicht abgebildet werden.

6.4 Reproduzierbarkeit der Ergebnisse und Replikation

An dieser Stelle soll der Fragestellung nachgegangen werden, ob die Berechnungs-

ergebnisse eines Simulationslaufs reproduzierbar und somit aussagekräftig sind.

Verfügt das Modell über Startwerte auf Basis von Zufallszahlen, so ist das Modell-

verhalten in Abhängigkeit dieser Startwerte zu klären. Unter Replikation versteht

man nach Rabe et al., wenn mehrere Simulationsläufe mit gleichen Daten und Para-

metern bei geänderten Startwerten aus Zufallszahlen durchgeführt werden [Rab-

2008, S. 12]. Bei vorliegenden Modellen kommen lediglich bei den regellosen Un-

ebenheiten (vgl. Kapitel 5.2.2) Startwerte auf Basis von Zufallszahlen zum Einsatz.

Diese werden zu Beginn der Simulation festgelegt und erfahren während der Simula-

tion keine Änderung. Modellinterne Parameter wie Massen, Steifigkeits- und Dämp-

fungswerte werden durch Messungen am realen Flurförderzeug bestimmt. Weitere

Zustandsgrößen wie Hubhöhe, Neigung oder Fahrgeschwindigkeit werden entweder

gezielt im Zuge der Parametervariation verändert oder sind für alle Versuchsdurch-

führungen identisch und orientieren sich an der realen Fahrsituation.

Page 193: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6.5 Abschließende Bewertung

173

Für die Simulationsmodelle der drei Flurförderzeuge gilt, dass ein Simulationslauf mit

gleichen Startwerten und Parametern stets ein identisches Resultat gemessen am

Effektivwert der frequenzbewerteten Beschleunigung wTa zur Folge hat. Hinsichtlich

der Replikation bleibt zu klären, ob andere Zufallszahlen bei der Generierung einer

Fahrbahnoberfläche mit gleicher Bodenbeschaffenheit (gleiches Unebenheitsmaß U

und gleiche Welligkeit w) zu abweichenden Simulationsergebnissen führen. Um die-

ser Fragestellung nachzugehen werden für ausgewählte Fahrbahnoberflächen aus

Tabelle 5-1 ohne Einzelhindernisse je 50 unterschiedliche Oberflächenprofile auf

Grund variierender Zufallszahlen, die für die Wegkreisfrequenzen in Formel (5-12)

benötigt werden, erzeugt. Im Anschluss werden bei unterschiedlichen Fahrge-

schwindigkeiten und Transportlasten Simulationsläufe für gleich lange Fahrstrecken

durchgeführt. Im Ergebnis lassen sich zwei Punkte festhalten: Zum einen sind die

Simulationsergebnisse in Form des Effektivwerts der frequenzbewerteten Beschleu-

nigung nach dem Kolmogorow-Smirnov-Test i. d. R. normalverteilt – betrachtet am

Messpunkt Sitzmontagepunkt in z-Richtung für jeweils eine der untersuchten Para-

metereinstellung an den Flurförderzeugen. Zum anderen weisen die Standardabwei-

chungen ein akzeptables Maß auf. Diese lässt sich bei den Gabelstaplern auf im Mit-

tel 0,4 m/s2 und beim Schubmaststapler bei qualitativ guten Böden auf 0,25 m/s2

beziffern (jeweils N = 50). Durch die hohe Steifigkeit der Polyurethanreifen reagiert

das Fahrzeug sensibler auf stärkere Änderungen im Anregungsprofil, wie sie bei Bö-

den mit schlechter Qualität vorliegen. In der Konsequenz ist zu beachten, dass bei

der Untersuchung von ausschließlich regellosen Fahrbahnoberflächen mehrere

gleichartige Fahrbahnen zu untersuchen sind. Ein einziger Stellvertreter ist nicht aus-

reichend. Kombiniert man jedoch herausragende Einzelhindernisse mit regellosen

Bodenunebenheiten besserer Güte, so sind diese ausschlaggebend für die resultie-

rende Belastung. Exemplarisch zeigt sich dies für die Überfahrt einer Schwelle mit

8 mm Höhe mit dem Gabelstapler EFG 20, bei dem die Werte nur eine sehr geringe

Streuung mit einer Standardabweichung von 0,05 m/s2 aufweisen und annähernd

normalverteilt sind (N = 100). Im Zuge der ersten Parametervariation mit dem Einzel-

hindernis der Schwellenüberfahrt ist analog zu einer realen Teststrecke eine Ausprä-

gung ausreichend.

6.5 Abschließende Bewertung

Durch die getrennte Validierung von Teilkomponenten und Gesamtfahrzeug ist eine

umfängliche Beurteilung der Simulationsergebnisse möglich. Die Reifen geben die

Kenngrößen Steifigkeit und Dämpfung hinreichend genau wieder. Die Beschleuni-

gungsverläufe am Gesamtfahrzeug bei Schwellenüberfahrt und Sprunganregung

legen nahe, dass auch die Überfahrt eines kurzwelligen Hindernisses korrekt abge-

Page 194: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

6 Verifikation und Validierung der Simulationsmodelle

174

bildet wird. Auf Grund des physikalischen Modellaufbaus ist die Übertragbarkeit auf

andere kurzwellige Hindernisse gegeben. Da es sich um eine erste Anpassung eines

normalerweise für Luftreifen entwickelten Modells handelt wird jedoch weiteres Ver-

besserungspotential für die Zukunft gesehen.

Das aus der Norm DIN 45676 entnommene Menschmodell ist etabliert und bietet

eine einfache Annäherung an die Impedanz eines sitzenden Menschen. Gleichzeitig

zeigt Abbildung 6-3, dass diese je nach Individuum variieren kann und somit den

Fahrer der Vergleichsmessung nicht exakt widerspiegeln muss. Als weitere Ein-

schränkung gilt, dass die Modelle ausschließlich in z-Richtung schwingungsfähig

sind und über keine erweiterten Schnittstellen für die Anbindung an Polster oder an-

dere Bedienelemente, welche der Fahrer beim Bedienen eines Flurförderzeuges üb-

licherweise greift, verfügen.

Die Eigenfrequenzen der Sitze werden durch die Simulationsmodelle sehr gut abge-

bildet. Es ist somit gewährleistet, dass eine Schwingungsreduktion in dem durch

den Hersteller gewählten Bereich realisiert wird. Gleichzeitig ist festzuhalten, dass

die Modelle die Höhe der Belastung bei stochastischer Anregung unterschätzen

(MSG 20 und MSG 65 um ca. 40 %, MSG 85 um ca. 20%). Dies ist bei der Interpre-

tation der Ergebnisse zu beachten.

Die drei vorgestellten Mehrkörpermodelle der Flurförderzeuge bilden das Schwin-

gungsverhalten des Gesamtfahrzeugs hinreichend genau für eine weitere Untersu-

chung ab. Alle in Tabelle 4-5 genannten Einflussfaktoren können als Parameter im

jeweiligen Simulationsmodell des Flurförderzeugs geändert werden. Ein korrektes

Modellverhalten innerhalb der aufgezeigten Grenzen bei Änderung der Parameter ist

durch die Art und Weise der Modellierung sichergestellt. Auch wenn die Belastungs-

höhe in der Simulation grundsätzlich unterschätzt wird, so lassen sich anhand der

Berechnungsergebnisse Aussagen über den Einfluss der zu untersuchenden Para-

meter treffen. Als Referenzmesspunkt bietet sich hierfür der Sitzmontagepunkt an.

Die Simulationsergebnisse am Messpunkt Sitzkissen unterschätzen gleichmäßig

stark die Belastung, vor allem in den horizontalen Richtungen. Bezüglich einer quan-

titativen Bewertung hinsichtlich der Belastungen auf den Fahrer ist eine Untersu-

chung des freigestellten Mensch-Sitz-Systems einer Gesamtfahrzeugsimulation vor-

zuziehen. Um die qualitativen Effekte der anderen Einflussfaktoren auf die Fahrerbe-

lastung am Sitzkissen in z-Richtung zu ermitteln können die Simulationsergebnisse

jedoch verwendet werden. Um regellose Bodenunebenheiten zu untersuchen sind

mehrere Bodenprofile gleicher Güte zu erzeugen und zu simulieren, da diese wie in

Kapitel 6.4 gezeigt einer gewissen Streuung unterworfen sind.

Page 195: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

175

7 Einflussfaktoren auf die Vibrationsbelastung

Auf Basis der in Kapitel 4.5 vorgestellten Überlegungen werden Simulationsexperi-

mente durchgeführt, um die grundlegenden Einflussfaktoren auf das Schwingungs-

verhalten der Flurförderzeuge und die resultierende Belastung der Fahrer zu ermit-

teln (Kapitel 7.1). Aufbauend auf diesen Erkenntnissen erfolgen Detailbetrachtungen

von Fahrgeschwindigkeit und Fahrbahnanregung (Kapitel 7.2), der Fahrerplatzlage-

rung (Kapitel 7.3) sowie von Fahrer und Sitz (Kapitel 7.4), um abschließend die Er-

kenntnisse zusammenzufassen (Kapitel 7.5).

Vorliegende Arbeit zielt nicht darauf ab, auf Basis der Simulation Vergleichswerte für

die Abschätzung der Fahrerbelastung zwischen konkreten Flurförderzeugen zu ge-

nerieren, sondern stellt die in Tabelle 3-1 genannten Einflussfaktoren in den Vorder-

grund. Deswegen und aus Gründen von Geheimhaltung werden im Folgenden die

Simulationsergebnisse anonymisiert, indem die Belastungswerte in Form des Effek-

tivwerts der frequenzbewerteten Beschleunigung wTa auf eine feste Bezugsgröße

wT Basisa , normiert werden. Die Bezugsgröße ,wT Basisa wird als Mittelwert der Effektiv-

werte der frequenzbewerteten Beschleunigung wTa am Sitzmontagepunkt in z-

Richtung aller Simulationen nach Tabelle 4-6 gewählt. Der als normierter Effektivwert

der frequenzbewerteten Beschleunigung bezeichnete dimensionslose Kennwert

,wT Na ergibt sich zu:

wTwT N

wT Basis

aa

a,

,

(7-1)

Auch die im Folgenden vorgestellten Größen zur Beurteilung der Einflussstärke be-

ruhen auf dem normierten Effektivwert der frequenzbewerteten Beschleuni-

gung ,wT Na und sind entsprechend ebenfalls normiert.

7.1 Grundlegende Einflussfaktoren

7.1.1 Effekte und Grundlagen der Varianzanalyse

Bevor die Ergebnisse der Auswertung dargestellt werden, erfolgt an dieser Stelle in

aller Kürze eine Einführung in Anlehnung an [Bac-2011, S. 158ff] in die grundlegen-

den verwendeten Methoden, um das Verständnis für nachfolgende Ausführungen zu

schärfen. Basis dieser Überlegungen ist, dass das Verhalten einer abhängigen Vari-

able Y – im vorliegenden Fall der (normierte) Effektivwert der frequenzbewerteten

Page 196: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

176

Beschleunigung wTa – durch i unabhängige Variablen iX erklärt werden kann, die

mit den in Tabelle 3-1 postulierten Einflussfaktoren gleichzusetzen sind. Es besteht

somit die Kausalbeziehung 1( ,..., ).iY f X X Jede unabhängige Variable besitzt dabei

wie in Kapitel 4.5 angesprochen unterschiedliche Ausprägungen, auch Faktorstu-

fen g genannt g 1 G( ,..., ), wie z. B. eine schnelle und eine langsame Fahrge-

schwindigkeit. Wird nun eine Berechnung zum Zeitpunkt k ausgeführt k 1 K( ,..., ),

erhält man den Beobachtungswert (das Berechnungsergebnis) .gky Wie in Kapi-

tel 4.5 beschrieben wird auf Grund der Reproduzierbarkeit der Berechnungsergeb-

nisse nur eine Berechnung pro Parametereinstellung durchgeführt ( 1).K

Eine einfache und anschauliche Methode, den Einfluss einer erklärenden Variab-

len X kenntlich zu machen, ist die Bestimmung des Effekts ,E unter dem man übli-

cherweise die Differenz der Mittelwerte gy bei zwei unterschiedlichen Faktoreinstel-

lungen g versteht [Gro-1992, S. 7ff]:

2 1

2 1 2, 1,

1 1

J J

g g g j g j

j j

E y y y y

(7-2)

Bei einem vollständig faktoriellen Versuchsplan ist die Anzahl der Beobachtungswer-

te für beide Faktoreinstellungen identisch ( 1 2J J ). Ein positiver Wert für E bedeutet

eine verstärkende Wirkung beim Wechsel von Stufe 1 auf Stufe 2. Kenntlich wird der

Effekt einer erklärenden Variablen auch im sog. Effektdiagramm, in dem die beiden

Mittelwerte gy eingetragen und durch eine gerade Linie verbunden werden, deren

Steigung den Effekt kennzeichnet (Abbildung 7-1). Der gemeinsame Mittelwert y

schneidet die Effektlinie genau in der Mitte. Existieren mehr als i = 1 erklärende Va-

riablen, so sind neben den Haupteffekten ebenfalls Wechselwirkungen von Interes-

se. In diesem Fall werden die Mittelwerte gy getrennt für jeweils eine Faktorstufe der

in Wechselwirkung stehenden Variablen erstellt, was zwei Linien im Effektdiagramm

zur Folge hat. Bei parallelen Linien tritt keine Wechselwirkung auf, während die Stei-

gungsänderung der Linien ein Maß für die Wechselwirkung darstellt.

Abbildung 7-1: Aufbau der Effektdiagramme mit Haupteffekten (links) und Wechselwirkungen (rechts)

ab

häng

ige V

ariab

le

erklärende Variable

g=1 g=2

ab

häng

ige V

ariab

le

erklärende Variable 1

g1=1 g1=2

1gy

y

2gy

1 21, 1g gy

1 21, 2g gy y

1 22, 2g gy

1 22, 1g gy

Page 197: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.1 Grundlegende Einflussfaktoren

177

Auch wenn durch die Verwendung von Simulationsmodellen äußere Störgrößen

ausgeschlossen werden können, so können auch bei diesen „Studien durch Run-

dungsfehler und numerische Artefakte unkontrollierte Variationen der Ergebnisse

entstehen, die einer Versuchsstreuung ähneln“ und somit zu unterschiedlichen Mit-

telwerten zweier Versuchsgruppen ohne systematische Änderung der Parameter

führen [Sie-2010, S. 64]. Deswegen ist es erforderlich, die sog. wahren Effekte von

den scheinbaren Effekten zu unterscheiden bzw. zu prüfen, ob ein signifikanter Ein-

fluss vorliegt. Ein überaus gängiges Verfahren hierzu ist die Varianzanalyse, die „die

Wirkung einer (oder mehrerer) unabhängiger Variablen auf eine (oder mehrere) ab-

hängige Variablen untersucht“ [Bac-2011, S. 158]. Die Varianzanalyse beruht auf der

Unterteilung der Gesamtabweichung aller Beobachtungen (Messungen oder Be-

rechnungen) in einen erklärten Anteil durch die unabhängigen Variablen und einen

nicht erklärten Anteil zufällig äußerer Einwirkungen. Folgender Betrachtung in Anleh-

nung an [Bac-2011] liegt zunächst der einfachste Fall mit nur einer unabhängigen

Variablen mit 1,...,g G Faktorstufen zu Grunde, wobei der Index 1,...,k K wiede-

rum den Beobachtungszeitpunkt innerhalb einer Faktorstufe kennzeichnet. Anhand

des Beispiels in Abbildung 7-2 ist zu erkennen, dass die einzelnen Beobachtungs-

werte einer Faktorstufe jeweils um deren Mittelwerte gy streuen. Während sich die

Abweichung der Mittelwerte gy vom Gesamtmittelwert y dadurch erklären lassen,

dass eine andere Ausprägung der Variablen (andere Faktorstufe) vorliegt, lässt sich

diese Streuung nicht durch das Modell erklären.

Abbildung 7-2: Erklärte und nicht erklärte Abweichungen (nach [Bac-2011])

Das in Abbildung 7-2 gezeigte Prinzip lässt sich in der Varianzanalyse auf die Sum-

me der Gesamtabweichungen aller Beobachtungen übertragen, indem die Gesamt-

abweichung tSS durch die Summe der quadrierten Abweichungen zwischen den

Faktorstufen bSS und die Summe der quadrierten Abweichungen innerhalb der Fak-

torstufen wSS ausgedrückt wird:

ab

hän

gig

e V

ariab

le

erklärende Variable

g=1 g=2

erklärte Abweichung

nicht erklärte Abweichung

erklärte Abweichung

nicht erklärte Abweichung

1y

11y

12y

2y

2 2y

21y

y

Page 198: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

178

t b wSS SS SS (7-3)

2 2 2

1 1 1 1 1

G K G G K

gk g gk g

g k g g k

y y K y y y y

(7-4)

Dividiert man die quadratischen Abweichungen durch die jeweiligen Freiheitsgra-

de df (Zahl der Einzelwerte vermindert um 1), ergibt sich die Varianz als mittlere

quadratische Abweichung. Somit lässt sich neben der mittleren quadratischen Ab-

weichung

1t

t

SSMS

G K

(7-5)

auch die mittlere quadratische Abweichung zwischen den Faktorstufen

1b

b

SSMS

G

(7-6)

sowie die mittlere quadratische Abweichung innerhalb der Faktorstufen

1w

w

SSMS

G K

(7-7)

bestimmen. Kommen in dem Modell mehr als eine unabhängige Variable zur Erklä-

rung der Streuung vor, so spricht man von einer mehrfaktoriellen Varianzanalyse. Die

Streuung bSS und die mittlere quadratische Abweichung bMS können nun weiter in

die Streuungen der einzelnen Faktoren und deren Interaktionen aufgeschlüsselt

werden (für weiterreichende Erläuterungen siehe [Bac-2011, S. 166ff]).

Ein Vergleich der mittleren quadratischen Abweichung liefert eine erste Aussage

über den Einfluss der unabhängigen Variablen zu den nicht erfassten Einflüssen im

Modell. Je größer bMS im Verhältnis gegenüber wMS ist, desto eher ist mit einem

Einfluss der unabhängigen Variablen zu rechnen. Eine Prüfung, ob mit einer gewis-

sen Vertrauenswahrscheinlichkeit tatsächlich ein statistisch abgesicherter Einfluss

vorliegt, erfolgt über den empirischen F-Wert empF mit

bemp

w

MSF

MS (7-8)

Auf Basis der F-Verteilung wird geprüft, ob die Nullhypothese 0H verworfen werden

kann. Diese besagt, dass kein Einfluss der unabhängigen Variablen vorliegt. Ist der

Page 199: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.1 Grundlegende Einflussfaktoren

179

empirische F-Wert empF größer als ein auf Basis der Freiheitsgrade aus einer F-

Tabelle bestimmter theoretischer F-Wert, kann die Nullhypothese verworfen und auf

einen Einfluss der unabhängigen Variablen gefolgert werden. Eine einfachere Beur-

teilung erlaubt die Größe Signifikanz, auch als p -Wert bekannt, welche durch das

verwendete Programm SPSS ermittelt wird. Diese sagt aus, wie wahrscheinlich die

erwähnte Nullhypothese bei vorliegender Stichprobe ist. Geringe p -Werte lassen

also den Schluss zu, dass die Nullhypothese verworfen werden kann. In vorliegen-

der Arbeit wird mit einer Vertrauenswahrscheinlichkeit von 95% gearbeitet, was be-

deutet, dass Einflussfaktoren mit einem p -Wert bis zu 5% als signifikant gelten. Ge-

rade bei größeren Stichproben ist auf Grund der hohen Anzahl an Freiheitsgraden

für die Abschätzung des Fehlers mit hoch signifikanten Ergebnissen zu rechnen.

Deswegen ist bei der Beurteilung neben der Signifikanz, die ein notwendiges Kriteri-

um darstellt, stets die Stärke des Effekts zu berücksichtigen. Neben der einfachen

Berechnung gemäß Formel (7-2) kann die Effektstärke auch über das partielle Eta-

Quadrat 2p angegeben werden, das mit Hilfe der Freiheitsgrade df und der F-

Werte F den Erklärungsanteil um die Wirkung der restlichen im Modell enthaltenen

Faktoren bereinigt. Für einen beliebigen Faktor i berechnet es sich zu:

2,

i ip i

i i Fehler

df F

df F df

(7-9)

Das partielle Eta-Quadrat 2p gibt somit an, wieviel Prozent der Varianz durch den

Einflussfaktor erklärt werden kann. Nachdem nun eine Größe für die Effektstärke der

einzelnen Einflussfaktoren existiert, ist abschließend von Interesse, welchen Erklä-

rungsanteil das gesamte gewählte Modell bezüglich der Varianz der abhängigen Va-

riable besitzt. Diese Aussage liefert das Bestimmtheitsmaß 2,R eine auf den Wer-

tebereich zwischen Null und Eins normierte Größe mit

2 b

t

SSR

SS (7-10)

Das Bestimmtheitsmaß 2R wird durch die Anzahl der in das Modell aufgenomme-

nen Faktoren (unabhängige Variablen und deren Interaktionen) beeinflusst. Bei

gleichbleibender Stichprobengröße kann es deswegen vorkommen, dass durch zu-

sätzliche Faktoren ein weiterer Erklärungsanteil hinzugefügt wird, der eventuell ledig-

lich zufällig bedingt ist. Da sich das Bestimmtheitsmaß mit Aufnahme weiterer Fak-

toren stets vergrößert, ist dies auch bei der Aufnahme irrelevanter Faktoren der Fall.

Aus diesem Grund wird das korrigierte Bestimmtheitsmaß 2korrR verwendet, welches

das Bestimmtheitsmaß 2R um eine Korrekturgröße in Abhängigkeit der Freiheits-

grade und Faktoren vermindert. Das korrigierte Bestimmtheitsmaß 2korrR errechnet

Page 200: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

180

sich aus der Anzahl aller Beobachtungen BN und der Anzahl der beschreibenden

Faktoren J zu

2

2 21

1korr

B

J RR R

N J

(7-11)

und wird in folgenden Auswertungen mit angegeben.

7.1.2 Dominierende Schwingungsrichtung

Im Mittelpunkt der Betrachtung stehen die auf den Fahrer wirkenden Belastungen

beim Betrieb von Flurförderzeugen. Die in der Simulation errechneten Effektivwerte

der frequenzbewerteten Beschleunigung wTa werden folglich an den Messpunkten

Sitzmontagepunkt und Sitzkissen (vgl. Abbildung 6-9) analysiert. Tabelle 7-1 ver-

deutlicht die dominierende Belastung der z-Achse am Sitzmontagepunkt.

Tabelle 7-1: Mittelwerte der Effektivwerte der frequenzbewerteten Beschleunigung awT bezogen auf die z-Achse des Messpunkts des jeweiligen Fahrzeugs

Messpunkt EFG 20 DFG 35 EFM 14

Sitzmontagepunkt (x) 19 % 7 % 9 %

Sitzmontagepunkt (y) 11 % 3 & 2 %

Die geringen Belastungen in y-Richtung sind vor allem dadurch zu erklären, dass bei

der gewählten Fahrbahn kaum Anregungen quer zur Fahrbahn eingeleitet werden.

Beim Messpunkt Sitzkissen erübrigt sich eine detaillierte Betrachtung der Achsen,

da im Zuge der Validierung eine ungenügende Modellgüte hinsichtlich der horizonta-

len Achsen festzustellen ist. Grundsätzlich dominiert auch hier die z-Richtung. So

werden in folgenden Betrachtungen ausschließlich die vertikalen Schwingungen in

z-Richtung an den Messpunkten Sitzmontagepunkt und Sitzkissen betrachtet.

7.1.3 Wahrnehmbarkeit von Effekten

Durch Berechnung der Effekte nach Formel (7-2) lässt sich die Wirkung der gewähl-

ten Faktorstufe auf den resultierenden Effektivwert der frequenzbewerteten Be-

schleunigung wTa rechnerisch exakt bestimmen. Ebenfalls gibt das partielle Eta-

Quadrat 2p Auskunft über den Erklärungsanteil des Faktors im gewählten Beschrei-

bungsmodell. Um den Effekt jedoch im Hinblick auf die Praxis beurteilen zu können,

ist dessen Höhe in Bezug zu den erwarteten Vibrationskennwerten zu setzen. Eine

Orientierung bieten der Auslösewert mit (8)A = 0,5 m/s² sowie der Expositions-

grenzwert mit (8)A = 0,8 m/s² in vertikaler Richtung (vgl. Kapitel 2.2.3). Die Angabe

der Belastungen wTa erfolgt in Veröffentlichungen und Tabellenwerken üblicherweise

Page 201: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.1 Grundlegende Einflussfaktoren

181

mit einer Genauigkeit von 0,1 m/s². Vorausgesetzt, die Vibrationen wirken über den

gesamten Arbeitsalltag ein, macht sich eine Differenz von wTa = 0,1 m/s² auch in

der Tagesexposition (8)A bemerkbar und kann darüber entscheiden, ob Grenz- und

Auslösewerte erreicht werden. So erscheint es zielführend, einem Effekt einen wahr-

nehmbaren Einfluss zu attestieren, wenn er am Messpunkt Sitzkissen einen Wert

von E = 0,1 m/s² übersteigt. Bezogen auf den Messpunkt des Sitzmontagepunktes

hat dies zur Folge, dass ein dort bestimmter Effekt mit E = 0,2 m/s² zu einer wahr-

nehmbaren Änderung der Belastung des Fahrers führt. Dieser Überlegung liegt ein

durchschnittlicher SEAT-Wert von 0,5 zu Grunde. Diese Schwellen werden auch auf

den normierten Effektivwert der frequenzbewerteten Beschleunigung wT Na , nach

Formel (7-1) umgerechnet, ohne diesen jedoch auf Grund der nicht gewünschten

Vergleichbarkeit explizit in der Arbeit auszuweisen.

7.1.4 Gabelstapler EFG 20 und DFG 35

Die grundlegenden Einflussfaktoren werden auf Basis des vollständig faktoriellen

fahrzeugspezifischen Versuchsplans aus Tabelle 4-6 ermittelt. Jeder der hypotheti-

schen Einflussfaktoren ist dabei mit zwei Ausprägungen auf hohem und niedrigem

Niveau vertreten. Bei einer Faktorstufenkombination des DFG 35 treten bei der In-

tegration Probleme auf, so dass sich die Zahl der ermittelten Kennwerte auf 1.023

reduziert. Auf eine Anpassung der Integratoreinstellungen wird verzichtet, um keine

zusätzliche Streuung auf Grund veränderter Einstellungen zu erhalten. Beim EFG 20

können alle Kombinationen berechnet werden. Grundsätzlich findet eine Überprü-

fung aller Berechnungen auf Simulationsfehler statt.

Die zu beobachtenden Effekte sind bei den Gabelstaplern EFG 20 und DFG 35 im

Großteil identisch und werden zuerst für den Sitzmontagepunkt in Abbildung 7-3

und Abbildung 7-4 gegenübergestellt. Die Skalierung der Ordinate wird bewusst an

die jeweils minimalen und maximalen Werte je Flurförderzeug angepasst, um in der

grafischen Darstellung die unterschiedlichen Effektstärken bestmöglich hervorheben

zu können. Auf Grund der fahrzeugspezifischen Faktorstufenwahl sind die mittleren

Belastungen zwischen den Flurförderzeugen verschieden, so dass sich die Ordina-

ten hinsichtlich der dargestellten Wertebereiche unterscheiden. Die Zahlenwerte der

Effekte samt Mittelwert über alle Versuche sind in Tabelle 7-2 zusammengefasst,

eine ausführliche Darstellung findet sich in Tabelle A-7 und Tabelle A-8.

Page 202: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

182

Abbildung 7-3: Effektdiagramme (normiert), EFG 20 (N = 1024), Sitzmontagepunkt (z)

Abbildung 7-4: Effektdiagramme (normiert), DFG 35 (N = 1023), Sitzmontagepunkt (z)

0,4

0,9

gering hoch

Fahrgeschwindigkeit

0,4

0,9

gering hoch

Last

0,4

0,9

ohne mit

Kabinenlagerung

0,4

0,9

normal groß

Reifendämpfung

0,4

0,9

normal groß

Reifensteifigkeit

0,4

0,9

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Neigung Hubgerüst

0,4

0,9

rückwärts vorwärts

Fahrtrichtung

0,4

0,9

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

no

rm. E

ffektivw

ert

[-]

no

rm. E

ffektivw

ert

[-]

0,9

1,6

gering hoch

Fahrgeschwindigkeit

0,9

1,6

gering hoch

Last

0,9

1,6

ohne mit

Kabinenlagerung

0,9

1,6

normal groß

Reifendämpfung

0,9

1,6

normal groß

Reifensteifigkeit

0,9

1,6

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Neigung Hubgerüst

0,9

1,6

rückwärts vorwärts

Fahrtrichtung

0,9

1,6

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

no

rm.

Eff

ektivw

ert

[-]

no

rm.

Eff

ektivw

ert

[-]

Page 203: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.1 Grundlegende Einflussfaktoren

183

Tabelle 7-2: Zusammengefasste Effekte (normiert) der Gabelstapler EFG 20 (N = 1024) und DFG 35 (N = 1023), Sitzmontagepunkt (z)

Nr. Einflussfaktor Ausprägungen Effekte [-]

EFG 20 DFG 35

3 Fahrbahnanregung gering stark 0,35 0,60

4 Fahrtrichtung rückwärts vorwärts 0,03 -0,01

5 Fahrer leicht schwer -0,01 -0,04

6 Last gering hoch 0,01 -0,20

7 Fahrgeschwindigkeit gering hoch 0,44 0,46

8 Neigung Hubgerüst gering hoch 0,01 -0,01

9 Reifensteifigkeit normal groß 0,07 0,14

10 Reifendämpfung normal groß -0,02 -0,16

11 Kabinenlagerung ohne mit 0,09 -0,04

12 Sitz kleine Baugr. große Baugr. 0,00 0,01

Mittelwert 0,67 1,24

Deutlich erkennbar sind in einer ersten augenscheinlichen Analyse die dominieren-

den Effekte der Einflussfaktoren Fahrbahnanregung und Fahrgeschwindigkeit bei

beiden Flurförderzeugen. Ebenso ist ersichtlich, dass bezogen auf die Effekte die

Fahrtrichtung sowie die Neigung des Hubgerüsts keinen Einfluss auf den Effektiv-

wert der frequenzbewerteten Beschleunigung wTa am Sitzmontagepunkt nehmen.

Eine tiefergehende Analyse erfolgt unter Einbeziehung der Varianzanalyse, um so-

wohl die Signifikanz der Einflussfaktoren als auch mögliche Interaktionen beurteilen

zu können. In ein erstes Modell der Varianzanalyse werden alle postulierten Hauptef-

fekte sowie alle Einfachwechselwirkungen aufgenommen (siehe Tabelle A-1 und Ta-

belle A-2). Die Modelle besitzen folglich einen hohen Erklärungsanteil mit 2

, 20korr EFGR = 0,984 und 2korr DFG35R , = 0,952, wobei nur wenige Wechselwirkungen signi-

fikant sind und einen merklichen Beitrag zur Varianz liefern (angenommener Grenz-

wert 2p > 0,1). So wird ein zweites Modell mit ebenfalls allen Haupteffekten sowie

den signifikanten und merklichen Wechselwirkungen bei mindestens einem Gabel-

stapler untersucht. Somit sind die Modellansätze zum besseren Vergleich für

EFG 20 und DFG 35 identisch. Tabelle 7-3 zeigt die Ergebnisse der für beide Gabel-

stapler getrennt durchgeführten Varianzanalysen. Trotz der Modellreduktion besitzen

beide Modelle weiterhin einen vergleichsweise großen Erklärungsanteil.

Page 204: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

184

Tabelle 7-3: Varianzanalysen der Einflussfaktoren bei den Gabelstaplern EFG 20 ( 2korrR = 0,980) und

DFG 35 ( 2korrR = 0,899), Signifikanzniveau p < 0,05, Sitzmontagepunkt (z)

EFG 20 DFG 35

df F p² p df F p² p

Fahrbahnanregung 1 16103,69 0,94 0,00 1 4635,98 0,82 0,00

Fahrtrichtung 1 147,40 0,13 0,00 1 0,73 0,00 0,39

Fahrer 1 3,36 0,00 0,07 1 16,90 0,02 0,00

Last 1 14,16 0,01 0,00 1 541,77 0,35 0,00

Fahrgeschwindigkeit 1 26388,15 0,96 0,00 1 2689,61 0,73 0,00

Neigung Hubgerüst 1 20,17 0,02 0,00 1 0,21 0,00 0,65

Reifensteifigkeit 1 675,93 0,40 0,00 1 261,23 0,21 0,00

Reifendämpfung 1 57,11 0,05 0,00 1 332,95 0,25 0,00

Kabinenlagerung 1 1059,91 0,51 0,00 1 23,37 0,02 0,00

Sitz 1 3,15 0,00 0,08 1 0,26 0,00 0,61

Fahrgeschwind. x Fahrbahnanr. 1 1202,63 0,54 0,00 1 325,44 0,24 0,00

Fahrgeschwind. x Kabinenlag. 1 254,80 0,20 0,00 1 54,59 0,05 0,00

Fahrgeschwindigkeit x Last 1 3461,27 0,77 0,00 1 210,63 0,17 0,00

Fahrgeschwind. x Reifensteifigkeit 1 355,72 0,26 0,00 1 14,99 0,01 0,00

Fahrtrichtung x Last 1 8,56 0,01 0,00 1 54,87 0,05 0,00

Fehler 1008

1007

Gesamt 1023

1022

Wegen der hohen Teststärke sind fast alle Faktoren bei einem Signifikanzniveau von

p < 0,05 statistisch signifikant. Ausnahmen bilden lediglich die Faktoren Sitz und

Fahrer beim EFG 20 sowie Fahrtrichtung, Neigung Hubgerüst und Sitz beim DFG 35.

In die Effektdiagramme für den Sitzmontagepunkt sind die Einflussfaktoren Fahrer

und Sitz nicht aufgenommen, da von vornherein von keinem Effekt auszugehen ist.

Dies bestätigen sowohl die Effekte in Tabelle 7-2 als auch die Varianzanalyse in Ta-

belle 7-3. Lediglich beim DFG 35 führt ein schwerer Fahrer zu leicht geringeren Be-

lastungen, jedoch deutlich unter der in Kapitel 7.1.3 benannten Schwelle von

E = 0,2 m/s² und mit sehr geringem 2.p Die reduzierte Belastung wird auf die Mo-

dellierung der Motorhaube als flexibler Körper geführt, was bei größerer Masse von

Sitz und Fahrer zu geringeren Beschleunigungen führt. Wie angenommen nehmen

Sitz und Fahrer keinen Einfluss auf die Höhe der Belastung am Sitzmontagepunkt.

Die Varianzanalyse bestätigt den starken Einfluss der Faktoren Fahrbahnanregung

und Fahrgeschwindigkeit. Die nicht normierten Effekte liegen zudem über der

Schwelle von E = 0,2 m/s² und beeinflussen somit die Fahrerbelastung merklich.

Beide Faktoren wirken verstärkend, d. h. mit zunehmenden Fahrbahnunebenheiten

bzw. zunehmender Fahrgeschwindigkeit nimmt die Belastung zu.

Page 205: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.1 Grundlegende Einflussfaktoren

185

Die Reifen weisen hinsichtlich Steifigkeit und Dämpfung einen signifikanten Einfluss

auf die Vibrationsbelastung am Sitzmontagepunkt auf. Ausgeprägter und über der

Wahrnehmbarkeitsschwelle liegend sind die Effekte beim DFG 35, während beim

EFG 20 vor allem die Reifensteifigkeit eine (geringe) Wirkung besitzt. Grundsätzlich

führen steifere Reifen zu größeren Belastungen, während Reifen mit höherem Dämp-

fungsgrad diese reduzieren. Die Wirkung ist jedoch schwächer als die bislang aufge-

führten Einflussfaktoren.

Wie im Effektdiagramm bereits angedeutet nimmt die Fahrtrichtung keinen (DFG 35)

bzw. kaum (EFG 20) einen Einfluss auf den Effektivwert der frequenzbewerteten Be-

schleunigung wTa . Auch wenn in der Varianzanalyse eine Wirkung beim EFG 20 be-

stimmt werden kann, liegt diese merklich unter der Schwelle von E = 0,2 m/s².

Ebenso ist die Wirkung der Neigung des Hubgerüsts nicht nachweisbar (DFG 35)

oder außerordentlich gering (EFG 20, unterhalb der Schwelle).

Der Einfluss der transportierten Last führt zu unterschiedlich stark ausgeprägten Ef-

fekten bei beiden Gabelstaplern. Beim DFG 35 ist ein deutlich wahrnehmbarer (über

der Schwelle von E = 0,2 m/s²) und signifikanter Einfluss feststellbar, der sich auch

im 2p widerspiegelt. Bei hoher Last sind für diesen Gabelstapler geringere Effektiv-

werte der frequenzbewerteten Beschleunigung wTa zu verzeichnen. Die Ergebnisse

beim EFG 20 lassen diesen Schluss nicht zu. Zu erwarten wäre auf Grund der ähnli-

chen Bauweise der beiden Gabelstapler ein gleichartiger Effekt. Für eine weitere

Klärung ist die Wechselwirkung zwischen Fahrgeschwindigkeit und Last zu berück-

sichtigen, die besonders beim EFG 20 ein hohes 2p aufweist. Abbildung 7-5 stellt

diese im entsprechenden Effektdiagramm für beide Gabelstapler dar.

Abbildung 7-5: Wechselwirkung der Faktoren Last und Fahrgeschwindigkeit bei den Gabelstaplern EFG 20 und DFG 35, Sitzmontagepunkt (z)

Deutlich zu erkennen ist eine unterschiedliche Wechselwirkung zwischen Last und

Fahrgeschwindigkeit beim Vergleich der beiden Gabelstapler. Während beim

DFG 35 die reduzierende Wirkung der Last bei geringen Fahrgeschwindigkeiten

0,3

1,1

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Last - EFG 20

0,8

1,6

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Last - DFG 35

gering

hoch

Fahrgeschwindigkeit

no

rm.

Eff

ektivw

ert

[-]

no

rm.

Eff

ektivw

ert

[-]

Page 206: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

186

deutlicher ausfällt als bei hohen, führen die Wechselwirkungen beim EFG 20 zu ei-

nem entgegengesetzten Verhalten. Bei geringer Fahrgeschwindigkeit bestätigt sich

eine Abnahme der Belastung mit steigender Beladung, während bei höheren Fahr-

geschwindigkeiten eine Zunahme zu erkennen ist. In Summe führt diese Wechsel-

wirkung zu fast gleichbleibenden Werten bei geringer und hoher Beladung. Da wie

bereits angemerkt bei Gabelstaplern mit gleichem Verhalten zu rechnen ist, ist der

Einfluss der Beladung in einer weiteren Versuchsreihe detaillierter bei feinerer Abstu-

fung zu untersuchen.

Auch beim Faktor Kabinenlagerung unterscheiden sich die Wirkungen bei den bei-

den Gabelstaplern und weichen beim EFG 20 vom vermuteten Effekt ab, nämlich

dem einer Vibrationsminderung bei vorhandener Kabinenlagerung. Die Effektstärke

befindet sich zwar nur knapp unter der Schwelle von E = 0,2 m/s², die Kabinenlage-

rung ist beim EFG 20 jedoch für ca. 50 % Streuung in der Varianz verantwortlich.

Dieser gegenläufige Effekt beim EFG 20 lässt sich dadurch erklären, dass durch die

im Simulationsmodell hinterlegten Steifigkeitswerten der Lagerstellen, welche aus

Messungen am realen Bauteil gewonnen sind, eine zu steife Abstimmung im Ver-

hältnis zum Anregungsspektrum realisiert ist. Auf diesen Sachverhalt wird gesondert

in Kapitel 7.3.1 eingegangen. Beim DFG 35 stellt sich der vermutete Effekt ein, ist in

seiner Wirkung jedoch von untergeordneter Bedeutung.

Abschließend zum Messpunkt Sitzmontagepunkt werden die verbleibenden Wech-

selwirkungen aus Tabelle 7-3 analysiert. Die Fahrgeschwindigkeit verfügt über teils

signifikante Wechselwirkungen mit den Faktoren Fahrbahnanregung, Kabinenlage-

rung und Reifensteifigkeit. Für EFG 20 und DFG 35 sind die entsprechenden Effekt-

diagramme in Abbildung 7-6 und Abbildung 7-7 dargestellt. Bei beiden Gabelstap-

lern verstärken sich die Wirkungen von Fahrbahnanregung und Fahrgeschwindigkeit,

d. h. der Einfluss der Fahrbahnanregung wächst mit zunehmender Fahrgeschwin-

digkeit. Bezüglich der Kabinenlagerung beliebt festzuhalten, dass bei höherer Fahr-

geschwindigkeit der Effekt der Lagerung – positiv wie negativ je Gabelstapler –

deutlich hervortritt und dabei auch die definierte Wahrnehmbarkeitsschwelle von

E = 0,2 m/s² erreicht. Die Wechselwirkung mit der Reifensteifigkeit ist nur beim

EFG 20 festzustellen, auch hier bedingt eine höhere Fahrgeschwindigkeit eine stär-

kere Belastungszunahme beim Wechsel von Reifen mit normaler auf auf solche mit

größerer Steifigkeit. In Ergänzung finden sich in Abbildung A-4 und Abbildung A-5

die Effektdiagramme für alle Wechselwirkungen mit dem Faktor Fahrgeschwindigkeit

zusammengefasst.

Page 207: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.1 Grundlegende Einflussfaktoren

187

Abbildung 7-6: Wechselwirkungen zwischen Fahrgeschwindigkeit und Fahrbahnanregung, Kabinen-lagerung und Fahrgeschwindigkeit, EFG 20, Sitzmontagepunkt (z)

Abbildung 7-7: Wechselwirkungen zwischen Fahrgeschwindigkeit und Fahrbahnanregung, Kabinen-lagerung und Fahrgeschwindigkeit, DFG 35, Sitzmontagepunkt (z)

In der vollumfänglichen Varianzanalyse (Tabelle A-1 und Tabelle A-2) ist eine stärke-

re Wechselwirkung zwischen Last und Fahrtrichtung beim DFG 35 festzustellen, die

jedoch im reduzierten Beschreibungsmodell (Tabelle 7-3) ein geringes 2p aufweist.

Abbildung 7-8 zeigt die Darstellung der zugehörigen Effektdiagramme.

Abbildung 7-8: Wechselwirkung der Faktoren Last und Fahrtrichtung bei den Gabelstaplern EFG 20 und DFG 35, Sitzmontagepunkt (z)

0,3

1,2Fahrgeschwindigkeit

0,3

1,2

normal groß

Reifensteifigkeit

0,3

1,2

ohne mit

Kabinenlagerung

0,3

1,2

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

gering

hoch

no

rm.

Eff

ektivw

ert

[-]

0,7

1,9Fahrgeschwindigkeit

0,7

1,9

normal groß

Reifensteifigkeit

0,7

1,9

ohne mit

Kabinenlagerung

0,7

1,9

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

gering

hoch

no

rm.

Eff

ektivw

ert

[-]

0,6

0,8

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Last - EFG 20

1,1

1,4

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Last - DFG 35

rückwärts

vorwärts

Fahrtrichtung

no

rm. E

ffektivw

ert

[-]

no

rm. E

ffektivw

ert

[-]

Page 208: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

188

Es ist zu erkennen, dass beim DFG 35 der dämpfende Einfluss der Last bei Rück-

wärtsfahrt ausgeprägter ist als bei Vorwärtsfahrt. Über alle Versuche betrachtet

weist die Fahrtrichtung jedoch keinen signifikanten Einfluss beim DFG 35 auf.

Unter der verallgemeinernden Annahme, dass die Belastung des Fahrers um die

Höhe des Sitzübertragungsfaktors SEAT gemindert wird, lassen sich die identifizier-

ten Einflussgrößen auch auf den Messpunkt Sitzkissen übertragen. Üblicherweise

verfügen Sitze für Gabelstapler dieser Tragfähigkeitsklassen je nach Baugröße und

Federweg über SEAT- Werte von 0,3–0,7 [Pol-2008]. Wie in Kapitel 3.1.1 dargelegt

mindert ein Sitz die an seinem Fußpunkt eingeleiteten Schwingungen in Abhängig-

keit seiner Eigenfrequenz. Diese wird sowohl durch die Masse des Fahrers als auch

durch die Federsteifigkeit beeinflusst. Von Interesse ist deshalb, ob bestimmte Fak-

toren dieses Zusammenspiel in besonderer Weise beeinflussen. Aus diesem Grund

erfolgt ebenso eine tiefere Analyse des Messpunkts Sitzkissens unter Beachtung der

Modellgüte der Gesamtfahrzeugmodelle hinsichtlich dieses Messpunkts (vgl. Kapi-

tel 6.3.4).

Dabei lässt sich grundsätzlich für beide Gabelstapler eine gleiche Wirkung der Fak-

toren, gemessen an der Effektstärke ,E wie am Sitzmontagepunkt festhalten – mit

Ausnahme natürlich von Sitz und Fahrer, worauf nachfolgend näher eingegangen

wird. Die zugehörigen Effektdiagramme mit Angabe der normierten Zahlenwerte die-

ser Faktoren finden sich aus Gründen der Übersichtlichkeit im Anhang

(Abbildung A-1, Abbildung A-2, Tabelle A-9 bis Tabelle A-11). Analog zum Vorgehen

beim Sitzmontagepunkt werden in einem ersten Modell der Varianzanalyse alle pos-

tulierten Haupteffekte sowie alle Einfachwechselwirkungen aufgenommen (siehe Ta-

belle A-3 und Tabelle A-4), was folglich einen hohen Erklärungsanteil mit 2

, 20korr EFGR = 0,981 und 2, 35korr DFGR = 0,966 bedingt, wobei nur wenige Wechselwirkun-

gen signifikant sind und einen merklichen Beitrag zur Varianz liefern (angenommener

Grenzwert 2p > 0,1). So wird ein reduziertes Modell mit ebenfalls allen Haupteffek-

ten sowie den signifikanten und merklichen Wechselwirkungen erstellt. Die Model-

lansätze sind wiederum zum besseren Vergleich für EFG 20 und DFG 35 identisch

und liefern trotz Reduktion einen hohen Erklärungsanteil (Tabelle 7-4).

Im Ergebnis lassen sich als wesentliche Einflussfaktoren auf die Fahrerbelastung, die

auch die Schwelle von E = 0,1 m/s² deutlich übersteigen, bei beiden Gabelstaplern

die Faktoren Fahrbahnanregung, Fahrgeschwindigkeit, Fahrer und Sitz festhalten. In

geringem Umfang macht sich zudem die Kabinenlagerung beim EFG 20 und die

Last an der Grenze der Wahrnehmung beim DFG 35 bemerkbar. Auch der geringe

Effekt von Reifensteifigkeit und -dämpfung ist ebenfalls nur beim DFG 35 zu ver-

zeichnen.

Page 209: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.1 Grundlegende Einflussfaktoren

189

Tabelle 7-4: Varianzanalysen der Einflussfaktoren bei den Gabelstaplern EFG 20 ( 2korrR = 0,974) und

DFG 35 ( 2korrR = 0,938), Signifikanzniveau p < 0,05, Sitzkissen (z)

EFG 20 DFG 35

df F p² p df F p² p

Fahrbahnanregung 1 6747,61 0,87 0,00 1 3267,83 0,76 0,00

Fahrtrichtung 1 5,08 0,01 0,02 1 0,13 0,00 0,71

Fahrer 1 2725,98 0,73 0,00 1 797,94 0,44 0,00

Last 1 26,54 0,03 0,00 1 241,72 0,19 0,00

Fahrgeschwindigkeit 1 5263,78 0,84 0,00 1 1604,96 0,61 0,00

Neigung 1 0,01 0,00 0,91 1 0,09 0,00 0,76

Reifensteifigkeit 1 24,25 0,02 0,00 1 139,66 0,12 0,00

Reifendämpfung 1 21,75 0,02 0,00 1 196,42 0,16 0,00

Kabine 1 189,48 0,16 0,00 1 12,10 0,01 0,00

Sitz 1 17112,68 0,94 0,00 1 7743,12 0,89 0,00

Fahrgeschwind. x Fahrbahnanr. 1 228,53 0,18 0,00 1 188,17 0,16 0,00

Fahrgeschwindigkeit x Last 1 364,17 0,27 0,00 1 117,64 0,10 0,00

Sitz x Fahrbahnanregung 1 639,27 0,39 0,00 1 447,75 0,31 0,00

Sitz x Fahrer 1 4681,54 0,82 0,00 1 386,03 0,28 0,00

Sitz x Fahrgeschwindigkeit 1 214,49 0,18 0,00 1 262,60 0,21 0,00

Sitz x Last 1 101,49 0,09 0,00 1 65,03 0,06 0,00

Fehler 1007

1006

Gesamt 1023

1022

Für den Messpunkt Sitzkissen bietet sich eine tiefere Analyse der Faktoren Sitz und

Fahrer an, deren Effektdiagramme in Abbildung 7-9 dargestellt sind.

Abbildung 7-9: Effektdiagramme (normiert) der Faktoren Sitz und Fahrer für EFG 20 (N = 1024) und DFG 35 (N = 1023), Sitzkissen (z)

EFG 20 DFG 35

0,1

0,5

MSG 65 MSG 85

no

rm.

Eff

ek

tivw

ert

[-]

Sitz

leicht schwer

Fahrer

0,1

0,3

MSG 20 MSG 65

no

rm.

Eff

ek

tivw

ert

[-]

Sitz

leicht schwer

Fahrer

no

rm.

Eff

ektivw

ert

[-]

no

rm.

Eff

ektivw

ert

[-]

Page 210: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

190

Die Darstellung im Effektdiagramm erweckt den Anschein, dass bei den beiden Ga-

belstaplern unterschiedliche Wirkungen der Faktoren zu verzeichnen sind. Es gilt

dabei aber zu beachten, dass die Sitze in kleiner und großer Baugröße fahrzeugspe-

zifisch gewählt sind (vgl. Tabelle 4-7). Sowohl beim EFG 20 als auch beim DFG 35

zeichnet sich der MSG 65, der zum Untersuchungszeitpunkt eine der fortschrittli-

chen Entwicklungen auf dem Markt darstellt und über weniger Reibung gegenüber

den anderen Sitzen verfügt, durch geringere Fahrerbelastungen aus. Dies bedingt

bei den für die Sitze geringen Schwingwegen das bessere Abschneiden des

MSG 65 auch gegenüber dem MSG 85.

Trotz korrekter Gewichtseinstellung am Fahrersitz ist eine Wirkung des Fahrers, d. h.

dessen Körpergewichts, zu verzeichnen. Ein Erklärungsgrund ist, dass beim MSG 85

nur die Vorspannung, jedoch nicht die Federsteifigkeit auf das Körpergewicht ange-

passt wird (vgl. Kapitel 5.2.3). Zudem ist gerade beim EFG 20 eine starke Wechsel-

wirkung festzustellen, wie die Effektdiagramme in Abbildung 7-10 zeigen.

Abbildung 7-10: Wechselwirkung der Faktoren Fahrer und Sitz bei den Gabelstaplern EFG 20 und DFG 35, Sitzkissen (z)

Zu erkennen ist, dass beim MSG 65 der Unterschied in der Belastung zwischen

leichtem und schwerem Fahrer sehr gering ausfällt und auch unter Berücksichtigung

der Unterschätzung der Belastung der Simulationsmodelle noch unter der Schwelle

von E = 0,1 m/s² liegt. Bei MSG 20 und MSG 85 sind die Effekte des Fahrerge-

wichts gegensätzlich. Der Vergleich der Belastungen von leichtem und schwerem

Fahrer auf den drei unterschiedlichen Sitzen zeigt, dass hier keine pauschalen Aus-

sagen zu Einflüssen getroffen werden können. Im Vergleich zu den anderen genann-

ten relevanten Faktoren ist der Einfluss des Sitzes bei beiden Gabelstaplern domi-

nierend und dem des Fahrers untergeordnet.

Die restlichen in Tabelle 7-4 angeführten Wechselwirkungen sind von untergeordne-

ter Bedeutung. Wie beim Sitzmontagepunkt ist bei größerer Fahrgeschwindigkeit der

Effekt der Fahrbahnanregung bei beiden Gabelstaplern deutlicher zu spüren

0,1

0,4

leicht schwer

no

rm.

Eff

ek

tivw

ert

[-]

Fahrer - EFG 20

0,1

0,6

leicht schwer

no

rm.

Eff

ek

tivw

ert

[-]

Fahrer - DFG 35

Sitz

MSG 65MSG 20

MSG 85MSG 65

no

rm.

Eff

ektivw

ert

[-]

no

rm.

Eff

ektivw

ert

[-]

Page 211: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.1 Grundlegende Einflussfaktoren

191

(Abbildung A-6), ebenso verhält sich der Einfluss der Last konträr bei geringen und

hohen Fahrgeschwindigkeiten beim DFG 35 (Abbildung A-7). Die als gering einzu-

stufenden Wechselwirkungen zwischen dem Sitz und den Faktoren Fahrbahnanre-

gung, Last und Fahrgeschwindigkeit sind Abbildung A-8 und Abbildung A-9 zu ent-

nehmen.

7.1.5 Schubmaststapler EFM 14

Der Schubmaststapler EFM 14 verfügt über keine bauseits vorhandene Kabinenla-

gerung, weswegen dieser Faktor aus folgenden Betrachtungen ausgeklammert wird.

Insgesamt handelt es sich beim erstellten Mehrkörpermodell auch wegen der Po-

lyurethanreifen um ein sehr steifes System, so dass bei einigen Parameterkombina-

tionen Fehler bei der Integration auftreten. Die statt 512 verbleibenden 486 Daten-

sätze lassen immer noch eine aussagekräftige Analyse zu. Analog zum Vorgehen bei

den Gabelstaplern wird zuerst das Verhalten am Sitzmontagepunkt analysiert, bevor

auf die Belastungen am Sitzkissen eingegangen wird. Zum Einstieg zeigt

Abbildung 7-11 die Effektdiagramme am Sitzmontagepunkt, die Zahlenwerte sind

Tabelle 7-5 und in ausführlicher Form mit Mittelwerten und Standardabweichungen

Tabelle A-12 zu entnehmen.

Abbildung 7-11: Effektdiagramme (normiert), EFM 14, Sitzmontagepunkt (z) (N = 486)

0,7

1,7

gering hoch

Fahrgeschwindigkeit

0,7

1,7

gering hoch

Last

0,7

1,7

normal groß

Reifendämpfung

0,7

1,7

normal groß

Reifensteifigkeit

0,7

1,7

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Neigung Hubgerüst

0,7

1,7

PUF PUB

Fahrtrichtung

0,7

1,7

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

no

rm. E

ffektivw

ert

[-]

no

rm.

Eff

ektivw

ert

[-]

Page 212: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

192

Tabelle 7-5: Effekte (normiert) für Schubmaststapler EFM 14 (N = 486), Sitzmontagepunkt (z)

Nr. Einflussfaktor Ausprägungen Effekt [-]

3 Fahrbahnanregung gering stark 0,82

4 Fahrtrichtung rückwärts vorwärts -0,02

5 Fahrer leicht schwer -0,04

6 Last gering hoch 0,01

7 Fahrgeschwindigkeit gering hoch 0,95

8 Neigung Hubgerüst gering hoch -0,01

9 Reifensteifigkeit normal groß 0,05

10 Reifendämpfung normal groß -0,05

12 Sitz kleine Baugr. große Baugr. -0,05

Mittelwert 1,18

Anhand der Effekte E ist erkennbar, dass die Faktoren Fahrbahnanregung und

Fahrgeschwindigkeit deutlich dominieren. Während diese weit über der Schwelle

von E = 0,2 m/s² liegen, erreichen die anderen Faktoren diese nicht. Der dominante

Einfluss wird auch durch die Varianzanalyse bestätigt, die wiederum mit allen Effek-

ten und Einfachwechselwirkungen (Tabelle A-5) und mit einem reduzierten Modell

durchgeführt wird (Tabelle 7-6). Die Faktoren Fahrtrichtung und Neigung besitzen

trotz der hohen Teststärke keinen signifikanten Einfluss. Gleiches gilt für den Fahrer,

der jedoch nur der Vollständigkeit halber mit dem Sitz aufgenommen ist. Auch der

Sitz nimmt wie erwartet keinen merklichen Einfluss auf die Belastung am Sitzmonta-

gepunkt.

Tabelle 7-6: Varianzanalyse der Einflussfaktoren beim Schubmaststapler EFM 14 ( 2korrR = 0,961),

Signifikanzniveau p < 0,05, Sitzmontagepunkt (z)

df F p² p

Fahrbahnanregung 1 4719,71 0,91 0,00

Fahrtrichtung 1 0,90 0,00 0,34

Fahrer 1 0,16 0,00 0,69

Last 1 7,50 0,02 0,01

Fahrgeschwindigkeit 1 6476,52 0,93 0,00

Neigung 1 0,22 0,00 0,64

Reifensteifigkeit 1 21,65 0,04 0,00

Reifendämpfung 1 12,68 0,03 0,00

Sitz 1 20,83 0,04 0,00

Fahrbahnanregung x Fahrgeschwindigkeit 1 909,89 0,66 0,00

Fehler 475

Gesamt 485

Page 213: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.1 Grundlegende Einflussfaktoren

193

Die Last besitzt sowohl einen überaus geringen Effekt E als auch ein sehr niedriges 2p und beeinflusst folglich im Gegensatz zu den Gabelstaplern nicht die Höhe des

Effektivwerts der frequenzbewerteten Beschleunigung wTa am Sitzmontagepunkt.

Dies liegt im Konstruktionsprinzip begründet, das die Abstützung der Last innerhalb

der Räder vorsieht. Auch der Einfluss der Polyurethanreifen ist hinsichtlich einer sich

ändernden Steifigkeit und Dämpfung bezogen auf den Status Quo verschwindend

gering.

Als einzige Wechselwirkung mit größerem 2p ist die von Fahrbahnanregung und

Fahrgeschwindigkeit feststellbar. Wie bei den Gabelstaplern wirkt die Fahrgeschwin-

digkeit verstärkend auf den durch die Fahrbahnanregung verursachten Effekt (Abbil-

dung 7-12).

Abbildung 7-12: Wechselwirkung der Faktoren Fahrbahnanregung und Fahrgeschwindigkeit, EFM 14, Sitzmontagepunkt (z)

Bezüglich der am Sitzkissen gemessenen resultierenden Fahrerbelastung sind mit

der Fahrbahnanregung und der Fahrgeschwindigkeit die gleichen Faktoren wie am

Sitzmontagepunkt dominierend, wenn die Faktoren Sitz und Fahrer ausgeklammert

werden. Dies bestätigt auch eine gegenüber Tabelle A-6 mit einem reduzierten Mo-

dell durchgeführte Varianzanalyse, deren Ergebnisse Tabelle 7-7 beinhaltet. Effekt-

diagramme und zugehörige Zahlenwerte sind im Anhang Abbildung A-3 und

Tabelle A-13 zu entnehmen. Last und Neigung weisen keinen statistisch signifikan-

ten Einfluss auf, die restlichen Faktoren besitzen Effekte unterhalb der Schwelle von

E = 0,1 m/s² am Sitzkissen sowie ein äußerst geringes 2p . Anders verhält es sich

bei den Faktoren Sitz und Fahrer, deren Effektdiagramme gesondert in

Abbildung 7-13 dargestellt sind.

0,4

2,4

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

gering

hoch

Fahrgeschwindigkeit

no

rm. E

ffektivw

ert

[-]

Page 214: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

194

Abbildung 7-13: Effektdiagramme (normiert) von Sitz und Fahrer, EFM 14 (N = 486), Sitzmontage-punkt (z)

Der Sitz beeinflusst im hohen Maße die berechnete Fahrerbelastung, wobei beim

MSG 65 deutlich geringere Effektivwerte der frequenzbewerteten Beschleunigung

wTa gegenüber dem MSG 20 festzustellen sind. Die Differenz liegt deutlich über der

Schwelle von E = 0,1 m/s². In Kombination mit den verwendeten Sitzen liegen beim

schweren Fahrer leicht höhere Belastungswerte vor, wobei dieser Effekt klar unter-

geordnet ist.

Tabelle 7-7: Varianzanalyse der Einflussfaktoren beim Schubmaststapler EFM 14 ( 2korrR = 0,961),

Signifikanzniveau p < 0,05, Sitzkissen (z)

df F p² p

Fahrbahnanregung 1 1788,58 0,79 0,00

Fahrtrichtung 1 23,96 0,05 0,00

Fahrer 1 62,36 0,12 0,00

Last 1 3,39 0,01 0,07

Geschwindigkeit 1 2168,43 0,82 0,00

Neigung 1 0,00 0,00 0,96

Reifensteifigkeit 1 15,40 0,03 0,00

Reifendämpfung 1 9,63 0,02 0,00

Sitz 1 1547,21 0,77 0,00

Fahrbahnanregung x Fahrgeschwindigkeit 1 402,66 0,46 0,00

Fahrbahnanregung x Sitz 1 67,84 0,13 0,00

Fahrer x Sitz 1 519,93 0,52 0,00

Fahrgeschwindigkeit x Sitz 1 89,82 0,16 0,00

Fehler 472

Gesamt 485

Die Wechselwirkung zwischen Fahrbahnanregung und Fahrgeschwindigkeit ent-

spricht der am Sitzmontagepunkt, die Faktoren verstärken sich (Abbildung A-10).

0,1

0,5

leicht schwer

Fahrer

0,1

0,5

MSG 20 MSG 65

no

rm.

Eff

ek

tivw

ert

[-]

Sitz

no

rm.

Eff

ektivw

ert

[-]

Page 215: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.1 Grundlegende Einflussfaktoren

195

Die Wechselwirkungen des Sitzes mit Fahrbahnanregung und Fahrgeschwindigkeit

sind von untergeordneter Bedeutung (Abbildung 7-14). Tendenziell treten die Effekte

beim MSG 20 stärker auf. Wie auch schon beim EFG 20, der die gleiche Sitzausstat-

tung innerhalb der Versuchsreihe besitzt, verhält sich eine Gewichtszunahme des

Fahrers konträr bei beiden Sitzen. Dieser Effekt ist hinsichtlich der definierten

Schwelle von E = 0,1 m/s² wahrnehmbar.

Abbildung 7-14: Wechselwirkungen zwischen Sitz und Fahrbahnanregung, Fahrer und Fahrge-schwindigkeit, EFM 14, Sitzkissen (z)

7.1.6 Fazit

Durch den in Kapitel 4.5 dargelegten Versuchsplan mit Faktorstufenwahl nach Ta-

belle 4-6 ist eine Bestimmung der Haupteffekte samt Wechselwirkungen für jedes

untersuchte Flurförderzeug wie in den vorangegangen Kapiteln dargelegt möglich.

Dabei dominieren die Einflussfaktoren Fahrbahnanregung und Fahrgeschwindigkeit

deutlich. Ein direkter Vergleich der Flurförderzeuge steht nicht im Vordergrund die-

ser Arbeit. Die Ergebnisse lassen jedoch die Schlussfolgerung zu, dass entspre-

chend der unterschiedlichen Bauweise starke Fahrbahnanregungen verbunden mit

hohen Fahrgeschwindigkeiten bei Schubmaststaplern zu höheren Belastungen ge-

genüber Gabelstaplern führen. Zudem wirkt sich bei Schubmaststaplern die trans-

portiere Last nicht dämpfend auf die Vibrationen aus. Grundsätzlich sind die Ein-

satzgebiete der beiden Flurförderzeugtypen aber im Normalfall unterschiedlich und

machen einen Vergleich unnötig. Auch bezüglich der untersuchten Gabelstapler sind

Unterschiede sowohl in der Wirkung einzelner Einflussfaktoren als auch in der Höhe

der Belastung festzustellen. Die repräsentativen Fahrzeuge decken jedoch unter-

schiedliche Tragfähigkeitsklassen ab, so dass ein direkter Vergleich nicht zielführend

ist. Der Einfluss eines konkreten Flurförderzeugs bezogen auf die Belastung bei ei-

nem Einsatzszenario kann als mittel angegeben werden, wenn sich diese bezüglich

ihrer Ausstattung und Tragfähigkeit unterscheiden. Aussagen zu einem Unterschied

zwischen den Fahrzeugen bei vergleichbaren Randbedingungen sind auf Basis der

Untersuchungen nicht möglich und nicht Zielsetzung der Arbeit.

0,1

0,6Sitz

0,1

0,6

gering hoch

Fahrgeschwindigkeit

0,1

0,6

leicht schwer

Fahrer

0,1

0,6

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

MSG 20

MSG 65

no

rm. E

ffektivw

ert

[-]

Page 216: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

196

In übersichtlicher Darstellung fasst Tabelle 7-8 die Wirkung der postulierten Einfluss-

faktoren für Gabelstapler und Schubmaststapler getrennt zusammen. Fahrbahnan-

regung und Fahrbahngeschwindigkeit sind für alle Flurförderzeuge die am stärksten

dominierenden Faktoren und ursächlich für die Fahrerbelastung. Bei den untersuch-

ten Gabelstaplern ist ein geringer Einfluss der Reifen bezüglich Steifigkeit und

Dämpfung zu verzeichnen. Auch die Kabinenlagerung wirkt sich in geringem Maße

auf die Schwingungsbelastung aus und kann einen Beitrag leisten, bei richtiger Ab-

stimmung die Fahrerbelastung zu reduzieren. Diese bauseits vorhandene Maßnah-

me liegt in ihrer Wirkung jedoch deutlich unter der des Sitzes. Die untersuchten Sitze

weisen dabei auch auf Grund unterschiedlicher Baugrößen und Komfortstufen eine

starke Streuung auf. Der auf dem Sitz befindliche Fahrer beeinflusst die resultieren-

de Belastung ebenfalls gering. Im Rahmen der Simulation erfahren schwere Fahrer

geringere Belastungen, diese Aussage soll jedoch nicht verallgemeinernd ohne Pro-

bandenversuche getroffen werden. Keinen merklichen Einfluss nehmen bei beiden

Flurförderzeugtypen die Fahrtrichtung sowie die Neigung des Hubgerüsts. Der Ein-

fluss der transportierten Last ist bei den untersuchten Gabelstaplern nicht überein-

stimmend, grundsätzlich kann von einer geringen Vibrationsreduktion bei höherer

Last ausgegangen werden.

Tabelle 7-8: Einfluss der untersuchten Faktoren auf die Fahrerbelastung

Nr. Faktor Einfluss Gabelstapler Einfluss Schubmaststapler

2 Fahrzeug mittel -

3 Fahrbahnanregung hoch hoch

4 Fahrtrichtung kein kein

5 Fahrer gering gering

6 Last gering kein

7 Fahrgeschwindigkeit hoch hoch

8 Neigung Hubgerüst kein kein

9 Reifen: Steifigkeit gering kein

10 Reifen: Dämpfung gering kein

11 Kabinenlagerung gering -

12 Sitz hoch hoch

: Erhöhung der Belastung bei zunehmendem Faktorwert : Reduzierung der Belastung bei zunehmendem Faktorwert

Page 217: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

197

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

Gemäß den Ergebnissen der ersten Versuchsreihe aus Kapitel 7.1 stellen Fahrbahn-

anregung und Fahrgeschwindigkeit die wichtigsten Einflussfaktoren dar und werden

deswegen in diesem Kapitel näher untersucht. Die transportierte Last führt im Rah-

men der ersten Studie bei den Gabelstaplern zu abweichenden Resultaten, so dass

diese ebenfalls mit in die Betrachtung aufgenommen wird. Ziel dieser Detailbetrach-

tung ist nicht das Aufstellen eines exakten Zusammenhanges der Belastung bei ei-

ner bestimmten Fahrgeschwindigkeit und einer bestimmten Hindernishöhe, da dies

auf andere Flurförderzeuge nicht praxistauglich übertragbar ist, sondern ein verbes-

sertes Wissen über die quantitativen Zusammenhänge im Gegensatz zu der ersten

Versuchsreihe mit nur zwei Faktorstufen sowie eine differenzierte Betrachtung der

Fahrbahnanregung.

7.2.1 Versuchsumfang

Die formulierten Ziele bedingen eine detailliertere Aufschlüsselung der Einflussfakto-

ren. Bezüglich Fahrgeschwindigkeit und Last fällt dies leicht, da beide Größen ge-

mäß der Fahrzeugkonfiguration einen Wertebereich zwischen Null und dem fahr-

zeugspezifischen Grenzwert annehmen, der durch Wahl einer Schrittweite einfach

diskretisiert werden kann. Anders verhält es sich bei der Fahrbahnanregung, die be-

liebiger Gestalt sein kann und für eine Untersuchung einer mathematischen Be-

schreibung bedarf. Wie in Kapitel 4.4 dargelegt fahren Flurförderzeuge über Fahr-

bahnen, die sich sowohl durch herausragende Einzelhindernisse (Fugen, Schwellen,

Löcher im Fahrbahnbelag) als auch durch regellose Unebenheiten gemäß ihrer Bo-

dengüte auszeichnen. Beide Aspekte sollen Berücksichtigung finden, wobei eine

Untersuchung getrennt zu erfolgen hat, um den Einfluss jeweils herausheben zu

können. Als Vertreter der Einzelhindernisse für eine umfangreiche Untersuchung bie-

tet sich wiederum die Schwellenüberfahrt mit variierender Schwellenhöhe an, bei

den regellosen Bodenunebenheiten können Fahrbahnoberflächen mit unterschiedli-

cher Welligkeit w und vor allem mit unterschiedlichem Unebenheitsmaß U generiert

werden.

Bei der Schwellenüberfahrt wird auf die bewährte und genormte Teststrecke gemäß

Abbildung 6-5 mit Abmessungen nach Tabelle 6-2 zurückgegriffen, wobei die

Schwellenhöhe Schwelleh variiert wird. Zudem werden alle Fahrbahnen in Anlehnung

an den praktischen Einsatz mit einer regellosen Unebenheit in der Güte eines sehr

guten Zementbetons unterlegt (vgl. Tabelle 5-1). Um eine Unabhängigkeit von

Schwellenhöhe und dem regellosen Bodenprofil sicherzustellen, werden je 50 Fahr-

Page 218: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

198

bahnen pro Schwellenhöhe mit variierenden Wegkreisfrequenzen bei gleicher Bo-

denbeschaffenheit erzeugt (gleiches Unebenheitsmaß U und gleiche Welligkeit ,w

vgl. Kapitel 5.2.2), aus denen dann zufällig bei der Versuchsgenerierung für eine be-

stimmte Schwellenhöhe eine Fahrbahn gezogen wird. Fahrgeschwindigkeit und Last

werden jeweils fein unterteilt. Sehr geringe Fahrgeschwindigkeiten werden nicht be-

trachtet. Auch wenn beim Schubmaststapler EFM 14 nach Kapitel 7.1.5 die Last

keinen Einfluss nimmt, wird diese zu Vergleichszwecken bei diesem Fahrzeug eben-

so variiert. Tabelle 7-9 gibt einen Überblick über die variierten Parameter bezüglich

der Einzelhindernisse durch Angabe der minimalen und maximalen Werte sowie der

Schrittweite .

Tabelle 7-9: Versuchsumfang für Einzelhindernisse

Einflussfaktor EFG 20 DFG 35 EFM 14

min max min max min max

Schwellenhöhe [mm] 2 12 1 2 12 1 1 10 1

Fahrgeschwindigkeit [km/h] 4 16 1 4 22 1 2 14 1

Last [kg] 0 2000 100 0 3500 250 0 1400 350

Bei genauerer Untersuchung der regellosen Bodenunebenheiten werden zwei As-

pekte hervorgehoben. Zum einen sollen die Belastungen bei Fahrt über Fahrbahnen

unterschiedlicher bekannter und klassifizierter Bauart und Güte verglichen werden,

die in Tabelle 5-1 durch Unebenheitsmaß U und Welligkeit w für unterschiedliche

Zustände charakterisiert sind. Zu Vergleichszwecken werden alle Bauarten in die

Versuchsreihe aufgenommen, auch wenn sie teilweise unübliche Fahrbahnoberflä-

chen für Flurförderzeuge darstellen. Die Untersuchung der Fahrbahnen erfolgt nicht

bei voller Variation der anderen Parameter, sondern für jeweils zwei Fahrgeschwin-

digkeiten und Beladungszustände (Tabelle 7-10). Für jede Parametereinstellung

werden fünf Berechnungen mit jeweils neu generierten Fahrbahnprofilen durchge-

führt, um Einflüsse bei der Generierung der Zufallszahlen für die Wegkreisfrequen-

zen zu reduzieren.

Tabelle 7-10: Versuchsumfang für klassifizierte Böden

Einflussfaktor EFG 20 DFG 35 EFM 14

Stufe 1 Stufe 2 Stufe 1 Stufe 2 Stufe 1 Stufe 2

Fahrbahnoberflächen

Zementbeton, Asphalt-Beton, Macadam, Pflaster und unbefestig-

te Fahrbahnen nach Tabelle 5-1

Fahrgeschwindigkeit [km/h] 8 14 10 20 5 12

Last [kg] 200 1800 500 3000 200 1200

Page 219: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

199

Zum anderen soll eine Aussage getroffen werden, wie sich die Belastung bei syste-

matischer Variation eines die Fahrbahnoberfläche beschreibenden Parameters än-

dert. Nachdem für eine mittlere „Normstraße“ die Welligkeit zu w = 2 angesetzt wer-

den kann [Zel-2009], verbleibt als ausschlaggebende Größe das Unebenheits-

maß U. Dieses wird in zunächst feiner Abstufung erhöht, d. h. die untersuchten

Fahrbahnoberflächen werden zunehmend unebener. Es zeigt sich, dass je Uneben-

heitswert drei Berechnungsläufe mit zufällig erzeugten Straßenprofilen für eine Min-

derung der Streuung ausreichend sind. Während für alle Flurförderzeuge die Fahr-

geschwindigkeit in kleinen Schritten variiert wird, erfolgt in dieser Versuchsreihe eine

Untersuchung der Last in größeren Stufen. Beim Schubmaststapler EFM 14 werden

höchste Unebenheiten ausgeklammert, da diese äußerst selten in ihrem Einsatzbe-

reich anzutreffen sind und vermehrt zu Integrationsproblemen führen. Einen Über-

blick über die zugehörigen Parameter der Untersuchung bietet Tabelle 7-11.

Tabelle 7-11: Versuchsumfang für Fahrbahnoberflächen steigender Unebenheit

Einflussfaktor EFG 20 DFG 35 EFM 14

min max min max min max

Unebenheit U [-] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30,

35, 40, 45, 50, 60, 70, 80, 90, 100, 200,

300, 400, 500

1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 15, 20, 25, 30,

35, 40, 45, 50, 60, 70

Fahrgeschwindigkeit [km/h] 4 16 2 8 22 2 2 14 2

Last [kg] 0 2000 500 0 3500 875 0 1400 700

Die Charakterisierung der untersuchten Fahrbahnoberflächen ist durch Angabe von

Unebenheitsmaß U und Welligkeit w eindeutig, gibt aber auf den ersten Blick keine

Auskunft über die zu erwartenden Unebenheiten im Oberflächenprofil. Aus diesem

Grund wird die Ebenheit in Längsrichtung der gemäß Kapitel 5.2.2 generierten Fahr-

bahnoberflächen mit Hilfe der Lattenmessung computergestützt bestimmt, indem

gemäß dem in [Vel-2008, S. 257] beschriebenen Verfahren eine 4 m lange Bezugs-

latte in 2 m Schritten über die zu bewertende Oberfläche geschoben und die Abwei-

chung der Oberfläche von der durch die Latte gebildeten Bezugslinie gemessen wird

(Abbildung 7-15).

Abbildung 7-15: Lattenmessung an einer Fahrbahnoberfläche (nach [Vel-2008])

0 2 4 6 8 10 m

keine Messung unter auskragenden Enden

1. Messstellung 4. Messstellung

Page 220: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

200

Tabelle 7-12 zeigt das Ergebnis der Ebenheitsmessung für je 20 erzeugte Oberflä-

chenprofile pro Bauart und Zustand mit einer Länge von 50 m. Für jede Fahrbahn

werden in den 2 m Schritten die Abweichungen bestimmt und die mittlere Abwei-

chung über alle Einzelwerte sowie die mittlere maximale Abweichung je Fahrbahn

angegeben. Ebenso wird die Standardabweichung über alle Einzelwerte je Fahr-

bahnbauart und Zustand aufgenommen. Tabelle 7-12 enthält die bei Flurförderzeu-

gen gebräuchlichen Fahrbahnen Zementbeton und Asphalt-Beton sowie zum Ver-

gleich die unbefestigte Fahrbahn. In Tabelle B-1 findet sich eine vollständige Dar-

stellung aller untersuchten Fahrbahnoberflächen.

Tabelle 7-12: Abweichungen im Oberflächenprofil von Fahrbahnen verschiedener Bauart und unter-schiedlichem Oberflächenzustand (vgl. Tabelle 5-1), vollständige Darstellung in Tabelle B-1

Fahrbahnbauart Fahrbahnzustand (Subjektivurteil)

mittlere Abweichung

[mm]

mittlere max. Abweichung

[mm]

Standardabw. Einzelwerte

[mm]

Zementbeton sehr gut 1,6 3,2 0,8

gut 6,2 10,5 2,4

mittel 8,6 14,6 3,2

schlecht 28,3 45,5 9,5

Asphalt-Beton sehr gut 2,5 4,7 1,2

gut 5,7 11,4 2,7

mittel 10,5 19,6 5,0

unbefestigte

Fahrbahnen

gut 11,8 23,1 6,2

mittel 25,7 50,1 13,0

schlecht 58,6 107,6 27,1

sehr schlecht 302,4 566,6 136,9

Im Abgleich mit den in Kapitel 4.4 erläuterten Toleranzgrenzen von üblicherweise

10 mm auf der 4 m langen Messstrecke lässt sich festhalten, dass unter den gene-

rierten Fahrbahnoberflächen strenggenommen nur Zement-Beton und Asphalt-

Beton in sehr gutem Zustand diesen Anforderungen gerecht werden. Im guten Zu-

stand befinden sich die mittleren Abweichungen auch unter dieser Grenze, verein-

zelte Messpunkte je Fahrbahn überschreiten diese jedoch. Die Unebenheiten in

Querrichtung können nicht nach der Methode der Lattenmessung untersucht wer-

den, da jeweils nur generierte Fahrspuren vorliegen. Durch die Korrelation zwischen

den Fahrspuren gemäß Formel (5-25) ist der Höhenunterschied zwischen den Fahr-

spuren geringer als die Abweichungen in Längsrichtung. Eine computergestützte

Überprüfung ergibt, dass dieser höchstens halb so groß ist. Auch die Fahrbahnen

aus der Versuchsreihe mit steigender Unebenheit (Tabelle 7-11) werden mit Hilfe der

Lattenmessung auf Ebenheit untersucht. Die Ergebnisse können Tabelle B-2 ent-

Page 221: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

201

nommen werden. Bei einer Welligkeit von w = 2 weisen die untersuchten Fahr-

bahnprofile bis zu einem Unebenheitsmaß von U = 10 eine mittlere Abweichung

unterhalb der Grenze von 10 mm auf. Einzelne Messwerte überschreiten diese je-

doch bereits ab U = 5. Im Vergleich mit den klassifizierten Böden deckt das Spekt-

rum der erzeugten Fahrbahnoberflächen die Zustände von sehr guten befestigten

bis sehr schlechten unbefestigten Straßen ab.

Zudem erfolgt eine beispielhafte Betrachtung weiterer identifizierter Einzelhindernis-

se am Beispiel der Fugen bei ausgewählten Fahrgeschwindigkeiten und Lasten in

Analogie zu den Einstellungen bei der Versuchsreihe mit den klassifizierten Böden

(Tabelle 7-10). Als Untersuchungsobjekte dienen in üblichen Abmessungen nach

[Loh-2012, S. 119ff] Scheinfugen und Raumfugen sowie Fugen allgemeiner Abmes-

sung auf einem Zementbeton-Boden mit sehr guter Qualität, deren üblicherweise

nicht festgelegte Paramater gemäß Tabelle 7-13 variiert werden (vgl. Kapitel 4.4). Es

werden jeweils Fugen ohne Füllstoff betrachtet. Die Teststrecke richtet sich nach

Abbildung 6-5, wobei Fugen statt Schwellen platziert werden. Vergleichsrechnungen

ohne Fugen mit denselben Lasten und Fahrgeschwindigkeiten runden das Untersu-

chungsspektrum ab. Für jede Parametereinstellung werden fünf Versuche durchge-

führt.

Tabelle 7-13: Versuchsumfang für Fugenüberfahrt

Fugentyp Tiefe [mm] Breite [mm]

min max min max

Raumfuge 30 - - 10 20 1

Scheinfuge 60 - - 4 - -

Scheinfuge 25 - - 8 - -

allgemeine Fuge 5 95 10 20 200 20

Bei den bisherigen Untersuchungen wird stets der Fall betrachtet, dass das Flurför-

derzeug mit allen vier Rädern über Einzelhindernisse fährt. Abschließend wird des-

wegen am Beispiel des EFG 20 untersucht, mit welchen Belastungen zu rechnen ist,

wenn nur einzelne Räder durch Einzelhindernisse angeregt werden. Betrachtet wird

dazu die Schwellenüberfahrt auf Zementbeton-Boden mit sehr guter Qualität, wobei

sowohl Schwellenhöhe und Last als auch Fahrgeschwindigkeit gemäß Tabelle 7-14

variiert werden. Der unwahrscheinliche Fall, dass nur Vorder- oder Hinterräder ange-

regt werden, wird nicht betrachtet.

Page 222: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

202

Tabelle 7-14: Versuchsumfang für Einzelradanregung

Paramater min max

Fahrgeschwindigkeit [km/h] 2 16 2

Last [kg] 0 2000 1000

Schwellenhöhe [mm] 2 12 2

Anregungsort

alle Räder, beide links, beide rechts, rechts vorne, rechts hinten, links vorne, links hinten

Im Gegensatz zu der Parametervariation in Kapitel 7.1 werden die restlichen Ein-

flussfaktoren konstant gehalten und auf die in Tabelle 7-15 aufgelisteten Werte ge-

setzt. Die Wahl der Werte erfolgt in Anlehnung an den üblichen Ausstattungszustand

der Fahrzeuge.

Tabelle 7-15: Konstante Parametereinstellung für Versuchsreihe Detailbetrachtung Fahrbahnanre-gung, Fahrgeschwindigkeit und Last

Flurförderzeug Fahrtrich-

tung Reifen

Kabinen-lagerung

Neigung Hubgerüst

Fahrer Sitz

EFG 20 vorwärts Grundausstattung mit gering (1,6°) 98 kg MSG 65

DFG 35 vorwärts Grundausstattung mit gering (1,6°) 98 kg MSG 85

EFM 14 vorwärts Grundausstattung ohne gering (0,6°) 98 kg MSG 65

7.2.2 Grundlagen der linearen Regression

Zur Beschreibung quantitativer Zusammenhänge zwischen unabhängigen Variablen

(Einflussfaktoren) und einer abhängigen Variablen eignet sich die Regressionsanaly-

se. Handelt es sich dabei um einen linearen Zusammenhang, kann die sog. lineare

Regression angewendet werden, deren Grundzüge im Folgenden nach [Bac-2011,

S. 55ff] zum besseren Verständnis der weiteren Unterkapitel dargelegt werden. Wie

bei der Einführung in die Varianzanalyse (Kapitel 7.1.1) wird von dem einfachsten

Fall einer unabhängigen Variablen X und einer abhängigen Variablen Y ausgegan-

gen, die gemäß dem linearen Ansatz als Y geschätzt werden kann mit:

0 1Y b b X (7-12)

Dabei versteht man unter 0b das konstante Glied und unter 1b den Regressionsko-

efizienten. Zeichnet man diesen Zusammenhang in ein Streudiagramm ein, in dem

die abhängige Variable Y mit ihren Beobachtungswerten my mit m 1,...,M über

der unabhängigen Variablen X aufgetragen wird, ergibt sich die sog. Regressions-

gerade (Abbildung 7-16).

Page 223: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

203

Abbildung 7-16: Streudiagramm der Beobachtungswerte mit Regressionsgerade, systematischer Komponente und Residualgröße

Im Normalfall liegen die Beobachtungswerte ( , )m mx y nicht auf der Regressionsge-

raden, da neben der betrachteten unabhängigen Variablen X noch weitere Einfluss-

größen vorliegen. Diese nicht erklärten Abweichungen werden als Residuen me be-

zeichnet und sind ebenfalls in Abbildung 7-16 verdeutlicht.

ˆm m me y y (7-13)

Das Ziel der Regressionsanalyse ist nun, eine lineare Funktion zu finden, für die die

nicht erklärten Abweichungen me möglichst gering sind. Nach der Methode der

kleinsten Quadrate lässt sich dieses Kriterium formulieren zu:

22

0 1

1 1

minM M

i i i

i i

e y b b x

(7-14)

Durch partielle Differentiation von (7-14) nach 0b und 1b ergeben sich die Parameter

der Regressionsfunktion (7-12) zu:

0 1b y b x (7-15)

1 22

m m m m

m m

M x y x yb

M x x

(7-16)

Dieses Prinzip lässt sich auch anwenden, wenn die abhängige Variable Y von meh-

reren unabhängigen Variablen jX abhängt. Der Regressionsansatz, der in folgenden

Ausführungen Anwendung findet, lautet somit:

ab

hän

gig

e V

ariab

le Y

unabhängige Variable X

x1 xm xM

y1

ymyM

em

Y

ˆ my

Page 224: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

204

0 1 1 2 2ˆ ... ...j j J JY b b x b x b x b x (7-17)

Die Regressionskoeffizienten jb können als Maß für die Wichtigkeit einer Variablen

gesehen werden. Ein direkter Vergleich ist jedoch nur zulässig, wenn die unabhängi-

gen Variablen die gleiche Einheit besitzen. Aus diesem Grund wird eine Standardi-

sierung durch Elimination der unterschiedlichen Messdimensionen durchgeführt, die

zu den standardisierten Regressionskoeffizienten ˆjb führen:

ˆ jj j

Standardabweichung von Xb b

Standardabweichung von Y (7-18)

Nach dem Aufstellen der Regressionsfunktion ist es erforderlich, diese zu überprü-

fen. Hierbei erfolgt zuerst eine Untersuchung des gewählten Ansatzes an sich und

nachfolgend der einzelnen Regressionskoeffizienten. Bezüglich der ersten Überprü-

fung gibt auch bei der Varianzanalyse das Bestimmtheitsmaß 2R nach Formel (7-10)

Auskunft, welcher Prozentsatz der Streuung in der abhängigen Variablen Y durch

den Modellansatz erklärt werden kann. Es berechnet sich in diesem Fall mit dem

Mittelwert y über alle Beobachtungen zu:

2

2 1

2

1

ˆM

m

mM

m

m

y y

R

y y

(7-19)

Das korrigierte Bestimmtheitsmaß 2korrR wird analog zu Formel (7-11) bestimmt, wo-

bei J die Zahl der Regressoren beschreibt. Als weiteres Gütekriterium gibt der

Standardfehler der Schätzung s den mittleren Fehler bei der Verwendung der Re-

gressionsfunktion zur Schätzung der Variablen Y an.

2

1

mMe

sM J

(7-20)

Mittels eines F-Tests wird überprüft, ob ein signifikanter Zusammenhang zwischen

den unabhängigen und der abhängigen Variablen vorliegt. Basis ist das stochasti-

sche Modell der Regressionsanalyse, welches besagt, dass sich die geschätzte Re-

gressionsfunktion nach Formel (7-17) als Realisierung einer „wahren“ Funktion mit

den unbekannten Parametern i und der Störgröße u auffassen lässt:

0 1 1 2 2 ... ...j j J JY x x x x u (7-21)

Page 225: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

205

Der dabei ermittelte p -Wert gibt wiederum an, wie wahrscheinlich die Nullhypothese

( 0H : 1 2 ... 0J ) bei vorliegender Stichprobe ist. Mit der gewählten Ver-

trauenswahrscheinlichkeit von 95% deuten p -Werte bis zu 5% auf einen signifikan-

ten Einfluss hin. In einer weiteren Überprüfung ist ein zu hohes Maß an Multikollinea-

rität zwischen den Regressoren, d. h. eine Abhängigkeit der erklärenden Variablen

untereinander, auszuschließen. In vorliegender Arbeit wird hierfür auf den Kondition-

sindex zurückgegriffen [Jan-2010, S. 424f].

Ergibt die globale Überprüfung, dass nicht alle Regressionskoeffizienten jb Null

sind, d. h. keinen Einfluss nehmen, werden die Regressionskoeffizienten j einzeln

anhand eines t-Test überprüft ( 0H : j = 0). Dieser wird analog zum F-Test durch

Bildung eines empirischen t-Werts empt durchgeführt, der mit einem tabellarischen

Wert einer T-Verteilung (Student-Verteilung) für eine bestimmte Vertrauenswahr-

scheinlichkeit verglichen wird. Analog zur Varianzanalyse erfolgt unter der Angabe

von Sig t die Wahrscheinlichkeit für die Gültigkeit von 0.H Durch die Berechnung

eines Konfidenzintervalls wird ersichtlich, in welchem Bereich der „wahre“ Regressi-

onskoeffizient j mit einer bestimmten Vertrauenswahrscheinlichkeit liegt.

j bj i j bjb t s b t s (7-22)

u i oki ki

Dabei bezeichnet bjs den Standardfehler des Regressionskoeffizienten jb und t den

tabellarischen Wert aus der t-Verteilung. Je größer das Konfidenzintervall [ki ; ]u oki

ist, umso unsicherer ist die Schätzung der Steigung der Regressionsgeraden.

Liegen mehrere unabhängige Variablen vor, können Interaktionen zwischen diesen

auftreten, so dass sich ihre Wirkungen nicht rein additiv wie in Formel (7-17) ver-

knüpfen. Ein derartiger Interaktionseffekt lässt sich berücksichtigen, indem das Pro-

dukt der unabhängigen Variablen als weiterer Regressor in den Modellansatz aufge-

nommen wird. Dabei ist es erforderlich, Variablen mit metrischem Skalenniveau für

den Wechselwirkungsterm in eine nominale oder ordinale Größe umzuformen. For-

mel (7-23) verdeutlicht dies am Beispiel von zwei unabhängigen Variablen mit dem

zugehörigen stochastischen Regressionsmodell:

0 1 1 2 2 3 1, 2,ord ordY x x x x u (7-23)

Page 226: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

206

7.2.3 Einzelhindernisse Schwellenüberfahrt

Auf Basis der Simulationsergebnisse erfolgt zuerst die Auswahl eines geeigneten

Regressionsmodells, bevor dieses getrennt für die drei Flurförderzeuge angewandt

und ausgewertet wird.

7.2.3.1 Modellansatz

Die in diesem Kapitel detailliert zu untersuchenden erklärenden Variablen hinsicht-

lich ihres Einflusses auf den normierten Effektivwert der frequenzbewerteten Be-

schleunigung wT Na , sind die Fahrgeschwindigkeit ,Fahrv die transportierte Last Lastm

sowie eine allgemeine Fahrbahnanregung ,Bodena die in vorliegendem Fall der Einzel-

versuche durch die Schwellenhöhe quantifiziert ist und in metrischem Skalenniveau

ausgedrückt werden kann. Die Ergebnisse in Kapitel 7.1 weisen auf signifikante

Wechselwirkungen zwischen Fahrgeschwindigkeit und Fahrbahnanregung bei allen

Flurförderzeugen sowie zwischen Fahrgeschwindigkeit und Last bei den Gabelstap-

lern hin (Tabelle 7-3, Tabelle 7-6).

Nach Durchführung der Berechnungen der Mehrkörpermodelle erfolgt zuerst eine

Überprüfung anhand Diagrammen, ob der gewählte Ansatz der linearen Regression

auf vorliegenden Sachverhalt anzuwenden ist. Ein Streudiagramm, das alle Berech-

nungsergebnisse einer Versuchsreihe in Form des normierten Effektivwerts der fre-

quenzbewerteten Beschleunigung wT Na , enthält, gibt Aufschluss darüber, in wel-

chem Bereich diese liegen und mit welchem Zusammenhang zu rechnen ist

(Abbildung 7-17).

Abbildung 7-17: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), EFG 20, Sitzmontagepunkt (z)

0

0

Page 227: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

207

Für den Messpunkt Sitzkissen (z) sowie die Flurförderzeuge DFG 35 und EFM 14

sind die Streudiagramme dem Anhang aus Abbildung B-1 bis Abbildung B-5 zu ent-

nehmen.

Um anhand der Berechnungsergebnisse den linearen Ansatz visuell noch besser

überprüfen zu können, werden zum einen die Faktorstufen von Schwellenhöhe und

Last reduziert. In dieser Darstellung nach Abbildung 7-18 ist für den EFG 20 zu er-

kennen, dass die Kurven nicht für jeden Lastwert einer idealen Gerade folgen, je-

doch im Mittel der lineare Ansatz für die Fahrgeschwindigkeit eine gute Näherung

darstellt (für Sitzkissen vgl. Abbildung B-11). Näherungsweise kann auch für die Last

ein linearer Ansatz gewählt werden (Abbildung B-12, Abbildung B-13). Eine Eigen-

heit des erstellten Simulationsmodells für den EFG 20 ist das Vorliegen einer deut-

lich höheren Belastung bei Fahrt ohne Last im Vergleich zur Fahrt mit geringer Last.

Dieser Effekt ist in der Realität nicht so extrem ausgeprägt, wie in Vergleichsmes-

sungen gezeigt werden kann.

Abbildung 7-18: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwin-digkeiten mit Schwellenhöhe 8 mm, EFG 20, Sitzmontagepunkt (z)

Auch für den Einfluss der Schwellenhöhe ist ein linearer Ansatz gerechtfertigt. Dies

wird kenntlich, wenn wie in Abbildung 7-19 gezeigt die Belastungen für unterschied-

liche konstant gehaltene Fahrgeschwindigkeiten über der Schwellenhöhe aufgetra-

gen werden (für Sitzkissen vgl. Abbildung B-14). Die Annahmen für Fahrgeschwin-

digkeit, Last und Fahrbahnanregung bestätigen sich auch für den DFG 35 und den

EFM 14 (Abbildung B-15 bis Abbildung B-26).

0,0

0,5

1,0

1,5

2,0

2,5

4 6 8 10 12 14 16

no

rm.

Eff

ektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

0

1000

2000

Last [kg]

Page 228: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

208

Abbildung 7-19: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwel-lenhöhen mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z)

Der wechselseitige Einfluss von Fahrbahnanregung und Fahrgeschwindigkeit wird

deutlich, wenn die Belastungswerte bei diesen variierenden Größen bei konstanter

Last betrachtet werden. So ist beispielhaft in Abbildung 7-20 zu erkennen, dass sich

die Wirkung der Fahrbahnanregung mit zunehmender Fahrgeschwindigkeit verstärkt.

Dies gilt nicht nur für EFG 20, sondern auch für die anderen untersuchten Flurförder-

zeuge. Es versteht sich von selbst, dass rein additive Anteile von Last und Fahr-

bahnanregung nur anzutreffen sind, wenn eine Fahrgeschwindigkeit größer Null vor-

liegt. Geringe Fahrgeschwindigkeiten sind auch deswegen gemäß Tabelle 7-9 aus

der Untersuchung ausgeklammert, da sie nur eine unwesentliche Belastung hervor-

rufen. Das in Folgendem beschriebene Regressionsmodell besitzt für den unter-

suchten Fahrgeschwindigkeitsbereich Gültigkeit.

Abbildung 7-20: Auszug Einzelhindernisse mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z)

Eine ausschließlich additive Verknüpfung der erklärenden Variablen und eine Ver-

nachlässigung ihrer Wechselwirkungen ist sowohl nach Analyse der Diagramme als

0,0

0,5

1,0

1,5

2,0

2 4 6 8 10 12

no

rm. E

ffektivw

ert

[-]

Schwellenhöhe [mm]

6

10

14

Fahrgeschwin-digkeit [km/h]

0,0

0,4

0,8

1,2

1,6

4 6 8 10 12 14 16

no

rm.

Eff

ektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

2

6

10

Schwellen-höhe [mm]

Page 229: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

209

auch gemäß den Ergebnissen aus Kapitel 7.1 auszuschließen. Aus diesem Grund

findet ein Regressionsmodell Anwendung, das sowohl die einzelnen Einflussfaktoren

(Haupteffekte) als auch die Nichtlinearitäten aus den Wechselwirkungen berücksich-

tigt. Für die Wechselwirkungsterme werden die Variablen vom metrischen ins ordi-

nale Skalenniveau transformiert. Formel (7-24) zeigt das für die Gabelstapler ver-

wendete Modell:

,ˆwT Na 0 1 2 3Fahr Last Bodenb b v b m b a

4 , , 5 , ,Fahr ord Last ord Fahr ord Boden ordb v m b v a (7-24)

Beim Schubmaststapler EFM 14 wird die transportierte Last Lastm aufgenommen,

um deren Einfluss nochmals zu prüfen. Eine Wechselwirkung mit der Fahrgeschwin-

digkeit Fahrv wird jedoch nicht berücksichtigt, da sie in Kapitel 7.1.5 nicht identifiziert

ist. Daraus folgert sich das Modell für die lineare Regression zu:

, 0 1 2 3 4 , ,ˆwT N Fahr Last Boden Fahr ord Boden orda b b v b m b a b v a (7-25)

Vor allem um die Wechselwirkungen besser interpretieren zu können, werden zu-

sätzliche Regressionsanalysen durchgeführt, bei denen entweder Fahrgeschwindig-

keit nach Formel (7-26) oder Fahrbahnanregung nach Formel (7-27) konstant gehal-

ten werden. Ein Vergleich der Regressionskoeffizienten, der im Folgenden nur im

Ergebnis präsentiert wird, erlaubt dann ebenso eine Bewertung des Einflusses von

z. B. der Fahrgeschwindigkeit auf die Wirkung der Schwellenhöhe auf den Effektiv-

wert der frequenzbewerteten Beschleunigung .wTa

,0, , 0 1 2ˆFahrwT N V Last Bodena b b m b a (7-26)

0, ,a 0 1 2ˆwT N Last Fahra b b m b v (7-27)

Die Regressionsmodelle nach Formel (7-24) bzw. (7-25) werden für jedes Fahrzeug

an den Messstellen Sitzmontagepunkt und Sitzkissen mit der Software SPSS be-

rechnet und im Folgenden für Gabelstapler und Schubmaststapler getrennt darge-

stellt. Das Vorgehen wird dabei am ersten Fahrzeug, dem EFG 20, detaillierter be-

schrieben.

7.2.3.2 Gabelstapler EFG 20

Das Ergebnis der durchgeführten linearen Regression für den EFG 20 am Sitzmon-

tagepunkt (z) mit dem Modellansatz nach Formel (7-24) ist Tabelle 7-16 zu entneh-

men. Neben den Modellparametern der untersuchten Regressoren Fahrgeschwin-

digkeit, Last und Schwellenhöhe sowie den Wechselwirkungen wird ebenso die Mo-

Page 230: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

210

dellkonstante angegeben, um das verwendete Modell komplett darzustellen. Die

Einheit der transportierten Last wird entgegen den Diagrammen in Tonnen gewählt,

um im Hinblick auf den Wertebereich des Regressanden einen nicht allzu geringen

Regressionskoeffizienten zu erhalten.

Tabelle 7-16: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-24), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFG 20, Sitzmontagepunkt (z), N = 3003, 2

korrR = 0,93, s = 0,12, p < 0,05

b b t Sig t kiu kio

Konstante 0,199 0,199 11,5 0,00 0,165 0,233

Fahrgeschwindigkeit [km/h] 0,014 0,119 8,7 0,00 0,011 0,017

Last [t] -0,148 -0,209 -20,2 0,00 -0,163 -0,134

Schwellenhöhe [mm] 0,018 0,135 13,1 0,00 0,016 0,021

Fahrgeschwind. x Last [-] 0,001 0,114 8,3 0,00 0,001 0,001

Fahrgeschwind. x Schwellenhöhe [-] 0,009 0,732 52,6 0,00 0,009 0,010

Der Erklärungsanteil des Modells ist mit 2korrR = 0,93 sehr hoch. Der durchgeführte F-

Test bestätigt einen hoch signifikanten Zusammenhang in der Grundgesamtheit von

Regressoren und Regressand. Die berechneten Konditionsindizes weisen auf keine

Multikollinearität hin. Alle Regressionskoeffizienten sind bei einer Irrtumswahrschein-

lichkeit von 95 % höchst signifikant. Ein Vergleich der standardisierten Regressions-

koeffizienten b weist sowohl auf eine dämpfende Wirkung der Last als auch auf ei-

nen hohen Einfluss von Fahrgeschwindigkeit und Schwellenhöhe hin, der sich vor

allem im Wechselwirkungsterm widerspiegelt. Es wird somit auch deutlich, dass

weder Fahrgeschwindigkeit noch Bodenanregung alleine eine Belastung bewirken,

sondern nur im Zusammenspiel. Beide Faktoren verstärken sich gegenseitig, d. h.

mit zunehmender Fahrgeschwindigkeit verstärkt sich die Wirkung der Fahrbahnan-

regung und umgekehrt. Das bedeutet nicht nur, dass mit zunehmender Fahrge-

schwindigkeit die Fahrerbelastung steigt, sondern dass dieser Anstieg umso ausge-

prägter ist, je höher die Fahrbahnanregung ist, d. h. die Geradensteigung im Modell

für die Schätzung nimmt zu. Dies wird bei Durchführung mehrerer Regressionsana-

lysen nach Formel (7-26) deutlich, da die Regressionskoeffizienten bei steigender

Fahrgeschwindigkeit deutlich zunehmen (Tabelle 7-17).

Page 231: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

211

Tabelle 7-17: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-26), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFG 20, Sitzmontagepunkt (z), N = 231, p < 0,05

vFahr Regressor b b t Sig t kiu kio

6 km/h Schwellenhöhe [mm] 0,050 0,781 28,5 0,00 0,047 0,054

10 km/h Schwellenhöhe [mm] 0,087 0,872 36,2 0,00 0,082 0,092

14 km/h Schwellenhöhe [mm] 0,126 0,951 46,9 0,00 0,121 0,132

Bei der Schätzung der Fahrerbelastung hinsichtlich des Lasteinflusses wird die in

Abbildung 7-5 aufgezeigte Wechselwirkung zwischen Last und Fahrgeschwindigkeit

bestätigt: Bei höheren Fahrgeschwindigkeiten verschwindet der dämpfende Einfluss

der Last. Führt man für jede der untersuchten Fahrgeschwindigkeiten eine Regressi-

onsanalyse nach Formel (7-26) durch, so bleibt festzuhalten, dass der dämpfende

Einfluss der Last für geringe Fahrgeschwindigkeiten (5–8 km/h) deutlich ausgeprägt

ist, im mittleren Fahrgeschwindigkeitsbereich stetig abnimmt und ab 12 km/h nicht

mehr gesichert bzw. nur unmerklich nachgewiesen werden kann. Bei 4 km/h ist kein

Einfluss der Last nachweisbar.

Um die Vorhersagegüte des Modells einordnen zu können, werden die Berech-

nungsergebnisse den geschätzten Werten gegenübergestellt. In Anlehnung an Ab-

bildung 7-20 zeigt Abbildung 7-21 die normierten Belastungskennwerte aus Simula-

tion und zugehöriger Schätzung nach dem Modellansatz aus Formel (7-24). Für vor-

liegende Fragestellung ist eine ausreichende Übereinstimmung gegeben. Ebenso ist

die Wechselwirkung zwischen Fahrgeschwindigkeit und Fahrbahnanregung an den

zunehmenden Steigungen der Geraden zu erkennen.

Abbildung 7-21: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-16) anhand Auszug Einzelhindernisse mit Last 1000 kg, EFG 20, Sitzmon-tagepunkt (z)

0,0

0,5

1,0

1,5

2,0

4 6 8 10 12 14 16

no

rm.

Eff

ektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

Schwellen-höhe [mm]

4

8

12

Schätzung Regression Formel (7-24)Simulation

Page 232: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

212

Betrachtet man die Messstelle Sitzkissen (Tabelle 7-18), so treten die Einflüsse aus

Last gegenüber dem Sitzmontagepunkt weiter zurück und die Wirkungen von Fahr-

geschwindigkeit und Fahrbahnanregung dominieren deutlich.

Tabelle 7-18: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-24), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFG 20, Sitzkissen (z), N = 3003, 2

korrR = 0,95, s = 0,015, p < 0,05

b b t Sig t kiu kio

Konstante 0,0156 0,016 7,3 0,00 0,0114 0,0198

Fahrgeschwindigkeit [km/h] 0,0023 0,138 12,0 0,00 0,0020 0,0027

Last [t] -0,0092 -0,087 -10,1 0,00 -0,0109 -0,0074

Schwellenhöhe [mm] 0,0072 0,357 41,4 0,00 0,0068 0,0075

Fahrgeschwind. x Last [-] 0,0001 0,060 5,3 0,00 0,0000 0,0001

Fahrgeschwind. x Schwellenhöhe [-] 0,0011 0,603 52,2 0,00 0,0011 0,0012

Fahrgeschwindigkeit und Fahrbahnanregung verstärken sich gleichermaßen wie be-

reits am Sitzmontagepunkt beschrieben. Dass die transportierte Last im Mittel kei-

nen wesentlichen Einfluss auf die Belastungen des Fahrers nimmt ist auch damit zu

erklären, dass sich beim EFG 20 die dominierenden Eigenfrequenzen mit zuneh-

mender Last in den Bereich der Sitzeigenfrequenzen verschieben, so dass dessen

schwingungsreduzierende Wirkung gemindert wird [Fis-2010c].

7.2.3.3 Gabelstapler DFG 35

Das für den EFG 20 beschriebene Verhalten kann auch grundsätzlich für den ande-

ren Gabelstapler, den DFG 35, bestätigt werden (Tabelle 7-19). Der schwingungsre-

duzierende Einfluss der transportierten Last wird ebenso deutlich wie die erkennbar

stärkeren Wirkungen von Fahrgeschwindigkeit und Fahrbahnanregung.

Tabelle 7-19: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-24), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, DFG 35, Sitzmontagepunkt (z), N = 3134, 2

korrR = 0,88, s = 0,18, p < 0,05

b b t Sig t kiu kio

Konstante 0,153 0,153 6,5 0,00 0,107 0,199

Fahrgeschwindigkeit [km/h] 0,021 0,227 12,8 0,00 0,018 0,024

Last [t] -0,053 -0,114 -8,7 0,00 -0,065 -0,041

Schwellenhöhe [mm] 0,056 0,352 27,1 0,00 0,052 0,060

Fahrgeschwind. x Last [-] -0,001 -0,146 -8,4 0,00 -0,001 -0,001

Fahrgeschwind. x Schwellenhöhe [-] 0,006 0,573 32,6 0,00 0,006 0,006

Page 233: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

213

Bei einer Parametereinstellung ist eine erfolgreiche Integration der Bewegungsglei-

chungen des Mehrkörpermodells nicht möglich, so dass sich die Zahl der Datenba-

sis um eins reduziert. Insgesamt bleibt festzuhalten, dass der gewählte Ansatz beim

DFG 35 eine schlechtere Vorhersagegüte besitzt als beim EFG 20. Ein Vergleich

zwischen den Simulationsergebnissen und der Schätzung nach Formel (7-24) kann

Abbildung 7-22 entnommen werden.

Abbildung 7-22: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-19) anhand Schwellenüberfahrt 8 mm, DFG 35, Sitzmontagepunkt (z)

Ein Grund für den größeren Schätzfehler liegt auch darin begründet, dass die Belas-

tungen am Sitzmontagepunkt beim DFG 35 nicht in gleicher Form steigen wie beim

EFG 20. Neben den lokalen Überhöhungen durch Ungenauigkeiten im Simulations-

modell ist auch bei Messungen am realen Fahrzeug ein globales Maximum zwischen

16–20 km/h für alle Lastzustände feststellbar [Gün-2011, S. 48]. Für vorliegende Be-

trachtungsebene ist der lineare Ansatz jedoch ausreichend. Anhand Abbildung 7-22

lässt sich ebenso die Wechselwirkung zwischen Fahrgeschwindigkeit und Last

nachvollziehen. Wenn auch moderat, aber dennoch ist für höhere Fahrgeschwindig-

keiten die schwingungsreduzierende Wirkung der Last stärker ausgeprägt.

Auch bezüglich unterschiedlicher Fahrbahnanregungen in Form von verschieden

hohen Schwellen bietet das Modell nach Formel (7-24) eine gute Schätzung der Be-

lastung (Abbildung 7-23). Wiederum erkennbar ist die Wechselwirkung zwischen

Fahrgeschwindigkeit und Fahrbahnanregung.

0,0

0,5

1,0

1,5

2,0

4 6 8 10 12 14 16 18 20 22

no

rm.

Eff

ektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

Last [kg]

0

1750

3500Schätzung Regression Formel (7-24)Simulation

Page 234: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

214

Abbildung 7-23: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-19) anhand Auszug Einzelhindernisse mit Last 1750 kg, DFG 35, Sitzmon-tagepunkt (z)

Am Messpunkt Sitzkissen ist ein identisches Verhalten zum Sitzmontagepunkt fest-

stellbar (Tabelle 7-20). Die standardisierten Regressionskoeffizienten stimmen in ih-

rer Größenordnung mit denen am Sitzkissen überein und lassen somit die Schluss-

folgerung zu, dass sich Fahrgeschwindigkeit, Last und Schwellenhöhe bei dem un-

tersuchten Sitz MSG 85 in gleicher Weise auf die Schwingungsbelastung am Sitz-

montagepunkt und die des Fahrers auswirken.

Tabelle 7-20: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-24), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, DFG 35, Sitzkissen (z), N = 3134, 2

korrR = 0,87, s = 0,051, p < 0,05

b b t Sig t kiu kio

Konstante 0,0421 0,0421 6,2 0,00 0,0287 0,0555

Fahrgeschwindigkeit [km/h] 0,0064 0,2318 13,6 0,00 0,0055 0,0074

Last [t] -0,0157 -0,1111 -8,9 0,00 -0,0191 -0,0122

Schwellenhöhe [mm] 0,0177 0,3677 29,3 0,00 0,0165 0,0189

Fahrgeschwind. x Last [-] -0,0003 -0,1502 -8,9 0,00 -0,0004 -0,0003

Fahrgeschwind. x Schwellenhöhe [-] 0,0018 0,5640 33,2 0,00 0,0017 0,0019

7.2.3.4 Schubmaststapler EFM 14

Bedingt durch das steife Gesamtsystem und die hochfrequenten Anregungen durch

die Schwellenüberfahrt treten teilweise Integrationsprobleme bei größeren Schwel-

lenhöhen auf. Die resultierende reduzierte Datenbasis ist für eine Auswertung aus-

reichend. Beim Schubmaststapler ist aus Kapitel 7.1.5 bereits bekannt, dass die

transportierte Last keinen signifikanten Beitrag zur Schwingungsbelastung leistet.

Zur Überprüfung erfolgt im Rahmen dieser Detailuntersuchung eine Variation der

0,0

0,5

1,0

1,5

2,0

2,5

4 6 8 10 12 14 16 18 20 22

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

Schwellen-höhe [mm]

6

9

12

Schätzung Regression Formel (7-24)Simulation

Page 235: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

215

Last in fünf Abstufungen. Bei einer Schwellenhöhe von 5 mm bestätigt sich der Ein-

druck visuell im Last-Geschwindigkeits-Diagramm (Abbildung B-21). Auch die Er-

gebnisse der linearen Regression mit Modellansatz nach Formel (7-25) stützen diese

Aussage (Tabelle 7-21). Auch wenn der Regressionskoeffizient für die Last sich sig-

nifikant von Null unterscheidet, so ist er in standardisierter Form jedoch deutlich ge-

ringer als die Faktoren Fahrgeschwindigkeit und Fahrbahnanregung und weist ein

verhältnismäßig großes Konfidenzintervall auf.

Tabelle 7-21: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-25), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFM 14, Sitzmontagepunkt (z), N = 611, 2

korrR = 0,94, s = 0,20, p < 0,05

b b t Sig t kiu kiu

Konstante 0,009 0,009 0,2 0,83 -0,075 0,093

Fahrgeschwindigkeit [km/h] 0,057 0,255 12,2 0,00 0,048 0,066

Last [t] -0,120 -0,070 -7,1 0,00 -0,154 -0,087

Schwellenhöhe [mm] 0,019 0,065 3,1 0,00 0,007 0,031

Fahrgeschwind. x Schwellenhöhe [-] 0,021 0,748 27,0 0,00 0,019 0,022

Bezüglich der additiven Anteile dominiert beim Schubmaststapler EFM 14 im Ge-

gensatz zu den Gabelstaplern der Einfluss der Fahrgeschwindigkeit gegenüber der

Schwellenhöhe. Gleichzeitig sind wiederum deutliche Wechselwirkungen zwischen

Fahrgeschwindigkeit und Fahrbahnanregung festzuhalten. Dies wird grafisch in Ab-

bildung 7-24 ersichtlich, die die geschätzten Belastungen den simulierten für unter-

schiedliche Fahrbahnanregungen in Form von verschieden hohen Schwellen gegen-

überstellt.

Abbildung 7-24: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-21) anhand Auszug Einzelhindernisse mit Last 1050 kg, EFM 14, Sitzmon-tagepunkt (z)

0,0

1,0

2,0

3,0

4 6 8 10 12 14

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

Schwellen-höhe [mm]

4

6

8

Schätzung Regression Formel (7-25)Simulation

Page 236: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

216

Mit zunehmender Fahrgeschwindigkeit wird der Einfluss der Schwellenhöhe eben-

falls stärker. Am Messpunkt Sitzkissen ist grundsätzlich analoges Verhalten zum

Sitzmontagepunkt festzustellen, wenn man eine grafische Auswertung der Belas-

tungskurven vornimmt. In der Schätzung wird der Wechselwirkungsterm zwischen

Fahrgeschwindigkeit und Fahrbahnanregung zur fast alleinigen Erklärung genutzt

(Tabelle 7-22). Insgesamt nimmt der Erklärungsanteil mit 2korrR = 0,88 gegenüber dem

Sitzmontagepunkt ab.

Tabelle 7-22: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-25), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFM 14, Sitzkissen (z), N = 611, 2

korrR = 0,88, s = 0,05, p < 0,05

b b t Sig t kiu kio

Konstante 0,044 0,044 4,1 0,00 0,023 0,065

Fahrgeschwindigkeit [km/h] 0,000 0,004 0,1 0,90 -0,002 0,002

Last [t] -0,030 -0,096 -6,9 0,00 -0,038 -0,021

Schwellenhöhe [mm] -0,004 -0,082 -2,8 0,01 -0,007 -0,001

Fahrgeschwind. x Schwellenhöhe [-] 0,005 0,988 25,4 0,00 0,005 0,005

Ein Vergleich von Simulationsergebnissen und Modellschätzung zeigt weiterhin eine

gute Übereinstimmung und verdeutlicht die starken Wechselwirkungen am Mess-

punkt Sitzkissen zwischen Fahrgeschwindigkeit und Fahrbahnanregung (Abbil-

dung 7-25).

Abbildung 7-25: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-22) anhand Auszug Einzelhindernisse mit Last 1050 kg, EFM 14, Sitzkis-sen (z)

7.2.4 Regellose Unebenheiten

Im Zuge der Untersuchung regelloser Unebenheiten werden sowohl bekannte klassi-

fizierte Böden (Tabelle 7-10) als auch Fahrbahnprofile mit unterschiedlichem Un-

0,0

0,1

0,2

0,3

0,4

0,5

4 6 8 10 12 14

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

Schwellen-höhe [mm]

4

6

8

Schätzung Regression Formel (7-25)Simulation

Page 237: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

217

ebenheitsmaß U (Tabelle 7-11) untersucht. Folgende Ausführungen behandeln zu-

erst mit Hilfe der linearen Regression das letztgenannte Untersuchungsgebiet, ab-

schließend werden die Ergebnisse zu den klassifizierten Böden vorgestellt.

7.2.4.1 Modellansatz

Wie schon bei den Einzelhindernissen der Schwellenüberfahrt ist anhand der Simu-

lationsergebnisse ein geeignetes Regressionsmodell zu wählen, das den Einfluss der

Fahrgeschwindigkeit ,Fahrv der transportierten Last Lastm und der Fahrbahnanre-

gung Bodena auf den normierten Effektivwert der frequenzbewerteten Beschleuni-

gung wT Na , beschreibt. Im vorliegenden Fall der regellosen Unebenheiten wird die

Fahrbahnunebenheit Bodena durch das Unebenheitsmaß U repräsentiert. Folgend

wird hierzu wiederum der EFG 20 in den Vordergrund gerückt. Entsprechende Ab-

bildungen für DFG 35 und EFM 14 finden sich ergänzend im Anhang B. Bei Betrach-

tung des Streudiagramms in Abbildung 7-26 erscheint ein linearer Zusammenhang

gegeben (vgl. Abbildung B-6 bis Abbildung B-10).

Abbildung 7-26: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), EFG 20, Sitzmontagepunkt (z)

Da hierbei aber alle erklärenden Variablen gemeinsam betrachtet werden ist eine

differenzierte Betrachtung erforderlich. Bei Betrachtung des Einflusses der Fahrge-

schwindigkeit bei konstantem Unebenheitsmaß U bestätigt sich ein linearer Einfluss

dieser Größe (Abbildung 7-27, für Sitzkissen vgl. Abbildung B-27). Auch für die Last,

die einen leicht dämpfenden Einfluss besitzt, kann in erster Näherung ein linearer

Einfluss angenommen werden (Abbildung B-28, Abbildung B-29).

0

Fahrgeschwindigkeit [km/h]

Page 238: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

218

Abbildung 7-27: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z)

Anders verhält es sich jedoch bezüglich der Fahrbahnanregung. Mit zunehmendem

Unebenheitsmaß U erhöht sich die Belastung nicht in gleichem Maße

(Abbildung 7-28). Dies gilt auch für den Messpunkt Sitzkissen, wobei bei größeren

Unebenheiten die Versuchsergebnisse stärker streuen (Abbildung B-30). Für die wei-

teren Untersuchungen wird am Sitzkissen dieser Bereich vernachlässigt. Es liegt

somit eine Nichtlinearität zwischen Fahrbahnanregung und dem normierten Effek-

tivwert der frequenzbewerteten Beschleunigung ,wT Na vor.

Abbildung 7-28: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z)

Trotzdem besteht ein formelmäßiger Zusammenhang zwischen den Größen. Um

weiterhin die lineare Regression nutzen zu können, ist mit Hilfe einer geeigneten

Transformation wieder ein linearer Zusammenhang herzustellen [Bac-2013, S. 22ff].

Es stellt sich heraus, dass eine Transformation der Variablen Fahrbahnanre-

gung bodena anhand der Quadratwurzel zielführend ist.

0,0

0,5

1,0

1,5

2,0

2,5

4 6 8 10 12 14 16

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

5

10

20

Unebenheits-maß U [-]

0,0

2,0

4,0

6,0

8,0

0 100 200 300 400 500

no

rm.

Eff

ektivw

ert

[-]

Unebenheitsmaß U [-]

6

10

14

Fahrgeschwin-digkeit [km/h]

Page 239: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

219

0,5Boden Bodena a (7-28)

Betrachtet man nun die normierten Effektivwerte der frequenzbewerteten Beschleu-

nigung in Abhängigkeit der transformierten Fahrbahnanregung bzw. skaliert analog

zur logarithmischen Darstellung die Abszisse in Abbildung 7-28 entsprechend dem

Quadratwurzelmodell, so ergibt sich ein linearer Zusammenhang (Abbildung 7-29).

Abbildung 7-29: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z)

Wendet man die Transformation auf Formel (7-24) an, so erhält man:

,ˆwT Na 0 1 2 3Fahr Last Bodenb b v b m b a

4 , , 5 , , Fahr ord Last ord Fahr ord Boden ordb v m b v a (7-29)

Dieses Modell ist nun wiederum linear in Bezug auf die enthaltenen erklärenden Va-

riablen und lässt sich mittels linearer Regression schätzen. Ein solches nichtlineares

Modell, das sich linearisieren lässt, wird auch als intrinsisch nichtlinear bezeichnet

[Bac-2013, S. 24]. Auch bezüglich der Messstelle Sitzkissen beim EFG 20 liegt das

beschriebene Verhalten vor (Abbildung B-31), so dass Formel (7-29) Anwendung

finden kann. Die beschriebenen Zusammenhänge gelten ebenfalls für den Gabel-

stapler DFG 35, so dass auch für diesen der Modellansatz nach Formel (7-29) ver-

wendet wird (Abbildung B-32 bis Abbildung B-39).

Auch für den Schubmaststapler EFM 14 können lineare Ansätze für die Fahrge-

schwindigkeit Fahrv und die transportierte Last Lastm gewählt werden (Abbil-

dung B-40 bis Abbildung B-43). Wie bereits für den Fall der Einzelhindernisse wer-

den Wechselwirkungen dieser Größen nicht berücksichtigt. Auch der Ansatz der

Quadratwurzeltransformation nach Formel (7-28) ist in diesem Fall geeignet (Abbil-

0,0

2,0

4,0

6,0

8,0

1

no

rm. E

ffektivw

ert

[-]

6

10

14

Fahrgeschwin-digkeit [km/h]

100 200 300 400

Unebenheitsmaß U [-]

Page 240: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

220

dung B-44 bis Abbildung B-47). Daraus ergibt sich das Modell für die lineare Re-

gression zu:

, 0 1 2 3 4 , ,ˆwT N Fahr Last Boden Fahr ord Boden orda b b v b m b a b v a (7-30)

7.2.4.2 Gabelstapler EFG 20

Die Ergebnisse der durchgeführten linearen Regression aus Tabelle 7-23 bestätigen

das grafisch bestimmte Verhalten. Bis auf die Modellkonstante sind alle untersuch-

ten Einflussfaktoren und Wechselwirkungen signifikant, der Erklärungsanteil des

Modells mit 2korrR = 0,94 ist sehr hoch. Der transportierten Last wird ein leicht dämp-

fender Einfluss zugeschrieben, wobei dieser im Gegensatz zur Schwellenüberfahrt

auch für höhere Fahrgeschwindigkeiten anzutreffen ist, wenn jedoch leicht rückgän-

gig. Die Fahrgeschwindigkeit leistet einen ähnlichen Beitrag wie bei der Schwellen-

überfahrt, ist jedoch bezüglich der Gesamtstreuung weniger dominierend. Aus-

schlaggebend für die Schwingungsbelastung sind die Fahrbahnanregung sowie die

Wechselwirkungen zwischen dieser und der Fahrgeschwindigkeit. Beide verstärken

sich, d. h. mit zunehmender Fahrbahnanregung wird der Fahrgeschwindigkeitsein-

fluss stärker und umgekehrt.

Tabelle 7-23: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-29), abhän-gige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFG 20, Sitzmontagepunkt (z), N = 2831, 2

korrR = 0,94, s = 0,38, p < 0,05

b b t Sig t kiu kio

Konstante 0,008 0,008 0,2 0,84 -0,073 0,090

Fahrgeschwindigkeit [km/h] 0,016 0,041 3,2 0,00 0,006 0,025

Last [t] -0,252 -0,115 -12,4 0,00 -0,291 -0,212

Unebenheitsmaß U [-] 0,134 0,483 66,1 0,00 0,130 0,138

Fahrgeschwind. x Last [-] 0,004 0,041 3,0 0,00 0,001 0,006

Fahrgeschwind. x Unebenheit [-] 0,011 0,569 58,2 0,00 0,010 0,011

Bei einem hohen Erklärungsanteil ist der Standardfehler der Schätzung s höher als

bei der Schwellenüberfahrt. Trotzdem zeigt ein Vergleich von Simulationsergebnis

und Schätzung, dass mit dem Modellansatz nach Formel (7-29) das Schwingungs-

verhalten ausreichend gut beschrieben werden kann. Abbildung 7-30 greift hierzu

die Darstellung mit normal skalierter Abszisse auf, während in Abbildung B-48 wie-

derum der lineare Modellansatz durch die Quadratwurzeltransformation nachvollzo-

gen werden kann.

Page 241: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

221

Abbildung 7-30: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-23) anhand Auszug regellose Unebenheiten mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z)

Am Messpunkt Sitzkissen erweist sich eine Schätzung bei größeren Unebenheiten

als schwierig, so dass der Untersuchungsbereich für Unebenheitsmaße mit U 100

beschränkt wird. Die Interpretation der Ergebnisse in Tabelle 7-24 muss zusammen

mit den Abbildungen bzw. mit einzelnen Regressionen bei konstanter Fahrge-

schwindigkeit und vor allem konstanter Unebenheit erfolgen. Hier bestätigt sich ins-

gesamt ein verstärkender Einfluss von Fahrgeschwindigkeit bei zunehmender Un-

ebenheit sowie ein sehr geringer dämpfender Einfluss der Last. Der negative Re-

gressionskoeffizient in der Schätzung wird im Ergebnis durch die positive Wechsel-

wirkung zwischen Fahrgeschwindigkeit und Fahrbahnanregung aufgehoben. Für

höhere Fahrgeschwindigkeiten nimmt die Güte der Schätzung ab (Abbildung B-49).

Tabelle 7-24: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-29), abhän-gige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFG 20, Sitzkissen (z), N = 2415, 2

korrR = 0,803, s = 0,11, p < 0,05

b b t Sig t kiu kio

Konstante 0,0317 0,0317 2,0 0,04 0,0013 0,0620

Fahrgeschwindigkeit [km/h] -0,0118 -0,1895 -7,2 0,00 -0,0150 -0,0086

Last [t] -0,0239 -0,0679 -3,7 0,00 -0,0365 -0,0113

Unebenheitsmaß U [-] 0,0264 0,2889 16,5 0,00 0,0232 0,0295

Fahrgeschwind. x Last [-] 0,0035 0,2308 8,7 0,00 0,0027 0,0043

Fahrgeschwind. x Unebenheit [-] 0,0024 0,6888 29,2 0,00 0,0022 0,0025

7.2.4.3 Gabelstapler DFG 35

Beim Gabelstapler DFG 35 ist wiederum grundsätzlich gleiches Verhalten zu be-

trachten wie beim EFG 20 (Tabelle 7-25). Da die Simulationsergebnisse jedoch

selbst stärker streuen, wird auch der Standardfehler der Schätzung s größer. Eben-

0,0

2,0

4,0

6,0

8,0

0 100 200 300 400 500

no

rm.

Eff

ektivw

ert

[-]

Unebenheitsmaß U [-]

Fahrgeschwin-digkeit [km/h]

6

10

14

Schätzung Regression Formel (7-29)Simulation

Page 242: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

222

falls verschwindet der rein additive Beitrag der Fahrgeschwindigkeit. Es liegt trotz-

dem ein wesentlicher Einfluss der Fahrgeschwindigkeit vor. Dieser wird deutlich,

wenn bei konstanter Unebenheit reduzierte Modelle nach Formel (7-27) gerechnet

werden. Hier ergeben sich positive Regressionskoeffizienten für die Fahrgeschwin-

digkeit, die dann maßgeblich für die Schwingungsbelastung verantwortlich ist. Auch

für regellose Bodenunebenheiten bestätigt sich der schwingungsdämpfende Ein-

fluss der Last, wobei kaum Wechselwirkungen mit der Fahrgeschwindigkeit zu ver-

zeichnen sind. Dominierend ist die Anregung durch den Boden.

Tabelle 7-25: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-29), abhän-gige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, DFG 35, Sitzmontagepunkt (z), N = 3238, 2

korrR = 0,91, s = 0,51, p < 0,05

b b t Sig t kiu kio

Konstante 1,025 1,025 15,1 0,00 0,891 1,158

Fahrgeschwindigkeit [km/h] -0,032 -0,085 -6,1 0,00 -0,042 -0,022

Last [t] -0,201 -0,144 -12,6 0,00 -0,232 -0,170

Unebenheitsmaß U [-] 0,171 0,548 64,0 0,00 0,165 0,176

Fahrgeschwind. x Last [-] 0,016 0,093 5,9 0,00 0,011 0,022

Fahrgeschwind. x Unebenheit [-] 0,018 0,517 46,8 0,00 0,017 0,018

Simulationsergebnisse und Schätzung stellt Abbildung 7-31 gegenüber.

Abbildung 7-31: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-25) anhand Auszug regellose Unebenheiten mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z)

An der Messstelle Sitzkissen ist ähnliches Verhalten zu beobachten. Der Einfluss der

Last tritt weiter zurück, es überwiegt noch stärker der Einfluss der Fahrbahnanre-

gung. Die Ergebnisse der linearen Regression sind Tabelle B-3 zu entnehmen, ein

0,0

2,0

4,0

6,0

8,0

0 100 200 300 400 500

no

rm.

Eff

ektivw

ert

[-]

Unebenheitsmaß U [-]

Fahrgeschwin-digkeit [km/h]

12

16

20

Schätzung Regression Formel (7-29)Simulation

Page 243: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

223

Vergleich zwischen Simulationsergebnissen und Schätzung findet sich in Abbil-

dung B-50.

7.2.4.4 Schubmaststapler EFM 14

Die Simulationsergebnisse für den Schubmaststapler EFM 14 erlauben eine nicht so

gute Schätzung verglichen mit den Gabelstaplern (Tabelle 7-26). Ein Einfluss der

Last wird als nicht signifikant bestätigt. Deutlich werden die Wirkungen von Fahrge-

schwindigkeit und Fahrbahnanregung, welche sowohl additive als auch gegenseitig

verstärkende Beiträge zum geschätzten Modell liefern.

Tabelle 7-26: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-30), abhän-gige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFM 14, Sitzmontagepunkt (z), N = 1005, 2

korrR = 0,936, s = 0,64, p < 0,05

b b t Sig t kiu kio

Konstante -0,373 -0,373 -4,1 0,00 -0,549 -0,196

Fahrgeschwindigkeit [km/h] 0,104 0,168 11,0 0,00 0,085 0,122

Last [t] -0,021 -0,005 -0,6 0,57 -0,093 0,051

Unebenheitsmaß U [-] 0,123 0,108 6,5 0,00 0,086 0,160

Fahrgeschwind. x Unebenheit [-] 0,060 0,785 37,3 0,00 0,057 0,063

Ein Vergleich zwischen Simulationsergebnissen und Schätzung in Abbildung 7-23

verdeutlicht die teilweise stärkeren Abweichungen.

Abbildung 7-32: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-26) anhand Auszug regellose Unebenheiten mit Last 700 kg, EFM 14, Sitzmontagepunkt (z)

Für eine grundsätzliche Aussage zum Verhalten ist das Modell durchaus geeignet.

An der Messstelle Sitzkissen ist ebenfalls ähnliches Verhalten zu beobachten, auch

wenn im Modell die additiven Einflüsse von Fahrgeschwindigkeit und Fahrbahnanre-

0,0

4,0

8,0

12,0

0 10 20 30 40 50 60 70

no

rm. E

ffektivw

ert

[-]

Unebenheitsmaß U [-]

Schätzung Regression Formel (7-30)Simulation

6

10

14

Fahrgeschwin-digkeit [km/h]

Page 244: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

224

gung nicht mehr signifikant werden und dafür der Wechselwirkungsterm die Zu-

sammenhänge beschreibt (Tabelle B-4). Den Vergleich zwischen Simulationsergeb-

nissen und Schätzung zeigt Abbildung B-51.

7.2.4.5 Klassifizierte Böden

Abschließend werden die Belastungen bei Fahrt über Fahrbahnen unterschiedlicher

bekannter und klassifizierter Bauart und Güte verglichen (Tabelle 7-10). Dargestellt

sind die Mittelwerte von fünf Wiederholungen pro Parametereinstellung mit jeweils

zufällig generierten Fahrbahnprofilen gleicher Güte. Als übliche Fahrbahnuntergrün-

de für Flurförderzeuge werden an dieser Stelle die Oberflächen Zementbeton und

Asphalt-Beton an der Messstelle Sitzmontagepunkt in den Vordergrund gerückt. Die

weiteren Diagramme können Anhang B.5 entnommen werden.

Wie die Ergebnisse der Versuchsreihe mit steigender Unebenheit vermuten lassen,

nimmt die Belastung mit schlechter werdendem Boden beim EFG 20 zu (Abbil-

dung 7-33). Für die geringe Fahrgeschwindigkeit wird der dämpfende Lasteinfluss

deutlich, bei der hohen ist kein einheitliches Bild festzustellen. Klar erkenntlich wird

der Einfluss der Fahrgeschwindigkeit. Das Verhalten ist auf Pflaster, Macadam und

unbefestigte Fahrbahn übertragbar (Abbildung B-52, Abbildung B-53).

Abbildung 7-33: Belastungen für Zementbeton und Asphalt-Beton, EFG 20, Sitzmontagepunkt (z)

Dieses Verhalten ist auch an der Messstelle Sitzkissen zu beobachten, wobei der

Lasteinfluss zurücktritt. Nur bei starken Unebenheiten sind bei hoher Last und hoher

0,0

1,0

2,0

3,0

4,0

no

rm.

Eff

ektivw

ert

[-]

8 km/h - 200 kg

8 km/h - 1800 kg

14 km/h - 200 kg

14 km/h - 1800 kg

Page 245: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

225

Fahrgeschwindigkeit deutlich höhere Belastungen feststellbar (Abbildung B-54 bis

Abbildung B-56).

Beim Gabelstapler DFG 35 stellt sich ebenso das erwartete Bild ein: Die Belastun-

gen nehmen mit steigender Bodenunebenheit und Fahrgeschwindigkeit zu

(Abbildung 7-34). Der dämpfende Einfluss der Last ist erkennbar, wenn auch ein

Ausreißer zu verzeichnen ist. Gleiches gilt für die restlichen untersuchten Böden

(Abbildung B-57, Abbildung B-58) sowie die Messstelle Sitzkissen (Abbildung B-59

bis Abbildung B-61).

Abbildung 7-34: Belastungen für Zementbeton und Asphalt-Beton, DFG 35, Sitzmontagepunkt (z)

Für geringere Bodenunebenheiten bestätigen sich beim Schubmaststapler EFM 14

die bereits in diesem Kapitel dargestellten Zusammenhänge. Für größere Uneben-

heiten sind leicht höhere Belastungen im fast voll beladenen Zustand festzustellen.

Dies gilt gleichermaßen für die Messstellen am Sitzmontagepunkt (Abbildung 7-35)

und am Sitzkissen (Abbildung B-62).

0,0

1,0

2,0

3,0

4,0

5,0

no

rm.

Eff

ektivw

ert

[-]

10 km/h - 500 kg

10 km/h - 3000 kg

20 km/h - 300 kg

20 km/h - 3000 kg

Page 246: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

226

Abbildung 7-35: Belastungen für Zementbeton und Asphalt-Beton, EFM 14, Sitzmontagepunkt (z)

Für stärkere Bodenunebenheiten treten vermehrt Integrationsfehler vor allem im fast

unbeladenen Zustand auf, so dass kein umfassendes Bild gezeichnet werden kann.

Der Vollständigkeit halber finden sich die Simulationsergebnisse für Pflaster,

Macadam und unbefestigte Fahrbahnen in Abbildung B-63 und Abbildung B-64.

7.2.5 Sonstige Anregungen

Abschließend erfolgt die Behandlung der Fugenüberfahrt sowie der einseitigen Fahr-

zeuganregung bei punktuellen Einzelhindernissen.

7.2.5.1 Fugen

Gemäß Tabelle 7-13 werden sowohl bekannte Fugentypen wie Schein- und Raum-

fugen sowie allgemeine Fugen unterschiedlicher Breite und Tiefe bei allen drei Flur-

förderzeugen untersucht.

Scheinfugen bedingen auf Grund ihrer sehr geringen Breite keine merklichen Belas-

tungen. Ein Vergleich mit einem Boden ohne Fuge gleicher Güte zeigt lediglich Diffe-

renzen im Bereich der üblichen Schwankungen auf Grund der zufällig erzeugten Bo-

denprofile, die trotz der Mittelwertbildung verbleiben (Abbildung 7-36, Abbil-

dung B-65, Abbildung B-66).

0,0

2,0

4,0

6,0n

orm

. E

ffektivw

ert

[-]

5 km/h - 200 kg

5 km/h - 1200 kg

12 km/h - 200 kg

12 km/h - 1200 kg

Page 247: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

227

Abbildung 7-36: Fahrt über Scheinfugen mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z)

Auch Raumfugen sind im Normalfall nicht ausschlaggebend für deutlich höhere Be-

lastungen. Ein Unterschied im Vergleich mit einem Boden ohne Fuge ist gegeben,

dieser fällt jedoch gering aus und ist bei den Gabelstaplern für die untersuchte ge-

ringe Fahrgeschwindigkeit ausgeprägter als für die hohe (Abbildung 7-37, Abbil-

dung B-67). Beim Schubmaststapler ist nahezu kein Unterschied feststellbar

(Abbildung B-68). Nur falls die Raumfugen sehr breit ausgeführt werden, steigen die

Belastungen, im untersuchten Fall ab einer Fugenbreite von 20 mm. Das beschrie-

bene Verhalten lässt sich auch auf dem Sitz feststellen (Abbildung B-69 bis Abbil-

dung B-71).

Abbildung 7-37: Fahrt über Raumfugen unterschiedlicher Breite mit Last 1000 kg, EFG 20, Sitzmon-tagepunkt (z)

Grundsätzlich besteht natürlich ein Zusammenhang zwischen Rad- und Fugengeo-

metrie sowie der resultierenden Belastung. Bei schmalen Fugen ist die Tiefe einer

Fuge unerheblich, wenn das Rad den Boden der Fuge nicht berühren kann. Dies

bestätigen die Ergebnisse der Variation von Fugenbreite und Fugentiefe beim

0,00

0,25

0,50

8 14

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

ohne Fuge

Scheinfuge Tiefe 60 mm - Breite 4 mm

Scheinfuge Tiefe 25 mm - Breite 8 mm

0,0

0,1

0,2

0,3

10 12 14 16 18 20

no

rm.

Eff

ektivw

ert

[-]

Fugenbreite [mm]

Raumfuge - 8 km/h Raumfuge - 14 km/h

ohne Fuge - 8 km/h ohne Fuge - 14 km/h

Page 248: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

228

EFG 20. In Abhängigkeit der Fugenbreite ist ab einer bestimmten Tiefe mit keiner

Erhöhung der Belastung zu rechnen (Abbildung 7-38). Der Einfluss der Fugentiefe

tritt noch weiter zurück, je schneller sich das Fahrzeug bewegt (Abbildung B-72). Die

ermittelte Belastung steigt linear mit zunehmender Fugenbreite. Die beschriebenen

Zusammenhänge gelten gleichermaßen für Sitzmontagepunkt und Sitzkissen

(Abbildung B-73, Abbildung B-74). Ein Einfluss der Fahrgeschwindigkeit bei Fugen-

überfahrt gleicher Breite ist anhand dieser Versuchsreihe beim EFG 20 nicht zu be-

obachten.

Abbildung 7-38: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1000 kg und Fahrge-schwindigkeit 8 km/h, EFG 20, Sitzmontagepunkt (z)

Beim Gabelstapler DFG 35 ist grundsätzlich ähnliches Verhalten wie beim EFG 20

feststellbar (Abbildung 7-39). Abweichungen bestehen in leicht unterschiedlichen

Zusammenhängen bezüglich der Fahrgeschwindigkeit. Bei hoher Fahrgeschwindig-

keit liegen geringere Belastungen für größere Fugenbreiten vor (Abbildung B-75).

Abbildung 7-39: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1750 kg und Fahrge-schwindigkeit 10 km/h, DFG 35, Sitzmontagepunkt (z)

0,0

1,0

2,0

3,0

20 40 60 80 100 120 140 160 180 200

no

rm.

Eff

ektivw

ert

[-]

Fugenbreite [mm]

515253545

Fugentiefe [mm] ohne Fuge

0,0

1,0

2,0

3,0

4,0

20 40 60 80 100 120 140 160 180 200

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

515253545

Fugentiefe [mm] ohne Fuge

Page 249: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

229

Bei geringer Fahrgeschwindigkeit ist ein leichter Sprung in der Belastungssteigerung

mit zunehmender Fugenbreite zu verzeichnen (Abbildung 7-39). Am Messpunkt Sitz-

kissen zeigt sich analoges Verhalten (Abbildung B-76, Abbildung B-77).

Beim Schubmaststapler EFM liegt nicht immer eine steigende Belastung mit zuneh-

mender Fugenbreite im untersuchten Spektrum vor, wie Abbildung 7-40 zeigt. Dies

wird bedingt durch die kleineren Raddurchmesser beim EFM 14 gegenüber den Ga-

belstaplern. Es können für die geringe Fahrgeschwindigkeit im Gegensatz zur hohen

(Abbildung B-78) lokale Maxima je Fugentiefe auftreten. Ab einer bestimmten Fu-

gentiefe ist jedoch wiederum keine Zunahme der Belastung zu verzeichnen. Das be-

schriebene Verhalten ist auf den Messpunkt Sitzkissen übertragbar (Abbildung B-79,

Abbildung B-80).

Abbildung 7-40: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 700 kg und Fahrge-schwindigkeit 5 km/h, EFM 14, Sitzmontagepunkt (z)

7.2.5.2 Einseitige Anregung der Räder

Nach Durchführung und Auswertung der Simulationen nach Tabelle 7-14 lässt sich

festhalten, dass schon ab mittleren Fahrgeschwindigkeiten deutliche Unterschiede

in den Belastungen festzustellen sind, je nachdem wie viele Räder über ein gleichar-

tiges Hindernis fahren. Folgende Abbildungen verdeutlichen den Sachverhalt und

sind stellvertretend aus den Ergebnissen ausgewählt.

Für den Fall, dass der Gabelstapler nur einseitig mit beiden rechten oder beiden lin-

ken Rädern über die Schwelle fährt, zeigen sich bereits ab geringen Fahrgeschwin-

digkeiten Unterschiede in der Belastung, die mit zunehmender Schwellenhöhe

(Abbildung 7-41) oder zunehmender Fahrgeschwindigkeit (Abbildung B-81) bezogen

auf den normierten Effektivwert der frequenzbewerteten Beschleunigung ,wT Na wei-

ter steigen. Als Referenz dient jeweils der Fall, bei dem alle vier Räder durch das

0,0

1,0

2,0

3,0

4,0

20 40 60 80 100 120 140 160 180 200

no

rm.

Eff

ektivw

ert

[-]

Fugenbreite [mm]

51525354555

Fugentiefe [mm] ohne Fuge

Page 250: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

230

Hindernis angeregt werden. Bei einseitiger Anregung betragen die Belastungen am

Sitzkissen im unteren Fahrgeschwindigkeitsbereich ca. 50 % und im oberen ca.

40 % im Vergleich zur Anregung bei allen vier Rädern.

Abbildung 7-41: Vergleich der Belastungen bei einseitiger Radanregung und unterschiedlichen Schwellenhöhen mit Last 1000 kg und Fahrgeschwindigkeit 10 km/h, EFG 20, Sitz-kissen (z)

Betrachtet man die Belastungen, die mittig an der Antriebsachse gemessen werden,

wird nochmals deutlich, dass vor allem bei hohen Fahrgeschwindigkeiten eine deut-

liche Differenz bei den in das Fahrzeug weitergeleiteten Stößen vorliegt

(Abbildung 7-42).

Abbildung 7-42: Vergleich der Belastungen bei einseitiger Radanregung und unterschiedlichen Schwellenhöhen mit Last 1000 kg und Schwellenhöhe 8 mm, EFG 20, Antriebsach-se (z)

Bezüglich der Auswirkung der Seite, auf der das Hindernis überfahren wird, ist eine

Differenzierung zwischen den Messorten erforderlich. Bei mittiger Positionierung

bezüglich der Fahrzeugquerachse wie bei den Messpunkten Sitzkissen oder An-

0,00

0,05

0,10

0,15

0,20

2 4 6 8 10 12

no

rm. E

ffektivw

ert

[-]

Schwellehöhe [mm]

alle Räder

beide links

beide rechts

Anregungsort

0,0

0,5

1,0

1,5

2,0

4 6 8 10 12 14 16

no

rm.

Eff

ektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

alle Räder

beide links

beide rechts

Anregungsort

Page 251: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.2 Detailbetrachtung von Fahrbahnanregung, Fahrgeschwindigkeit und Last

231

triebsachse ist die Anregungsseite unerheblich. Liegt dieser wie beim Sitzmontage-

punkt gewählt außermittig (Abbildung 6-9), so liegen auf der Seite, auf der der Sen-

sor positioniert ist, höhere Belastungen vor (Abbildung 7-43). Nur im unbeladenen

Zustand bei kleinen bis mittleren Fahrgeschwindigkeiten ist keine Einflussnahme auf

die Belastungen am Sitzmontagepunkt feststellbar.

Abbildung 7-43: Vergleich der Belastungen bei einseitiger Radanregung und unterschiedlichen Schwellenhöhen mit Last 1000 kg und Fahrgeschwindigkeit 10 km/h, EFG 20, Sitz-montagepunkt (z), Sensorposition links

Erfolgt die Überfahrt wiederum seitlich, jedoch nur noch mit einem Rad (vorne oder

hinten), so ist die Abnahme der Belastung weniger ausgeprägt und nur mit leichten

Zunahmen über den betrachteten Fahrgeschwindigkeitsbereich behaftet

(Abbildung 7-44). Dabei ist die Seite der Überfahrt ohne Bedeutung, wie ein Ab-

gleich mit Abbildung B-82 zeigt.

Abbildung 7-44: Vergleich der Belastungen bei linksseitiger Radanregung und unterschiedlichen Fahrgeschwindigkeiten mit Last 1000 kg und Schwellenhöhe 8 mm, EFG 20, Sitzkis-sen (z)

0,0

0,3

0,6

0,9

1,2

2 4 6 8 10 12

no

rm.

Eff

ektivw

ert

[-]

Schwellehöhe [mm]

alle Räder

beide links

beide rechts

Anregungsort

0,00

0,05

0,10

0,15

4 6 8 10 12 14 16

no

rm.

Eff

ektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

beide links

links hinten

links vorne

Anregungsort

Page 252: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

232

Ab einer bestimmten Fahrgeschwindigkeit wechselt bei der Überfahrt mit nur einem

Rad der dominierende Anregungsort von hinten zu vorne. Dies ist abhängig von der

transportierten Last, wobei der Wechsel bei höheren Lasten bei geringeren Fahrge-

schwindigkeiten stattfindet (Abbildung B-83, Abbildung B-84)

Zusammenfassend lässt sich festhalten, dass bei nur einseitiger Hindernisüberfahrt

deutlich geringere Belastungen am Fahrer feststellbar sind. Dabei ist zweitrangig, ob

Hinter- und/oder Vorderrad durch das Hindernis angeregt wird. Für die Bestimmung

des SEAT-Werts ist bei einseitigen Anregungen von großer Bedeutung, wo der Sen-

sor positioniert ist, da dies die Beschleunigungen am Sitzmontagepunkt stark beein-

flusst.

7.2.6 Fazit

Im Ergebnis der Detailbetrachtung ist festzuhalten, dass sich mit Hilfe der linearen

Regression die Belastungen für Schwellenüberfahrt sowie regellose Bodenuneben-

heiten sehr gut schätzen und die einzelnen Wirkungen der untersuchten Einflussfak-

toren feststellen lassen. Wie bereits in Kapitel 7.1 beziffert nehmen Fahrgeschwin-

digkeit und Fahrbahnanregung mit Abstand den stärksten Einfluss auf die Schwin-

gungsbelastung von Flurförderzeug und Fahrer: Diese sind umso höher, je schneller

das Fahrzeug fährt und je stärker die Anregung durch die Fahrbahn ist. Beide Fakto-

ren verstärken sich gegenseitig, d. h. bei größerer Fahrbahnanregung nimmt die Be-

lastung mit steigender Fahrgeschwindigkeit stärker zu als bei kleinerer, und umge-

kehrt führen stärker werdende Fahrbahnanregungen bei hoher Fahrgeschwindigkeit

schneller zu höheren Belastungen als bei geringer Fahrgeschwindigkeit. Bei gleich-

bleibender Fahrbahnanregung – unabhängig von Einzelhindernis oder regellosen

Bodenunebenheiten – nimmt die Belastung linear mit steigender Fahrgeschwindig-

keit zu. Bei der Fahrbahnanregung ist eine pauschale Aussage nicht möglich. Wäh-

rend bei steigender Schwellenhöhe und konstanter Fahrgeschwindigkeit die Belas-

tung linear mit der Schwellenhöhe steigt, ist bei regellosen Bodenunebenheiten für

kleine Unebenheitsmaße ein stärkerer Anstieg zu verzeichnen, der dann abflacht.

Dieses Verhalten wird für alle drei untersuchten Flurförderzeuge beobachtet. Bei den

Gabelstaplern wird eine leicht dämpfende Wirkung der Last bestätigt, die jedoch

nicht für alle Fahrgeschwindigkeiten gleich stark ausgeprägt ist und in ihrer Wirkung

deutlich geringer ist als die von Fahrgeschwindigkeit und Fahrbahnanregung. Beim

Schubmaststapler EFM 14 nimmt die Last im Normalfall keinen Einfluss auf die Hö-

he der Belastung. Werden Einzelhindernisse nur einseitig überfahren, vermindert

sich die Belastung gegenüber einer Anregung mit allen Rädern deutlich.

Page 253: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.3 Fahrerplatzlagerung

233

7.3 Fahrerplatzlagerung

Sowohl durch Fahrbahnunebenheiten als auch durch dynamische Wank- und Nick-

vorgänge werden auf den Fahrerplätzen Bewegungen hervorgerufen, die letztendlich

eine Schwingungsbelastung für den Fahrer darstellen. In der Vertikaldynamik wer-

den deswegen unterschiedliche Maßnahmen eingesetzt, um geringe Aufbaube-

schleunigungen, geringe Wank- und Nickbewegungen sowie ein beladungsunab-

hängiges Schwingungsverhalten zu erreichen [Bra-2013, S. 639ff]. Wünschenswert

ist grundsätzlich eine Isolation gegenüber Fahrbahnunebenheiten, soweit es der Fe-

derweg zulässt. Je nach Branche bzw. Fahrzeugtyp haben sich hierbei unterschied-

liche Konzepte etabliert. Grundsätzlich lässt sich zwischen Aufbau-, Kabinen- und

Sitzfederung differenzieren. Im Bereich der Personenkraftwagen ist eine Aufbaufede-

rung durch Feder-Dämpferpakete (üblicherweise mit Schraubenfedern) längst Stand

der Technik, wobei je nach Freiheitsgrad der Aufhängung zwischen Starrachsen,

Einzelradaufhängungen und Verbundachsen unterschieden wird [Rei-2005]. Bei

Nutzfahrzeugen haben sich diesbezüglich fast ausnahmslos Starrachsen durchge-

setzt, die jedoch ebenso über eine Federung gegenüber dem Aufbau verfügen, wo-

bei die dabei dominierende Blattfederung zunehmend Konkurrenz durch die Luftfe-

derung bekommt [Brä-2013]. Bei Traktoren, einem wichtigen Vertreter der mobilen

Arbeitsmaschinen im Bereich der Landtechnik, hat sich in den letzten Jahren bei der

Aufbaufederung nur die Vorderachsfederung etabliert [Hau-2001; Mey-2004b].

Grundsätzlich geht der Trend vor allem bei anderen selbstfahrenden Landmaschinen

zur Einzelradaufhängung mit hydropneumatischer Federung [Fec-2011]. Zusätzliche

Kabinenfederungen sind bei Landmaschinen und Nutzfahrzeugen wie dem Last-

kraftwagen durchaus üblich. Normalerweise werden die beiden vorderen Aufhän-

gungspunkte als Gummi-Metall-Elemente mit der Funktion eines Drehlagers ausge-

führt, während sich die hinteren beiden Anlenkpunkte über zwei Federbeine mit Spi-

ral- oder Luftfedern auf dem Fahrwerk abstützen [Hau-2001, S. 29ff; Brä-2013,

S. 217ff]. Neben dieser passiven Art der Kabinenfederung treten vermehrt geregelte

Systeme auf den Markt, bei denen eine Differenzierung zwischen semi-aktiv und

aktiv getroffen werden kann. Zur Begriffsklärung kann nach Himmelhuber auf die

vereinfachte Schwingungsdifferentialgleichung eines fußpunkterregten Einmassen-

schwingers zurückgegriffen werden, wobei die Anregungskraft in die Anteile aus

Fahrbahn FahrbahnF und zusätzlicher Steuerung SteuerF zerlegt wird [Him-2006]:

Fahrbahn Steuerm x d x c x F F (7-31)

Im Gegensatz zu den passiven Systemen, bei denen Dämpfungskonstante d

und/oder Federsteifigkeit c nicht steuerbar sind (und 0)SteuerF , können diese bei

semi-aktiven und aktiven Systemen in Abhängigkeit von Geschwindigkeit oder Be-

Page 254: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

234

schleunigung verändert werden. Während bei einer semi-aktiven Federung keine

Steuerkraft vorgesehen ist ( 0),SteuerF bringen aktive Federungssysteme zusätzlich

eine Kraft auf ( 0)SteuerF . Bei Niederfrequenzfederungen, die sich durch eine flache

Federkennlinie und somit geringe Rückstellkräfte auszeichnen, ist eine solche Steu-

erkraft von Nöten, um die ausgelenkte Masse wieder in die Ausgangsposition zu

bewegen [Pol-2013]. Diese Definition gilt nicht nur für die Kabinenfederung, sondern

für Federungssysteme aller Art. Verbreitet sind im Bereich der Landmaschinen übli-

cherweise semi-aktive Systeme, da keine zusätzliche Energie aufgewandt wird, um

die Federkräfte zu generieren. Die Hersteller setzen dabei auf unterschiedliche tech-

nische Lösungen, wie z. B. auf eine Dämpfungsveränderung über magnetorheologi-

sche Flüssigkeiten wie in [Wil-2011] oder auf hydro-pneumatische Systeme mit vari-

abler Federsteifigkeit und Dämpfung wie in [Hol-2013]. Bezüglich der Diskussion der

Sitzfederung sei auf Kapitel 3.1.1 verwiesen. Eine Abstimmung von aktiver Sitz- und

Kabinenfederung diskutieren Polster und Wittmann in [Pol-2013] und stellen ein ent-

sprechendes System für einen Traktor vor. Für Nutzfahrzeuge präsentieren Graf et

al. eine aktive Kabinenfederung über eine Veränderung der Luftmasse innerhalb der

Luftfedern durch Schnellschaltventile [Gra-2013b].

Das klassische Flurförderzeug verfügt nicht über derartige Federungskonzepte. Ach-

sen, Fahrwerk und Kabine sind im Normalfall fest miteinander verbunden. Dies ge-

währleistet einerseits die nötige Standfestigkeit beim Transport sowie beim Heben

und Senken von Lasten, andererseits werden Fahrbahnunebenheiten direkt an den

Fahrersitz weitergegeben. Von Zeit zu Zeit werden zwar innovative Ansätze vorge-

schlagen und deren Machbarkeit durch Prototypen nachgewiesen, eine Marktreife

ist jedoch nicht erkennbar. So stellt Biermann im Jahr 2009 ein aktives Fahrwerk für

Gabelstapler vor, das auf einer aktiven hydropneumatischen Federung der Vorder-

und Hinterradachse basiert [Bie-2009]. In der prototypischen Umsetzung an einem

Gabelstapler mit 3 t Tragfähigkeit wird die Funktionsfähigkeit unter Beweis gestellt.

Messungen bei Fahrversuchen zeigen, dass Aufbau-, Nick- und Wankbeschleuni-

gungen deutlich reduziert werden können. Auch der Kabinenhersteller Fritzmeier

präsentiert auf der Messe Cemat im Jahr 2011 eine Kabinenfederung für Flurförder-

zeugkabinen auf Basis eines Stahlfedermoduls mit einem hydraulischen Dämpfer

[Fri-2011].

Bei der festen Verbindung der Fahrzeugelemente wird im Normalfall eine komplett

starre mechanische Verbindung vermieden, um Körperschall abzukoppeln. Gabel-

stapler aktueller Baureihen verfügen deswegen wie bereits im Zuge der Modeller-

stellung in Kapitel 5.2.6 beschrieben üblicherweise über eine Entkopplung von Kabi-

ne und Fahrwerk durch Gummilager. Im Zuge verstärkter Aufmerksamkeit auf die

Page 255: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.3 Fahrerplatzlagerung

235

Ergonomie rücken diese Elemente zunehmend in den Fokus und werden als kon-

struktive Maßnahmen ausgewiesen, die Vibrationsbelastung des Fahrers zu senken.

Beim untersuchten Gabelstapler DFG 35, bei dem herstellerspezifisch die An-

triebsachse über zwei radiale Gummilager vom Fahrzeugchassis und die Anschluss-

punkte der am Dach angeordneten Neigezylinder über weitere Gummilager entkop-

pelt sind, ist nach Kapitel 7.1.4 dieser Lagerungsart eine schwingungsdämpfende

Wirkung zu attestieren. Die Entkopplung von Kabine und Fahrwerk ist in der Branche

hingegen üblicher und soll in Folgendem deswegen eingehender beleuchtet werden,

auch im Hinblick auf die unerwarteten Ergebnisse diesbezüglich beim EFG 20 in Ka-

pitel 7.1.4. Beim Schubmaststapler ist der Fahrerplatz hingegen fest in den tragen-

den Rahmen des gesamten Flurförderzeugs integriert. Der Sitz wird im Fall des un-

tersuchten Fahrzeugs EFM 14 auf einer am Rahmen befestigten Sitzplatte montiert.

Eine Lagerung dieser über Gummielemente ist ebenso Bestandteil weiterer Überle-

gungen. Eine semi-aktive oder aktive Kabinenlagerung wird in dieser Arbeit nicht

betrachtet. Ein grundsätzlicher Nutzen eines Federsystems mit größerem Federweg

und geschwindigkeits- oder beschleunigungsabhängiger Dämpfungskonstante

und/oder Federsteifigkeit ist bereits in den in diesem Kapitel erwähnten Fachbeiträ-

gen aus Nutzfahrzeug- und Landmaschinentechnik nachgewiesen und lässt sich auf

Flurförderzeuge übertragen. Sinnvoll ist eine solche Lagerung, wenn mit unebenen

Fahrbahnen und entsprechend großen Anregungen zu rechnen ist.

7.3.1 Fahrerkabine bei Gabelstaplern

Bekannt sind Anordnungen der Gummilager mit drei und vier Lagerpunkten, entwe-

der jeweils seitlich zwei vorne und hinten oder zwei seitlich vorne und eine hinten

mittig. Im Fokus der Betrachtung steht nicht ein Vergleich dieser Anordnungen, son-

dern die Federeigenschaft der verwendeten Gummielemente. Beim EFG 20, der als

Versuchsobjekt dient, ist herstellerseitig eine Dreipunktlagerung vorgesehen.

Wie beim Fahrersitz ist eine Abstimmung zwischen Anregungsspektrum und ver-

wendetem Gummilager unerlässlich. Denn sieht man die gelagerte Kabine als Ein-

massenschwinger, ist analog zu den Ausführungen in Kapitel 3.1.1 eine schwin-

gungsmindernde Wirkung nur möglich, wenn die Eigenfrequenz 0 der Kabine unter

dem Anregungsspektrum liegt. Überlagern sich Eigen- und Anregungsfrequenz, ist

sogar mit einer Verstärkung zu rechnen. In Anlehnung an Abbildung 3-2 verdeutlicht

Abbildung 7-45 den Sachverhalt nochmals grafisch.

Page 256: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

236

Abbildung 7-45: Übertragungsverhalten der Kabinenlagerung

Wünschenswert ist aus dieser Sichtweise somit eine geringe Federsteifigkeit der

Kabinenlagerung. Dies steht jedoch dem Wunsch des Konstrukteurs entgegen, die

beim Gabelstapler übliche relativ feste Anbindung zwischen Kabine und Fahrwerk zu

realisieren. Zudem lässt sich mit einem einfachen Gummilager eine stark niederfre-

quente Federung im Bereich ab 1 Hz, wie sie für Kabinenfederungen üblich ist, nicht

realisieren. Folgende Ausführungen zielen darauf ab, die Wirksamkeit der Gummila-

ger näher zu beleuchten.

Die Steifigkeit der Gummilager im realen Versuchsfahrzeug werden durch Druckver-

suche an den einzelnen Gummielementen bestimmt. Ein Vergleich der resultieren-

den Kabineneigenfrequenz im Simulationsmodell mit den Anregungsfrequenzen ver-

deutlicht, dass diese nicht hinreichend genug getrennt sind. Es liegt somit nahe,

Gummielemente mit niedriger Steifigkeit zu untersuchen. Im Folgenden wird eine

(Lager-)Variante 2 betrachtet, die die Kabineneigenfrequenz gegenüber dem ver-

messenen Zustand (Variante 1) näherungsweise halbiert. Mit beiden Lagervarianten

werden virtuelle Versuchsfahrten mit unterschiedlichen Beladungszuständen sowohl

über Einzelhindernisse (Schwellen auf Fahrbahn gemäß Abbildung 6-5) als auch

über regellose Bodenunebenheiten durchgeführt. Im Ergebnis lässt sich festhalten,

dass mit Lagervariante 2 für höhere Fahrgeschwindigkeiten geringere Belastungen

am Sitzmontagepunkt erreicht werden können. Auszugsweise zeigt Abbildung 7-46

für eine Schwellenhöhe von 8 mm den Vergleich der Belastungen für unterschiedli-

che Fahrgeschwindigkeiten.

0

1

2

3

4

0 1 2 3

Am

plit

ud

en

verh

ältn

is [

-]

Frequenzverhältnis

Kabine

Flurförderzeug

IsolationVerstärkung

0

2

Page 257: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.3 Fahrerplatzlagerung

237

Abbildung 7-46: Vergleich der Lagervarianten für Schwellenüberfahrt 8 mm, EFG 20, Last 1000 kg, Sitzmontagepunkt (z)

Das in Abbildung 7-46 gezeigte Verhalten besitzt auch für unterschiedliche Schwel-

lenhöhen Gültigkeit, wie Abbildung 7-47 bestätigt.

Abbildung 7-47: Vergleich der Lagervarianten für Schwellenüberfahrten verschiedener Höhe, EFG 20, Last 1000 kg, Sitzmontagepunkt (z)

Eine weichere Lagerung bietet auch Vorteile, wenn das Fahrzeug nicht stoßartig wie

bei der Schwellenüberfahrt angeregt wird, sondern durch regellose Unebenheiten,

die in einem breiten Frequenzband das Fahrzeug in unterschiedlicher Intensität in

Schwingung versetzen. Für eine Fahrgeschwindigkeit von 12 km/h zeigt Abbil-

dung 7-48 den Belastungsvergleich für variierende Unebenheitsmaße bei gleichblei-

bender Welligkeit w = 2.

0,0

0,4

0,8

1,2

1,6

4 6 8 10 12 14 16

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

Variante 1

Variante 2

0,0

0,5

1,0

1,5

2,0

2 4 6 8 10 12

no

rm.

Eff

ektivw

ert

[-]

Schwellenhöhe [mm]

Variante 1 - 10 km/h

Variante 2 - 10 km/h

Variante 1 - 16 km/h

Variante 2 - 16 km/h

Page 258: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

238

Abbildung 7-48: Vergleich der Lagervarianten bei regellosen Bodenunebenheiten (w = 2), EFG 20, Last 1000 kg, Fahrgeschwindigkeit 12 km/h, Sitzmontagepunkt (z)

Die untersuchte Lagervariante 2 weist bezüglich der resultierenden Federwege pra-

xistaugliche Eigenschaften auf. Ein Vergleich der mittleren Einfederwege im Mehr-

körpermodell über alle Versuche zeigt eine moderate Zunahme. Während bei der

Schwellenüberfahrt für Lagervariante 1 die mittlere Einfederung unter einem Millime-

ter beträgt, vergrößert sich diese für Lagervariante 2 nur um weitere zwei Millimeter.

Auch die Schwingungsamplitude nimmt von ca. 2 mm auf 4 mm zu. Bei dauerhafter

Anregung werden stärkere Schwingungen eingeleitet, hier vergrößern sich die mittle-

ren Federwege wie bei den Schwellen, lediglich die Schwingungsamplituden erhö-

hen sich um 50 %.

An der Messstelle des Sitzmontagepunkts in z-Richtung ist eine Belastungsminde-

rung feststellbar. Dies spricht für eine schwingungsdämpfende Wirkung der Kabi-

nenlagerung über Gummilager. Die Belastung für den Fahrer nimmt dabei jedoch

nicht zwangsläufig ab, da der Sitz für die Hauptminderung der eingeleiteten Schwin-

gungen verantwortlich ist. Eine merkliche Reduktion am Messpunkt Sitzkissen kann

mit den verwendeten Mehrkörpermodellen nicht nachgewiesen werden.

7.3.2 Sitzplatte Schubmaststapler

Beim untersuchten Schubmaststapler wird der Fahrersitz auf einer Stahlplatte befes-

tigt, die wiederum fest über Schrauben mit Fahrerkabine bzw. Fahrzeugrahmen ver-

bunden ist. Im Folgenden wird untersucht, welches Potential Gummilager für die

Anbindung der Sitzplatte an die Fahrerkabine bieten. Dazu werden im Mehrkörper-

modell sechs Feder-Dämpferelemente an den Befestigungspunkten zwischen der

flexiblen Sitzplatte (vgl. Kapitel 5.2.7) und dem Rahmen (Starrkörper) integriert und

die festen Bindungsbeziehungen entfernt (Abbildung 7-49). Die Steifigkeit in vertika-

ler Richtung wird so gewählt, dass eine Schwingungsreduktion für das Hauptanre-

0,0

1,0

2,0

3,0

0 10 20 30 40 50

no

rm. E

ffektivw

ert

[-]

Unebenheitsmaß U [-]

Variante 1

Variante 2

Page 259: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.3 Fahrerplatzlagerung

239

gungsspektrum, das sich bei Festlagerung im Bereich von ca. 8 Hz befindet, mög-

lich ist. Die gewählte Konstruktion ist jedoch steif genug, um der Sitzplatte einen

sicheren Halt zu bieten. Die resultierenden Schwingungsamplituden befinden sich

zudem im Bereich von einem Millimeter und werden als nicht störend für den Fahrer

eingestuft. Eine schematische Darstellung der gewählten Lagerung zeigt Abbil-

dung 7-49.

Abbildung 7-49: Schematische Darstellung der Sitzplattenlagerung beim Schubmaststapler EFM 14

Die Eignung dieser Konstruktionsänderung wird für den Fall der Schwellenüberfahrt

bei konstanter Last mit variierender Fahrgeschwindigkeit und Schwellenhöhe unter-

sucht. Im Ergebnis führt die Gummilagerung sowohl am Sitzmontagepunkt als auch

auf dem Fahrersitz zu geringeren Belastungen im Vergleich zum Festlager. Beispiel-

haft zeigt Abbildung 7-50 die Belastungen für eine Schwellenüberfahrt mit einer Hö-

he von 5 mm, die auch im Test nach DIN 13059 Anwendung findet (vgl. Kapi-

tel 6.3.1).

Abbildung 7-50: Vergleich der Lagervarianten für Schwellenüberfahrt 5 mm, EFM 14, Last 1000 kg, Sitzmontagepunkt (z)

Sitzplatte

Fahrzeugrahmen

Gummilager

0,0

0,5

1,0

1,5

2,0

2 4 6 8 10 12 14

no

rm.

Eff

ektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

Festlager

Gummilager

Page 260: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

240

Die Reduktion der Belastungen ist am Messpunkt Sitzkissen ebenso wahrnehmbar,

jedoch nicht so ausgeprägt wie am Sitzmontagepunkt (Abbildung 7-51).

Abbildung 7-51: Vergleich der Lagervarianten für Schwellenüberfahrt 5 mm, EFM 14, Last 1000 kg, Sitzkissen (z)

Neben einem Vergleich der Auswirkungen bei unterschiedlichen Fahrgeschwindig-

keiten stellt Abbildung 7-52 einen Bezug zwischen variierenden Schwellenhöhen

dar. Auch hier führen in der Regel die Gummilager zu reduzierten Belastungen. Ne-

ben den dargestellten Ergebnissen am Sitzmontagepunkt gilt dies auch für die Be-

lastungen auf dem Sitz.

Abbildung 7-52: Vergleich der Lagervarianten für unterschiedliche Schwellenhöhen, EFM 14, Last 1000 kg, Fahrgeschwindigkeit 12 km/h, Sitzmontagepunkt (z)

Eine deutliche Reduktion der Vibrationsbelastung ist durch diese Maßnahme nicht

erreichbar, dies obliegt weiter dem Fahrersitz. Sie kann aber ein in Erwägung zu zie-

hender Schritt sein, um auftretende Stöße konstruktiv abzumildern.

0,0

0,1

0,2

0,3

2 4 6 8 10 12 14

no

rm.

Eff

ektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

Festlager

Gummilager

0,0

1,0

2,0

3,0

1 2 3 4 5 6 7 8

no

rm.

Eff

ektivw

ert

[-]

Schwellenhöhe [mm]

Festlager

Gummilager

Page 261: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.4 Fahrer und Sitz

241

7.4 Fahrer und Sitz

Wie in Kapitel 3.1.1 dargelegt wird dem Sitz bei Flurförderzeugen eine überaus wich-

tige Rolle bei der Reduzierung der Fahrerbelastung zugeschrieben, da er im Normal-

fall das einzige dämpfende Element mit ausreichendem Federweg darstellt. Dass

Sitze mit unterschiedlichen Komfortstufen die eingeleiteten Schwingungen in ver-

schiedenem Maße reduzieren, zeigen bereits die Untersuchungen in Kapitel 7.1. In

diesem Kapitel stehen weiterhin die in Kapitel 4.3 ausgewählten Fahrersitze

MSG 20, MSG 65 und MSG 85 im Mittelpunkt der Betrachtung, in der das Sitzüber-

tragungsverhalten näher untersucht wird. Zum einen wird der bis jetzt ausgeklam-

merten Fragestellung nachgegangen, welchen Einfluss die gewählte Gewichtsein-

stellung am Fahrersitz auf die Höhe der Belastung nimmt. Zum anderen soll anhand

der untersuchten Szenarien näher beleuchtet werden, ob ein Zusammenhang zwi-

schen Anregungsintensität und Schwingungsreduktion besteht. Da die Anthropo-

metrie des Fahrers durch die gewählten Ersatzmodelle nicht abgebildet werden

kann, beschränkt sich die Charakterisierung des Fahrers weiterhin auf dessen Ge-

wicht in den Abstufungen leicht (55 kg), mittel (75 kg) und schwer (98 kg).

Neue innovative Dämpfungskonzepte sind nicht Bestandteil der Arbeit, da diese ein

eigenes Forschungsfeld darstellen. Dass sich mit semi-aktiven und aktiven Sitzen

die eingeleiteten Vibrationen noch stärker reduzieren lassen, zeigen zahlreiche Ver-

öffentlichungen sowohl auf mathematischer Seite als auch im Normalfall durch Ver-

suchsdurchführungen mit Prototypen. So stellt z. B. Kühnlein einen aktiv geregelten

Nutzfahrzeugsitz mit amplitudenselektivem Sitzverhalten vor, das eine Trennung von

Belastungswechsel und Kabinenanregung ermöglicht [Küh-2007]. Auch Meyer und

Ortmann präsentieren einen aktiven pneumatischen Sitz in [Mey-2007b] und bewei-

sen dessen Praxistauglichkeit und die zusätzliche Schwingungsreduktion durch das

aktive Glied bei Dumper und Muldenkipper im Steinbruch [Ort-2010]. Im Bereich der

militärischen Nutzung entwickeln Kieneke et al. eine aktive Sitzfederung in vertikaler

und lateraler Richtung [Kie-2013].

7.4.1 Gewichtseinstellung

Im Folgenden wird der eingangs aufgeworfenen Fragestellung nachgegangen, wel-

che Auswirkung die vom Fahrer getätigte Gewichtseinstellung auf das Übertra-

gungsverhalten des Sitzes nimmt. Dass diese Möglichkeit von den Fahrern übli-

cherweise unzureichend genutzt wird, ist bereits in Kapitel 3.1.1 diskutiert.

Der Einfluss der Gewichtseinstellung kann nur im Zusammenhang mit dem Fahrer

betrachtet werden, da Sinn und Zweck der Gewichtseinstellung ist, für unterschied-

Page 262: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

242

lich schwere Fahrer einen gleich großen Federweg in vertikaler Richtung über eine

Anpassung der Rückstellkraft , ,S FD rückF zu ermöglichen. Eine Aussage über das

schwingungsdämpfende Verhalten des Sitzes gibt der in Kapitel 5.2.3.3 eingeführte

Sitzübertragungsfaktor nach Formel (5-36), genannt SEAT.

Um Störgrößen auszuklammern, richtet sich der Versuchsaufbau nach dem in der

[DIN EN 13490] standardisierten Verfahren zur Bewertung der Schwingungen von

Flurförderzeugsitzen (vgl. Kapitel 5.2.3.3). Gemäß Abbildung 5-24 wird der Sitz samt

Fahrer auf einem Schwingtisch befestigt und mit Prüf-Erregungsschwingungen nach

[DIN EN 13490] angeregt. Nachdem vom Hersteller der Sitze nur Vergleichswerte

aus Messungen für die Spektralklassen IT 1 und IT 2 zur Verfügung stehen, erfolgt

eine Überprüfung ebenfalls für diese Klassen (Abbildung 5-25). Auf eine Messwie-

derholung kann verzichtet werden, da die Ergebnisse einer Simulation mit gleichen

Parametereinstellungen nicht streuen. Die Dauer einer Prüfung beträgt die in der

Norm geforderten 180 s. Bei Anregung mit dem Prüfspektrum IT 1 werden an der

Sitzbasis Schwingungen mit einem Effektivwert der frequenzbewerteten Beschleuni-

gung wPa = 1,59 m/s² und mit dem Prüfspektrum IT 2 von wPa = 0,96 m/s² eingelei-

tet.

Grundsätzlich ist bei der Ergebnisinterpretation zu bedenken, dass die Modellvali-

dierung für korrekt eingestellte Sitze durchgeführt wird, da ausschließlich für diesen

Zustand Vergleichsmessungen zur Verfügung stehen. Auf dynamische Messungen

mit falsch abgestimmten Sitzen, bei denen die oberen und unteren Endanschläge

erreicht werden, kann nicht zurückgegriffen werden. Deswegen ist eine korrekte

Wiedergabe des realen Verhaltens im Grenzbereich falscher Sitzeinstellung durch

die beschriebenen Mehrkörpermodelle nur bedingt gewährleistet. Für qualitative

Aussagen und eine Abschätzung in erster Größenordnung ist die Modellgüte jedoch

ausreichend und erlaubt eine Beurteilung des Sitzübertragungsverhaltens falsch ab-

gestimmter Sitze.

Der MSG 85 verfügt als einziger der untersuchten Sitze über eine von der Gewichts-

einstellung unabhängige Federkennlinie (Abbildung 5-18). Solange der Sitz dem

Fahrer einen ausreichend langen Federweg zur Verfügung stellt, ohne die Endan-

schläge der Gummipuffer zu berühren, ist das Schwingungsverhalten des Systems

aus Sitz und Fahrer gleich, was sich in gleichbleibenden SEAT-Werten für unter-

schiedliche Gewichtseinstellungen widerspiegelt. Erst ein Anschlagen an den Gum-

mipuffern führt zu höheren SEAT-Werten. Bei Anregungen mit dem Prüfspekt-

rum IT 1 (Abbildung 7-53) und IT 2 (Abbildung C-1) ist dies der Fall, wenn sich ein

schwerer Fahrer auf einem zu leicht eingestellten Sitz befindet oder mittlere bis

leichte Fahrer auf Sitzen mit zu hoher Gewichtseinstellung Platz nehmen.

Page 263: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.4 Fahrer und Sitz

243

Abbildung 7-53: SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstel-lung, MSG 85, Prüfspektrum IT 1

Die Sitze MSG 20 und MSG 65 verfügen hingegen über eine von der Gewichtsein-

stellung abhängige Federkennlinie, so dass sich je nach Kombination aus Fahrerge-

wicht und Gewichtseinstellung andere SEAT-Werte ergeben. Solange wiederum

ausreichend Federweg zur Verfügung steht und kein Anschlag an den Gummipuffern

vorliegt, ist diese Änderung nur minimal ausgeprägt. Für den MSG 20 ist dies beim

Prüfspektrum IT 1 für den mittleren Fahrer über den gesamten Bereich der Ge-

wichtseinstellung der Fall (Abbildung 7-54), während sich beim Prüfspektrum IT 2,

das sich stärker in Richtung der Sitzeigenfrequenz bewegt, auch für geringe und

hohe Gewichtseinstellungen erhöhte SEAT-Werte ergeben (Abbildung C-2). Wie

beim MSG 85 führen bei beiden Prüfspektren beim leichten Fahrer zu hohe und

beim schweren Fahrer zu leichte Gewichtseinstellungen zum Anschlagen im oberen

bzw. unteren Gummipuffer.

Abbildung 7-54: SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstel-lung, MSG 20, Prüfspektrum IT 1

0,00

0,25

0,50

0,75

1,00

50 60 70 80 90 100 110 120

SE

AT

[-]

Gewichtseinstellung am Sitz [kg]

55 75 98Fahrergewicht [kg]:

0,00

0,25

0,50

0,75

1,00

1,25

50 60 70 80 90 100 110 120

SE

AT

[-]

Gewichtseinstellung am Sitz [kg]

55 75 98Fahrergewicht [kg]:

Page 264: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

244

Auch beim MSG 65 verändern sich entsprechend der variablen Federkennlinie die

SEAT-Werte geringfügig mit unterschiedlicher Gewichtseinstellung und deutlich mit

dem Anschlagen am Gummipuffer. Beim mittelschweren Fahrer ist dies beim

Prüfspektrum IT 1 nur für sehr leichte Gewichtseinstellungen gegeben (Abbil-

dung 7-55), beim Prüfspektrum IT 2 auch für hohe (Abbildung C-3). Für die leichten

und schweren Fahrer mindert sich die schwingungsdämpfende Wirkung des Sitzes

deutlich für beide Prüfspektren, wenn die Gewichtseinstellung im anderen Extrem

liegt.

Abbildung 7-55: SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstel-lung, MSG 65, Prüfspektrum IT 1

Die dargelegten Ergebnisse bestätigen die in Kapitel 3.1.1 erwähnten Aussagen von

Polster und Schäfer et al., die anhand von Probanden zeigen, dass der Sitz seine

schwingungsmindernden Eigenschaften bei unsachgemäßer Benutzung verlieren

kann [Pol-2008; Sch-2010b].

Bei Betrachtung der dargestellten Abbildungen ist auffällig, dass die minimalsten

SEAT-Werte nur selten für die passende Kombination aus Gewichtseinstellung und

Fahrergewicht erreicht werden. Als Gründe hierfür sind anzuführen, dass für den

Fahrer nur ein sehr einfaches Ersatzmodell Anwendung findet, und dass mehrere

Annahmen getroffen werden wie z. B. der Faktor zum Ausgleich der mitschwingen-

den Masse eines Menschen auf dem Sitz. Berechnete SEAT-Werte größer Eins, was

eine schwingungsverstärkende Wirkung des Sitzes bedeutet, sind auch in der Praxis

anzutreffen, wie z. B. Messergebnisse in [Ort-2010] zeigen. Dass die SEAT-Werte für

einen Sitz bei korrekter Gewichtseinstellung zwischen unterschiedlich schweren

Fahrern bei gleichem Prüfspektrum variieren können, zeigen die Messergebnisse

aus den Versuchen zur Parameterbestimmung (Tabelle 5-4). Auch zwischen den

Prüfspektren sind Unterschiede zu verzeichnen. Bei den vermessenen Sitzen liegen

für das Prüfspektrum IT 2 höhere SEAT-Werte vor. Der Einfluss der Anregung auf

0,00

0,25

0,50

0,75

1,00

50 60 70 80 90 100 110 120

SE

AT

[-]

Gewichtseinstellung am Sitz [kg]

55 75 98Fahrergewicht [kg]:

Page 265: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.4 Fahrer und Sitz

245

den SEAT-Wert wird in Kapitel 7.4.2 näher untersucht. Analog zu den Messungen

(Tabelle 5-4) liegen beim schweren Fahrer auch in der Simulation tendenziell gerin-

gere SEAT-Werte vor. Grundsätzlich ist die Bestimmung des SEAT-Werts wie bei

jeder Messung mit einer gewissen Unsicherheit behaftet. Rissler und Meyer beziffern

anhand eines Vergleichs mit experimentellen Daten die kombinierte Standardunsi-

cherheit für viele Praxisfälle mit 5 % [Ris-2013].

Zusammenfassend lässt sich folgern, dass eine korrekte Gewichtseinstellung des

Sitzes unerlässlich ist, um die vom Konstrukteur vorgesehenen schwingungsmin-

dernden Eigenschaften nutzen zu können. Wie stark ein Sitz bei korrekter Gewichts-

einstellung die eingeleiteten Schwingungen zu dämpfen vermag, hängt von der Di-

mensionierung seiner Feder und des Dämpfers ab. Dies bedingt eine bestimmte

Sitzübertragungsfunktion, die die eingeleiteten Schwingungen abhängig von deren

Spektrum dämpfen. Die Angabe eines pauschalen SEAT-Werts ist deswegen immer

mit größerer Ungenauigkeit verbunden.

7.4.2 Einfluss der Belastungshöhe

Die vorangegangenen Ergebnisse weisen darauf hin, dass der SEAT-Wert nicht nur

von der Gewichtseinstellung, dem Fahrer und der Dimensionierung von Feder und

Dämpfer abhängt, sondern auch von der Höhe und dem Anregungsspektrum der in

das Fahrzeug eingeleiteten Schwingungen. Dieser Aspekt wird folgend anhand der

Versuche aus Kapitel 7.2 beleuchtet, indem der SEAT-Wert in Abhängigkeit der vor-

liegenden Belastung in Form des Effektivwerts der frequenzbewerteten Beschleuni-

gung am Messpunkt Sitzmontagepunkt in vertikaler Richtung aufgetragen wird. Bei

den durchgeführten Simulationen sitzt gemäß Tabelle 7-15 ein schwerer Fahrer mit

98 kg Körpergewicht auf den Sitzen MSG 65 (EFG 20, EFM 14) und MSG 85

(DFG 35), wobei die Gewichtseinstellung stets an das Körpergewicht angepasst ist.

Im Fall der betrachteten Schwellenüberfahrt mit variierender Fahrgeschwindigkeit

und Last (Tabelle 7-9) ist zu beobachten, dass beim EFG 20 mit dem Sitz MSG 65

der SEAT-Wert mit zunehmender Belastung leicht abnimmt, wobei die Abnahme für

geringe Belastungen stärker ist als für hohe (Abbildung 7-56). Dies gilt auch für den

DFG 35, wobei der Abfall der SEAT-Werte für den Sitz MSG 85 nicht so deutlich

ausfällt (Abbildung C-4). Beim Schubmaststapler EFM 14 mit Sitz MSG 65 ist eben-

falls eine Abnahme im Bereich geringer Belastungen festzustellen (Abbildung C-5),

wobei auch für hohe Effektivwerte der frequenzbewerteten Beschleunigung höhere

SEAT-Werte, also eine schlechtere Schwingungsdämpfung, festzustellen sind. Diese

treten auf, wenn hohe Schwellen überfahren werden und durch den starken Stoß der

Federweg des Sitzes durch die Endanschläge begrenzt wird. Betrachtet man nur

Page 266: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

246

Schwellenüberfahrten bis zu einer Schwellenhöhe von 6 mm, treten diese Effekte

nicht mehr auf (Abbildung C-6).

Abbildung 7-56: SEAT-Werte in Abhängigkeit der Belastung für Schwellenüberfahrt des EFG 20 nach Tabelle 7-9 mit Sitz MSG 65

In Kapitel 7.2.3.2 ist bereits angeführt, dass sich beim EFG 20 die dominierenden

Eigenfrequenzen mit zunehmender Last in den Bereich der Sitzeigenfrequenzen ver-

schieben, so dass dessen schwingungsreduzierende Wirkung gemindert wird. Die-

ser Effekt wird deutlich, wenn man die SEAT-Werte getrennt für unterschiedliche

transportierte Lasten betrachtet. In Abbildung 7-57 sind die Simulationsergebnisse

in drei Gruppen unterschiedlich hoher Last geclustert, wobei der Übersichtlichkeit

halber nur die Trendlinien der Einzelversuche dargestellt sind. Es ist zu erkennen,

dass für hohe Lasten der Sitz die eingeleiteten Schwingungen nicht so gut dämpfen

kann wie für geringe Lasten.

Abbildung 7-57: SEAT-Werte als Trendlinie in Form eines Polynoms in Abhängigkeit der Belastung für Schwellenüberfahrt des EFG 20 nach Tabelle 7-9 mit Sitz MSG 65 und unterschied-lichen transportierten Lasten

0,0

0,1

0,2

0,3

0,4

0 0,5 1 1,5 2 2,5

SE

AT

[-]

norm. Effektivwert am Sitzmontagepunkt (z) [-]

0,0

0,1

0,2

0,3

0,4

0 0,5 1 1,5 2

SE

AT

[-]

norm. Effektivwert am Sitzmontagepunkt (z) [-]

0-500

600-1400

1500-2000

Last [kg]

Page 267: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.5 Abschließende Bewertung und Abschätzung der Fahrerbelastung

247

Bei der Überfahrt von Bodenprofilen mit rein regellosen Unebenheiten (Tabelle 7-11)

ist dieses Verhalten im Rahmen der Simulationsstudie nicht bei allen Flurförderzeu-

gen feststellbar. Beim EFG 20 wird zwar eine Abnahme der SEAT-Werte für geringe

Belastungen bemerkt, jedoch streuen die Werte für höhere Belastungen stärker,

wenn bei starken Unebenheiten die Sitze nicht ausreichend Federweg zur Verfügung

stellen können. Beim DFG 35 bleiben die Belastungen weitestgehend konstant, was

insofern erklärbar ist, dass der dort untersuchte Sitz MSG 85 einen längeren Feder-

weg zur Verfügung stellt als die anderen beiden Sitze (Abbildung C-8). Auch beim

EFM 14 ist ein anfänglicher Abfall der SEAT-Werte zu beobachten, wobei diese für

höhere Belastungen wiederum zunehmen (Abbildung C-9).

Insgesamt ist die Bandbreite der SEAT-Werte deutlich geringer als bei vergleichba-

ren Messungen bei Versuchen mit realen Gabelstaplern von Schäfer et al. [Sch-

2010c; Sch-2010b]. Dies liegt daran, dass die Sitze in der Simulation, wie in der Va-

lidierung gezeigt, die eingeleiteten Schwingungen besser dämpfen als in der Reali-

tät. Die gewonnenen Erkenntnisse decken sich aber mit den Arbeiten von Schäfer et

al., die anhand von Messungen auf Gabelstaplern zeigen, dass die SEAT-Werte mit

zunehmendem Effektivwert der frequenzbewerteten Beschleunigung sinken [Sch-

2010c; Sch-2010b].

7.5 Abschließende Bewertung und Abschätzung der Fahrerbelastung

Nach Abschluss der Simulationsexperimente und Darlegung der gewonnenen Er-

kenntnisse werden diese nochmals vor dem Hintergrund der in Kapitel 3.2 postulier-

ten Forschungsfragen verdichtet. So erfolgt zuerst eine zusammenfassende Analyse

der identifizierten Einflussfaktoren, um darauf aufbauend Hinweise zur Exposition

der Flurförderzeugfahrer hinsichtlich Ganzkörper-Vibrationen zu geben.

7.5.1 Maßgebliche Einflussfaktoren

Die Grundlage der durchgeführten Simulationsstudie bildet die erste aufgestellte

Forschungsfrage, die an dieser Stelle wiederholt werden soll.

Welche Faktoren bestimmen maßgeblich in welcher Höhe die Vibrations-

exposition von Fahrern von typischen Flurförderzeugen mit Fahrersitz und

wie beeinflussen sich diese Faktoren gegenseitig?

Auf Basis des Dokumentenstudiums sind dazu neben der Einwirkungsdauer, deren

starker Einfluss unbestritten ist (Abbildung 3-3), die in Tabelle 4-5 postulierten Ein-

Page 268: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

248

flussfaktoren untersucht worden. Sowohl die erste Studie mit zwei Faktorstufen (Ka-

pitel 7.1) als auch die darauf aufbauende Detailbetrachtung (Kapitel 7.2) identifizie-

ren eindeutig für alle untersuchten Flurförderzeuge die Fahrgeschwindigkeit und die

Fahrbahnanregung als maßgebliche Einflussfaktoren auf die ermittelten Effektivwerte

der frequenzbewerteten Beschleunigung ,w Ta an den Messpunkten Sitzmontage-

punkt und Sitzkissen. Eine Erhöhung jedes Faktors bedingt eine steigende Belas-

tung. Die Einflussfaktoren weisen zudem deutliche sich verstärkende Wechselwir-

kungen auf: So ist auf der einen Seite die Belastungszunahme mit höherer Fahrge-

schwindigkeit ausgeprägter, je stärker die Anregung durch die Fahrbahn ist, und auf

der anderen Seite rufen steigende Fahrbahnanregungen größere Belastungen her-

vor, je höher die Fahrgeschwindigkeit ist. Dies ist unabhängig von der Art der Fahr-

bahnanregung, seien es herausragende Einzelhindernisse oder regellose Bo-

denunebenheiten. Eine pauschale Angabe, um wieviel sich die Fahrerbelastung bei

z. B. Verdoppelung der Fahrgeschwindigkeit ändert, ist nicht möglich. Bei Betrach-

tung der absoluten Belastungszunahme, ausgedrückt in der Differenz der Effektiv-

werte der frequenzbewerteten Beschleunigung ,wTa sind auf Grund der Wechselwir-

kung zwischen Fahrgeschwindigkeit und Fahrbahnanregung deutliche Unterschiede

zu verzeichnen, je nachdem bei welchem Anregungsniveau durch die Fahrbahn die

Verdopplung der Fahrgeschwindigkeit stattgefunden hat. Rückt man die relative Be-

lastungszunahme in den Vordergrund, so ist diese für ein Flurförderzeug gesehen in

erster Näherung unabhängig von der Fahrbahnanregung. Es sind aber starke Unter-

schiede zwischen den unterschiedlichen Flurförderzeugen zu verzeichnen. Bei der

untersuchten Schwellenüberfahrt bewegen sich die Werte zwischen 60–150 %.

Deutlich geringer ist dem gegenüber die Wirkung durch die transportierte Last, die

zu einer leichten Belastungsreduktion bei den untersuchten Gabelstaplern am Sitz-

montagepunkt führt. Solange sich durch die höhere Last die Eigenfrequenz des Ge-

samtsystems Gabelstapler nicht zu sehr an die Eigenfrequenz des verwendeten Sit-

zes nähert, ist dieser Effekt auch am Fahrer wahrnehmbar. Eine Kabinenlagerung

kann zu einer geringen Belastungsreduktion des Fahrers beitragen. Ebenso sind Ef-

fekte seitens der untersuchten Superelastikreifen feststellbar, die jedoch in ihrer Wir-

kung deutlich schwächer sind als die Haupteffekte Fahrgeschwindigkeit und Fahr-

bahnanregung.

Ein weiterer dominierender Einflussfaktor ist der verwendete Sitz, wobei dabei zwei

Aspekte zu unterscheiden sind. Auf der einen Seite ist für eine wirkungsvolle

Schwingungsreduktion unabhängig vom verwendeten Sitz eine korrekte Gewichts-

einstellung passend zum Fahrer unerlässlich, da ansonsten SEAT-Werte nahe Eins

möglich sind. Auf der anderen Seite ist wichtig, dass der Sitz hinsichtlich des Anre-

gungsspektrums einen ausreichend großen Federweg zur Verfügung stellt, um ein

Page 269: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.5 Abschließende Bewertung und Abschätzung der Fahrerbelastung

249

Anstoßen an den Endanschlägen (Gummipuffer) zu vermeiden. Ist dies der Fall, kön-

nen mit allen untersuchten Sitzen wirksam die eingeleiteten Schwingungen reduziert

werden, wobei Unterschiede in Abhängigkeit des eingesetzten Feder- und Dämpfer-

Konzepts deutlich werden. Mit Starrsitzen ohne integriertes Feder-Dämpfer-Paket

wäre eine solche Reduktion nicht möglich.

Anhand der drei untersuchten Flurförderzeuge ist ersichtlich, dass der Flurförder-

zeugtyp bei gleichen transportierten Lasten, Fahrgeschwindigkeiten und Bodenbe-

schaffenheiten Einfluss auf die Höhe der Belastung nimmt. Konstruktionsbedingt

sind beim Schubmaststapler stets höhere Effektivwerte der frequenzbewerteten Be-

schleunigung wTa gegenüber den Gabelstaplern zu verzeichnen. Bei ebenen Böden

tritt dieser Einfluss auf Grund fehlender Anregung natürlich zurück. Innerhalb der

Gruppe Gabelstapler ist zwischen den Fahrzeugen EFG 20 und DFG 35 ein mittlerer

Unterschied feststellbar, wobei sich die Fahrzeuge hinsichtlich Tragfähigkeit und

maximaler Fahrgeschwindigkeit unterscheiden.

Zusammenfassend lassen sich als Haupteinflussfaktoren identifizieren:

Einwirkungsdauer eT

Fahrgeschwindigkeit

Fahrbahnanregung (generelle Bodenbeschaffenheit, Einzelhindernisse)

gefederter Fahrersitz und dessen Gewichtseinstellung

7.5.2 Bestimmung der Fahrbelastung

Die zweite Forschungsfrage aus Kapitel 3.2 zielt hingegen auf die weitere Verarbei-

tung dieser Erkenntnisse ab:

Wie kann auf Basis dieser Erkenntnis die Vibrationsbelastung der Flurför-

derzeugfahrer mit Fahrersitz abgeleitet werden?

Nachdem die Haupteffekte identifiziert sind, bietet es sich grundsätzlich an, mit ihrer

Hilfe die voraussichtliche Vibrationsbelastung für einen Anwendungsfall vorherzusa-

gen, denn die Wirkung der Haupteffekte lässt sich durch die Anwendung geeigneter

Modelle quantifizieren. Der Zusammenhang zwischen Einwirkungsdauer eT und re-

sultierender Belastung ist in Formel (2-2) ersichtlich und grafisch in Abbildung 3-3

dargestellt. Wie stark ein Fahrersitz die eingeleiteten Schwingungen reduziert, spie-

gelt sich in seinem SEAT-Wert wider. Für die verbleibenden Haupteffekte Fahrge-

schwindigkeit und Fahrbahnanregung könnten zur formelmäßigen Beschreibung die

Page 270: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

250

in Kapitel 7.2 aufgezeigten Schätzmodelle der linearen Regression verwendet wer-

den. Liegen über den Tag verteilt Tätigkeitsabschnitte unterschiedlicher Ausprägung

vor, so können diese wiederum nach Formel (2-6) zusammengefasst werden. Auch

die untergeordneten Effekte könnten über generelle Zu- oder Abschläge Berücksich-

tigung finden, wie z. B. das Vorhandensein einer Kabinenlagerung oder die Abhän-

gigkeit des SEAT-Werts von der anregenden Belastungsstärke.

Es ist jedoch fraglich, ob eine Schätzung der Fahrerbelastung in Abhängigkeit des

verwendeten Flurförderzeugs auf Basis der speziell ermittelten Zusammenhänge

und einer detaillierten Tätigkeitsbeschreibung für den praktischen Einsatz von Nut-

zen ist und Anwendung finden würde. Im Rahmen dieser Arbeit stehen nun zwar

simulierte Belastungskennwerte zur Verfügung, eine Übertragung auf andere Flur-

förderzeuge ist jedoch nicht gewährleistet. Es ergäbe sich somit die Notwendigkeit,

weitere Flurförderzeuge als Mehrkörpermodelle abzubilden – was nur von dem je-

weiligen Hersteller selbst übernommen werden könnte – oder für jedes Flurförder-

zeug Messungen mit unterschiedlichen Einstellungen durchzuführen. Die Ergebnisse

der Mehrkörpersimulation sind zudem mit Unsicherheit behaftet, da in vorliegender

Arbeit die Belastungen tendenziell unterschätzt werden. Es wird deswegen als sinn-

voll erachtet, die Belastungsermittlung auf gröberem Detaillierungsniveau vorzu-

nehmen und nur stellvertretend auf genauere Rechenmodelle zurückzugreifen, um

z. B. die Wirksamkeit von Verbesserungsmaßnahmen aufzuzeigen.

7.5.2.1 Mittlere Fahrerbelastung

Wie in Kapitel 2.2.4 dargelegt findet der Anwender nur wenige Informationen in Ta-

bellenwerken bezüglich der zu erwartenden Belastungen. Als aktuelle Referenz die-

nen die in Tabelle 2-5 aufgeführten Orientierungswerte, bei denen für Gabelstapler

eine Unterteilung hinsichtlich drei unterschiedlicher Fahrbahnen getroffen wird. Die-

se Detaillierung wird für den praktischen Einsatz als ausreichend gesehen. Damit ist

der Haupteffekt der Fahrbahnanregung berücksichtigt. Die Fahrgeschwindigkeit fin-

det jedoch keine für den Anwender sichtbare Berücksichtigung und fließt vermutlich

über die Belastungsstufen hoch, mittel und gering ein, auch wenn sich die Stufen

gering und hoch nur über Differenz bzw. Addition der Standardabweichung der

Messwerte zur Stufe mittel ableiten. Die Größenordnung der in Tabelle 2-5 erfassten

Belastungswerte (z-Richtung) deckt sich mit den Erkenntnissen der durchgeführten

Simulationsstudie. Nimmt man die Ergebnisse aus den Versuchen nach Tabelle 7-11

und führt eine Clusterung in ebenfalls drei Fahrbahngüten ein, so sind ähnliche Be-

lastungen feststellbar. Selbstverständlich werden die resultierenden Belastungswer-

te durch die gewählte Clusterung der Fahrbahnen beeinflusst. Wegen der aufgezeig-

ten Defizite beim Modell für das Fahrer-Sitz-System erfolgt die Berechnung der Ef-

Page 271: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.5 Abschließende Bewertung und Abschätzung der Fahrerbelastung

251

fektivwerte der frequenzbewerteten Beschleunigung am Sitzkissen über die Multipli-

kation der Werte am Sitzmontagepunkt mit einem durchschnittlichen SEAT-Wert.

Stellt man dem Fahrer pauschal Belastungskennwerte zur Verfügung, die über un-

terschiedliche Vertreter eines Flurförderzeugtyps mit einem breiten Spektrum an

Fahrgeschwindigkeiten gemittelt sind, so wird die Angabe von Fahrgeschwindig-

keitsklassen in Ergänzung zu unterschiedlichen Fahrbahngüten als zweckmäßig er-

achtet, gerade auch wegen der aufgezeigten starken Wechselwirkungen zwischen

Fahrbahnanregung und Fahrgeschwindigkeit. Eine Unterteilung in ebenfalls drei

Klassen (langsam, mittel, schnell) bezogen auf die maximale Fahrgeschwindigkeit

des Flurförderzeugs ist jedoch ausreichend. Basierend auf den Simulationen für die

Gabelstapler nach Tabelle 7-11 enthält Tabelle 7-2 einen exemplarischen Vorschlag

für ein solches Tabellenwerk mit Werten in z-Richtung. Die Belastbarkeit der Daten

kann für eine Anwendung in der Praxis nur durch Messungen an weiteren Gabel-

staplern sichergestellt werden. Fahrgeschwindigkeiten bis zu 50% der Maximalge-

schwindigkeit werden als langsam, von 50–75 % als mittel und ab 75 % als schnell

bezeichnet. Die Klassifizierung der Fahrbahnen erfolgt auf Basis des Unebenheits-

maßes U mit U = 1–3 als eben, U = 4–7 als leicht uneben und U = 8–40 als un-

eben. Die Einteilung lehnt sich an die Vorschläge zur Klassifizierung Fahrbahnun-

ebenheiten nach Tabelle 5-2 an, wobei auf Grund der fehlenden Aufbaufederung der

Flurförderzeuge eine geringere Toleranzgrenze gewählt wird. Die sich ergebenden

Unebenheiten in Abweichungen von der Sollhöhe können zum Vergleich Tabelle B-2

entnommen werden. Starke Unebenheiten werden ausgeklammert. In Anlehnung an

die im Rahmen dieser Arbeit untersuchten Sitze wird der Sitzübertragungsfaktor mit

durchschnittlich SEAT = 0,5 angesetzt.

Tabelle 7-27: Mittlere Belastungen in z-Richtung in Form des Effektivwerts der frequenzbewerteten Beschleunigung , ( )w T za in [m/s²] für Gabelstapler getrennt nach Klassen unterschiedli-cher Fahrgeschwindigkeit und Fahrbahnbeschaffenheit mit Standardabweichung in Klammer, Nges = 1201

Fahrgeschwindigkeit

langsam mittel schnell

Fahrbahn- beschaffenheit

eben

0,17 (0,09)

0,40 (0,14)

0,65 (0,22)

leicht uneben

0,28 (0,12)

0,67 (0,17)

1,06 (0,23)

uneben

0,55 (0,27)

1,31 (0,48)

1,97 (0,58)

Für eine direkte Nutzung durch den Praktiker ist ebenfalls die Angabe der Expositi-

onszeiten bis zum Erreichen des Auslösewerts von (8)A = 0,5 m/s² sowie des Expo-

Page 272: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

252

sitionsgrenzwertes von (8)A = 0,8 m/s² zu empfehlen. Tabelle 7-28 fasst diese Wer-

te für die in Tabelle 7-27 bezifferten Belastungen zusammen.

Tabelle 7-28: Expositionszeiten bis zum Erreichen von Auslöse- und Expositionsgrenzwert bei mittle-ren Belastungen nach Tabelle 7-27

Auslösewert [h] Expositionsgrenzwert [h]

Fahrgeschwindigkeit Fahrgeschwindigkeit

langsam mittel schnell langsam mittel schnell

Fahrbahn- beschaffenheit

eben > 12 > 12 4,7 > 12 > 12 > 12

leicht uneben > 12 4,4 1,8 >12 11,2 4,6

uneben 6,7 1,2 0,5 > 12 3,0 1,3

Unter der Annahme repräsentativer Belastungswerte in Tabelle 7-27, worauf ein

Vergleich mit den Orientierungswerten aus Tabelle 2-5 hindeutet, ist bei Gabelstap-

lern die Fahrt über ebene Fahrbahnen im Normalfall unkritisch. Liegen Fahrbahnen

mit größeren Unebenheiten vor, so ist ein Erreichen von Auslöse- und Grenzwert

innerhalb der Arbeitszeit nicht auszuschließen. In diesen Fällen ist eine messtechni-

sche Überprüfung in jedem Fall ratsam. Da nur ein Schubmaststapler im Rahmen

der Studie untersucht wird und eine Veröffentlichung klar zuzuordnender Expositi-

onswerte aus Gründen der Geheimhaltung nicht erfolgen kann, werden für diesen

Flurförderzeugtyp keine Werte analog zu Tabelle 7-27 angegeben.

Ein Nachteil einer solchen Klassifizierung ist, dass Flurförderzeuge zwar innerhalb

eines Typs, jedoch mit unterschiedlichen Nenntragfähigkeiten und Maximalfahrge-

schwindigkeiten zusammengefasst werden. Eine weitere Unterteilung bei Aufrecht-

erhaltung der Last- und Fahrbahnklassifizierung ist jedoch nicht praxistauglich. Aus

diesem Grund wird dem von Schäfer et al. verfolgten Ansatz der branchenbezoge-

nen Messungen großes Potential zugemessen. Unter der Annahme, „dass innerhalb

einer Branche ‚ähnliche betriebliche Verhältnisse‘ und ‚ähnliche Einsatzbedingun-

gen‘ und somit auch ‚ähnliche Tages-Vibrationsexpositionswerte‘ vorliegen“, können

für eine Branche repräsentative Belastungen ermittelt werden [Sch-2007a]. Die be-

reits veröffentlichten Werte für Gabelstapler im Baustoffgroßhandel legen zudem

nahe, dass mit einer geringen Streuung innerhalb der Branche zu rechnen ist [Sch-

2007b].

7.5.2.2 Exemplarische Betrachtung von Hindernissen

Wie in Kapitel 4.4 dargelegt sind gerade im Außen- oder Torbereich Einzelhindernis-

se in Form von Schwellen oder Löchern in der Farbahnoberfläche anzutreffen, die

Stöße in das Fahrzeug einleiten. Um das Verständnis zu schärfen, welchen Einfluss

Page 273: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.5 Abschließende Bewertung und Abschätzung der Fahrerbelastung

253

eine wiederholte Hindernisüberfahrt auf dem Fahrweg auf die Tagesbelastung

nimmt, wird ein exemplarisches Einsatzszenario dahingehend näher beleuchtet. Im

Mittelpunkt der Betrachtung steht sowohl die Höhe eines Hindernisses als auch die

Anzahl der Überfahrten während eines Arbeitstages.

Um einzelne Hindernisse, d. h. häufigkeitsbasierte Ereignisse, gezielt berücksichti-

gen zu können, wird erneut ein Blick auf die Berechnung der Tagesexposition (8)A

bzw. den verwendeten energieäquivalenten Ansatz geworfen und in Anlehnung an

Formel (2-4) eine energieproportionale Belastungsgröße E eingeführt.

2,w TE a T (7-32)

Wenn wa ,o der Effektivwert der frequenzbewerteten Beschleunigung für eine Mess-

strecke ohne Hindernisse und ,w ma der Effektivwert der frequenzbewerteten Be-

schleunigung für dieselbe Messstrecke mit HN gleichartigen Hindernissen bei sonst

gleichen Bedingungen und der Messdauer T ist, dann ergibt sich für die Beschrei-

bung des Hindernisses die energieproportionale Größe HE zu:

2 2, ,o

1H w m w

H

E a a TN

(7-33)

Damit kann auch bei Einführung einer Referenzzeit re fT formal ein Beschleunigungs-

wert ,w Ha angegeben werden, welcher nur die zusätzliche Belastung durch das Hin-

dernis berücksichtigt.

,H

w H

ref

Ea

T (7-34)

Wählt man als Referenzzeit den Zeitraum von einer Minute, so kann der Effektivwert

der frequenzbewerteten Beschleunigung für ein häufigkeitsbasiertes Ereignis ,w Ha

interpretiert werden als eine Beschleunigung, die – über den Zeitraum von einer Mi-

nute wirkend – die gleiche Belastung hervorruft wie das einmalige Eintreten des Er-

eignisses. Mit dem Prinzip der Energieäquivalenz kann analog zu Formel (2-6) die

Beurteilungsbeschleunigung 0wa bei mehreren Belastungsabschnitten berechnet

werden, wobei diese dann auf einen Zeitraum bezogen oder Einzelereignisse sein

können.

Im Folgenden sei ein Einsatzszenario betrachtet, bei dem ein Gabelstaplerfahrer im

Innenbereich auf ebenem Boden mit mittlerer Fahrgeschwindigkeit für drei Stunden

und im Außenbereich auf leicht unebenem Boden mit schneller Fahrgeschwindigkeit

Page 274: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7 Einflussfaktoren auf die Vibrationsbelastung

254

für eine Stunde Arbeitsaufgaben verrichtet. Dabei überfährt er regelmäßig Schwellen

mit einer Höhe von acht Millimetern. Abbildung 7-58 zeigt exemplarisch, welchen

Einfluss die Schwellenüberfahrt in Abhängigkeit der Häufigkeit auf die Tagesexposi-

tion (8)A nimmt und welcher Unterschied in der Belastung zu verzeichnen ist, wenn

der Fahrer während der Überfahrt die Fahrgeschwindigkeit reduziert. Es ist ersicht-

lich, dass vor allem wiederholte Schwellenüberfahrten bei höherer Fahrgeschwindig-

keit zu einer deutlichen Belastungssteigerung führen.

Abbildung 7-58: Tagesexposition A(8) bei Schwellenüberfahrt in Abhängigkeit der Überfahrten (T1 = 3 h, aw1 = 0,40 m/s², T2 = 1 h, aw2 = 1,06 m/s², z-Richtung)

Die stark belastungssteigernde Wirkung von Einzelhindernissen wie Schwellen soll

an einem weiteren Beispiel verdeutlicht werden. Man stelle sich eine ebene 100 m

lange Fahrbahn mit drei Schwellen vor . Diese wird von einem Gabelstapler mit mitt-

lerer (8 km/h) und schneller (14 km/h) Fahrgeschwindigkeit überfahren. Die dabei er-

laubten Expositionszeiten bis zum Erreichen des Auslösewerts von (8)A = 0,5 m/s²

und des Expositionsgrenzwerts von (8)A = 0,8 m/s² zeigt Abbildung 7-59. Dieses

Beispiel demonstriert vortrefflich, wie stark die täglich erlaubte Einsatzzeit auf dem

Flurförderzeug von wiederholt überfahrenen hohen Einzelhindernissen beeinträchtigt

wird. Die Ausbesserung von Fahrbahnen stellt somit ein überaus wirksames Mittel

dar, die Belastung der Flurförderzeugfahrer zu minimieren.

0,4

0,5

0,6

0,7

0 100 200 300 400

Tag

ese

xp

osi

tio

n A

(8) [m

/s²]

Anzahl Schwellenüberfahrten [-]

schnell

mittel

Geschwindigkeit bei Schwellenüberfahrt

Page 275: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

7.5 Abschließende Bewertung und Abschätzung der Fahrerbelastung

255

Abbildung 7-59: Expositionszeiten bis zum Erreichen von Auslöse- und Expositionsgrenzwert in Ab-hängigkeit der Schwellenhöhe (aw,mittel = 0,40 m/s², aw,schnell = 0,65 m/s²)

Die beiden gezeigten Szenarien können nur exemplarisch verstanden werden, um

Betreibern von Flurförderzeugen die dargelegten Wirkungen von Fahrgeschwindig-

keit und Fahrbahnanregung anhand konkreter Beispiele deutlich zu machen. Eben-

falls ist vorstellbar, anhand solcher Rechenbeispiele den Entscheidern die Wirksam-

keit baulicher Maßnahmen zu verdeutlichen, um zu einem besseren Arbeitsschutz

beizutragen. Ob die Belastungskennwerte durch Simulationen oder Einzelmessun-

gen bestimmt werden ist für das geschilderte Vorgehen unbedeutend.

0

5

10

15

2 3 4 5 6 7 8 9 10 11 12

Exp

osi

tio

nsz

eit [

h]

Schwellenhöhe [mm]

ExpositionsgrenzwertAuslösewert

Fahrgeschwindigkeit

8 km/h

14 km/h

Page 276: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 277: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

257

8 Zusammenfassung und Ausblick

Fahrer von Flurförderzeugen sind wie alle Bediener von mobilen Arbeitsmaschinen

während der Ausführung ihrer Tätigkeiten kontinuierlichen physischen Belastungen

ausgesetzt. Neben dem Verdrehen der Wirbelsäule beim Rückwärtsfahren und der

seitlichen Bewegung des Kopfes, um Sichteinschränkungen beim Fahren zu kom-

pensieren, sind die Ganzkörper-Vibrationen anzuführen, die Sicherheit und Gesund-

heit des Flurförderzeugfahrers gefährden können. Lange Zeit erfuhren diese Ganz-

körper-Vibrationen nur unzureichende Beachtung, obwohl ihre schädlichen Auswir-

kungen durchaus bekannt waren: Ganzkörper-Vibrationen können nicht nur das all-

gemeine Wohlbefinden und die Leistungsfähigkeit mindern, sondern auch schmerz-

hafte Muskelverspannungen und Verdauungsstörungen sowie Änderungen von

Pulsfrequenz und Blutdruck hervorrufen. Bei langjähriger Einwirkung sind überdies

Rückenschmerzen, ein verstärkter Verschleiß der Wirbelsäule und in dessen Folge

neurologische Ausfälle der unteren Gliedmaße möglich. Da jedoch keine Belas-

tungsgrenzwerte vorlagen, war eine Beurteilung der vorliegenden Schwingungsbe-

lastung in der Praxis schwierig. Dies sowie die öffentliche Wahrnehmung haben sich

stark geändert, als das Europäische Parlament im Jahr 2002 die Richtlinie

2002/44/EG über Mindestvorschriften zum Schutz von Sicherheit und Gesundheit

der Arbeitnehmer vor der Gefährdung durch physikalische Einwirkungen (Vibratio-

nen) erließ und im Jahr 2007 mit der Verabschiedung der Lärm- und Vibrations-

Arbeitsschutzverordnung die Umsetzung in deutsches Recht erfolgte. Erstmals lie-

gen nun Grenzwerte vor, die eine Beurteilung der Exposition gegenüber Ganzkör-

per-Vibrationen möglich machen bzw. verbindlich fordern.

Da für Flurförderzeuge kaum Erfahrungswerte verfügbar waren, rückte das Thema

Ganzkörper-Vibrationen in den Fokus der Branche und war Kernpunkt zahlreicher

Veröffentlichungen in Fachzeitschriften und Fachtagungen. Mittlerweile hat sich der

Kenntnisstand verbessert, vor allem Dank Messungen der Berufsgenossenschaft

Handel und Warendistribution – doch es sind längst noch nicht alle Fragestellungen

zum Thema Ganzkörper-Vibrationen bei Flurförderzeugen beantwortet. Meist wer-

den von den Autoren in ihren Beiträgen nur Teilaspekte aufgegriffen, überdies sind

auch teilweise konträre Ansichten vertreten. An dieser Stelle greift die vorliegende

Arbeit an und setzt sich zum Ziel, ein ganzheitliches Bild bezüglich der Exposition

von Flurförderzeugfahrern gegenüber Ganzkörper-Vibrationen zu zeichnen und vor

allem die relevanten Einflussfaktoren auf die Höhe der Belastung herauszustellen.

Page 278: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

8 Zusammenfassung und Ausblick

258

Nach einer Einführung in Messung und Kennwertbildung von Ganzkörper-

Vibrationen, einem Exkurs in deren schädliche Auswirkungen sowie einem Überblick

über veröffentlichte Vibrationskennwerte für Flurförderzeuge (Kapitel 2) ist der erste

wesentliche Inhalt dieser Arbeit die systematische Sammlung und Analyse der rele-

vanten Publikationen bezüglich Ganzkörper-Vibrationen bei Flurförderzeugen, um

darauf aufbauend ein umfassendes Bild über postulierte Einflussfaktoren der Fach-

welt zu geben, die um eigene Überlegungen ergänzt werden (Kapitel 3). Einen mög-

lichen und teilweise bereits punktuell nachgewiesenen Einfluss auf die Höhe der Vib-

rationsexposition wird der Fahrbahn (Bodenbeschaffenheit, Einzelhindernisse), dem

Betriebszustand (Fahrgeschwindigkeit, Beladungszustand, Fahrtrichtung, Neigung

Hubgerüst), der Fahrzeugkonfiguration (Kabinenlagerung, Beschaffenheit der Rei-

fen), dem Sitz (Baugröße, Gewichtseinstellung) und dem darauf sitzenden Fahrer

(Körpergewicht) sowie dem Flurförderzeugtyp selbst zugebilligt. Im Rahmen der vor-

liegenden Arbeit werden die genannten Faktoren auf ihren Einfluss hin untersucht

und dieser nach Möglichkeit quantifiziert.

Zu diesem Zweck werden basierend auf der im Stand der Technik dargelegten Po-

pulation gängiger Flurförderzeuge drei repräsentative Vertreter ausgewählt, um die-

se im weiteren Verlauf der Arbeit einer Parametervariation zu unterziehen. Es handelt

sich um einen Elektro- und einen Verbrenner-Gabelstapler mit 2,0 t und 3,5 t Tragfä-

higkeit sowie einen Schubmaststapler mit einer Tragfähigkeit von 1,4 t, die mit drei

unterschiedlichen mechanisch gefederten Fahrersitzen ausgestattet sind (Kapitel 4).

Die angesprochene Parametervariation wird nicht an den realen Geräten selbst

durchgeführt, sondern es werden für alle drei Flurförderzeuge detaillierte Mehrkör-

permodelle aufgebaut, um mit Hilfe der dynamischen Simulation die Schwingungs-

kennwerte in Form des Effektivwerts der frequenzbewerteten Beschleunigung wTa

zu berechnen. Bei dem Aufbau der Mehrkörpermodelle, der ausführlich in Kapitel 5

dargelegt ist, wird besonderes Augenmerk auf die Modellierung von Fahrbahn und

Reifen, das spielbehaftete Hubgerüst sowie das System aus Fahrer und Sitz, die

beide als schwingungsfähige Modelle abgebildet werden, gelegt. Bei den entstan-

denen Simulationsmodellen handelt es sich um sog. hybride Mehrkörpermodelle, da

ausgewählte Bauteile nicht als Starrkörper, sondern als auf einer FE-Struktur basie-

rende flexible Körper modelliert werden. Sind herstellerseitig keine Angaben zur

Bauteilnachgiebigkeiten bekannt, werden eigene Versuche zur Bestimmung der be-

nötigten Kenngrößen durchgeführt. Die Verifikation und Validierung der entstande-

nen Mehrkörpermodelle als Subsystem oder als Ganzes wird in Kapitel 6 behandelt.

Hierzu werden Fahrversuche mit den realen Flurförderzeugen auf einer Teststrecke

mit Einzelhindernissen durchgeführt, um die gemessenen Beschleunigungsverläufe

an ausgewählten Messpunkten den berechneten gegenüberzustellen.

Page 279: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

8 Zusammenfassung und Ausblick

259

Die mit Hilfe der Mehrkörpermodelle durchgeführte Simulationsstudie gliedert sich in

mehrere Teilbereiche. In einem ersten Schritt werden alle postulierten Einflussfakto-

ren mit je zwei Faktorstufen in einem vollständig faktoriellen Versuchsplan unter-

sucht (Kapitel 7.1). Im Ergebnis lässt sich festhalten, dass Fahrbahnanregung und

Fahrbahngeschwindigkeit für alle Flurförderzeuge die am stärksten dominierenden

Faktoren sind. Dem gegenüber untergeordnet ist bei den untersuchten Gabelstap-

lern der geringe Einfluss der Reifen bezüglich Steifigkeit und Dämpfung sowie die

schwingungsreduzierende Wirkung der Kabinenlagerung mit Gummilagern. Die Wir-

kung dieser bauseits vorhandenen Maßnahme liegt deutlich unter der des Sitzes,

der die Schwingungsbelastung in der Regel halbieren kann. Die untersuchten Sitze

weisen dabei auch auf Grund unterschiedlicher Baugrößen und Komfortstufen eine

starke Streuung auf. Ein geringer Einfluss des Körpergewichts des Fahrers ist fest-

zustellen, im Rahmen der Simulation erfahren schwere Fahrer leicht geringere Belas-

tungen. Eine Änderung von Steifigkeit und Dämpfung der Polyurethanrollen beim

Schubmaststapler bewirkt keine merklich Änderung der Schwingungsbelastung. Bei

beiden Flurförderzeugtypen wirken weder die Fahrtrichtung noch die Neigung des

Hubgerüsts auf die Schwingungsbelastung ein. Während beim Schubmaststapler

die transportierte Last keinen Einfluss auf die Höhe der Belastung besitzt, kann bei

den Gabelstaplern von einer geringen Vibrationsreduktion bei höherer Last ausge-

gangen werden.

Im zweiten Schritt erfolgt eine Detailbetrachtung für die Einflussfaktoren Fahrge-

schwindigkeit, Fahrbahnanregung und transportierte Last mit einer feineren Untertei-

lung der Faktorstufen (Kapitel 7.2). Bei der Fahrbahnanregung werden sowohl her-

ausragende Einzelhindernisse in Form von Schwellen als auch regellose Bo-

denunebenheiten, d. h. Fahrbahnen unterschiedlicher Beschaffenheit, untersucht. Es

kann gezeigt werden, dass mit Hilfe der linearen Regression die Belastung auf Basis

der drei genannten Faktoren mit akzeptabler Genauigkeit geschätzt werden kann.

Ebenso bestätigt sich die dominierende Wirkung von Fahrgeschwindigkeit und

Fahrbahnanregung auf die Schwingungsbelastung von Flurförderzeug und Fahrer:

Diese sind umso höher, je schneller das Fahrzeug fährt und je stärker die Anregung

durch die Fahrbahn ist. Zudem können die Wechselwirkungen zwischen diesen Ein-

flussgrößen deutlich herausgestellt werden. Beide Faktoren verstärken sich gegen-

seitig, d. h. bei größerer Fahrbahnanregung nimmt die Belastung mit steigender

Fahrgeschwindigkeit stärker zu als bei kleinerer, und umgekehrt führen stärker wer-

dende Fahrbahnanregungen bei hoher Fahrgeschwindigkeit schneller zu höheren

Belastungen als bei geringer Fahrgeschwindigkeit. Mit steigender Fahrgeschwindig-

keit ist bei gleichbleibender Fahrbahnanregung – unabhängig von deren Art – ein

linearer Anstieg der Fahrerbelastung zu verzeichnen. Betrachtet man die Fahrbahn-

anregung, nimmt bei steigender Schwellenhöhe und konstanter Fahrgeschwindigkeit

Page 280: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

8 Zusammenfassung und Ausblick

260

die Belastung linear mit der Schwellenhöhe zu. Bei regellosen Bodenunebenheiten

ist hingegen für kleine Unebenheitsmaße ein stärkerer Anstieg zu verzeichnen als für

große. Eine leicht dämpfende Wirkung der Last kann für die Gabelstapler bestätigt

werden, die jedoch nicht für alle Fahrgeschwindigkeiten gleich stark ausgeprägt ist

und in ihrer Wirkung deutlich geringer ist als die von Fahrgeschwindigkeit und Fahr-

bahnanregung. Beim untersuchten Schubmaststapler nimmt die Last im Normalfall

keinen Einfluss auf die Höhe der Belastung. Die Detailbetrachtung zur Fahrbahnan-

regung runden Untersuchungen zur Überfahrt von Fugen sowie zur einseitigen Hin-

dernisüberfahrt ab. Bei Scheinfugen und Raumfugen mit geringer Breite kann keine

Erhöhung der Fahrerbelastung festgestellt werden. Durch Variation von Fugenbreite

und -tiefe allgemeiner Fugen werden deren Auswirkungen auf die Fahrerbelastung

herausgestellt. Werden Einzelhindernisse nur einseitig überfahren, vermindert sich

die Belastung gegenüber einer Anregung mit allen Rädern deutlich.

In Kapitel 7.3 wird die bei Gabelstaplern übliche Art der Kabinenlagerung durch

Gummilager auf deren schwingungsreduzierende Wirkung untersucht. Es kann ge-

zeigt werden, dass bei korrekter Abstimmung der Lagercharakteristik die Effektiv-

werte der frequenzbewerteten Beschleunigung wTa am Sitzmontagepunkt reduziert

werden können. Diese Effekte sind jedoch deutlich geringer als das schwingungs-

mindernde Verhalten des Fahrersitzes, so dass eine Wirkung der Kabinenlagerung

auf dem Messpunkt auf der Sitzoberfläche nicht nachgewiesen werden kann. Eben-

so wird beim Schubmaststapler eine Lagerung der Sitzplatte über Gummilager am

Fahrzeugrahmen vorgestellt, die in geringem Maße Stöße abmildern kann.

Abschließend zu der Betrachtung der Einflussfaktoren wird das System Fahrer-Sitz

näher untersucht (Kapitel 7.4). Im Fokus steht dabei vor allem die vom Fahrer getä-

tigte Gewichtseinstellung am Sitz. Durch Anregung der drei untersuchten Sitze mit

genormten Prüfspektren nach [DIN EN 13490] bei Variation von Gewichtseinstellung

und Fahrergewicht wird deutlich, dass bei größeren Abweichungen zwischen idealer

und getätigter Gewichtseinstellung die schwingungsmindernden Eigenschaften des

Sitzes verloren gehen. Dies ist der Fall, wenn sich ein schwerer Fahrer auf einem

wesentlich zu leicht eingestellten Sitz und ein leichter Fahrer auf einem zu schwer

eingestellten Sitz befindet. Ebenfalls kann anhand der Simulationsstudie für einen

der untersuchten Sitze gezeigt werden, dass dieser die eingeleiteten Vibrationen

umso besser dämpft, je stärker diese sind.

Abschließend werden in Kapitel 7.5 die gewonnenen Erkenntnisse nochmals ver-

dichtet und den eingangs gestellten Forschungsfragen gegenübergestellt. Hinsicht-

lich der zu erwartenden Belastung wird für Gabelstapler ein Vorschlag für ein Tabel-

lenwerk vorgestellt, das neben einer Unterteilung der Fahrbahnbeschaffenheit auf

Page 281: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

8 Zusammenfassung und Ausblick

261

drei Stufen auch eine Differenzierung nach Fahrgeschwindigkeit vorsieht. Basierend

auf den Ergebnissen der Simulationsstudie ist festzuhalten, dass die Fahrt über

ebene Fahrbahnen mit Gabelstaplern und Schubmaststaplern im Normalfall unkri-

tisch ist. Voraussetzung hierfür ist natürlich eine regelmäßige Wartung und Instand-

haltung von Flurförderzeug samt Sitz. Nur wenn Fahrbahnen mit größeren Uneben-

heiten vorliegen, ist ein Erreichen von Auslöse- und Grenzwert innerhalb der Arbeits-

zeit nicht auszuschließen. Anhand von konkreten Einsatzszenarien wird zudem

exemplarisch gezeigt, welchen Einfluss Einzelhindernisse auf die Höhe der Vibrati-

onsbelastung nehmen.

Vorliegende Arbeit fasst somit den aktuellen Kenntnisstand aus der Fachliteratur

hinsichtlich Ganzkörper-Vibrationen bei Flurförderzeugen zusammen und ergänzt

diesen um eine systematische Untersuchung hinsichtlich der Haupteinflussfaktoren,

die für die Vibrationsbelastung der Flurförderzeugfahrer verantwortlich sind und

gleichzeitig als Stellgrößen dienen können, um eine Belastungsreduktion zu errei-

chen.

Während vor allem in den Jahren 2007–2010 in Fachzeitschriften und Fachtagungen

das Thema Ganzkörper-Vibrationen bei Flurförderzeug behandelt wurde, ist gegen-

wärtig die Diskussion erloschen. Als Grund hierfür kann angesehen werden, dass

keine Anwendungsfälle veröffentlicht sind, bei denen kritische Tagesexpositio-

nen ( )A 8 vorliegen bzw. es zu Schädigungen der Flurförderzeugfahrer gekommen

ist – eine Existenz dieser Fälle ist damit jedoch nicht ausgeschlossen. Aus dem Fo-

kus der Branche ist das Thema somit entschwunden und wird nur noch zu Marke-

tingzwecken genutzt, wobei in der Regel nicht anhand von Messungen die Wirk-

samkeit der angepriesenen konstruktiven Maßnahme beziffert wird. Das Thema wird

dabei nicht nur von Flurförderzeugherstellern aufgegriffen. So stellte die Firma Con-

tinental kürzlich einen Superelastikreifen für Gabelstapler vor, der starke Stoßbelas-

tungen deutlich stärker absorbieren soll als Wettbewerbsprodukte [Sey-2014]. Es

besteht die Hoffnung, dass mit der Veröffentlichung weiterer branchenbezogener

Messungen der Berufsgenossenschaft Handel und Warendistribution die Kenntnis

über die in der Praxis vorliegenden Belastungen erweitert wird und das Thema wie-

der mehr Aufmerksamkeit erhält.

Page 282: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 283: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

263

Literaturverzeichnis

[Amm-1991] Ammon, D.; Bormann, V.: Zur Kohärenz zwischen den Unebenheits-

anregungen an linker und rechter Fahrspur. In: Unebenheiten von

Schiene und Straße als Schwingungsursache, VDI-Verlag, Düssel-

dorf, VDI-Berichte, Nr. 877, 1991, S. 103-118

[Amm-2004] Ammon, D.; Frank, P.; Gimmler, H.; Götz, J.; Hilf, K.-D.; Rauh, J.;

Scheible, G.; Stiess, P.: Fahrzeugschwingungen - von der Fahr-

bahnanregung bis zum Komfortempfinden. In: Humanschwingun-

gen, VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 1821, 2004, S. 139-

158

[Amm-2005] Ammon, D.: Vehicle dynamics analysis tasks and related tyre simu-

lation challenges. In: Tyre models for vehicle dynamics analysis -

Proceedings of 3rd International Colloquium on Tyre Models for Ve-

hicle Dynamics Analysis, Taylor & Francis, Glasgow, Vehicle system

dynamics, Nr. Nr. 43 Supplement, 2005, S. 30-47

[Bac-2011] Backhaus, K.; Erichson, B.; Plinke, W.; Weiber Rolf: Multivariate

Analysemethoden. Springer-Lehrbuch, Springer, Berlin, Heidelberg,

2011

[Bac-2012] Bachmann, O.: Alle Jahre wieder! In: Staplerfacts 2012, 9 (2012) 8.

Sonderausgabe der Staplerworld, S. 3

[Bac-2013] Backhaus, K.; Erichson, B.; Weiber, R.: Fortgeschrittene multivariate

Analysemethoden. Lehrbuch, Springer Gabler, Berlin, 2013

[Bak-1987] Bakker, E.; Nyborg, L.; Pacejka, H. B.: Tire Modelling for Use in Ve-

hicle Dynamics Studies. SAE paper, Nr. 870421, 1987

[Bar-2007] Barthels, P.: Zur Modellierung, dynamischen Simulation und

Schwingungsunterdrückung bei nichtglatten, zeitvarianten Balken-

systemen. Dissertation, Institut für Technische Mechanik, Universität

Karlsruhe, 2007

[Bar-2011] Barck, R.: Eine Frage der Energie. In: Logistik Heute (2011) 1-2,

S. 60-61

Page 284: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

264

[Bay-2013] Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit:

Arbeitsschutz. www.lgl.bayern.de/arbeitsschutz/index.htm, Aufruf

am 13.01.2014:19.09.2013

[Beh-1989] Beha, E. F.: Dynamische Beanspruchung und Bewegungsverhalten

von Gabelstaplern. Dissertation, Universität Stuttgart, 1989

[Bei-1975] Beisteiner, F.; Maisch, E.: Die mechanische Beanspruchung von In-

dustrie-Estrichböden durch Flurförderzeuge. In: F+ H Fördern und

Heben, 25 (1975) 17, S. 1627-1630

[Bei-1976] Beisteiner, F.; Maisch, E.: Die mechanische Beanspruchung von In-

dustrie-Estrichböden durch Flurförderzeuge. In: F+ H Fördern und

Heben, 26 (1976) 13, S. 1347-1352

[Bei-1993] Beisteiner, F.; Messerschmidt, D.; Hesse, M.: Staperhubgerüste mit

CAD und FEM berechnen. In: F+ H Fördern und Heben, 43 (1993) 7-

8, S. 492-495

[Bei-1994] Beisteiner, F.: Stapler: Beanspruchungen, Betriebsverhalten und

Einsatz. expert-Verlag, Renningen-Malmsheim, 1994

[Bel-2004] Bellmann, M. A.; Remmer, H.; Mellert, V.: Grundlegende Experimen-

te zur Wahrnehmung von vertikalen Ganzkörpervibrationen. In: Hu-

manschwingungen, VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 1821,

2004, S. 251-269

[Ben-1978] Benson, A.; Barnes, G.: Vision during angular oscillation: the dyna-

mic interaction of visual and vestibular mechanisms. In: Aviation,

Space, and Environmental Medicine, 49 (1978), S. 340-345

[Ben-2010] Bendat, J. S.; Piersol, A. G.: Random data. Wiley series in probability

and statistics, Wiley, Hoboken, N.J, 2010

[Ber-2003] Berufsgenossenschaftliches Institut für Arbeitsschutz - BIA: Nr. 0029

Ganzkörper-Vibrationsbelastung von Gabelstaplerfahrern. Aus der

Arbeit der BIA, Sankt Augustin, 2003

[Ber-2004] Berufsgenossenschaft Handel und Warendistribution (BGHW): Un-

fallverhütungsvorschrift BGV A1. 2004

[Ber-2005] Berufsgenossenschaftliches Institut für Arbeitsschutz - BIA: Ganz-

körper-Schwingungsbelastung bei Gabelstaplerfahrt über Rampen.

Aus der Arbeit der BIA, Nr. 0241, Sankt Augustin, 2005

Page 285: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

265

[Ber-2012] Berufsgenossenschaft Holz und Metall (BGHM): Gabelstapler. BG-

Information, Nr. 545, Mainz, 2012

[Bes-2005] Besselink, I. J.: Experiences with the TYDEX standard tyre interface

and file format. In: Tyre models for vehicle dynamics analysis - Pro-

ceedings of 3rd International Colloquium on Tyre Models for Vehicle

Dynamics Analysis, Taylor & Francis, Glasgow, Vehicle system dy-

namics, Nr. Nr. 43 Supplement, 2005, S. 63-75

[Bie-2009] Biermann, T.: Entwicklung eines aktiven Fahrwerks für Gegenge-

wichtstapler. Dissertation, Fachbereich Maschinenbau der Helmut

Schmidt Universität Hamburg, 2009

[Bie-2010] Biermann, J.-W.; Hammer Jan: Hybride Antriebssysteme senken

den Kraftstoffbedarf. In: Hebezeuge und Fördermittel, 50 (2010) 3,

S. 124-125

[Bit-2005] Bitter, T.; Fritzsche, F.; Hartung, J.: Darstellung des Schwingungs-

verhaltens von Fahrzeuginsassen - Symbiose aus Experiment und

Simulation. FAT-Schriftenreihe, Nr. 189, Frankfurt am Main, 2005

[Boe-2012] Boekhoff, H.: Update Flurförderzeuge. Verband Deutscher Maschi-

nen- und Anlagenbau (VDMA), Fördertechnik und Logistiksysteme,

Frankfurt am Main, 2012

[Boe-2013] Boekhoff, H.: Update Flurförderzeuge. http://foerd.vdma.org/article/-

/articleview/2429501, Aufruf am 20.01.2014:22.10.2013

[Böh-2001] Böhler, H.: Traktormodell zur Simulation der dynamischen Belastun-

gen bei Transportfahrten. VDI Verlag GmbH, Fortschrittsbericht VDI

Reihe 14, Nr. 104, Düsseldorf, 2001

[Bon-1981] Bonefeld, X.: Bestimmung der Quer-Kippstabilität von Flurförder-

zeugen. In: F+ H Fördern und Heben, 31 (1981) 6, S. 442-446

[Bor-1978] Bormann, V.: Messung von Fahrbahn-Unebenheiten paralleler Fahr-

spuren und Anwendung der Ergebnisse. In: Vehicle System Dyna-

mics, 7 (1978) 2, S. 65-81

[Bor-2010] Bortz, J.; Döring, N.: Forschungsmethoden und Evaluation für Hu-

man- und Sozialwissenschaftler. Springer-Lehrbuch Bachelor, Mas-

ter, Springer-Medizin-Verlag, Heidelberg, ca. 2010

Page 286: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

266

[Bös-2013] Bös, M.; Geimer, M.; Holdmann, G.: Virtuelle Bewertung und Opti-

mierung des Schwingungskomforts moiler Arbeitsmaschinen mittels

Gesamtfahrzeugsimulation am Beispiel Radlader. In: 5. VDI-Tagung

Humanschwingungen 2013, VDI-Berichte, Nr. 2190, 2013, S. 187-

202

[Bov-1999] Bovenzi, M.; Hulshof, C. T. J.: An updated review of epidemiologic

studies on the relationship between exposure to whole-body vibra-

tion and low-back pain (1986-1997). In: International Archives of Oc-

cupational and Environmental Health, 72 (1999), S. 351-365

[Bov-2006] Bovenzi, M.: Longitudinal epidemiological surveys in Italy of drivers

exposed to whole-body vibration, Institute of Occupational Medi-

cine, University of Trieste, Annex 13 to Final Technical Report, VI-

BRISK (EC FP5 Project No. QLK4-2002-02650), 2006

[Bov-2010] Bovenzi, M.: A longitudinal study of low bach pain and daily vibra-

tion exposure in professional drivers. In: Industrial Health, 48 (2010),

S. 54-595

[Bov-2013] Bovenzi, M.: Health effects of vibration in humans - an epidemiolog-

ical overview. In: 5. VDI-Tagung Humanschwingungen 2013, VDI-

Berichte, Nr. 2190, 2013, S. 3-23

[Bra-1966] Braun, H.: Untersuchungen über Fahrbahnunebenheiten. Deutsche

Kraftfahrforschung und Straßenverkehrstechnik, Nr. 186, 1966

[Bra-1969] Braun, H.: Untersuchung von Fahrbahnunebenheiten und Anwen-

dung der Ergebnisse. Dissertation, Technische Universität Braun-

schweig, 1969

[Bra-1988] Braun, H.; Gerz, U.: Erfassung und Bewertung von Fahr-

bahnunebenheiten im Längsprofil. In: Straßen und Verkehr 2000, In-

ternationale Straßen- und Verkehrskonferenz, Köln, 1988, S. 323-

328

[Bra-1991] Braun, H.; Hellenbroich, T.: Messergebnisse von Straßenunebenhei-

ten. In: Unebenheiten von Schiene und Straße als Schwingungsur-

sache, VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 877, 1991, S. 47-80

[Bra-2013] Braess, H.-H.; Seiffert, U.: Vieweg-Handbuch Kraftfahrzeugtechnik.

ATZ-MTZ-Fachbuch, Springer Vieweg, Wiesbaden, 2013

Page 287: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

267

[Brä-2013] Brähler, H.; Rhein, B.: Lastkraftwagen- und Anhängerfahrgestell. In:

Nutzfahrzeugtechnik, Vieweg+Teubner Verlag, Wiesbaden,

ATZ/MTZ-Fachbuch, 2013, S. 191-301

[Bru-2002a] Bruns, R.: Fahrstabilität und Kippsicherheit von Gabelstaplern - Teil

I. In: F+ H Fördern und Heben, 52 (2002) 12, S. 772-774

[Bru-2002b] Bruns, R.: Sicherheitsnachweis für Stapler. In: Hebezeuge und För-

dermittel, 42 (2002) 7-8, S. 392-394

[Bru-2003a] Bruns, R.: Fahrstabilität und Kippsicherheit von Gabelstaplern - Teil

II. In: F+ H Fördern und Heben, 53 (2003) 1-2, S. 26-28

[Bru-2003b] Bruns, R.; Biermann, T.: MKS-Simulation als Integrationsplattform

im Entwicklungsprozess von Gabelstaplern. In: F+ H Fördern und

Heben, 53 (2003) 10, S. 588-590

[Bru-2013a] Bruns, R.; Piepenburg, B.; Ulrich, S.; Krivenkov, K.: Simulationsge-

stützte Untersuchung der Spurtreue von Routenzügen. In: 9. Fach-

kolloquium Logistik der Wissenschaftlichen Gesellschaft für Techni-

sche Logistik (WGTL), Praxiswissen Service, Dortmund, 2013,

S. 219-231

[Bru-2013b] Bruns, R.; Schilling, T.; Frenkel, A.; Amberger, M.; Fischer, G.;

Günthner, W. A.; Braun, M.; Linsel, P.; Furmans, K.: Analyse und

Quantifizierung der Umweltauswirkungen von Fördermitteln in der

Intralogistik. Lehrstuhl für Maschinenelemente und Technische Lo-

gistik, Helmut-Schmidt-Universität, Forschungsbericht, IGF-

Vorhaben 16973 N, Hamburg, 2013

[Bru-2013c] Bruns, R.; Piepenburg, B.: Dynamische Standsicherheit von Portal-

staplern. In: 9. Fachkolloquium Logistik der Wissenschaftlichen Ge-

sellschaft für Technische Logistik (WGTL), Praxiswissen Service,

Dortmund, 2013, S. 29-36

[Buc-1997] Buck, B.: Ein Modell für das Schwingungsverhalten des sitzenden

Menschen mit detaillierter Abbildung der Wirbelsäule und Muskula-

tur im Lendenbereich. Dissertation, Technische Universität Darm-

stadt, 1997

[Bun-1996] Gesetz über die Durchführung von Maßnahmen des Arbeitsschutzes

zur Verbesserung der Sicherheit und des Gesundheitsschutzes der

Page 288: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

268

Beschäftigten bei der Arbeit. Bundesministerium für Arbeit und So-

ziales, In: Bundesgesetzblatt, Teil 1, 1996, S. 1246

[Bun-2005] Bundesministerium für Gesundheit und Soziale Sicherung: Merkblatt

zu der Berufskrankheit Nr. 2110 der Anlage der Berufskrankheiten-

Verordnung (BKV). Bundesarbeitsblatt 7-2005, S. 43ff, 2005

[Bun-2007a] Bundesministerium für Arbeit und Soziales: EU-Handbuch zum

Thema Ganzkörper-Vibration. Potsdam, 2007

[Bun-2007b] Verordnung zur Umsetzung der EG-Richtlinien 2002/44/EG und

2003/10/EG zum Schutz der Beschäftigten vor Gefährdungen durch

Lärm und Vibrationen. Bundesministerium für Arbeit und Soziales,

In: Bundesgesetzblatt, Teil 1, Nr. 8, 2007, S. 261-277

[Bun-2007c] Bundesministerium für Arbeit und Soziales: Handbuch zum Thema

Ganzkörper-Vibrationen. Potsdam, 2007

[Bun-2009] Berufskrankheiten-Verordnung (BKV). Bundesministerium für Arbeit

und Soziales, In: Bundesgesetzblatt, Teil 1, 2009, S. 1273

[Bun-2010a] Bundesministerium für Arbeit und Soziales: Sicherheit und Gesund-

heit bei der Arbeit 2008. Berlin, 2010

[Bun-2010b] Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA): Bran-

chenbezogene Gefährdungstabellen bei Vibrationen.

http://www.baua.de/de/Themen-von-A-Z/Anlagen-und-

Betriebssicherheit/TRLV/TRLV-Vibration-Tabellen.html, Aufruf am

18.03.2015:11.03.2010

[Bun-2010c] Technische Regeln zur Lärm- und Vibrations-

Arbeitsschutzverordnung - TRLV Vibrationen. Bundesministerium für

Arbeit und Soziales, In: Gemeinsames Ministerialblatt, Nr. 14/15,

2010, S. 271-322, www.baua.de/TRLV

[Bun-2012a] Bundespsychotherapeutenkammer: BPtK-Studie zur Arbeitsunfä-

higkeit - Psychische Erkrankungen und Burnout. Berlin, 2012

[Bun-2012b] Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA): Sicher-

heit und Gesundheit bei der Arbeit 2012. Bundesministerium für Ar-

beit und Soziales, Berlin, 2012

Page 289: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

269

[Bun-2012c] Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA): Sicher-

heit und Gesundheit bei der Arbeit 2010. Dortmund, Berlin, Dresden,

2012

[Bus-2012] Busch, N.; Bruns, R.: Berücksichtigung der dynamischen Reifenei-

genschaften in der MKS-Simulation der Kurvenfahrt. In: Tagungs-

band 9. Hamburger Staplertagung, Hamburg, 2012, S. 51-58

[Cal-2001] Callaghan, J. P.; McGill, S. M.: Low back joint loading an kinematics

during standing and unsupported sitting. In: Economics, 44 (2001) 3,

S. 280-294

[Car-1989] Carson, J. S.: Verification and validation: a consultant's perspective.

In: Winter Simulation Conference Proceedings, Society for Comput-

er Simulation International, San Diego, 1989, S. 552-558

[CEN-1996] CEN Report CR 12349: Mechanische Schwingungen – Leitfaden

über die Wirkung von Schwingungen auf die Gesundheit des Men-

schen. Beuth Verlag, Berlin, 1996

[Cha-2006] Chaffin, D. B.; Andersson, G.; Martin, B. J.: Occupational biome-

chanics. Wiley-Interscience, Hoboken, N.J, 2006

[Chr-2006] Christ, E.; Fischer, S.; Kaulbars, U.; Sayn, D.: Vibrationseinwirkung

an Arbeitsplätzen – Kennwerte der Hand-Arm- und Ganzkörper-

Schwingungsbelastung. Hauptverband der gewerblichen Berufsge-

nossenschaften (HVBG), BGIA-Report, Nr. 6/2006, Sankt Augustin,

2006

[Coe-1962] Coermann, R. R.: The mechanical impedance of the human body in

sitting and standing position at low frequencies. In: Human Factors

(1962), S. 227-253

[Con-2008] Continental AG: Technischer Ratgeber Industrie- / MPT- / EM-

Reifen. Hannover, 2008

[Cos-2010a] Cosin Sientific Software: Flexible Ring Tire Model - Documentation

and User’s Guide. 2010

[Cos-2010b] Cosin Sientific Software: Cosin Road Models: Documentation and

User’s Guide. 2010

[Cra-1968] Craig, R. R. Jr.; Bampton, M. C. C.: Coupling of substructures for

dynamic analysis. In: AIAA Journal, 6 (1968) 7, S. 1313-1319

Page 290: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

270

[Czi-1999] Cziesielski, E.; Schrepfer, T.: Schäden an Industrieböden. Schaden-

freies Bauen, Fraunhofer-IRB-Verlag, Stuttgart, 1999

[Dep-2014] Department of Public Health and Clinical Medicine: Whole-Body /

Hand and Arm Vibration Database, Umeå University,

http://www.vibration.db.umu.se, Aufruf am 13.02.2014

[Deu-2014] Deutsche Gesetzliche Unfallversicherung e. V: Fachbereichs-

Informationsblätter. www.bg-vibrationen.de, Aufruf am 14.02.2014

[Die-1992] Diebschlag, W.; Heidinger, F.; Dupuis, H.: Ergonomie des Sitzens.

Die Bibliothek der Technik, Nr. 68, Verlag Moderne Industrie, Lands-

berg/Lech, 1992

[DIN 1311] DIN 1311-1:2000-02: Schwingungen und schwingungsfähige Sys-

teme - Teil 1: Grundbegriffe, Einteilung. DIN Deutsches Institut für

Normung

[DIN 15185] DIN 15185-1:1991-08: Lagersysteme mit leitliniengeführten Flurför-

derzeugen; Anforderungen an Boden, Regal und sonstige Anforde-

rungen. DIN Deutsches Institut für Normung

[DIN 18202] DIN 18202:2005-04: Toleranzen im Hochbau - Bauwerke. DIN Deut-

sches Institut für Normung

[DIN 18316] DIN 18316:2010-04: VOB Vergabe- und Vertragsordnung für Bau-

leistungen – Teil C: Allgemeine Technische Vertragsbedingungen für

Bauleistungen (ATV) – Verkehrswegebauarbeiten – Oberbauschich-

ten mit hydraulischen Bindemitteln. DIN Deutsches Institut für Nor-

mung

[DIN 18318] DIN 18318:2010-04: VOB Vergabe- und Vertragsordnung für Bau-

leistungen – Teil C: Allgemeine Technische Vertragsbedingungen für

Bauleistungen (ATV) – Verkehrswegebauarbeiten – Pflasterdecken

und Plattenbeläge in ungebundener Ausführung, Einfassungen. DIN

Deutsches Institut für Normung

[DIN 45676] DIN 45676:2003-06: Mechanische Eingangsimpedanzen und Über-

tragungsfunktionen des menschlichen Körpers. DIN Deutsches Insti-

tut für Normung

[DIN 483] DIN 483:2005-10: Bordsteine aus Beton. DIN Deutsches Institut für

Normung

Page 291: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

271

[DIN CEN/TS 15730] DIN CEN/TS 15730:2008-11: Erdbaumaschinen – Anlei-

tung zur Beurteilung der Belastung durch Ganzkörper-

Schwingungen bei Maschinen mit aufsitzendem Maschinenführer –

Verwendung harmonisierter Messwerte von internationalen Institu-

ten, Organisationen und Herstellern (ISO/TR 25398:2006). DIN Deut-

sches Institut für Normung

[DIN EN 1032] DIN EN 1032:2009-02: Prüfverfahren für bewegliche Maschinen zum

Zwecke der Bestimmung des Schwingungsemissionswerte. DIN

Deutsches Institut für Normung

[DIN EN 12053] DIN EN 12053:2009-07: Sicherheit von Flurförderzeugen - Verfahren

für die Messung der Geräuschemission. DIN Deutsches Institut für

Normung

[DIN EN 12786] DIN EN 12786:2013-05: Sicherheit von Maschinen - Anforderungen

an die Abfassung der Abschnitte über Schwingungen in Sicherheits-

normen. DIN Deutsches Institut für Normung

[DIN EN 13059] DIN EN 13059:2009-06: Sicherheit von Flurförderzeugen - Schwin-

gungsmessung. DIN Deutsches Institut für Normung

[DIN EN 13490] DIN EN 13490:2009: Mechanische Schwingungen - Flurförderzeuge

- Laborverfahren zur Bewertung sowie Spezifikation der Schwingun-

gen des Maschinenführersitzes. DIN Deutsches Institut für Normung

[DIN EN 14253] DIN EN 14253-1:2008: Mechanische Schwingungen – Messung und

rechnerische Ermittlung der Einwirkung von Ganzkörper-

Schwingungen auf den Menschen am Arbeitsplatz im Hinblick auf

seine Gesundheit – Praxisgerechte Anleitung. DIN Deutsches Institut

für Normung

[DIN EN 30326] DIN EN 30326-1:1994-06: Laborverfahren zur Bewertung der

Schwingungen von Fahrzeugsitzen. DIN Deutsches Institut für Nor-

mung

[DIN EN 30362-1/A2] DIN EN 30362-1/A2:2012-04: Laborverfahren zur Bewer-

tung der Schwingungen von Fahrzeugsitzen - Änderung 2. DIN

Deutsches Institut für Normung

[DIN EN ISO 8041] DIN EN ISO 8041:2006-06: Schwingungseinwirkung auf den

Menschen - Messeinrichtung. DIN Deutsches Institut für Normung

Page 292: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

272

[DIN ISO 5053] DIN ISO 5053:1994-08: Kraftbetriebene Flurförderzeuge - Begriffe.

DIN Deutsches Institut für Normung

[DIN SPEC 45697] DIN SPEC 45697:2012-06: Mechanische Schwingungen und

Stöße - Verfahren zur Bewertung stoßhaltiger Ganzkörper-

Vibrationen; mit CD-ROM. DIN Deutsches Institut für Normung

[Dol-2011] Dolk, B.; Knust, R.; Magens, P.; Manthey, M.; Nowitzki, H.; Plate, P.;

Rückner, G.; Schöneborn, M.; Schröppel, M.; Weber, M.: InnoRad –

Erhöhung der Lebensdauer von Rädern und Rollen aus Polyurethan.

Institut für Fördertechnik und Logistik der Universität Stuttgart,

Lehrstuhl für Maschinelemente und Technische Logistik der Helmut

Schmidt Universität Hamburg, 2011

[Dre-2006] Dresig, H.: Schwingungen mechanischer Antriebssysteme. Springer,

Berlin, 2006

[Dre-2007] Dresig, H.; Holzweißig, F.: Maschinendynamik. Springer-Verlag, Ber-

lin, Heidelberg, 2007

[Dub-2011] Dubbel, H.; Grote, K.-H.; Feldhusen, J.: Dubbel. Springer, Berlin,

2011

[Dup-1984] Dupuis, H. Z. G.: Beanspruchung des Menschen durch mechanische

Schwingungen, Kenntnisstand zur Wirkung von Ganzkörper-

Schwingungen. In: Schriftenreihe des Hauptverbandes der gewerbli-

chen Berufsgenossenschaften e.V., Sankt Augustin, 1984

[Dup-1994] Dupuis, H.; Zerlett, G.: Arbeitstechnische Voraussetzungen der Be-

rufskrankheit Nr. 2110. In: die BG, 5 (1994), S. 346-349

[Egb-2012] Egberts, T.; Testing, A.: Humanschwingungen bei Schubmaststap-

lern ermittelt. In: F+ H Fördern und Heben (2012) 12, S. 12-15

[Eic-2007] Eicheldinger, A.: Humanschwingungsmessung an Flurförderzeugsit-

zen. In: 14. Heidelberger Flurförderzeug-Tagung, VDI-Verlag, Düs-

seldorf, VDI-Berichte, Nr. 1977, 2007, S. 47-55

[Eic-2008] Eicheldinger, A.: Wie lässt sich Vibrationsbelastung reduzieren? In:

Hebezeuge und Fördermittel, 48 (2008) 4, S. 164-165

[Eid-2011] Eid, M.; Gollwitzer, M.; Schmitt, M.: Statistik und Forschungsmetho-

den. Beltz, Weinheim, Basel, 2011

Page 293: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

273

[Elb-1996a] Elbracht, D.; Golombeck, G.-U.: Kippvermeidung schnell fahrender

Stapler - Teil I. In: F+ H Fördern und Heben, 46 (1996) 12, S. 881-

887

[Elb-1996b] Elbracht, D.; Golombek, G.-U.: Die Kippvermeidung schnell fahren-

der Flurförderzeuge. Duisburg, Fertigungstechnisches Labor der

Gerhard-Mercator-Universität - Gesamthochschule Duisburg, 1996

[Elb-1997] Elbracht, D.; Golombeck, G.-U.: Kippvermeidung schnell fahrender

Stapler - Teil II. In: F+ H Fördern und Heben, 47 (1997) 1-2, S. 16-19

[Eur-2002] Richtlinie 2002/44/EG des europäischen Parlaments und des Rates

vom 25. Juni 2002 über Mindestvorschriften zum Schutz von Si-

cherheit und Gesundheit der Arbeitnehmer vor der Gefährdung

durch physikalische Einwirkungen (Vibrationen). Europäisches Par-

lament und der Rat der Europäischen Union, In: Amtsblatt der Euro-

päischen Gemeinschaften, Reihe L, Nr. 177, 2002, S. 13-18

[Eur-2006] Richtlinie 2006/42/EG des Europäischen Parlaments und des Rates

vom 17. Mai 2006 über Maschinen und zur Änderung der Richtlinie

95/16/EG (Neufassung). Europäisches Parlament und der Rat der

Europäischen Union, In: Amtsblatt der Europäischen Gemeinschaf-

ten, Reihe L, Nr. 157, 2006, S. 24-86

[Eur-2010] Europäische Komission Unternehmen und Industrie: Leitfaden für

die Anwendung der Maschinenrichtlinie 2006/42/EG - vollständige

deutsche Übersetzung. Brüssel, 2010

[Fac-2013] Fachbereich Holz und Metall der DGUV: Emissionsangaben Lärm u.

Vibrationen - Vorgaben für Hersteller/ Lieferanten nach 9. ProdSV

bzw. EG-Richtlinie 2006/42/EG. DGUV-Information, Nr. 11, Mainz,

2013

[Fec-2011] Fecht, N.: Hydropneumatische Federung bei Landmaschinen.

http://www.konstruktion.de/allgemein/hydropneumatische-

federung-bei-landmaschinen/, Aufruf am 3.3.2015:20.11.2011

[Féd-2013a] Fédération Européenne de la Manutention: World Industrial Truck

Statistics (WITS) Information Sheet 2013. Frankfurt am Main, 2013

[Féd-2013b] Fédération Européenne de la Manutention: Facts Industrial Truck

Market 2013. Annual Fact Sheets, http://www.fem-

eur.com/index.php/prodgroups_trucks/

Page 294: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

274

[Fie-2012] Fiedler, J.; Scherz, W.: Bahnwesen. Werner, Köln, 2012

[Fis-2001] Fischer, S.: Der schwingungsmindernde Fahrersitz für Gabelstapler.

In: 11. Heidelberger Tagung der Flurförderzeugbetreiber, VDI-Verlag,

Düsseldorf, VDI-Berichte, Nr. 1590, 2001, S. 213-218

[Fis-2010a] Fischer, G.; Günthner, W. A.: Mit Schwung, aber ohne Schwingung.

In: Logistik Heute, 32 (2010) 12, S. 28-29

[Fis-2010b] Fischer, G.; Günthner, W. A.: Untersuchung der Humanschwingun-

gen bei Flurförderzeugen in Versuch und Simulation. In: Human-

schwingungen, VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 2097,

2010, S. 61-74

[Fis-2010c] Fischer, G.; Günthner, W. A.: Humanschwingungen bei Flurförder-

zeugen. In: 8. Hamburger Staplertagung, Hamburg, 2010

[Fis-2010d] Fischer, G.; Günthner, W. A.: Fahrer im Fokus. In: Logistra, 22 (2010)

11, S. 18-19

[Fis-2010e] Fischer, G.; Günthner, W. A.: Vibrationsbelastung bei Flurförderzeu-

gen. In: Stapler World, 8 (2010) 2, S. 11-14

[Fis-2011a] Fischer, G.; Günthner, W. A.: Ganzkörper-Vibrationen intensiv unter-

sucht. In: Hebezeuge und Fördermittel, 51 (2011) 4, S. 180-183

[Fis-2011b] Fischer, G.; Günthner, W. A.: Ganzkörper-Vibrationen bei Flurförder-

zeugen. In: Technische Sicherheit, 1 (2011) 4, S. 38-41

[Fis-2011c] Fischer, G.; Günthner, W. A.: Simulation von Ganzkörper-Vibrationen

bei Flurförderzeugen. In: 16. Flurförderzeugtagung 2011, VDI-Verlag,

Düsseldorf, VDI-Berichte, Nr. 2136, 2011, S. 121-136

[Fle-2004] Fleury, G.: Experimentelle Untersuchung der dynamischen Masse

einer sitzenden Versuchsperson bei Schwingungen in der X-

Richtung zur Bildung eines Modells. In: Humanschwingungen, VDI-

Verlag, Düsseldorf, VDI-Berichte, Nr. 1821, 2004, S. 301-316

[For-1995] Forschungsvereinigung Autmobiltechnik e.V.: RAMSIS - ein System

zur Erhebung und Vermessung dreidimensionaler Körperhaltungen

von Menschen zur ergonomischen Auslegung von Bedien- und Sitz-

plätzen im Auto. FAT-Schriftenreihe, Nr. 123, Frankfurt am Main,

1995

Page 295: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

275

[For-2001] Richtlinien für die Standardisierung des Oberbaues von Verkehrsflä-

chen RStO 01, Forschungsgesellschaft für Straßen- und Verkehrs-

wesen, 2001

[For-2007] Zusätzliche Technische Vertragsbedingungen und Richtlinien für den

Bau von Verkehrsflächenbefestigungen aus Ausphalt - ZTV Asphalt-

StB 07, Forschungsgesellschaft für Straßen- und Verkehrswesen,

2007

[Fre-2006] Freimann, T.: Zement-Merkblatt Tiefbau: Industrieböden aus Beton.

Verein Deutscher Zementwerke e.V, Düsseldorf, 2006

[Fre-2008] Freystein, H.; Muncke, M.; Schollmeier, P.: Handbuch Entwerfen von

Bahnanlagen. Eurailpress, Hamburg, 2008

[Fri-2003] Fritz, M.; Bröde, P.; Fischer, S.: Vergleich der Schwingungsbewer-

tung nach VDI 2057 mit einer kraftbezogenen Bewertung zur Ab-

schätzung des Risikos von Wirbelsäulenveränderungen. In: Zentral-

blatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie, 53 (2003),

S. 354-363

[Fri-2007] Fritz, M.; Geiß, O.; Fischer, S.: Vergleich der Schwingungsbewertung

von Ganzkörper-Schwingungen gemäß VDI 2057 mit einer kraftbe-

zogenen Bewertung anhand Expositionsdaten einer epidemologi-

schen Studie. In: Humanschwingungen, VDI-Verlag, Düsseldorf, VDI-

Berichte, Nr. 2002, 2007, S. 307-322

[Fri-2010] Fritz, M.; Schäfer, K.: Berücksichtigung der Haltung des Oberkör-

pers bei der Beurteilung von Ganzkörper-Schwingungen. In: Zeit-

schrift für Arbeitswissenschaft, 64 (2010) 4, S. 293-304

[Fri-2011] Fritzmeier: Neues Projekt zur Kabinendämpfung. In: Hebezeuge und

Fördermittel, 51 (2011) Sonderheft Flurförderzeuge, S. 47

[Gea-1971] Gear, C. W.: The Simultaneous Solution of Differential Algebraic

Systems. In: IEEE Transactions on Circuit Theory, 18 (1971) 1, S. 89-

95

[Ger-1991] Gerz, U.: Fahrbahnunebenheiten - Meßverfahren bei Straßen. In:

Unebenheiten von Schiene und Straße als Schwingungsursache,

VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 877, 1991, S. 21-46

Page 296: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

276

[Ges-2007] Zweite Verordnung zur Änderung bergrechtlicher Verordnungen. Ge-

sundheitsschutz-Bergverordnung BGBI. I (2005), In: Bundesgesetz-

blatt, Teil 1, I, 2007, S. 2452-2455

[Gim-1988] Gim, G.: Vehicle Dynamic Simulation with a Comprehensive Model

for Pneumatic Tires. Ph. D. Dissertation, University of Arizona, 1988

[Gip-1987] Gipser, M.: DNS-Tire, ein dynamisches, räumliches nichtlineares

Reifenmodell. In: Reifen, Fahrbahn, Fahrwerk, VDI-Verlag, Düssel-

dorf, VDI-Berichte, Nr. 650, 1987, S. 115-135

[Gip-1996] Gipser, M.: DNS-Tire 3.0 - Die Weiterentwicklung eines bewährten

strukturmechanischen Reifenmodells. In: Darmstädter Reifenkollo-

quium, VDI-Verlag, Darmstadt, VDI-Berichte, Nr. 512, 1996, S. 52-62

[Gip-1999] Gipser, M.: FTire, an New Fast Tire Model for Ride Comfort Simula-

tions. International ADAMS User's Conference, Berlin, 1999

[Gip-2005] Gipser, M.: FTire: a physically based application-oriented tyre mod-

ell for use with detailed MBS and finite-element suspension models.

In: Tyre models for vehicle dynamics analysis - Proceedings of 3rd

International Colloquium on Tyre Models for Vehicle Dynamics Anal-

ysis, Taylor & Francis, Glasgow, Vehicle system dynamics, Nr. Nr. 43

Supplement, 2005, S. 76-91

[Gip-2006] Gipser, M.: Reifensimulation mit FTire: Stand und Ausblick. In: 15.

Aachener Kolloquium Fahrzeug- und Motorentechnik, Aachen, 2006

[Gip-2010] Gipser, M.: Reifenmodelle in der Fahrzeugdynamik: eine einfache

Formel genügt nicht mehr, auch wenn sie magisch ist.

http://www.cosin.eu/res/ftire_germ_1.pdf, Aufruf am 12.09.2010

[Gol-1993] Golombeck, G.-U.: Der schnell fahrende mobile Industrieroboter.

Dissertation, Universität - Gesamthochschule - Duisburg, 1993

[Gra-2007] Grammer AG: Vorfahrt für den Arbeitsschutz. In: Hebezeuge und

Fördermittel, 47 (2007) 6, S. 300

[Gra-2008] Grammer AG: How to Measure Vibrations. In: Stapler World (2008)

1, S. 42

[Gra-2013a] Grabitz, I.; Wisdorff, F.: 1800 Prozent mehr Krankentage durch Burn-

out, Die Welt, www.welt.de/wirtschaft/article113159916/1800-

Page 297: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

277

Prozent-mehr-Krankentage-durch-Burn-out.html, Aufruf am

9.01.2014

[Gra-2013b] Graf, C.; Maas, J.; Pflug, H.-C.: Schwingungsreduktion in Nfz-

Fahrerhäusern durch aktive Lagerung. In: 5. VDI-Tagung Human-

schwingungen 2013, VDI-Berichte, Nr. 2190, 2013, S. 315-326

[Gri-1990] Griffin, M. J.: Handbook of human vibration. Academic Press, Lon-

don, San Diego, 1990

[Gri-2010] Griffin, M. J.: Can frequency weightings and duration weightings

predict human responses to vibration an shock? In: Humanschwin-

gungen, VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 2097, 2010, S. 3-

22

[Gro-1992] Grove, D. M.; Davis, T. P.: Engineering, quality, and experimental

design. Longman Scientific & Technical, Harlow, 1992

[Grü-1917] Grübler, M.: Getriebelehre. Julius Springer, Berlin, 1917

[Gru-2004] Grunendahl, A.: Beitrag zur numerischen Simulation des sitzenden

Menschen zur Beurteilung der Auswirkungen von Ganzkörper-

schwingungen. Dissertation, RWTH Aachen, 2004

[Gün-2007] Günthner, W. A.; Heptner, K.: Technische Innovationen für die Logis-

tik. Huss, München, 2007

[Gün-2011] Günthner, W. A.; Fischer, G.; Ebner, A.: Untersuchung der Human-

schwingungen beim Betrieb von Flurförderzeugen. Forschungsbe-

richt, IGF-Vorhaben 15893 N, Lehrstuhl für Fördertechnik Material-

fluss Logistik, Technische Universität München, 2011

[Gün-2013] Günthner, W. A.; Bruns, R.; Oh, S.; Danilov, E.; Fischer, G.: Untersu-

chung und Modellierung der Schwingungsübertragung von Flurför-

derzeugreifen. Forschungsbericht, IGF-Vorhabens 17212 N, Lehr-

stuhl für Fördertechnik Materialfluss Logistik, Technische Universität

München, 2013

[Haa-2004] Haas, C.; Turbanski, S.; Kaiser, I.; Schmidtbleiche, D.: Biomechani-

sche und physiologische Effekte mechanischer Schwingungsreize

beim Menschen. In: Deutsche Zeitschrift für Sportmedizin, 55 (2004)

2, S. 33-34

Page 298: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

278

[Hai-2005] Haimerl, J.: Vom Future Track zur industriellen Anwendug - Vierrad-

stapler mit Drehkabine. In: 13. Heidelberger Flurförderzeug-Tagung,

VDI-Verl., Düsseldorf, VDI-Berichte, Nr. 1879, 2005, S. 125-131

[Hap-1998] Happee, R.; Hoofman M.; van den Kroonenberg, A.J.; Morsink, P.;

Wismans, J.: A mathematical human body model for frontal and

rearward sated automotive impact loading. In: Proceedings of the

42nd Stapp Car Crash Conference, Society of automotive engineers,

SAE paper, Nr. 983150, 1998, S. 75-88

[Hap-2000] Happee, R.; Ridella, S.; Nayef, A.; Morsink, P.; Lange, R. d.; Bours

R.; van Hoof, J.: Mathematical human body models representing a

mid size male and a small female for frontal, lateral and rearward

impact loading. In: IRCOBI Conference, September 2000

[Hau-2001] Hauck, M.: Geregelte Dämpfung für Traktorfahrersitze. Dissertation,

Fachbereich Maschinenbau und Produktionstechnik, Technische

Universität Berlin, 2001

[Hea-1999a] Health & Safety Executive: Whole-body vibration: Evaluation of

some common sources of exposure in Great Britain. Contract Re-

search Report, Nr. 235, 1999

[Hea-1999b] Health & Safety Executive: Whole-body vibration: Occupational ex-

posures and their health effects in Great Britain. Contract Research

Report, Nr. 233, 1999

[Hei-2003] Heilemann, R.: Sicherheitsaspekte bei Flurförderzeugen. In: 12. Flur-

förderzeugtagung 2003, VDI-Verlag, VDI-Berichte, Nr. 1748, 2003,

S. 147-152

[Hel-2005] Helbig, K.: Arbeitsplatz Gabelstapler - Neue Wege der ergonomi-

schen Optimierung. In: 13. Heidelberger Flurförderzeug-Tagung,

VDI-Verl., Düsseldorf, VDI-Berichte, Nr. 1879, 2005, S. 33-41

[Her-1882] Hertz, H.: Über die Berührung fester elastischer Körper. In: Journal

für die reine und angewandte Mathematik (1882) 92, S. 156-171

[Him-2006] Himmelhuber, F.: Die aktiv geregelte Luftfederung für den Traktor-

sitz. In: Landtechnik, 61 (2006) 3, S. 132-133

Page 299: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

279

[Hin-1994] Hinrichsen, C.: Modellbildung und Regelung induktiv geführter

Kommissionierfahrzeuge. Dissertation, Universität der Bundeswehr

Hamburg, 1994

[Hin-2004] Hinz, B.; Rützel, S.; Keitel, J.; Menzel, B.; Seidel, H.: Bestimmung

der scheinbaren Masse bei Nutzung von Pkw-Sitzen als Vorausset-

zung für eine Modellierung des sitzenden Menschen – Ergebnisse

von Frauen und Männern. In: Humanschwingungen, VDI-Verlag,

Düsseldorf, VDI-Berichte, Nr. 1821, 2004, S. 57-86

[Hin-2007] Hinz, B.; Seidel, H.; Blüthner, R.; Menzel, G.; Hofmann, J.; Gericke,

L.; Schust, M.; Kaiser, H.; Mischke, C.: Whole-body vibration expe-

rimental work and biodynamic modelling, Bundesanstalt für Arbeits-

schutz und Arbeitsmedizin (BAuA), Annex 18 to Final Technical Re-

port, VIBRISK (EC FP5 Project No. QLK4-2002-02650), 2007

[Hin-2010] Hinz, B.; Hofmann, J.; Menzel, G.: Beurteilung von Stoßhaltigen

Ganzkörper-Vibrationen - Methodische Grundlage für eine normative

Umsetzung. In: Humanschwingungen, VDI-Verlag, Düsseldorf, VDI-

Berichte, Nr. 2097, 2010, S. 229-248

[Hip-2004] Hippmann, G.: Modellierung von Kontakten komplex geformter Kör-

per in der Mehrkörperdynamik, Technischen Universität Wien, Insti-

tut für Mechanik und Mechatronik, Dissertation, 2004

[Hix-2000] Hix, K.; Ziemba, S.; Schoof, L.: Truck Seat Modeling – A Methods

Development Approach. International ADAMS User Conference,

2000

[Hof-2007] Hofmann, J.; Wölfel, H. P.: Das Antwortspektrenverfahren als Me-

thode zur Bewertung des Gesundheitsrisikos von Beschleunigungs-

signalen. In: Humanschwingungen, VDI-Verlag, Düsseldorf, VDI-

Berichte, Nr. 2002, 2007, S. 323-348

[Hof-2010] Hofmann, J.; Pankoke, S.; Hinz, B.; Menzel, G.: Verfahren zur Be-

rechnung der unter stoßhaltiger Exposition in der Lendenwirbelsäule

wirkenden Kräfte für unterschiedliche sitzende Arbeitshaltungen und

Arbeitergruppen. In: Humanschwingungen, VDI-Verlag, Düsseldorf,

VDI-Berichte, Nr. 2097, 2010, S. 211-228

[Hol-2007] Hollburg, U.: Maschinendynamik. Oldenbourg, München, 2007

Page 300: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

280

[Hol-2013] Holst, C. von: Verbesserung des Schwingungsschutzes von Traktor-

fahrern durch eine inteligente, semi-aktive Kabinenfederung. In: 5.

VDI-Tagung Humanschwingungen 2013, VDI-Berichte, Nr. 2190,

2013, S. 355-362

[Hua-1990] Huang, Y.: Deformation und Beanspruchung von Stapler-

Hubgerüsten unter Berücksichtigung von Imperfektionen. Dissertati-

on, Universität Stuttgart, 1990

[Ind-2014] Industrial Truck Association (ITA): ITA Forklift Truck Pictures.

http://www.indtrk.org/wp-content/uploads/2013/04/ITA-Forklift-

Truck-Pictures.pdf, Aufruf am 20.01.2014

[Ins-2013] Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversiche-

rung (IFA): Vibrations-Expositions-Datenbank VIBEX. Deutsche Ge-

setzliche Unfallversicherung e. V, Aus der Arbeit des IFA, Nr. 82,

Sankt Augustin, 2013

[Int-1989] Internationale Vereinigung für Soziale Sicherheit (IVSS): Vibration am

Arbeitsplatz. Internationale Sektion Forschung, Paris, 1989

[Int-2010] Internationale Vereinigung für Soziale Sicherheit (IVSS): Leitfaden für

die Gefährdungsbeurteilung in Klein- und Mittelbetrieben - Gefähr-

dungen durch Ganzkörper und Hand-Arm-Vibrationen. Verlag Tech-

nik & Information e.K., Bochum, 2010

[ISO 2361 Amd1] ISO 2361-1:1997/Amd.1:2010: Mechanical vibration and shock -

Evaluation of human exposure to whole-body vibration - Part 1:

General requirements Amendment 1. International Organization for

Standardization

[ISO 2631a] ISO 2631-2:2003-04: Mechanische Schwingungen und Stöße - Be-

wertung der Einwirkung von Ganzkörper-Schwingungen auf den

Menschen - Teil 2: Schwingungen in Gebäuden (1 Hz - 80 Hz). Inter-

national Organization for Standardization

[ISO 2631b] ISO 2631-5:2004-02: Mechanical vibration and shock - Evaluation of

human exposure to whole-body vibration - Part 5: Method for evalu-

ation of vibration containing multiple shocks. International Organiza-

tion for Standardization

Page 301: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

281

[ISO 2631c] ISO 2631-1:1997-07: Mechanical vibration and shock - Evaluation of

human exposure to whole-body vibration - Part 1: General require-

ments. International Organization for Standardization

[ISO 5982] ISO 5982:2001-11: Mechanical vibration and shock - Range of ideal-

ized values to characterize seated-body biodynamic response under

vertical vibration. International Organization for Standardization

[ISO 8608] ISO 8608-1995-09Mechanical vibration - Road surface profiles -

Reporting of measured data. International Organization for Standar-

dization

[Jan-2010] Janssen, J.; Laatz, W.: Statistische Datenanalyse mit SPSS. Sprin-

ger, Heidelberg, 2010

[Joh-2013] Johanning, E.: Ganzkörper Schwingungen in der Arbeitsmedizini-

schen Praxis. In: 5. VDI-Tagung Humanschwingungen 2013, VDI-

Berichte, Nr. 2190, 2013, S. 83-94

[Jun-2013] Jungheinrich AG: Humanschwingungen.

http://www.jungheinrich.de/wir-ueber-

uns/nachhaltigkeit/humanschwingungen/, Aufruf am 3.11.2013

[Kan-2009] Kany, H.-P.: Unfallgeschehen und mögliche Präventionsmaßnah-

men. In: Hebezeuge und Fördermittel, 49 (2009) Sonderheft Flurför-

derzeuge, S. 48-49

[Kan-2012] Kany, H.-P.; Butz, S.; Rovedo, F.; Zelt, F.: Unternehmer-Handbuch

Gabelstapler. Bonn, Berufsgenossenschaft Handel und Warendistri-

bution (BGHW), 2012

[Kau-2007] Kaulbars, U.: Erstmals Grenzwerte für die Vibrationsbelastung. In:

Technische Überwachung, 48 (2007) 9, S. 17-23

[Kau-2011] Kaufmann, T.: Staplerfahrer-ABC. Praxis Maschinenbau, Beuth, Ber-

lin, 2011

[Kau-2013] Kaufmann, T.: Flurförderzeuge. Praxis : Maschinenbau, Beuth, Ber-

lin, Wien, Zürich, 2013

[Kem-1974] Kemme, J.: Zur Beanspruchung von Hubgerüsten an Gabelstaplern.

Dissertation, Technische Universität Hannover, 1974

Page 302: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

282

[Kie-2013] Kieneke, R.; Graf, C.; Maas, J.: Aktive Sitzfederung für militärische

Radfahrzeuge zur Minderung vertikaler und lateraler Humanschwin-

gungen. In: 5. VDI-Tagung Humanschwingungen 2013, VDI-

Berichte, Nr. 2190, 2013, S. 315-331

[Kin-1956a] Kindervater, R.: Experimentelle Ermittlung der statischen und dyna-

mischen Radlasten gleisloser Flurförderzeuge. In: F+ H Fördern und

Heben, 6 (1956) 8, S. 809-811

[Kin-1956b] Kindervater, R.: Statische und dynamische Radlasten gleisloser Flur-

förderzeuge. In: F+ H Fördern und Heben, 6 (1956) 6, S. 496-497

[Kin-2004] Kinne, J.: Ermittlung der Schwingungsmiderung von Fahrersitzen mit

Hilfe von mechanischen Mensch-Modellen (Schwingungsdummies).

In: Humanschwingungen, VDI-Verlag, Düsseldorf, VDI-Berichte,

Nr. 1821, 2004, S. 333-348

[KIO-2012] KION Group: Absatzmarkt für Gabelstapler nach Regionen weltweit

im Jahr 2011. In: Frankfurter Allgemeine Zeitung (2012) 68, S. 16

[Kle-2007] Klein, B.: TRIZ/TIPS - Methodik des erfinderischen Problemlösens.

Oldenbourg, München, 2007

[Kle-2011] Kleppmann, W.: Taschenbuch Versuchsplanung. Praxisreihe Quali-

tätswissen, Hanser, München, 2011

[Kno-1992] Knoblauch, J.: Entwicklung und Bau eines physikalischen Schwin-

gungsdummys des sitzenden Menschen. Dissertation, Technische

Universität Darmstadt, 1992

[Kno-1996] Knoll, P.; Gruner, G.; Lötsch, J.: Schwingungsbelastungen an Ar-

beitsplätzen in der DDR: Gabelstaplerfahrer. BIA-Report / Berufsge-

nossenschaftl. Inst. für Arbeitssicherheit - BIA, St. Augustin,

Nr. 96,4, HVBG, Sankt Augustin, 1996

[Köh-1998] Köhn, P.; Holdmann, P.: Moderne Prüfstandstechnologie für das

Fahrwerk. In: ATZ - Automobiltechnische Zeitschrift (1998) 9

[Koh-2004] Kohler, M.; Ziese, T.: Telefonischer Gesundheitssurvey des Robert

Koch-Instituts zu chronischen Krankheiten und ihren Bedingungen.

Gesundheitsberichterstattung des Bundes, Robert Koch-Institut,

Berlin, 2004

Page 303: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

283

[Kri-2013] Krieger, T.: Volkskrankheit Rückenschmerzen - Die Crux mit dem

Kreuz. In: Focus Gesundheit (2013) 6-7

[Küc-2010] Küchenmeister, G.; Vogt, N.: "Kaum höher, aber breiter und runder"

- der aktuelle Wandel bei Körpermaßen. In: 8. Hamburger Staplerta-

gung, Hamburg, 2010

[Kuh-2001] Kuhnt, U.: Kreuzweise - Gesundheitsförderung für Gabelstaplerfah-

rer. In: 11. Heidelberger Tagung der Flurförderzeugbetreiber, VDI-

Verlag, Düsseldorf, VDI-Berichte, Nr. 1590, 2001, S. 219-225

[Küh-2007] Kühnlein, A.: Regelung eines aktiven Nutzfahrzeugsitzes mittels Ide-

almodell. In: Humanschwingungen, VDI-Verlag, Düsseldorf, VDI-

Berichte, Nr. 2002, 2007, S. 521-535

[Kum-2005] Kummer, W.; Meyer, L.; Schmidt, W.: Langzeituntersuchung der

Schwingungsdämpfung von Fahrersitzen auf Erdbaumaschinen. In:

Tiefbau (2005) 9, S. 534-538

[Kun-2012] Kunze, G.; Grüning, T.; Katterfeld, A.: Wie Maschinen und Fördergut

interagieren. In: Schüttgut (2012) 2, S. 54-58

[Lan-2015] Landesamt für Arbeitsschutz Potsdam: Katalog repräsentativer

Lärm- und Vibrationsdaten am Arbeitsplatz. http://www.las-

bb.de/karla/, Aufruf am 23.03.2015

[Lia-2006] Liang, C.-C.; Chiang, C.-F.: A study on biodynamic models of seat-

ed human subjects exposed to vertical vibration. In: International

Journal of Industrial Ergonomics, 36 (2006) 10, S. 869-890

[Lie-2000] Liebherr, L.: Bericht über die experimentelle Bestimmung der dyna-

mischen Eigenschaften eines Sitzpolsters für einen MSG95-Sitz und

die Erstellung eines Simulationsprogramms, Technische Universität

Berlin, 2000

[Lin-2007] Linde Material Handling GmbH: Konstruktives zur Fahrerentlastung.

In: Hebezeuge und Fördermittel, 47 (2007) 6, S. 297

[Lin-2008] Linde Material Handling GmbH: Mensch, Maschine, Ökonomie und

Umwelt. In: F+ H Fördern und Heben (2008) 1-2, S. 26-27

[Lin-2009] Lindemann, U.: Methodische Entwicklung technischer Produkte.

VDI-Buch, Springer, Berlin, Heidelberg, 2009

Page 304: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

284

[Löh-2002] Löhr, M.-O.: Simulation der Stationseinfahrt kuppelbarer Einseilum-

laufbahnen. Dissertation, Lehrstuhl für Fördertechnik Materialfluss

Logistik, Technische Universität München, 2002

[Loh-2012] Lohmeyer, G.; Ebeling, K.: Betonböden für Produktions- und Lager-

hallen. Edition Beton, Verl. Bau + Technik, Düsseldorf, 2012

[Mag-1960] Magid, E.; Coermann, R. R.; Ziegenruecker, G.: Human tolerance to

whole-body sinusoidal Vibration. In: Aerospace Medicine, 31 (1960),

S. 915-924

[Mai-1980] Maisch, E.: Zur Beanspruchung der Hubgerüste von Gabelstaplern.

Dissertation, Universität Stuttgart, 1980

[Man-1996] Mansfield, N. J.; Griffin, M. J.: vehicle seat dynamics measured with

an anthropodynamic dummy and human subjects. In: Proceedings

Inter-noise 96, Institute of Acoustics, St Albans, 1996

[Man-1999] Mansfield, N. J.; Lundström, R.: Models of the Apparent Mass of the

Seated Human Body Exposed to Horizontal Whole-Body Vibration.

In: Aviation, Space and Environmental Medicine, 70 (1999), S. 1166-

1172

[Mar-2003] Marquardt, H. G.: Flurförderzeuge gestern, heute und morgen. In:

17. Flurförderzeugtagung 2013, VDI-Verlag, Düsseldorf, VDI-

Berichte, Nr. 1748, 2003, S. 1-29

[Mar-2004] Marquardt, H. G.; Leonhardt, T.: Staplerkabine und Fahrer im Simu-

lator. In: Logistik für Unternehmen (2004) 4/5, S. 44-46

[McC-1998] McConville, J. B.; McGrath, J. F.: Introduction to ADAMS Theory.

Ann Arbor, Michigan, Mehanical Dynamics Inc., 1998

[Men-2009] Mentlein, H.: Pflaster-Atlas. Verlagsgesellschaft Rudolf Müller, Köln,

2009

[Mer-2006] Mergl, C.: Entwicklung eines Verfahrens zur Optimierung des Sitz-

komforts auf Automobilsitzen. Dissertation, Technische Universität

München, 2006

[Mey-2004a] Meyer, L.: Langzeitverhalten von schwingungsmindernden Sitzen. In:

Humanschwingungen, VDI-Verlag, Düsseldorf, VDI-Berichte,

Nr. 1821, 2004, S. 423-440

Page 305: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

285

[Mey-2004b] Meyer, H.: Schwingungsentkopplung bei Landmaschinen. In: Land-

technik, 59 (2004) 1, S. 24-25

[Mey-2007a] Meywerk, M.: CAE-Methoden in der Fahrzeugtechnik. Springer-

Verlag, Berlin, Heidelberg, 2007

[Mey-2007b] Meyer, L.; Ortmann, U.: Vibrationsmiderung durch aktiv pneumatisch

gefederte Sitze. In: Humanschwingungen, VDI-Verlag, Düsseldorf,

VDI-Berichte, Nr. 2002, 2007, S. 553-567

[Mit-1984] Mitschke, M.: Dynamik der Kraftfahrzeuge - Band B Schwingungen.

Springer, Berlin, Heidelberg, 1984

[Mit-1995] Mitschke, M.; Klinger, B.; Braun, H.: Zulässige Amplituden und Wel-

lenlängen herausragender Unebenheitsanteile - Einfluss von Einzel-

hindernissen und Periodizitäten auf Fahrkomfort, Straßen-, Fahr-

zeug- und Ladegutbeanspruchung sowie Fahrsicherheit. In: For-

schung Straßenbau und Straßenverkehrstechnik, Forschung Stra-

ßenbau und Straßenverkehrstechnik, Nr. 710, 1995

[Mit-2004] Mitschke, M.; Wallentowitz, H.: Dynamik von Kraftfahrzeugen.

Springer, Berlin, 2004

[Mit-2007] Mittwollen, M.: Untersuchung der Schwingungseigenschaften von

teleskopierbaren Maschinenelementen mit Spiel am Beispiel eines

Gabelstapler-Hubgerüstes. Dissertation, Universität Karlsruhe, 2007

[Miw-1967] Miwa, T.: Evaluation methods for Vibration effect - Part 1 - Meas-

urements of threshold and equal Sensation contours of whole-body

for vertical and horizontal vibrations. In: Industrial Health (1967),

S. 183-205

[Moe-2000] Moes, N. C. C.: Geometric model of the human body. In: Proceed-

ings of the International Symposium series on Tools and Methods of

Competitive Engineering (TMCE), 2000, S. 79-92

[Moh-2003] Mohr, D.: Gefährdungsbeurteilung und Präventionsmaßnahmen

nach der neuen EU-Vibrations- Richtlinie 2002/44/EG. Vortrag A+A,

Düsseldorf, 2003

[Moh-2004] Mohr, D.: Eine einfache Methode zur Beurteilung stoßhaltiger Ganz-

körper-Vibrationen. In: Humanschwingungen, VDI-Verlag, Düssel-

dorf, VDI-Berichte, Nr. 1821, 2004, S. 271-299

Page 306: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

286

[Moh-2007] Mohr, D.: Die Lärm- und Vibrations-Arbeitsschutz-Verordnung in der

Praxis. In: Humanschwingungen, VDI-Verlag, Düsseldorf, VDI-

Berichte, Nr. 2002, 2007, S. 3-28

[Moh-2013] Mohr, D.: Fünf Jahre Erfahrungen einer Arbeitsschutzbehörde mit

der Lärm- und Vibrations-Arbeitsschutzverordnung. In: 5. VDI-

Tagung Humanschwingungen 2013, VDI-Berichte, Nr. 2190, 2013,

S. 131-154

[MSC-2003] MSC Software Corporation: MSC.ADAMS Solver - Theory Seminar.

Santa Ana, California, 2003

[MSC-2010a] MSC Software Corporation: Road Models in Adams/Tire. Santa Ana,

California, 2010

[MSC-2010b] MSC Software Corporation: Using Adams/Solver. Santa Ana, Cali-

fornia, 2010

[N.-2012] N., N.: Staplerfacts 2012. TechTex-Verlag, Budenheim, 2012

[Neg-2004] Negrut, D.; Dyer, A.: ADAMS/Solver Primer, MSC Software Corpora-

tion, Ann Arbor, Michigan, 2004

[Neu-1997] Neugebauer, G.; Hartung, E.: Bandscheibenbedingte Erkrankungen

der Lendenwirbelsäule durch Ganzkörpeschwingungen -

Epidemiologische Studie - Teil 1 Belastungsermittlung und Analyse.

In: Schwingungen am Arbeitsplatz und in der Umwelt, VDI-Verlag,

Düsseldorf, VDI-Berichte, Nr. 1345, 1997, S. 247-255

[Neu-2009a] Neugebauer, G.; Dohlich, J.: Lärm und Vibrationen am Arbeitsplatz.

Verlag Technik & Information e.K., Bochum, 2009

[Neu-2009b] Neugebauer, G.: Vibrationen - Gefährdungen, Maßnahmen, Hand-

lungshilfen. Sicherheitswissenschaftlichen Kolloquiums Sommerse-

mester 2009, Bergische Universität Wuppertal, 2009

[Neu-2010] Neugebauer, G.: Umsetzung der Vibrations-

Arbeitsschutzverordnung in der Metallindustrie. In: Humanschwin-

gungen, VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 2097, 2010,

S. 157-162

[Oer-2001] Oertel, C.; Fandre, A.: Reifenmodellsystem RMOD-K: Ein Beitrag

zum virtuellen Fahrzeug. In: ATZ - Automobiltechnische Zeitschrift

(2001)

Page 307: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

287

[Ont-2009] Ontario Ministry of Labour: Appendix II - Industrial Truck Association

(ITA) Truck Classes. Guideline for the Safe Operation and Mainte-

nance of Powered Lift Trucks,

http://www.labour.gov.on.ca/english/hs/pubs/lifttrucks/gl_lift_app2.

php, Aufruf am 20.01.2014:Juni 2009

[Oos-1997] Oosten van, J. J.; Unrau, H. J.; Riedel, A.; Bakker, E.: TYDEX Work-

shop: Standardisation of Data Exchange in Tyre Testing and Tyre

Modelling. In: Proceedings of the 2nd International Colloquium on

Tyre Models for Vehicle Dynamic Analysis, held at the Technical

University of Berlin,, wets & Zeitlinger, Vehicle system dynamics,

Nr. 27 Supplement, 1997, S. 272-288

[Oos-2000] Oosten van, J. J.; Pacejka, H. B.: SWIFT-Tyre: An accurate tyre

model for ride and handling studies at higher frequencies and short

road wavelengths. ADAMS Users’ Conference, Orlando, 2000

[Ort-2010] Ortmann, U.; Meyer, L.: Aktiv pneumatisch gefederte Sitze im Pra-

xiseinsatz. In: Humanschwingungen, VDI-Verlag, Düsseldorf, VDI-

Berichte, Nr. 2097, 2010, S. 303-314

[Ove-2013] Overmeyer, L.; Weigelt, S.; Schmidt, T.; Müller, T.: Methodik zur Di-

mensionierung elektronischer Komponenten auf Basis einer elektro-

mechanischen Zuverlässigkeitsanalyse an Systemen der Intralogis-

tik. Berichte aus dem ITA, 2013, Bd. 2, PZH-Verl, Garbsen, 2013

[Pac-1989] Pacejka, H. B.; Bakker, E.; Lidner, L.: A New Tire Model with an Ap-

plication in Vehicle Dynamics Studies. SAE paper, Nr. 890087, 1989

[Pac-1993] Pacejka, H. B.; Bakker, E.: The Magic Formula Tire Model, Proceed-

ings. In: 1st International Colloquium on Tire Models, Swets &

Zeitlinger B.V., Amsterdam/Lisse, 1993

[Pan-2002] Pankoke, S.; Bazulat, J.; Wölfel, H. P.: Vibrational Comfort with

CASIMIR and RAMSIS using a Dynamic Finite-Element Model of the

Human Body. In: Digital Human Modeling Conference, VDI-Berichte,

Nr. 1675, 2002, S. 493-503

[Pan-2003] Pankoke, S.: Numerische Simulation des räumlichen Ganzkörper-

schwingungsverhaltens des sitzenden Menschen unter Berücksich-

tigung der individuellen Anthropometrie und Haltung. Dissertation,

Technische Universität Darmstadt, 2003

Page 308: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

288

[Pfe-1992] Pfeiffer, F.: Einführung in die Dynamik. Leitfäden der angewandten

Mathematik und Mechanik, Teubner, Stuttgart, 1992

[Pol-2006] Polster, A.: Ergonomie des Fahrersitzes am Beispiel eines Fahrersit-

zes für Gabelstapler. Grammer AG, Amberg, 2006

[Pol-2008] Polster, A.: Der Fahrersitz - Schnittstelle zwischen Mensch und Flur-

förderzeug - im Fokus auf Gesundheit, Motivation und Effizienz. In:

7. Hamburger Staplertagung, Hamburg, 2008

[Pol-2013] Polster, A.; Wittmann, H.: Optimaler Schwingungsschutz durch akti-

ve Regelung des gekoppelten Federsystems Kabine+Sitz. In: 5. VDI-

Tagung Humanschwingungen 2013, VDI-Berichte, Nr. 2190, 2013,

S. 287-301

[Rab-2008] Rabe, M.; Spieckermann, S.; Wenzel, S.: Verifikation und Validierung

für die Simulation in Produktion und Logistik. VDI-Buch, Springer,

Berlin, Heidelberg, 2008

[Rap-1988] Rappen, J.: Eigenschaften kleiner Industriereifen insbesondere im

Hinblick auf Kipp- und Fahrstabilität von Gabelstaplern. Schriftenrei-

he der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: For-

schungsbericht, Nr. 554, Wirtschaftsverlag NW Verlag für Neue Wis-

senschaft, Bremerhaven, Institut für Kraftfahrwesen der R.W.T.H.

Aachen, 1988

[Rau-2007] Rauh, J.; Gimmler, H.: Road Simulation - CRG (curved regular grid)

Road Data Format Overview.

http://www.vires.com/opencrg/docs/CRG-Overview.pdf, Aufruf am

20.10.2010:20.03.2007

[Rei-2005] Reimpell, J.; Betzler, J.: Fahrwerktechnik: Grundlagen. Vogel-

Fachbuch, Vogel, Würzburg, 2005

[Rie-2005a] Riedmaier, S.: An die Gesundheit der Staplerfahrer denken. In: F+ H

Fördern und Heben (2005) 12, S. 711-713

[Rie-2005b] Riedmaier, S.: Erster Stapler mit Drehkabine. In: Hebezeuge und

Fördermittel, 45 (2005) 4, S. 176-177

[Ril-2010] Rill, G.; Schaeffer, T.: Grundlagen und Methodik der Mehrkrörpersi-

mulation. Vieweg + Teubner Verlag, 2010

Page 309: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

289

[Ris-2013] Rissler, J.; Meyer, L.: Unsicherheit von Messergebnisse bei der

Schwingungsprüfung von Fahrersitzen. In: 5. VDI-Tagung Human-

schwingungen 2013, VDI-Berichte, Nr. 2190, 2013, S. 51-64

[Rok-2013] Rokosch, F.; Schick, R.: Vibrationen beim innerbetrieblichen Waren-

transport - Aktuelle Daten und Hilfen. In: 17. Flurförderzeugtagung

2013, VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 2201, 2013, S. 97-

107

[Rot-2007] Rottmann, A.: 4 to-Frontgasstapler im Vergleich - Elektro, Erdgas,

Diesel, Treibgas. In: 14. Heidelberger Flurförderzeug-Tagung, VDI-

Verl., Düsseldorf, VDI-Berichte, Nr. 1977, 2007, S. 133-146

[Rüt-2007] Rützel, S.: Ganzko rperschwingungen des sitzenden Menschen am

Fahrerarbeitsplatz. Dissertation, Fachbereich Maschinenbau, Tech-

nische Universität Darmstadt, 2007

[SAE J826] SAE J826:2008-11-11: Devices for Use in Defining and Measuring

Vehicle Seating Accommodation. SAE Standard

[Say-2013] Sayn, D.; Göres, B.: Ganzkörper-Vibrationen in horizintalen Richtun-

gen - ein noch ungelöstes Problem. In: 5. VDI-Tagung Human-

schwingungen 2013, VDI-Berichte, Nr. 2190, 2013, S. 395-400

[Sch-1991] Schuknecht, F.; Schulze Lammers, P.; Uffelmann, F.; Walter, W. D.;

Wiesmeier, A.: Messung von Nutzfahrzeugschwingungen auf der

Straße - Nachbildung der Fahrbahnunebenheiten am Prüfstand und

Berechnungsverfahren für die Computersimulation. In: Unebenheiten

von Schiene und Straße als Schwingungsursache, VDI-Verlag, Düs-

seldorf, VDI-Berichte, Nr. 877, 1991, S. 119-134

[Sch-1998] Schwarze, S.; Notbohm, G.; Dupuis, H.; Hartung, E.: Auswirkungen

von Ganzkörperschwingungen auf die Lendenwirbelsäule – Eine

Follow-up-Studie an 388 Fahrern verschiedener Fahrzeuge. In: Ar-

beitsmedizin Sozialmedizin Umweltmedizin, 33 (1998), S. 429-442

[Sch-2002a] Schube, F.: Beitrag zur numerischen Simulation des Wirbelsäulen-

verhaltens eines Kraftfahrers infolge durch Straßenunebenheiten in-

duzierter Ganzkörperschwingungen. Dissertation, RWTH Aachen,

2002

[Sch-2002b] Schmale, G.; Stelzle, W.; Reienfeld, T.; Wolf, C.-D. H. T.; Jödicke, R.:

COSYMAN - A Simulation Tool for Optimization of Seating Comfort

Page 310: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

290

in Cars. In: Digital Human Modeling Conference, VDI-Berichte,

Nr. 1675, 2002, S. 301-311

[Sch-2003] Schröder, F.: Einfluss eines schwenkbaren Fahrersitzes auf die Er-

gonomie beim Rückwärtsfahren mit Frontgabelstaplern. In: 12. Flur-

förderzeugtagung 2003, VDI-Verlag, VDI-Berichte, Nr. 1748, 2003,

S. 31-50

[Sch-2004] Schiehlen, W.; Eberhard, P.: Technische Dynamik. Teubner, Stutt-

gart, 2004

[Sch-2006] Schmalzl, J.: Simulation des dynamischen Verhaltens von Flurför-

derzeugen in der Lagertechnik. Dissertation, Lehrstuhl für Förder-

technik Materialfluss Logistik, Technische Universität München,

2006

[Sch-2007a] Schäfer, K.; Rokosch, F.; Schick, R.; Becker, C.: Hilfen für die be-

triebliche Praxis zur Umsetzung der Lärm- und Vibrations-

Arbeitsschutzverordnung durch branchenspezifische Ermittlung von

Ganzkörper-Vibrationen. In: 14. Heidelberger Flurförderzeug-

Tagung, VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 1977, 2007,

S. 59-72

[Sch-2007b] Schäfer, K.; Schick, R.; Rokosch, F.; Becker, C.: Branchenspezifi-

sche Ermittlung von Ganzkörpervibrationen: Hilfen für die betriebli-

che Praxis. In: Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Er-

gonomie, 57 (2007) 6, S. 146-157

[Sch-2007c] Schäfer, K.; Schick, R.; Rokosch, F.; Becker, C.: Neuland Ganzkör-

per-Vibrationen. In: Hebezeuge und Fördermittel, 47 (2007) Sonder-

heft Flurförderzeuge, S. 50-51

[Sch-2007d] Schick, B.; Gimmler, H.; Rauh, J.; Witschass, S.: 3D-Track - Give the

simulation the chance of better work! Mobile, high-resolution topol-

ogy and roughness measuring method of road surface to create 3D-

Track models. FISITA World Congress, Yokohama, 2007

[Sch-2009a] Schäfer, K.; Kany, H.-P.: Im Fokus der Ergonomie. In: F+ H Fördern

und Heben (2009) Sonderheft Flurförderzeuge Marktbild 2009/2010,

S. 6-8

[Sch-2009b] Schmidt, G.: Organisation und Business Analysis - Methoden und

Techniken. Ibo-Schriftenreihe, 1, Schmidt, Giessen, 2009

Page 311: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

291

[Sch-2010a] Schäfer, K.; Rokosch, F.; Becker, C.; Schick, R.: Handbuch Vibratio-

nen am Arbeitsplatz. Berufsgenossenschaft Handel und Waren-

distribution (BGHW), Bonn, 2010

[Sch-2010b] Schäfer, K.; Rokosch, F.; Schick, R.: Einflussfaktoren auf die Höhe

der Vibrationsexposition beim Fahren von Gabelstaplern. In: Hu-

manschwingungen, VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 2097,

2010, S. 49-60

[Sch-2010c] Schäfer, K.; Rokosch, F.; Schick, R.: Untersuchungen zur Quantifi-

zierung verschiedener Einflussfaktoren auf die Vibrationsexposition

von Gabelstaplerfahrern. In: Zentralblatt für Arbeitsmedizin, Arbeits-

schutz und Ergonomie, 60 (2010), S. 256-267

[Sch-2011] Schmel, S.: Newsletter Flurförderzeuge - Fakten von uns für Sie.

Verband Deutscher Maschinen- und Anlagenbau (VDMA), Förder-

technik und Logistiksysteme, 2011

[Sch-2012] Schneider, E.; Forstner, M. von; Link, F.; Rose, I.: Bedrängt, aber

standhaft. In: Materialfluss, 44 (2012) 3, S. 28-29

[Sch-2013] Schust, M.; Menzel, G.; Forta, N. G.; Hinz, B.; Hofmann, J.; Pinto, I.;

Bovenzi, M.: Berechnung von Intra-spinalen Kräften und Risikoma-

ßen bei Einwirkung von Ganzkörpervibrationen - Abhängigkeit von

Körperhaltung, Körperstatur, Expositionsdauer und Expositionsmus-

ter am Beispiel von 537 Teilnehmern einer epidemologischen Studie.

In: 5. VDI-Tagung Humanschwingungen 2013, VDI-Berichte,

Nr. 2190, 2013, S. 65-82

[Sei-1986] Seidel, H.; Heide, R.: Long-term effect of whole-body vibration – A

critical survey of literature. In: International Archives of Occupational

and Environmental Health, 58 (1986), S. 1-26

[Sei-2000] Seidel, H.; Blüthner, R.; Hinz, B.: Ermittlung vibrationsbedingter Be-

lastungsverläufe in der Lendenwirbelsäule mit Hilfe dynamischer

Vielkörpermodellierung. Schriftenreihe der Bundesanstalt für Ar-

beitsschutz und Arbeitsmedizin : Forschung, Nr. 889, Wirtschafts-

verlag NW, Dortmund, 2000

[Sei-2004a] Seidel, H.: Wirkung und Beurteilung von Ganzkörper-Schwingungen

- biologische Aspekte. In: Humanschwingungen, VDI-Verlag, Düs-

seldorf, VDI-Berichte, Nr. 1821, 2004, S. 1-24

Page 312: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

292

[Sei-2004b] Seidel, H.; Hinz, B.; Hofmann, J.; Menzel, B.: Entsprechen die Fre-

quenzbewertungskurven für das Beanspruchungskriterium Gesund-

heit nach ISO 2631-1 und VDI 2057 Blatt1 der Wirkung? In: Human-

schwingungen, VDI-Verlag, Düsseldorf, VDI-Berichte, Nr. 1821,

2004, S. 183-199

[Sek-2014] Sekretariat der Fédération Européenne de la Manutention: FEM-

Flurförderzeugklassen. Email:08.01.2014:

[Sey-2014] Seybold, H.: Stoßabsorptionstest bestanden? In: F+ H Fördern und

Heben, 64 (2014) 9, S. 32-33

[Shi-1985] Shibli, F.: Untersuchung zur Erhöhung der Kippstabilität von Gabel-

staplern. Schriftenreihe der Bundesanstalt für Arbeitsschutz und Ar-

beitsmedizin : Forschung, Nr. 395, Wirtschaftsverlag NW Verlag für

Neue Wissenschaft, Bremerhaven, Institut für Kraftfahrwesen der

R.W.T.H. Aachen, 1985

[Sie-2010] Siebertz, K.; Bebber, David Theo van; Hochkirchen, T.: Statistische

Versuchsplanung. VDI-Buch, Springer, Heidelberg, Dordrecht [u.a.],

2010

[Sie-2012] Sieverdingbeck, D.: Im Fokus stehen Energieeffizienz und Wirt-

schaftlichkeit. In: Hebezeuge und Fördermittel, 52 (2012) Sonderheft

Flurförderzeuge, S. 10-33

[Sta-2002] Statistisches Bundesamt Deutschland: Leben und Arbeiten in

Deutschland – Ergebnisse des Mikrozensus 2001. Wiesbaden, 2002

[STI-2007] STILL GmbH: STILL empfiehlt unabhängige Tests, STILL GmbH,

Pressemitteilung, http://www.pressebox.de/pressemitteilung/still-

gmbh/Humanschwingungen-STILL-empfiehlt-unabhaengige-

Tests/boxid/139460:28.11.2007

[Sto-2006] Stott, J. R.: Vibration. In: Ernsting's aviation medicine, Hodder Ar-

nold, London, New York, 2006, S. 231-246

[Sug-1969] Suggs, C. W.; Strikeleather, L. F.; Harrison, J. Y.; Young, R. E.: Ap-

plication of a Dynamic Simulator in Seat Testing. In: American So-

ciety of Agricultural Engineers (1969), S. 69-172

Page 313: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

293

[Töd-2007a] Tödter, J.: Humanschwingungen bei Gabelstaplern. In: 14. Heidel-

berger Flurförderzeug-Tagung, VDI-Verlag, Düsseldorf, VDI-Berichte,

Nr. 1977, 2007, S. 39-46

[Töd-2007b] Tödter, J.: Flurförderzeuge brauchen gute Fahrbahnen. In: Hebezeu-

ge und Fördermittel, 47 (2007) 6, S. 298-299

[VDI 2057] VDI 2057-1:2002-09: Einwirkung mechanischer Schwingungen auf

den Menschen - Ganzkörper-Schwingungen. VDI-Gesellschaft Ent-

wicklung Konstruktion Vertrieb

[VDI 2196] VDI 2196:1985-07: Bereifung von Flurförderzeugreifen. VDI-

Gesellschaft Fördertechnik Materialfluss Logistik

[VDI 3586] VDI 3586:2007-11: Flurförderzeuge Begriffe, Kurzzeichen, Beispiele.

VDI-Gesellschaft Fördertechnik Materialfluss Logistik

[VDI 3633-1] VDI 3633-1:12-2014: Simulation von Logistik-, Materialfluss- und

Produktionssystemen - Maschinennahe Simulation. VDI-

Gesellschaft Produktion und Logistik

[VDI-2011] VDI-Gesellschaft Produktion und Logistik: Flurförderzeuge - Felgen,

Reifen, Befestigungen. In: Info-Blätter Nr. 8, FA305, Ausgabe: 2011-

03, erstellt vom Braunschweiger Arbeitskreis des VDI-

Fachausschusses 305 „Flurförderzeuge“, 2011

[Vel-2008] Velske, S.; Eymann, P.; Mentlein, H.: Straßenbautechnik. Werner,

Neuwied, 2008

[Ver-2004] Verver, M. M.: Numerical tools for comfort analyses of automotive

seating. Dissertation, Technische Universiteit Eindhoven, 2004

[Ver-2008] Vereinigung der Metall-Berufsgenossenschaften: CD Schwingungen

und Vibrationen am Arbeitsplatz. Düsseldorf, 2008

[Ver-2013] Verband Deutscher Maschinen- und Anlagenbau (VDMA): Zahlen-

kompass 2012/2013. Frankfurt am Main, 2013

[Vor-2007a] Vorwerk, C.; Nikic, I.: Praxistests schon in der Planungsphase. In:

Hebezeuge und Fördermittel, 47 (2007) 12, S. 648-650

[Vor-2007b] Vorwerk, C.; Wehking, K.-H.: Schwingungsoptimierung von Flurför-

derzeugen im Rahmen einer Neukonstruktion, LogiMAT - WGTL-

Fachforum, http://www.logistik-heute.de/sites/default/files/logistik-

Page 314: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

294

heute/fachforen/gabelstapler03_wehking.pdf, Aufruf am

09.02.2011:20.02.2007

[Vor-2007c] Vorwerk, C.; Nikic, I.; Wehking, K.-H.: Beurteilung im Laborversuch.

In: Hebezeuge und Fördermittel, 47 (2007) Sonderheft Flurförder-

zeuge, S. 52-53

[Vor-2007d] Vorwerk, C.; Nikic, I.; Messerschmidt, D.: Die Ganzkörper-

Schwingungen minimieren. In: Hebezeuge und Fördermittel, 47

(2007) 6, S. 294-296

[Wal-2004] Waldron, K. J.; Kinzel, G. L.: Kinematics, Dynamics, and Design of

Machinery. J. Wiley, Hoboken, NJ, 2004

[Wal-2011] Walch, D.: Belastungsermittlung in der Kommissionierung vor dem

Hintergrund einer alternsgerechten Arbeitsgestaltung der Intralogis-

tik. Dissertation, Lehrstuhl für Fördertechnik Materialfluss Logistik,

Technische Universität München, 2011

[Wei-1998] Wei, L.; Griffin, M. J.: Mathematical models for the apparent mass of

the seated human body exposed to vertical vibration. In: Journal of

Sound and Vibration (1998) 212, S. 855-874

[Wei-2012] Weigelt, S.; Overmeyer, L.; Müller, T.; Schmidt, T.: Dimensionierung

elektronischer Komponenten in Flurförderzeugen – Untersuchung

des Schädigungsverhaltens unter Laborbedingungen. In: 8. Fachkol-

loquium der Wissenschaftlichen Gesellschaft für Technische Logistik

e.V, 2012, S. 19-36

[Wie-2010] Wiegand, J.: Kenntnisstand und Qualifizierungsbedarf von Sicher-

heitsfachkräften bei der Gefährdungsbeurteilung von Vibrationen. In:

Humanschwingungen, VDI-Verlag, Düsseldorf, VDI-Berichte,

Nr. 2097, 2010, S. 373-378

[Wil-2011] Wilmer, H.: Claas Axion Kabinenfederung "Z-Activ". In: profi (2011) 7

[Wit-2002] Witala, C.: Simulationsmodelle zur Analyse des nichtlinearen

Schwingungsverhaltens von Staplerhubgerüsten. Dissertation, Uni-

versität der Bundeswehr Hamburg, 2002

[Wit-2013] Wittig, P.; Nöllenheidt, C.; Brenscheidt, S.: Grundauswertung der

BIBB/BAuA-Erwerbstätigenbefragung 2012. Bundesanstalt für Ar-

Page 315: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Literaturverzeichnis

295

beitsschutz und Arbeitsmedizin (BAuA), Projektnummer F 2296,

Dortmund, 2013

[Zel-2009] Zeller, P.: Handbuch Fahrzeugakustik. Vieweg + Teubner in GWV

Fachverlage, Wiesbaden, 2009

[Zel-2012] Zelt, F.; Butz, S.; Schwarzmann, K.; Stöckl, K.: Handbuch für Gabel-

staplerfahrer. Bonn, Berufsgenossenschaft Handel und Warendistri-

bution (BGHW), 2012

[Zol-2002] Zollondz, H.-D.: Grundlagen Qualitätsmanagement. Oldenbourg,

München, 2002

[Zwi-1989] Zwicky, F.: Entdecken, Erfinden, Forschen im morphologischen

Weltbild. Schriftenreihe der Fritz-Zwicky-Stiftung, Nr. 5, Baeschlin,

Glarus, 1989

Page 316: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 317: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

297

Abbildungsverzeichnis

Abbildung 1-1: Meldepflichtige Unfälle mit Flurförderzeugen mit Fahrersitz nach [Kan-2009] 3

Abbildung 1-2: Schritte im Forschungsprozess nach [Eid-2011, S. 11–18] 9

Abbildung 1-3: Struktur der Arbeit in Anlehnung an den Forschungsprozess nach Eid 10

Abbildung 2-1: Einteilung der Flurförderzeuge nach Benutzungsart gemäß [DIN ISO 5053] 14

Abbildung 2-2: Internationale Flurförderzeugklassen mit Unterteilung nach FEM [Ind-2014; Sek-2014] 15

Abbildung 2-3: Beispiele für typische Elektro-Gabelstapler in Drei- und Vierradausführung (links, Mitte) sowie Verbrenner-Gabelstapler (rechts) (Bildquelle: Jungheinrich AG) 18

Abbildung 2-4: Beispiele typischer Schubmaststapler (Bildquelle: Jungheinrich AG) 19

Abbildung 2-5: Flurförderzeugauslieferungen im Jahr 2012 nach Kontinenten [Féd-2013a] 20

Abbildung 2-6: Verteilung der weltweiten Gabelstaplerbestellungen im Jahr 2011 [KIO-2012] 21

Abbildung 2-7: Marktentwicklung in Europa nach Bestelleingang [Féd-2013b] 22

Abbildung 2-8: Absatz der Flurförderzeuge in Deutschland (nach WITS entnommen aus [Sch-2011; Boe-2012; Boe-2013]) 22

Abbildung 2-9: Belastungs-Beanspruchungs-Modell für Ganzkörper-Vibrationen nach [Bun-2010c] 29

Abbildung 2-10: Mechanische Impedanz einer sitzenden Person mit 70 kg Körpergewicht (nach [Sto-2006], links) und Toleranzgrenzen von Versuchspersonen gegenüber Vibrationen (nach Darstellung aus [Sto-2006] im Original aus [Miw-1967], rechts) 30

Abbildung 2-11: Triaxialer Beschleunigungsaufnehmer in halbelastischer Messscheibe (Bildquelle: Metra Mess- und Frequenztechnik, [DIN EN 30326]) 34

Abbildung 2-12: Zusammensetzung von Arbeitstag, Einsatzzeit und Einwirkungsdauer (nach [Moh-2007]) 35

Abbildung 2-13: Biodynamisches Koordinatensystem des menschlichen Körpers in sitzender Position gemäß [ISO 2631c] (Bild in Anlehnung an [ISO 2361 Amd1]) 36

Page 318: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

298

Abbildung 2-14: Frequenzbewertungskurven Wd und Wk [ISO 2631c] 37

Abbildung 2-15: Forderungen zu Ganzkörper-Vibrationen nach [Bun-2010c] 44

Abbildung 2-16: Häufigkeitsverteilung der Tagesexposition A(8) für die messtechnisch erfassten Gabelstaplerfahrer im Baustoffgroßhandel nach [Sch-2007b] 48

Abbildung 3-1: Einflussfaktoren auf die Vibrationsbelastung des Fahrers 58

Abbildung 3-2: Übertragungsverhalten von Fahrersitzen bei unterschiedlichen Dämpfungsgraden (in Anlehnung an [Fis-2001; Pol-2006]) 60

Abbildung 3-3: Einfluss von Einwirkungsdauer und Vibrationsbelastung auf die Tagesexposition A(8) (Darstellung in Anlehnung an [Bun-2007a]) 66

Abbildung 4-1: Eigenschaften mechanischer Systeme nach [Sch-2004] 73

Abbildung 4-2: Gemeldete Gabelstaplermodelle nach [N.-2012] 77

Abbildung 4-3: Tragfähigkeitsverteilung der in [N.-2012] gemeldeten 3- und 4-Rad-Elektro-Gabelstaplermodelle bis 5.000 kg Tragfähigkeit 78

Abbildung 4-4: Tragfähigkeitsverteilung der in [N.-2012] gemeldeten Verbrenner-Gabelstaplermodelle bis 13.000 kg Tragfähigkeit 78

Abbildung 4-5: Untersuchte Gabelstapler EFG 20 (links) und DFG 35 (rechts) (Bildquellen: eigene Darstellung, Linde Material Handling GmbH) 79

Abbildung 4-6: Tragfähigkeitsverteilung der in [N.-2012] gemeldeten Schubmaststaplermodelle 80

Abbildung 4-7: Verteilung der Maximalfahrgeschwindigkeiten ohne Last der in [N.-2012] gemeldeten Schubmaststaplermodelle 80

Abbildung 4-8: Untersuchter Schubmaststapler EFM 14 (Bildquelle: STILL GmbH) 81

Abbildung 4-9: Untersuchte Sitze MSG 20 (links), MSG 65 (Mitte) und MSG 85 (rechts) (Bildquelle: Grammer AG) 82

Abbildung 4-10: Mulden- (links), Schlitz- (Mitte) und Kastenrinne (rechts) [Men-2009] 86

Abbildung 5-1: Prinzipskizze eines Mehrkörpersystems 93

Abbildung 5-2: Schritte zur Berechnung eines Mehrkörpersystems 98

Abbildung 5-3: Seitenansicht und Aufbau eines Superelastikreifens nach [Con-2008] 100

Abbildung 5-4: Reifenmodell als Black Box nach [Gip-2010] 101

Abbildung 5-5: Einordnung der Modellierungsansätze nach Komplexität (Freiheitsgrade) und Dynamik (nach [Amm-2005]) 102

Page 319: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

299

Abbildung 5-6: Vereinfachte Darstellung der „in-plane“-Gürteldiskretisierung (links) und Kontaktelemente (rechts) (nach [Gip-2010]) 104

Abbildung 5-7: Geometrie von Superelastikreifen (nach [Con-2008]) 105

Abbildung 5-8: Virtueller Trommelprüfstand 106

Abbildung 5-9: Messung der radialen Steifigkeit eines Polyurethanreifens 107

Abbildung 5-10: Dämpfungsfaktoren unterschiedlicher Reifen [Rap-1988] 107

Abbildung 5-11: Messaufbau zur Bestimmung der Reifendämpfung 108

Abbildung 5-12: Periodische Unebenheitsfunktion (links) und zugehöriges diskretes Amplitudenspektrum (rechts) (nach [Mit-2004]) 112

Abbildung 5-13: Spektrale Dichte der Unebenheiten ( )h in Abhängigkeit der

Wegkreisfrequenz ([Bra-1969], Darstellung basierend auf [Mit-2004]) mit Markierung der Kenngrößen 113

Abbildung 5-14: Diskretisierung der spektralen Dichte (in Anlehnung an [Sch-1991]) 117

Abbildung 5-15: Kohärenzfunktion nach Formel (5-25) mit Ωp = 0,75 1/m, a = 0,60, p = 0,50 und w = 2 120

Abbildung 5-16: Mechanisches Ersatzmodell des Sitzes 122

Abbildung 5-17: Schematische Federkennlinie aus Endanschlägen und mechanischer Feder für unterschiedliche Gewichtseinstellungen ( s = 0) 123

Abbildung 5-18: Federkennlinie des MSG 85 für unterschiedliche Gewichtseinstellungen 125

Abbildung 5-19: Federkennlinie des MSG 65 für unterschiedliche Gewichtseinstellungen 126

Abbildung 5-20: Dämpferkennlinie des MSG 65 mit Anregungsprofil 126

Abbildung 5-21: Dämpferkennlinie des MSG 20 mit Anregungsprofil 127

Abbildung 5-22: Versuchsaufbau zur Bestimmung der Kennlinien für Feder und Dämpfer (links) sowie der Seitenstabilität (rechts) 127

Abbildung 5-23: Übertragungsverhalten der Sitze MSG 20, MSG 65 und MSG 85 128

Abbildung 5-24: Messaufbau und Haltung der Versuchsperson zur Messung des SEAT-Werts (nach [DIN EN 30362-1/A2]) 129

Abbildung 5-25: Spektrale Leistungsdichte (PSD) der Prüf-Erregerschwingungen der Spektralklassen IT 1 und IT 2 nach [DIN EN 13490] 130

Abbildung 5-26: Impedanz für unterschiedlich schwere Fahrer bei Erregung in z-Richtung nach [DIN 45676] 133

Abbildung 5-27: Auswahl phänomenologischer Menschmodelle 135

Page 320: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

300

Abbildung 5-28: Mechanisches Ersatzmodell für den sitzenden Fahrer gemäß [DIN 45676] 135

Abbildung 5-29: Allgemeiner Aufbau eines Dreifachteleskop-Hubgerüsts (links) und eines Zweifachteleskop-Hubgerüsts (rechts), (Darstellung nach [Wit-2002]) 136

Abbildung 5-30: Ersatzmodell eines Hydraulikzylinders 138

Abbildung 5-31: Steifigkeitskennlinie eines Freihubzylinders 138

Abbildung 5-32: Ersatzmodell für Hubhydraulik und Hubkette (in Anlehnung an [Sch-2006]) 139

Abbildung 5-33: Kennlinien eines Zug-Druck-Stabs (links) und eines reinen Zug-Stabs (rechts) 140

Abbildung 5-34: Mechanischer Aufbau (links) und Ersatzmodell (rechts) von Hubkette und Hubzylinder 142

Abbildung 5-35: Führungsrolle und Mast 143

Abbildung 5-36: Anordnung der Elemente zur Realisierung des Spiels im Hubgerüst 145

Abbildung 5-37: Finite-Elemente-Modell eines Radarms 146

Abbildung 5-38: Als flexibler Körper eingebundener Radarm mit Anschluss zu Führungsprofilen und Rollen 147

Abbildung 5-39: Finite-Elemente-Modell der Motorhaube des DFG 35 mit Anschlussknoten 148

Abbildung 5-40: Finite-Elemente-Modell der Sitzplatte des EFM 14 mit Anschlussknoten 148

Abbildung 5-41: Messung der Achslasten des EFG 20 mit Hilfe von Wägeplattformen 149

Abbildung 5-42: Mehrkörpermodell des Gabelstaplers DFG 35 150

Abbildung 5-43: Mehrkörpermodell des Gabelstaplers EFG 20 151

Abbildung 5-44: Mehrkörpermodell des Schubmaststaplers EFM 14 152

Abbildung 6-1: Vergleich von Herstellerkennlinie (Messung) und Simulationsergebnis bei einem Superelastikreifen 155

Abbildung 6-2: Validierung der Reifendämpfung anhand eines Ausschwingversuchs 156

Abbildung 6-3: Betrag der Impedanzen der Schwingungsmodelle des sitzenden Menschen für 98 kg Körpermasse im Vergleich mit den Sollkurven 157

Abbildung 6-4: Gegenüberstellung der Eigenfrequenzen der Sitze MSG 20, MSG 65 und MSG 85 von Simulation und Messung 158

Abbildung 6-5: Teststrecke mit Schwellen gemäß DIN EN 13059 [DIN EN 13059] 160

Page 321: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

301

Abbildung 6-6: Versuchsdurchführung der Referenzmessungen 161

Abbildung 6-7: Definition der Fahrtrichtung (Bildquelle: Jungheinrich AG) 162

Abbildung 6-8: Bestandteile des verwendeten modularen Messsystems 162

Abbildung 6-9: Messung auf dem Sitz und am Sitzmontagepunkt 163

Abbildung 6-10: Radarsensor in Prinzipdarstellung (links) und auf dem Flurförderzeug montiert (rechts) (Bildquelle: DICKEY-john Corp, eigene Darstellung) 164

Abbildung 6-11: Versuchswiederholungen bei gleicher Parametereinstelllung, DFG 35, Schwellenüberfahrt, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Antriebsachse über Gummilager (z) 165

Abbildung 6-12: Vergleich von Messung und Simulation bei Schwellenüberfahrt 10 mm, DFG 35, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Antriebsachse (z) 166

Abbildung 6-13: Vergleich von Messung und Simulation im Frequenzbereich bei Schwellenüberfahrt 10 mm, DFG 35, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Antriebsachse (z) 167

Abbildung 6-14: Vergleich von Messung und Simulation bei Schwellenüberfahrt 10 mm, DFG 35, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Sitzmontagepunkt (z) 167

Abbildung 6-15: Vergleich von Messung und Simulation bei Schwellenüberfahrt 10 mm, DFG 35, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Sitzkissen (z) 168

Abbildung 6-16: Vergleich von Messung und Simulation bei Schwellenüberfahrt 10 mm, DFG 35, Last 1750 kg, Fahrgeschwindigkeit 15 km/h, Sitzkissen (x) 168

Abbildung 6-17: Vergleich von Messung und Simulation bei Schwellenüberfahrt 8 mm, EFG 20, Last 2000 kg, Fahrgeschwindigkeit 8 km/h, Antriebsachse (z) 169

Abbildung 6-18: Vergleich von Messung und Simulation bei Schwellenüberfahrt 8 mm, EFG 20, Last 2000 kg, Fahrgeschwindigkeit 8 km/h, Sitzmontagepunkt (z) 170

Abbildung 6-19: Vergleich von Messung und Simulation bei Schwellenüberfahrt 5 mm, EFM 14, Last 1400 kg, Fahrgeschwindigkeit 6 km/h, Fahrtrichtung FF, Fahrerkabine (z) 171

Abbildung 6-20: Vergleich von Messung und Simulation bei Schwellenüberfahrt 5 mm, EFM 14, Last 1400 kg, Fahrgeschwindigkeit 6 km/h, Fahrtrichtung FF, Sitzmontagepunkt (z) 171

Page 322: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

302

Abbildung 6-21: Vergleich von Messung und Simulation bei Schwellenüberfahrt 5 mm, EFM 14, Last 1400 kg, Fahrgeschwindigkeit 6 km/h, Fahrtrichtung FF, Sitzkissen (z) 172

Abbildung 7-1: Aufbau der Effektdiagramme mit Haupteffekten (links) und Wechselwirkungen (rechts) 176

Abbildung 7-2: Erklärte und nicht erklärte Abweichungen (nach [Bac-2011]) 177

Abbildung 7-3: Effektdiagramme (normiert), EFG 20 (N = 1024), Sitzmontagepunkt (z) 182

Abbildung 7-4: Effektdiagramme (normiert), DFG 35 (N = 1023), Sitzmontagepunkt (z) 182

Abbildung 7-5: Wechselwirkung der Faktoren Last und Fahrgeschwindigkeit bei den Gabelstaplern EFG 20 und DFG 35, Sitzmontagepunkt (z) 185

Abbildung 7-6: Wechselwirkungen zwischen Fahrgeschwindigkeit und Fahrbahnanregung, Kabinenlagerung und Fahrgeschwindigkeit, EFG 20, Sitzmontagepunkt (z) 187

Abbildung 7-7: Wechselwirkungen zwischen Fahrgeschwindigkeit und Fahrbahnanregung, Kabinenlagerung und Fahrgeschwindigkeit, DFG 35, Sitzmontagepunkt (z) 187

Abbildung 7-8: Wechselwirkung der Faktoren Last und Fahrtrichtung bei den Gabelstaplern EFG 20 und DFG 35, Sitzmontagepunkt (z) 187

Abbildung 7-9: Effektdiagramme (normiert) der Faktoren Sitz und Fahrer für EFG 20 (N = 1024) und DFG 35 (N = 1023), Sitzkissen (z) 189

Abbildung 7-10: Wechselwirkung der Faktoren Fahrer und Sitz bei den Gabelstaplern EFG 20 und DFG 35, Sitzkissen (z) 190

Abbildung 7-11: Effektdiagramme (normiert), EFM 14, Sitzmontagepunkt (z) (N = 486) 191

Abbildung 7-12: Wechselwirkung der Faktoren Fahrbahnanregung und Fahrgeschwindigkeit, EFM 14, Sitzmontagepunkt (z) 193

Abbildung 7-13: Effektdiagramme (normiert) von Sitz und Fahrer, EFM 14 (N = 486), Sitzmontagepunkt (z) 194

Abbildung 7-14: Wechselwirkungen zwischen Sitz und Fahrbahnanregung, Fahrer und Fahrgeschwindigkeit, EFM 14, Sitzkissen (z) 195

Abbildung 7-15: Lattenmessung an einer Fahrbahnoberfläche (nach [Vel-2008]) 199

Abbildung 7-16: Streudiagramm der Beobachtungswerte mit Regressionsgerade, systematischer Komponente und Residualgröße 203

Abbildung 7-17: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), EFG 20, Sitzmontagepunkt (z) 206

Page 323: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

303

Abbildung 7-18: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwindigkeiten mit Schwellenhöhe 8 mm, EFG 20, Sitzmontagepunkt (z) 207

Abbildung 7-19: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwellenhöhen mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z) 208

Abbildung 7-20: Auszug Einzelhindernisse mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z) 208

Abbildung 7-21: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-16) anhand Auszug Einzelhindernisse mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z) 211

Abbildung 7-22: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-19) anhand Schwellenüberfahrt 8 mm, DFG 35, Sitzmontagepunkt (z) 213

Abbildung 7-23: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-19) anhand Auszug Einzelhindernisse mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z) 214

Abbildung 7-24: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-21) anhand Auszug Einzelhindernisse mit Last 1050 kg, EFM 14, Sitzmontagepunkt (z) 215

Abbildung 7-25: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-22) anhand Auszug Einzelhindernisse mit Last 1050 kg, EFM 14, Sitzkissen (z) 216

Abbildung 7-26: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), EFG 20, Sitzmontagepunkt (z) 217

Abbildung 7-27: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z) 218

Abbildung 7-28: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z) 218

Abbildung 7-29: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z) 219

Abbildung 7-30: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-23) anhand Auszug regellose Unebenheiten mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z) 221

Abbildung 7-31: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-25) anhand Auszug regellose

Page 324: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

304

Unebenheiten mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z) 222

Abbildung 7-32: Vergleich Simulationsergebnisse und Schätzung durch lineare Regression (Tabelle 7-26) anhand Auszug regellose Unebenheiten mit Last 700 kg, EFM 14, Sitzmontagepunkt (z) 223

Abbildung 7-33: Belastungen für Zementbeton und Asphalt-Beton, EFG 20, Sitzmontagepunkt (z) 224

Abbildung 7-34: Belastungen für Zementbeton und Asphalt-Beton, DFG 35, Sitzmontagepunkt (z) 225

Abbildung 7-35: Belastungen für Zementbeton und Asphalt-Beton, EFM 14, Sitzmontagepunkt (z) 226

Abbildung 7-36: Fahrt über Scheinfugen mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z) 227

Abbildung 7-37: Fahrt über Raumfugen unterschiedlicher Breite mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z) 227

Abbildung 7-38: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1000 kg und Fahrgeschwindigkeit 8 km/h, EFG 20, Sitzmontagepunkt (z) 228

Abbildung 7-39: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1750 kg und Fahrgeschwindigkeit 10 km/h, DFG 35, Sitzmontagepunkt (z) 228

Abbildung 7-40: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 700 kg und Fahrgeschwindigkeit 5 km/h, EFM 14, Sitzmontagepunkt (z) 229

Abbildung 7-41: Vergleich der Belastungen bei einseitiger Radanregung und unterschiedlichen Schwellenhöhen mit Last 1000 kg und Fahrgeschwindigkeit 10 km/h, EFG 20, Sitzkissen (z) 230

Abbildung 7-42: Vergleich der Belastungen bei einseitiger Radanregung und unterschiedlichen Schwellenhöhen mit Last 1000 kg und Schwellenhöhe 8 mm, EFG 20, Antriebsachse (z) 230

Abbildung 7-43: Vergleich der Belastungen bei einseitiger Radanregung und unterschiedlichen Schwellenhöhen mit Last 1000 kg und Fahrgeschwindigkeit 10 km/h, EFG 20, Sitzmontagepunkt (z), Sensorposition links 231

Abbildung 7-44: Vergleich der Belastungen bei linksseitiger Radanregung und unterschiedlichen Fahrgeschwindigkeiten mit Last 1000 kg und Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z) 231

Abbildung 7-45: Übertragungsverhalten der Kabinenlagerung 236

Abbildung 7-46: Vergleich der Lagervarianten für Schwellenüberfahrt 8 mm, EFG 20, Last 1000 kg, Sitzmontagepunkt (z) 237

Page 325: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

305

Abbildung 7-47: Vergleich der Lagervarianten für Schwellenüberfahrten verschiedener Höhe, EFG 20, Last 1000 kg, Sitzmontagepunkt (z) 237

Abbildung 7-48: Vergleich der Lagervarianten bei regellosen Bodenunebenheiten (w = 2), EFG 20, Last 1000 kg, Fahrgeschwindigkeit 12 km/h, Sitzmontagepunkt (z) 238

Abbildung 7-49: Schematische Darstellung der Sitzplattenlagerung beim Schubmaststapler EFM 14 239

Abbildung 7-50: Vergleich der Lagervarianten für Schwellenüberfahrt 5 mm, EFM 14, Last 1000 kg, Sitzmontagepunkt (z) 239

Abbildung 7-51: Vergleich der Lagervarianten für Schwellenüberfahrt 5 mm, EFM 14, Last 1000 kg, Sitzkissen (z) 240

Abbildung 7-52: Vergleich der Lagervarianten für unterschiedliche Schwellenhöhen, EFM 14, Last 1000 kg, Fahrgeschwindigkeit 12 km/h, Sitzmontagepunkt (z) 240

Abbildung 7-53: SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstellung, MSG 85, Prüfspektrum IT 1 243

Abbildung 7-54: SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstellung, MSG 20, Prüfspektrum IT 1 243

Abbildung 7-55: SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstellung, MSG 65, Prüfspektrum IT 1 244

Abbildung 7-56: SEAT-Werte in Abhängigkeit der Belastung für Schwellenüberfahrt des EFG 20 nach Tabelle 7-9 mit Sitz MSG 65 246

Abbildung 7-57: SEAT-Werte als Trendlinie in Form eines Polynoms in Abhängigkeit der Belastung für Schwellenüberfahrt des EFG 20 nach Tabelle 7-9 mit Sitz MSG 65 und unterschiedlichen transportierten Lasten 246

Abbildung 7-58: Tagesexposition A(8) bei Schwellenüberfahrt in Abhängigkeit der Überfahrten (T1 = 3 h, aw1 = 0,40 m/s², T2 = 1 h, aw2 = 1,06 m/s², z-Richtung) 254

Abbildung 7-59: Expositionszeiten bis zum Erreichen von Auslöse- und Expositionsgrenzwert in Abhängigkeit der Schwellenhöhe (aw,mittel = 0,40 m/s², aw,schnell = 0,65 m/s²) 255

Abbildung A-1: Effektdiagramme (normiert), EFG 20, Sitzkissen (z) (N = 1024) A-12

Abbildung A-2: Effektdiagramme (normiert), DFG 35, Sitzkissen (z) (N = 1023) A-12

Abbildung A-3: Effektdiagramme (normiert), EFM 14, Sitzkissen (z) (N = 486) A-15

Page 326: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

306

Abbildung A-4: Wechselwirkungen zwischen Fahrgeschwindigkeit und den restlichen Faktoren, EFG 20, Sitzmontagepunkt (z) A-16

Abbildung A-5: Wechselwirkungen zwischen Fahrgeschwindigkeit und den restlichen Faktoren, DFG 35, Sitzmontagepunkt (z) A-17

Abbildung A-6: Wechselwirkung der Faktoren Fahrbahnanregung und Fahrgeschwindigkeit bei den Gabelstaplern EFG 20 und DFG 35, Sitzkissen (z) A-17

Abbildung A-7: Wechselwirkung der Faktoren Last und Fahrgeschwindigkeit bei den Gabelstaplern EFG 20 und DFG 35, Sitzkissen (z) A-18

Abbildung A-8: Wechselwirkung der Faktoren Fahrbahnanregung, Last und Fahrgeschwindigkeit mit Sitz, EFG 20, Sitzkissen (z) A-18

Abbildung A-9: Wechselwirkung der Faktoren Fahrbahnanregung, Last und Fahrgeschwindigkeit mit Sitz, DFG 35, Sitzkissen (z) A-18

Abbildung A-10: Wechselwirkung der Faktoren Fahrbahnanregung und Fahrgeschwindigkeit, EFM 14, Sitzkissen (z) A-19

Abbildung B-1: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), EFG 20, Sitzkissen (z) B-3

Abbildung B-2: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), DFG 35, Sitzmontagepunkt (z) B-3

Abbildung B-3: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), DFG 35, Sitzkissen (z) B-4

Abbildung B-4: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), EFM 14, Sitzmontagepunkt (z) B-4

Abbildung B-5: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), EFM 14, Sitzkissen (z) B-5

Abbildung B-6: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), EFG 20, Sitzkissen (z) B-5

Abbildung B-7: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), DFG 35, Sitzmontagepunkt (z) B-6

Abbildung B-8: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), DFG 35, Sitzkissen (z) B-6

Abbildung B-9: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), EFM 14, Sitzmontagepunkt (z) B-7

Abbildung B-10: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), EFM 14, Sitzkissen (z) B-7

Page 327: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

307

Abbildung B-11: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwindigkeiten mit Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z) B-8

Abbildung B-12: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 8 mm, EFG 20, Sitzmontagepunkt (z) B-8

Abbildung B-13: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z) B-9

Abbildung B-14: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwellenhöhen mit Last 1000 kg, EFG 20, Sitzkissen (z) B-9

Abbildung B-15: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwindigkeiten mit Schwellenhöhe 8 mm, DFG 35, Sitzmontagepunkt (z) B-9

Abbildung B-16: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwindigkeiten mit Schwellenhöhe 8 mm, DFG 35, Sitzkissen (z) B-10

Abbildung B-17: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 8 mm, DFG 35, Sitzmontagepunkt (z) B-10

Abbildung B-18: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 8 mm, DFG 35, Sitzkissen (z) B-10

Abbildung B-19: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwellenhöhen mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z) B-11

Abbildung B-20: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwellenhöhen mit Last 1750 kg, DFG 35, Sitzkissen (z) B-11

Abbildung B-21: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwindigkeiten mit Schwellenhöhe 5 mm, EFM 14, Sitzmontagepunkt (z) B-11

Abbildung B-22: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwindigkeiten mit Schwellenhöhe 5 mm, EFM 14, Sitzkissen (z) B-12

Abbildung B-23: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 5 mm, EFM 14, Sitzmontagepunkt (z) B-12

Abbildung B-24: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 5 mm, EFM 14, Sitzkissen (z) B-12

Page 328: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

308

Abbildung B-25: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwellenhöhen mit Last 700 kg, EFM 14, Sitzmontagepunkt (z) B-13

Abbildung B-26: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwellenhöhen mit Last 700 kg, EFM 14, Sitzkissen (z) B-13

Abbildung B-27: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 1000 kg, EFG 20, Sitzkissen(z) B-13

Abbildung B-28: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 15, EFG 20, Sitzmontagepunkt (z) B-14

Abbildung B-29: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 15, EFG 20, Sitzkissen (z) B-14

Abbildung B-30: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1000 kg, EFG 20, Sitzkissen (z) B-14

Abbildung B-31: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1000 kg, EFG 20, Sitzkissen (z) B-15

Abbildung B-32: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z) B-15

Abbildung B-33: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 1750 kg, DFG 35, Sitzkissen (z) B-15

Abbildung B-34: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 15, DFG 35, Sitzmontagepunkt (z) B-16

Abbildung B-35: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 15, DFG 35, Sitzkissen (z) B-16

Abbildung B-36: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z) B-16

Abbildung B-37: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1750 kg, DFG 35, Sitzkissen (z) B-17

Abbildung B-38: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z) B-17

Page 329: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

309

Abbildung B-39: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1750 kg, DFG 35, Sitzkissen (z) B-17

Abbildung B-40: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 700 kg, EFM 14, Sitzmontagepunkt (z) B-18

Abbildung B-41: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 700 kg, EFM 14, Sitzkissen (z) B-18

Abbildung B-42: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 5, EFM 14, Sitzmontagepunkt (z) B-18

Abbildung B-43: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 5, EFM 14, Sitzkissen (z) B-19

Abbildung B-44: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 700 kg, EFM 14, Sitzmontagepunkt (z) B-19

Abbildung B-45: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 700 kg, EFM 14, Sitzkissen (z) B-19

Abbildung B-46: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 700 kg, EFM 14, Sitzmontagepunkt (z) B-20

Abbildung B-47: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 700 kg, EFM 14, Sitzkissen (z) B-20

Abbildung B-48 Vergleich Simulationsergeb. und Schätzung durch lin. Regression (Tabelle 7-23), Auszug regell. Unebenheiten mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z) B-20

Abbildung B-49: Vergleich Simulationsergeb. und Schätzung durch lin. Regression (Tabelle 7-24) anhand Auszug regellose Unebenheiten mit Last 1000 kg, EFG 20, Sitzkissen (z) B-21

Abbildung B-50: Vergleich Simulationsergeb. und Schätzung durch lin. Regression (Tabelle B-3) anhand Auszug regellose Unebenheiten mit Last 1750 kg, DFG 35, Sitzkissen (z) B-21

Abbildung B-51: Vergleich Simulationsergeb. und Schätzung durch lin. Regression (Tabelle B-4) anhand Auszug regellose Unebenheiten mit Last 700 kg, EFM 14, Sitzkissen (z) B-21

Abbildung B-52: Belastungen für Pflaster und Macadam, EFG 20, Sitzmontagepunkt (z) B-23

Page 330: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

310

Abbildung B-53: Belastungen für unbefestigte Fahrbahnen, EFG 20, Sitzmontagepunkt (z) B-23

Abbildung B-54: Belastungen für Zementbeton und Asphalt-Beton, EFG 20, Sitzkissen (z) B-24

Abbildung B-55: Belastungen für Pflaster und Macadam, EFG 20, Sitzkissen (z) B-24

Abbildung B-56: Belastungen für unbefestigte Fahrbahnen, EFG 20, Sitzkissen (z) B-25

Abbildung B-57: Belastungen für Pflaster und Macadam, DFG 35, Sitzmontagepunkt (z) B-25

Abbildung B-58: Belastungen für unbefestigte Fahrbahnen, DFG 35, Sitzmontagepunkt (z) B-26

Abbildung B-59: Belastungen für Zementbeton und Asphalt-Beton, DFG 35, Sitzkissen (z) B-26

Abbildung B-60: Belastungen für Pflaster und Macadam, DFG 35, Sitzkissen (z) B-27

Abbildung B-61: Belastungen für unbefestigte Fahrbahnen, DFG 35, Sitzkissen (z) B-27

Abbildung B-62: Belastungen für Zementbeton und Asphalt-Beton, EFM 14, Sitzkissen (z) B-28

Abbildung B-63: Belastungen für Pflaster, Macadam und unbefestigte Fahrbahnen, EFM 14, Sitzmontagepunkt (z) B-28

Abbildung B-64: Belastungen für Pflaster, Macadam und unbefestigte Fahrbahnen, EFM 14, Sitzkissen (z) B-29

Abbildung B-65: Fahrt über Scheinfugen mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z) B-29

Abbildung B-66: Fahrt über Scheinfugen mit Last 700 kg, EFM 14, Sitzmontagepunkt (z) B-30

Abbildung B-67: Fahrt über Raumfugen unterschiedlicher Breite mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z) B-30

Abbildung B-68: Fahrt über Raumfugen unterschiedlicher Breite mit Last 700 kg, EFM 14, Sitzmontagepunkt (z) B-30

Abbildung B-69: Fahrt über Raumfugen unterschiedlicher Breite mit Last 1000 kg, EFG 20, Sitzkissen (z) B-31

Abbildung B-70: Fahrt über Raumfugen unterschiedlicher Breite mit Last 1750 kg, DFG 35, Sitzkissen (z) B-31

Abbildung B-71: Fahrt über Raumfugen unterschiedlicher Breite mit Last 700 kg, EFM 14, Sitzkissen (z) B-31

Page 331: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

311

Abbildung B-72: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1000 kg und Fahrgeschwindigkeit 14 km/h, EFG 20, Sitzmontagepunkt (z) B-32

Abbildung B-73: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1000 kg und Fahrgeschwindigkeit 8 km/h, EFG 20, Sitzkissen (z) B-32

Abbildung B-74: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1000 kg und Fahrgeschwindigkeit 12 km/h, EFG 20, Sitzkissen (z) B-32

Abbildung B-75: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1750 kg und Fahrgeschwindigkeit 20 km/h, DFG 35, Sitzmontagepunkt (z) B-33

Abbildung B-76: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1750 kg und Fahrgeschwindigkeit 10 km/h, DFG 35, Sitzkissen (z) B-33

Abbildung B-77: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1750 kg und Fahrgeschwindigkeit 20 km/h, DFG 35, Sitzkissen (z) B-33

Abbildung B-78: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 700 kg und Fahrgeschwindigkeit 12 km/h, EFM 14, Sitzmontagepunkt (z) B-34

Abbildung B-79: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 700 kg und Fahrgeschwindigkeit 5 km/h, EFM 14, Sitzkissen (z) B-34

Abbildung B-80: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 700 kg und Fahrgeschwindigkeit 12 km/h, EFM 14, Sitzkissen (z) B-34

Abbildung B-81: Vergleich der Belastungen bei beidseitiger Radanregung und unterschiedlichen Fahrgeschwindigkeiten mit Last 1000 kg bei Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z) B-35

Abbildung B-82: Vergleich der Belastungen bei rechtsseitiger Radanregung und untersch. Fahrgeschwindigkeiten mit Last 1000 kg und Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z) B-35

Abbildung B-83: Vergleich der Belastungen bei rechtsseitiger Radanregung und untersch. Fahrgeschwindigkeiten mit Last 0 kg und Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z) B-36

Abbildung B-84: Vergleich der Belastungen bei rechtsseitiger Radanregung und untersch. Fahrgeschwindigkeiten mit Last 2000 kg und Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z) B-36

Abbildung C-1 SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstellung, MSG 85, Prüfspektrum IT 2 C-1

Page 332: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Abbildungsverzeichnis

312

Abbildung C-2: SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstellung, MSG 20, Prüfspektrum IT 2 C-1

Abbildung C-3: SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstellung, MSG 65, Prüfspektrum IT 2 C-2

Abbildung C-4: SEAT-Werte in Abhängigkeit der Belastung für Schwellenüberfahrt nach Tabelle 7-9, DFG 35, Sitz MSG 85 C-2

Abbildung C-5: SEAT-Werte in Abhängigkeit der Belastung für Schwellenüberfahrt nach Tabelle 7-9, EFM 14, Sitz MSG (Schwellenhöhe 1–10 mm) C-2

Abbildung C-6: SEAT-Werte in Abhängigkeit der Belastung für Schwellenüberfahrt nach Tabelle 7-9, EFM 14, Sitz MSG 65 (Schwellenhöhe 1–6 mm) C-3

Abbildung C-7: SEAT-Werte in Abhängigkeit der Belastung für Überfahrt von Böden mit regellosen Unebenheiten nach Tabelle 7-11, EFG 20, Sitz MSG 65 C-3

Abbildung C-8: SEAT-Werte in Abhängigkeit der Belastung für Überfahrt von Böden mit regellosen Unebenheiten nach Tabelle 7-11, DFG 35, Sitz MSG 85 C-3

Abbildung C-9: SEAT-Werte in Abhängigkeit der Belastung für Überfahrt von Böden mit regellosen Unebenheiten nach Tabelle 7-11, EFM 14, Sitz MSG 65 C-4

Page 333: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

313

Tabellenverzeichnis

Tabelle 2-1: Einteilung und Benennung der Flurförderzeuge nach dem Fahrantrieb [VDI 3586] 17

Tabelle 2-2: Kennbuchstaben für Flurförderzeuge nach Bauform (Auswahl stapelnder Flurförderzeuge) nach [VDI 3586] 17

Tabelle 2-3: Verteilung der Flurförderzeuge auf Industriezweige in Europa 23

Tabelle 2-4: Berufskrankheit BK 2110 [Bun-2012c; Bun-2012b] 32

Tabelle 2-5: Orientierungswerte für die Gefährdungsbeurteilung bei Ganzkörper-Vibrationen nach [Bun-2010b] 50

Tabelle 3-1: Zu untersuchende Einflussfaktoren auf die Vibrationsexposition 68

Tabelle 4-1: Auswahl von Schadensarten und Ursachen bei Asphalt nach [Vel-2008] 83

Tabelle 4-2: Schadensbilder und Ursachen bei monolithischen Betonplatten [Czi-1999] 84

Tabelle 4-3: Schäden im Fugenbereich von Industrieböden [Czi-1999] 85

Tabelle 4-4: Schäden in Pflasterdecken nach [Men-2009] 85

Tabelle 4-5: Einflussfaktoren der ersten Versuchsreihen 88

Tabelle 4-6: Fahrzeugabhänge Wahl der Faktorstufen 89

Tabelle 4-7: Faktorstufen Fahrbahn und Sitz nach Flurförderzeug 90

Tabelle 4-8: Untersuchungsspektrum Fahrer-Sitz-System 91

Tabelle 5-1: Mittelwerte zur Beschreibung von Fahrbahnspektren für Fahrbahnen verschiedener Bauart und unterschiedlichem Oberflächenzustand nach [Bra-1969] (entnommen aus [Mit-1984]) 114

Tabelle 5-2: Vorschlag zur Klassifizierung von Fahrbahnunebenheiten nach [ISO 8608] (entnommen aus [Mit-2004]) 115

Tabelle 5-3: Eigenfrequenzen der Sitze MSG 20, MSG 65 und MSG 85 128

Tabelle 5-4: SEAT-Werte der untersuchten Fahrersitze 130

Tabelle 5-5: Einteilung der Fahrer nach Körpergewicht 132

Tabelle 6-1: Vergleich der Sitzübertragungsfaktoren 159

Tabelle 6-2: Fahrzeugabhängige Dimensionierung der Teststrecke nach DIN EN 13059 [DIN EN 13059] 161

Page 334: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Tabellenverzeichnis

314

Tabelle 7-1: Mittelwerte der Effektivwerte der frequenzbewerteten Beschleunigung awT bezogen auf die z-Achse des Messpunkts des jeweiligen Fahrzeugs 180

Tabelle 7-2: Zusammengefasste Effekte (normiert) der Gabelstapler EFG 20 (N = 1024) und DFG 35 (N = 1023), Sitzmontagepunkt (z) 183

Tabelle 7-3: Varianzanalysen der Einflussfaktoren bei den Gabelstaplern EFG 20 ( 2

korrR = 0,980) und DFG 35 ( 2korrR = 0,899),

Signifikanzniveau p < 0,05, Sitzmontagepunkt (z) 184

Tabelle 7-4: Varianzanalysen der Einflussfaktoren bei den Gabelstaplern EFG 20 ( 2

korrR = 0,974) und DFG 35 ( 2korrR = 0,938),

Signifikanzniveau p < 0,05, Sitzkissen (z) 189

Tabelle 7-5: Effekte (normiert) für Schubmaststapler EFM 14 (N = 486), Sitzmontagepunkt (z) 192

Tabelle 7-6: Varianzanalyse der Einflussfaktoren beim Schubmaststapler EFM 14 ( 2

korrR = 0,961), Signifikanzniveau p < 0,05,

Sitzmontagepunkt (z) 192

Tabelle 7-7: Varianzanalyse der Einflussfaktoren beim Schubmaststapler EFM 14 ( 2

korrR = 0,961), Signifikanzniveau p < 0,05,

Sitzkissen (z) 194

Tabelle 7-8: Einfluss der untersuchten Faktoren auf die Fahrerbelastung 196

Tabelle 7-9: Versuchsumfang für Einzelhindernisse 198

Tabelle 7-10: Versuchsumfang für klassifizierte Böden 198

Tabelle 7-11: Versuchsumfang für Fahrbahnoberflächen steigender Unebenheit 199

Tabelle 7-12: Abweichungen im Oberflächenprofil von Fahrbahnen verschiedener Bauart und unterschiedlichem Oberflächenzustand (vgl. Tabelle 5-1), vollständige Darstellung in Tabelle B-1 200

Tabelle 7-13: Versuchsumfang für Fugenüberfahrt 201

Tabelle 7-14: Versuchsumfang für Einzelradanregung 202

Tabelle 7-15: Konstante Parametereinstellung für Versuchsreihe Detailbetrachtung Fahrbahnanregung, Fahrgeschwindigkeit und Last 202

Tabelle 7-16: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-24), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFG 20, Sitzmontagepunkt (z), N = 3003,

2korrR = 0,93, s = 0,12, p < 0,05 210

Page 335: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Tabellenverzeichnis

315

Tabelle 7-17: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-26), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFG 20, Sitzmontagepunkt (z), N = 231, p < 0,05 211

Tabelle 7-18: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-24), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFG 20, Sitzkissen (z), N = 3003, 2

korrR = 0,95,

s = 0,015, p < 0,05 212

Tabelle 7-19: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-24), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, DFG 35, Sitzmontagepunkt (z), N = 3134,

2korrR = 0,88, s = 0,18, p < 0,05 212

Tabelle 7-20: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-24), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, DFG 35, Sitzkissen (z), N = 3134, 2

korrR = 0,87,

s = 0,051, p < 0,05 214

Tabelle 7-21: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-25), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFM 14, Sitzmontagepunkt (z), N = 611, 2

korrR

= 0,94, s = 0,20, p < 0,05 215

Tabelle 7-22: Lineare Regression Einzelhindernisse Schwellen, Modellansatz nach Formel (7-25), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFM 14, Sitzkissen (z), N = 611, 2

korrR = 0,88,

s = 0,05, p < 0,05 216

Tabelle 7-23: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-29), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFG 20, Sitzmontagepunkt (z), N = 2831, 2

korrR = 0,94, s = 0,38,

p < 0,05 220

Tabelle 7-24: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-29), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFG 20, Sitzkissen (z), N = 2415, 2

korrR = 0,803, s = 0,11,

p < 0,05 221

Tabelle 7-25: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-29), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung,

Page 336: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Tabellenverzeichnis

316

DFG 35, Sitzmontagepunkt (z), N = 3238, 2korrR = 0,91, s = 0,51,

p < 0,05 222

Tabelle 7-26: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-30), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFM 14, Sitzmontagepunkt (z), N = 1005, 2

korrR = 0,936,

s = 0,64, p < 0,05 223

Tabelle 7-27: Mittlere Belastungen in z-Richtung in Form des Effektivwerts der frequenzbewerteten Beschleunigung , ( )w T za in [m/s²] für

Gabelstapler getrennt nach Klassen unterschiedlicher Fahrgeschwindigkeit und Fahrbahnbeschaffenheit mit Standardabweichung in Klammer, Nges = 1201 251

Tabelle 7-28: Expositionszeiten bis zum Erreichen von Auslöse- und Expositionsgrenzwert bei mittleren Belastungen nach Tabelle 7-27 252

Tabelle A-1: Varianzanalyse für awT,N bei Gabelstapler EFG 20 mit allen Haupteffekten und Einfachwechselwirkungen korrR2( = 0,984),

Signifikanzniveau p < 0,05, Sitzmontagepunkt (z) A-1

Tabelle A-2: Varianzanalyse für awT,N bei Gabelstapler DFG 35 mit allen Haupteffekten und Einfachwechselwirkungen 2( korrR = 0,952),

Signifikanzniveau p < 0,05, Sitzmontagepunkt (z) A-3

Tabelle A-3: Varianzanalyse für awT,N bei Gabelstapler EFG 20 mit allen Haupteffekten und Einfachwechselwirkungen korrR2( = 0,982),

Signifikanzniveau p < 0,05, Sitzkissen (z) A-4

Tabelle A-4: Varianzanalyse für awT,N bei Gabelstapler DFG 35 mit allen Haupteffekten und Einfachwechselwirkungen korrR2( = 0,966),

Signifikanzniveau p < 0,05, Sitzkissen (z) A-6

Tabelle A-5: Varianzanalyse für awT,N bei Schubmaststapler EFM 14 mit allen Haupteffekten und Einfachwechselwirkungen korrR2(

= 0,996), Signifikanzniveau p < 0,05, Sitzmontagepunkt (z) A-8

Tabelle A-6: Varianzanalyse für awT,N bei Schubmaststapler EFM 14 mit allen Haupteffekten und Einfachwechselwirkungen korrR2(

= 0,941), Signifikanzniveau p < 0,05, Sitzkissen (z) A-9

Tabelle A-7: Effekte (normiert) für Gabelstapler EFG 20 (N = 1024) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzmontagepunkt (z) A-11

Tabelle A-8: Effekte (normiert) für Gabelstapler DFG 25 (N = 1023) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzmontagepunkt (z) A-11

Tabelle A-9: Zusammengefasste Effekte (normiert) der Gabelstapler EFG 20 (N = 1024) und DFG 35 (N = 1023), Sitzkissen (z) A-13

Page 337: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

Tabellenverzeichnis

317

Tabelle A-10: Effekte (normiert) für Gabelstapler EFG 20 (N = 1024) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzkissen (z) A-13

Tabelle A-11: Effekte (normiert) für Gabelstapler DFG 25 (N = 1023) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzkissen (z) A-14

Tabelle A-12: Effekte (normiert) für Schubmaststapler EFM 14 (N = 486) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzmontagepunkt (z) A-14

Tabelle A-13: Effekte (normiert) für Schubmaststapler EFM 14 (N = 486) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzkissen (z) A-15

Tabelle B-1: Abweichungen im Oberflächenprofil von Fahrbahnen verschiedener Bauart und unterschiedlichem Oberflächenzustand (vgl. Tabelle 5-1) B-1

Tabelle B-2: Abweichungen im Oberflächenprofil von Fahrbahnen gleicher Welligkeit w und verschiedenem Unebenheitsmaß U B-2

Tabelle B-3: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-29), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, DFG 35, Sitzkissen (z), N = 3238, 2

korrR = 0,893, s = 0,23,

p < 0,05 B-22

Tabelle B-4: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-29), abhängige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFM 14, Sitzkissen (z), N = 1005, 2

korrR = 0,876, s = 0,18,

p < 0,05 B-22

Page 338: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 339: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A-1

Anhang A Ergänzungen zu grundlegenden Einflussfaktoren

A.1 Varianzanalyse

Tabelle A-1: Varianzanalyse für awT,N bei Gabelstapler EFG 20 mit allen Haupteffekten und Einfach-wechselwirkungen korrR2( = 0,984), Signifikanzniveau p < 0,05, Sitzmontagepunkt (z)

Quadrat-summe df F p² p

Fahrbahnanregung 30,78 1 20211,58 0,95 0,00

Fahrtrichtung 0,28 1 185,00 0,16 0,00

Fahrer 0,01 1 4,21 0,00 0,04

Last 0,03 1 17,77 0,02 0,00

Fahrgeschwindigkeit 50,44 1 33119,50 0,97 0,00

Neigung Hubgerüst 0,04 1 25,31 0,03 0,00

Reifensteifigkeit 1,29 1 848,35 0,47 0,00

Reifendämpfung 0,11 1 71,68 0,07 0,00

Kabinenlagerung 2,03 1 1330,28 0,58 0,00

Sitz 0,01 1 3,96 0,00 0,05

Fahrbahnanregung x Fahrer 0,00 1 0,03 0,00 0,86

Fahrbahnanregung x Fahrtrichtung 0,04 1 27,84 0,03 0,00

Fahrbahnanregung x Fahrgeschwindigkeit 2,30 1 1509,40 0,61 0,00

Fahrbahnanregung x Kabinenlagerung 0,09 1 56,85 0,06 0,00

Fahrbahnanregung x Last 0,01 1 8,80 0,01 0,00

Fahrbahnanregung x Neigung Hubgerüst 0,00 1 2,87 0,00 0,09

Fahrbahnanregung x Reifendämpfung 0,01 1 3,80 0,00 0,05

Fahrbahnanregung x Reifensteifigkeit 0,04 1 25,51 0,03 0,00

Fahrbahnanregung x Sitz 0,00 1 0,54 0,00 0,46

Fahrtrichtung x Fahrer 0,00 1 0,06 0,00 0,81

Fahrer x Fahrgeschwindigkeit 0,00 1 0,18 0,00 0,68

Fahrer x Kabinenlagerung 0,00 1 0,38 0,00 0,54

Fahrer x Last 0,00 1 0,26 0,00 0,61

Fahrer x Neigung Hubgerüst 0,00 1 0,00 0,00 0,98

Fahrer x Reifendämpfung 0,00 1 0,00 0,00 0,95

Fahrer x Reifensteifigkeit 0,00 1 0,11 0,00 0,74

Fahrer x Sitz 0,00 1 0,00 0,00 0,95

Fahrtrichtung x Fahrgeschwindigkeit 0,01 1 7,24 0,01 0,01

Fahrtrichtung x Kabinenlagerung 0,00 1 0,20 0,00 0,65

Page 340: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A Ergänzungen zu grundlegenden Einflussfaktoren

A-2

Fahrtrichtung x Last 0,02 1 10,74 0,01 0,00

Fahrtrichtung x Neigung Hubgerüst 0,00 1 0,07 0,00 0,79

Fahrtrichtung x Reifendämpfung 0,00 1 0,44 0,00 0,51

Fahrtrichtung x Reifensteifigkeit 0,01 1 3,55 0,00 0,06

Fahrtrichtung x Sitz 0,00 1 0,12 0,00 0,73

Fahrgeschwindigkeit x Kabinenlagerung 0,49 1 319,80 0,25 0,00

Last x Fahrgeschwindigkeit 6,62 1 4344,21 0,82 0,00

Fahrgeschwindigkeit x Neigung Hubgerüst 0,04 1 28,11 0,03 0,00

Fahrgeschwindigkeit x Reifendämpfung 0,02 1 9,91 0,01 0,00

Fahrgeschwindigkeit x Reifensteifigkeit 0,68 1 446,46 0,32 0,00

Fahrgeschwindigkeit x Sitz 0,01 1 8,64 0,01 0,00

Last x Kabinenlagerung 0,00 1 0,08 0,00 0,78

Neigung Hubgerüst x Kabinenlagerung 0,00 1 1,63 0,00 0,20

Reifendämpfung x Kabinenlagerung 0,00 1 0,03 0,00 0,87

Reifensteifigkeit x Kabinenlagerung 0,01 1 9,16 0,01 0,00

Kabinenlagerung x Sitz 0,00 1 0,78 0,00 0,38

Last x Neigung Hubgerüst 0,04 1 26,30 0,03 0,00

Last x Reifendämpfung 0,00 1 0,48 0,00 0,49

Last x Reifensteifigkeit 0,10 1 63,66 0,06 0,00

Last x Sitz 0,01 1 8,08 0,01 0,00

Neigung Hubgerüst x Reifendämpfung 0,00 1 0,02 0,00 0,90

Neigung Hubgerüst x Reifensteifigkeit 0,00 1 0,70 0,00 0,40

Neigung Hubgerüst x Sitz 0,00 1 0,09 0,00 0,77

Reifensteifigkeit x Reifendämpfung 0,00 1 0,36 0,00 0,55

Reifendämpfung x Sitz 0,00 1 0,02 0,00 0,89

Reifensteifigkeit x Sitz 0,00 1 0,21 0,00 0,65

Fehler 1,47 968

Gesamt 97,04 1023

Page 341: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A.1 Varianzanalyse

A-3

Tabelle A-2: Varianzanalyse für awT,N bei Gabelstapler DFG 35 mit allen Haupteffekten und Einfach-wechselwirkungen 2( korrR = 0,952), Signifikanzniveau p < 0,05, Sitzmontagepunkt (z)

Quadrat-

summe df F p² p

Fahrbahnanregung 92,77 1 9792,52 0,91 0,00

Fahrtrichtung 0,01 1 1,45 0,00 0,23

Fahrer 0,33 1 35,27 0,04 0,00

Last 10,86 1 1145,91 0,54 0,00

Fahrgeschwindigkeit 53,83 1 5682,47 0,85 0,00

Neigung Hubgerüst (Hubgerüst) 0,00 1 0,40 0,00 0,53

Reifensteifigkeit 5,21 1 549,80 0,36 0,00

Reifendämpfung 6,68 1 704,63 0,42 0,00

Kabinenlagerung 0,47 1 49,82 0,05 0,00

Sitz 0,00 1 0,50 0,00 0,48

Fahrbahnanregung x Fahrer 0,02 1 2,05 0,00 0,15

Fahrbahnanregung x Fahrtrichtung 0,08 1 8,78 0,01 0,00

Fahrbahnanregung x Fahrgeschwindigkeit 6,52 1 688,75 0,42 0,00

Fahrbahnanregung x Kabinenlagerung 0,00 1 0,00 0,00 0,96

Fahrbahnanregung x Last 7,58 1 800,20 0,45 0,00

Fahrbahnanregung x Neigung Hubgerüst 0,04 1 4,54 0,00 0,03

Fahrbahnanregung x Reifendämpfung 0,55 1 58,31 0,06 0,00

Fahrbahnanregung x Reifensteifigkeit 0,00 1 0,25 0,00 0,62

Fahrbahnanregung x Sitz 0,00 1 0,00 0,00 1,00

Fahrtrichtung x Fahrer 0,00 1 0,01 0,00 0,94

Fahrer x Fahrgeschwindigkeit 0,06 1 5,99 0,01 0,01

Fahrer x Kabinenlagerung 0,00 1 0,22 0,00 0,64

Fahrer x Last 0,00 1 0,11 0,00 0,74

Fahrer x Neigung Hubgerüst 0,00 1 0,49 0,00 0,48

Fahrer x Reifendämpfung 0,01 1 0,54 0,00 0,46

Fahrer x Reifensteifigkeit 0,00 1 0,00 0,00 0,99

Fahrer x Sitz 0,00 1 0,02 0,00 0,88

Fahrtrichtung x Fahrgeschwindigkeit 0,80 1 84,31 0,08 0,00

Fahrtrichtung x Kabinenlagerung 0,03 1 2,71 0,00 0,10

Fahrtrichtung x Last 1,09 1 115,08 0,11 0,00

Fahrtrichtung x Neigung Hubgerüst 0,03 1 3,27 0,00 0,07

Fahrtrichtung x Reifendämpfung 0,00 1 0,48 0,00 0,49

Fahrtrichtung x Reifensteifigkeit 0,07 1 7,12 0,01 0,01

Fahrtrichtung x Sitz 0,01 1 0,65 0,00 0,42

Fahrgeschwindigkeit x Kabinenlagerung 1,10 1 115,97 0,11 0,00

Last x Fahrgeschwindigkeit 4,20 1 443,16 0,31 0,00

Page 342: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A Ergänzungen zu grundlegenden Einflussfaktoren

A-4

Fahrgeschwindigkeit x Neigung Hubgerüst 0,02 1 2,12 0,00 0,15

Fahrgeschwindigkeit x Reifendämpfung 0,07 1 7,13 0,01 0,01

Fahrgeschwindigkeit x Reifensteifigkeit 0,30 1 31,26 0,03 0,00

Fahrgeschwindigkeit x Sitz 0,06 1 6,35 0,01 0,01

Last x Kabinenlagerung 0,48 1 50,98 0,05 0,00

Neigung Hubgerüst x Kabinenlagerung 0,00 1 0,02 0,00 0,89

Reifendämpfung x Kabinenlagerung 0,02 1 2,17 0,00 0,14

Reifensteifigkeit x Kabinenlagerung 0,04 1 4,28 0,00 0,04

Kabinenlagerung x Sitz 0,01 1 1,28 0,00 0,26

Last x Neigung Hubgerüst 0,03 1 3,53 0,00 0,06

Last x Reifendämpfung 0,62 1 65,50 0,06 0,00

Last x Reifensteifigkeit 0,17 1 18,08 0,02 0,00

Last x Sitz 0,10 1 10,66 0,01 0,00

Neigung Hubgerüst x Reifendämpfung 0,01 1 0,99 0,00 0,32

Neigung Hubgerüst x Reifensteifigkeit 0,00 1 0,03 0,00 0,86

Neigung Hubgerüst x Sitz 0,00 1 0,01 0,00 0,91

Reifensteifigkeit x Reifendämpfung 0,04 1 4,05 0,00 0,04

Reifendämpfung x Sitz 0,01 1 1,43 0,00 0,23

Reifensteifigkeit x Sitz 0,00 1 0,00 0,00 1,00

Fehler 9,16 967

Gesamt 203,16 1022

Tabelle A-3: Varianzanalyse für awT,N bei Gabelstapler EFG 20 mit allen Haupteffekten und Einfach-wechselwirkungen korrR2( = 0,982), Signifikanzniveau p < 0,05, Sitzkissen (z)

Quadrat-

summe df F p² p

Fahrbahnanregung 2,30 1 9019,62 0,90 0,00

Fahrtrichtung 0,00 1 6,78 0,01 0,01

Fahrer 0,93 1 3643,85 0,79 0,00

Last 0,01 1 35,48 0,04 0,00

Fahrgeschwindigkeit 1,79 1 7036,16 0,88 0,00

Neigung Hubgerüst 0,00 1 0,02 0,00 0,89

Reifensteifigkeit 0,01 1 32,41 0,03 0,00

Reifendämpfung 0,01 1 29,07 0,03 0,00

Kabinenlagerung 0,06 1 253,28 0,21 0,00

Sitz 5,83 1 22874,74 0,96 0,00

Fahrbahnanregung x Fahrer 0,00 1 19,18 0,02 0,00

Fahrbahnanregung x Fahrtrichtung 0,00 1 0,87 0,00 0,35

Fahrbahnanregung x Fahrgeschwindigkeit 0,08 1 305,48 0,24 0,00

Page 343: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A.1 Varianzanalyse

A-5

Fahrbahnanregung x Kabinenlagerung 0,00 1 16,11 0,02 0,00

Fahrbahnanregung x Last 0,01 1 23,69 0,02 0,00

Fahrbahnanregung x Neigung Hubgerüst 0,00 1 0,01 0,00 0,92

Fahrbahnanregung x Reifendämpfung 0,00 1 0,81 0,00 0,37

Fahrbahnanregung x Reifensteifigkeit 0,00 1 0,72 0,00 0,40

Fahrbahnanregung x Sitz 0,22 1 854,52 0,47 0,00

Fahrtrichtung x Fahrer 0,00 1 18,07 0,02 0,00

Fahrer x Fahrgeschwindigkeit 0,01 1 34,36 0,03 0,00

Fahrer x Kabinenlagerung 0,00 1 0,00 0,00 1,00

Fahrer x Last 0,00 1 2,31 0,00 0,13

Fahrer x Neigung Hubgerüst 0,00 1 0,94 0,00 0,33

Fahrer x Reifendämpfung 0,00 1 0,02 0,00 0,88

Fahrer x Reifensteifigkeit 0,00 1 16,84 0,02 0,00

Fahrer x Sitz 1,60 1 6257,87 0,87 0,00

Fahrtrichtung x Fahrgeschwindigkeit 0,00 1 1,16 0,00 0,28

Fahrtrichtung x Kabinenlagerung 0,00 1 0,13 0,00 0,72

Fahrtrichtung x Last 0,00 1 15,25 0,02 0,00

Fahrtrichtung x Neigung Hubgerüst 0,00 1 0,10 0,00 0,75

Fahrtrichtung x Reifendämpfung 0,00 1 0,04 0,00 0,84

Fahrtrichtung x Reifensteifigkeit 0,00 1 0,70 0,00 0,40

Fahrtrichtung x Sitz 0,00 1 0,46 0,00 0,50

Fahrgeschwindigkeit x Kabinenlagerung 0,01 1 26,38 0,03 0,00

Last x Fahrgeschwindigkeit 0,12 1 486,80 0,33 0,00

Fahrgeschwindigkeit x Neigung Hubgerüst 0,00 1 2,51 0,00 0,11

Fahrgeschwindigkeit x Reifendämpfung 0,00 1 2,05 0,00 0,15

Fahrgeschwindigkeit x Reifensteifigkeit 0,02 1 87,26 0,08 0,00

Fahrgeschwindigkeit x Sitz 0,07 1 286,71 0,23 0,00

Last x Kabinenlagerung 0,00 1 13,40 0,01 0,00

Neigung Hubgerüst x Kabinenlagerung 0,00 1 0,01 0,00 0,94

Reifendämpfung x Kabinenlagerung 0,00 1 0,00 0,00 0,95

Reifensteifigkeit x Kabinenlagerung 0,00 1 1,31 0,00 0,25

Kabinenlagerung x Sitz 0,01 1 56,12 0,05 0,00

Last x Neigung Hubgerüst 0,00 1 6,44 0,01 0,01

Last x Reifendämpfung 0,00 1 0,14 0,00 0,71

Last x Reifensteifigkeit 0,00 1 8,57 0,01 0,00

Last x Sitz 0,03 1 135,66 0,12 0,00

Neigung Hubgerüst x Reifendämpfung 0,00 1 0,00 0,00 0,97

Neigung Hubgerüst x Reifensteifigkeit 0,00 1 0,06 0,00 0,81

Neigung Hubgerüst x Sitz 0,00 1 4,57 0,00 0,03

Reifensteifigkeit x Reifendämpfung 0,00 1 0,64 0,00 0,42

Page 344: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A Ergänzungen zu grundlegenden Einflussfaktoren

A-6

Reifendämpfung x Sitz 0,00 1 1,84 0,00 0,18

Reifensteifigkeit x Sitz 0,00 1 15,01 0,02 0,00

Fehler 0,25 968

Gesamt 55,19 1024

Tabelle A-4: Varianzanalyse für awT,N bei Gabelstapler DFG 35 mit allen Haupteffekten und Einfach-wechselwirkungen korrR2( = 0,966), Signifikanzniveau p < 0,05, Sitzkissen (z)

Quadrat-

summe df F p² p

Fahrbahnanregung 6,55 1 5912,55 0,86 0,00

Fahrtrichtung 0,00 1 0,24 0,00 0,62

Fahrer 1,60 1 1443,90 0,60 0,00

Last 0,48 1 437,30 0,31 0,00

Fahrgeschwindigkeit 3,22 1 2903,83 0,75 0,00

Neigung Hubgerüst 0,00 1 0,16 0,00 0,69

Reifensteifigkeit 0,28 1 252,75 0,21 0,00

Reifendämpfung 0,39 1 355,34 0,27 0,00

Kabinenlagerung 0,02 1 21,88 0,02 0,00

Sitz 15,52 1 14010,7

2

0,94 0,00

Fahrbahnanregung x Fahrer 0,10 1 89,05 0,08 0,00

Fahrbahnanregung x Fahrtrichtung 0,01 1 10,46 0,01 0,00

Fahrbahnanregung x Fahrgeschwindigkeit 0,38 1 340,41 0,26 0,00

Fahrbahnanregung x Kabinenlagerung 0,00 1 0,00 0,00 0,99

Fahrbahnanregung x Last 0,32 1 287,92 0,23 0,00

Fahrbahnanregung x Neigung Hubgerüst 0,00 1 2,16 0,00 0,14

Fahrbahnanregung x Reifendämpfung 0,04 1 33,04 0,03 0,00

Fahrbahnanregung x Reifensteifigkeit 0,00 1 0,09 0,00 0,76

Fahrbahnanregung x Sitz 0,90 1 810,24 0,46 0,00

Fahrtrichtung x Fahrer 0,00 1 0,01 0,00 0,90

Fahrer x Fahrgeschwindigkeit 0,03 1 26,79 0,03 0,00

Fahrer x Kabinenlagerung 0,00 1 0,04 0,00 0,83

Fahrer x Last 0,00 1 2,43 0,00 0,12

Fahrer x Neigung Hubgerüst 0,00 1 0,02 0,00 0,90

Fahrer x Reifendämpfung 0,01 1 9,15 0,01 0,00

Fahrer x Reifensteifigkeit 0,00 1 0,17 0,00 0,68

Fahrer x Sitz 0,77 1 698,39 0,42 0,00

Fahrtrichtung x Fahrgeschwindigkeit 0,03 1 26,22 0,03 0,00

Fahrtrichtung x Kabinenlagerung 0,00 1 1,49 0,00 0,22

Fahrtrichtung x Last 0,08 1 68,48 0,07 0,00

Page 345: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A.1 Varianzanalyse

A-7

Fahrtrichtung x Neigung Hubgerüst 0,00 1 1,89 0,00 0,17

Fahrtrichtung x Reifendämpfung 0,00 1 0,70 0,00 0,40

Fahrtrichtung x Reifensteifigkeit 0,00 1 2,80 0,00 0,09

Fahrtrichtung x Sitz 0,00 1 1,12 0,00 0,29

Fahrgeschwindigkeit x Kabinenlagerung 0,09 1 84,13 0,08 0,00

Last x Fahrgeschwindigkeit 0,24 1 212,91 0,18 0,00

Fahrgeschwindigkeit x Neigung Hubgerüst 0,00 1 0,53 0,00 0,47

Fahrgeschwindigkeit x Reifendämpfung 0,00 1 2,70 0,00 0,10

Fahrgeschwindigkeit x Reifensteifigkeit 0,03 1 24,62 0,02 0,00

Fahrgeschwindigkeit x Sitz 0,53 1 475,21 0,33 0,00

Last x Kabinenlagerung 0,04 1 37,30 0,04 0,00

Neigung Hubgerüst x Kabinenlagerung 0,00 1 0,38 0,00 0,54

Reifendämpfung x Kabinenlagerung 0,00 1 0,88 0,00 0,35

Reifensteifigkeit x Kabinenlagerung 0,00 1 1,85 0,00 0,17

Kabinenlagerung x Sitz 0,00 1 3,57 0,00 0,06

Last x Neigung Hubgerüst 0,00 1 0,61 0,00 0,43

Last x Reifendämpfung 0,03 1 26,14 0,03 0,00

Last x Reifensteifigkeit 0,00 1 2,81 0,00 0,09

Last x Sitz 0,13 1 117,70 0,11 0,00

Neigung Hubgerüst x Reifendämpfung 0,00 1 0,56 0,00 0,46

Neigung Hubgerüst x Reifensteifigkeit 0,00 1 0,01 0,00 0,94

Neigung Hubgerüst x Sitz 0,00 1 0,07 0,00 0,79

Reifensteifigkeit x Reifendämpfung 0,00 1 2,38 0,00 0,12

Reifendämpfung x Sitz 0,06 1 52,76 0,05 0,00

Reifensteifigkeit x Sitz 0,05 1 47,10 0,05 0,00

Fehler 1,07 967

Gesamt 33,06 102

3

Page 346: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A Ergänzungen zu grundlegenden Einflussfaktoren

A-8

Tabelle A-5: Varianzanalyse für awT,N bei Schubmaststapler EFM 14 mit allen Haupteffekten und Ein-fachwechselwirkungen korrR2( = 0,996), Signifikanzniveau p < 0,05, Sitzmontagepunkt (z)

Quadrat-

summe df F p² p

Fahrbahnanregung 83,13 1 5510,18 0,93 0,00

Fahrtrichtung 0,01 1 0,75 0,00 0,39

Fahrer 0,00 1 0,10 0,00 0,75

Last 0,16 1 10,61 0,02 0,00

Fahrgeschwindigkeit 113,53 1 7525,47 0,94 0,00

Neigung Hubgerüst 0,01 1 0,47 0,00 0,49

Reifensteifigkeit 0,38 1 25,10 0,05 0,00

Reifendämpfung 0,23 1 15,30 0,03 0,00

Sitz 0,35 1 23,34 0,05 0,00

Fahrbahnanregung x Fahrer 0,01 1 0,91 0,00 0,34

Fahrbahnanregung x Fahrtrichtung 0,00 1 0,00 0,00 0,97

Fahrbahnanregung x Fahrgeschwindigkeit 16,05 1 1064,15 0,71 0,00

Fahrbahnanregung x Last 0,52 1 34,33 0,07 0,00

Fahrbahnanregung x Neigung Hubgerüst 0,02 1 1,41 0,00 0,24

Fahrbahnanregung x Reifendämpfung 0,03 1 1,93 0,00 0,17

Fahrbahnanregung x Reifensteifigkeit 0,06 1 4,07 0,01 0,04

Fahrbahnanregung x Sitz 0,00 1 0,10 0,00 0,75

Fahrtrichtung x Fahrer 0,00 1 0,22 0,00 0,64

Fahrer x Fahrgeschwindigkeit 0,00 1 0,14 0,00 0,71

Fahrer x Last 0,02 1 1,29 0,00 0,26

Fahrer x Neigung Hubgerüst 0,01 1 0,97 0,00 0,33

Fahrer x Reifendämpfung 0,01 1 0,92 0,00 0,34

Fahrer x Reifensteifigkeit 0,00 1 0,14 0,00 0,70

Fahrer x Sitz 0,05 1 3,09 0,01 0,08

Fahrtrichtung x Fahrgeschwindigkeit 0,01 1 0,75 0,00 0,39

Fahrtrichtung x Last 0,01 1 0,61 0,00 0,44

Fahrtrichtung x Neigung Hubgerüst 0,00 1 0,33 0,00 0,57

Fahrtrichtung x Reifendämpfung 0,00 1 0,03 0,00 0,86

Fahrtrichtung x Reifensteifigkeit 0,02 1 1,30 0,00 0,25

Fahrtrichtung x Sitz 0,00 1 0,25 0,00 0,62

Last x Fahrgeschwindigkeit 0,03 1 2,24 0,01 0,14

Fahrgeschwindigkeit x Neigung Hubgerüst 0,02 1 1,50 0,00 0,22

Fahrgeschwindigkeit x Reifendämpfung 0,06 1 4,10 0,01 0,04

Fahrgeschwindigkeit x Reifensteifigkeit 0,19 1 12,73 0,03 0,00

Page 347: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A.1 Varianzanalyse

A-9

Fahrgeschwindigkeit x Sitz 0,41 1 27,48 0,06 0,00

Last x Neigung Hubgerüst 0,00 1 0,11 0,00 0,74

Last x Reifendämpfung 0,00 1 0,11 0,00 0,75

Last x Reifensteifigkeit 0,02 1 1,27 0,00 0,26

Last x Sitz 0,09 1 5,72 0,01 0,02

Neigung Hubgerüst x Reifendämpfung 0,03 1 1,81 0,00 0,18

Neigung Hubgerüst x Reifensteifigkeit 0,01 1 0,49 0,00 0,48

Neigung Hubgerüst x Sitz 0,00 1 0,22 0,00 0,64

Reifensteifigkeit x Reifendämpfung 0,02 1 1,00 0,00 0,32

Reifendämpfung x Sitz 0,00 1 0,05 0,00 0,82

Reifensteifigkeit x Sitz 0,00 1 0,26 0,00 0,61

Fehler 6,64 440

Gesamt 890,71 486

Tabelle A-6: Varianzanalyse für awT,N bei Schubmaststapler EFM 14 mit allen Haupteffekten und Einfachwechselwirkungen korrR2( = 0,941), Signifikanzniveau p < 0,05, Sitzkissen (z)

Quadrat-

summe df F p² p

Fahrbahnanregung

5,47 1 2101,88 0,83 0,00

Fahrtrichtung 0,08 1 31,95 0,07 0,00

Fahrer 0,19 1 71,50 0,14 0,00

Last 0,01 1 3,50 0,01 0,06

Fahrgeschwindigkeit 6,64 1 2551,53 0,85 0,00

Neigung Hubgerüst 0,00 1 0,02 0,00 0,87

Reifensteifigkeit 0,05 1 18,32 0,04 0,00

Reifendämpfung 0,03 1 12,33 0,03 0,00

Sitz 4,78 1 1836,93 0,81 0,00

Fahrbahnanregung x Fahrer 0,00 1 1,07 0,00 0,30

Fahrbahnanregung x Fahrtrichtung 0,12 1 45,51 0,09 0,00

Fahrbahnanregung x Fahrgeschwindigkeit 1,23 1 472,62 0,52 0,00

Fahrbahnanregung x Last 0,01 1 2,38 0,01 0,12

Fahrbahnanregung x Neigung Hubgerüst 0,00 1 0,56 0,00 0,45

Fahrbahnanregung x Reifendämpfung 0,01 1 2,31 0,01 0,13

Fahrbahnanregung x Reifensteifigkeit 0,01 1 3,35 0,01 0,07

Fahrbahnanregung x Sitz 0,21 1 81,92 0,16 0,00

Fahrtrichtung x Fahrer 0,01 1 3,98 0,01 0,05

Fahrer x Fahrgeschwindigkeit 0,01 1 2,55 0,01 0,11

Fahrer x Last 0,00 1 0,00 0,00 0,99

Page 348: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A Ergänzungen zu grundlegenden Einflussfaktoren

A-10

Fahrer x Neigung Hubgerüst 0,00 1 0,00 0,00 0,95

Fahrer x Reifendämpfung 0,00 1 0,08 0,00 0,77

Fahrer x Reifensteifigkeit 0,00 1 0,52 0,00 0,47

Fahrer x Sitz 1,58 1 606,51 0,58 0,00

Fahrtrichtung x Fahrgeschwindigkeit 0,08 1 30,65 0,07 0,00

Fahrtrichtung x Last 0,01 1 2,93 0,01 0,09

Fahrtrichtung x Neigung Hubgerüst 0,00 1 0,00 0,00 0,96

Fahrtrichtung x Reifendämpfung 0,00 1 0,54 0,00 0,46

Fahrtrichtung x Reifensteifigkeit 0,00 1 0,31 0,00 0,58

Fahrtrichtung x Sitz 0,02 1 6,02 0,01 0,01

Last x Fahrgeschwindigkeit 0,00 1 1,63 0,00 0,20

Fahrgeschwindigkeit x Neigung Hubgerüst 0,00 1 0,18 0,00 0,67

Fahrgeschwindigkeit x Reifendämpfung 0,01 1 4,07 0,01 0,04

Fahrgeschwindigkeit x Reifensteifigkeit 0,00 1 0,07 0,00 0,79

Fahrgeschwindigkeit x Sitz 0,28 1 106,18 0,19 0,00

Last x Neigung Hubgerüst 0,00 1 0,26 0,00 0,61

Last x Reifendämpfung 0,00 1 0,00 0,00 0,94

Last x Reifensteifigkeit 0,02 1 6,93 0,02 0,01

Last x Sitz 0,00 1 0,08 0,00 0,77

Neigung Hubgerüst x Reifendämpfung 0,00 1 0,71 0,00 0,40

Neigung Hubgerüst x Reifensteifigkeit 0,00 1 0,06 0,00 0,81

Neigung Hubgerüst x Sitz 0,00 1 0,00 0,00 0,96

Reifensteifigkeit x Reifendämpfung 0,00 1 0,36 0,00 0,55

Reifendämpfung x Sitz 0,00 1 1,66 0,00 0,20

Reifensteifigkeit x Sitz 0,00 1 0,00 0,00 0,99

Fehler 1,14 440

Gesamt 65,25 486

Page 349: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A.2 Haupteffekte

A-11

A.2 Haupteffekte

Tabelle A-7: Effekte (normiert) für Gabelstapler EFG 20 (N = 1024) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzmontagepunkt (z)

Nr. Einflussfaktor Faktorstufen Mittelwerte

Effekte Standardabwei.

Stufe 1 Stufe 2 Stufe 1 Stufe 2 Stufe 1 Stufe 2

3 Fahrbahnanregung gering stark 0,50 0,84 0,35 0,19 0,31

4 Fahrtrichtung rückwärts vorwärts 0,65 0,69 0,03 0,30 0,31

5 Fahrer leicht schwer 0,67 0,67 -0,01 0,31 0,31

6 Last gering hoch 0,66 0,67 0,01 0,23 0,37

7 Fahrgeschwindigkeit gering hoch 0,45 0,89 0,44 0,15 0,26

8 Neigung Hubgerüst gering hoch 0,66 0,68 0,01 0,30 0,32

9 Reifensteifigkeit normal groß 0,63 0,71 0,07 0,28 0,33

10 Reifendämpfung normal groß 0,68 0,66 -0,02 0,31 0,30

11 Kabinenlagerung ohne mit 0,63 0,71 0,09 0,28 0,33

12 Sitz kleine Baugr. große Baugr. 0,67 0,67 0,00 0,31 0,30

Gesamt 0,67

0,31

Tabelle A-8: Effekte (normiert) für Gabelstapler DFG 25 (N = 1023) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzmontagepunkt (z)

Nr. Einflussfaktor Faktorstufen Mittelwerte

Effekte Standardabwei.

Stufe 1 Stufe 2 Stufe 1 Stufe 2 Stufe 1 Stufe 2

3 Fahrbahnanregung gering stark 0,94 1,54 0,60 0,20 0,42

4 Fahrtrichtung rückwärts vorwärts 1,24 1,23 -0,01 0,47 0,42

5 Fahrer leicht schwer 1,26 1,22 -0,04 0,46 0,43

6 Last gering hoch 1,34 1,14 -0,20 0,46 0,41

7 Fahrgeschwindigkeit gering hoch 1,01 1,47 0,46 0,32 0,44

8 Neigung Hubgerüst gering hoch 1,24 1,24 -0,01 0,45 0,45

9 Reifensteifigkeit normal groß 1,17 1,31 0,14 0,43 0,45

10 Reifendämpfung normal groß 1,32 1,16 -0,16 0,47 0,40

11 Kabinenlagerung ohne mit 1,26 1,22 -0,04 0,47 0,43

12 Sitz kleine Baugr. große Baugr. 1,24 1,24 0,01 0,44 0,45

Gesamt 1,24 0,45

Page 350: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A Ergänzungen zu grundlegenden Einflussfaktoren

A-12

Abbildung A-1: Effektdiagramme (normiert), EFG 20, Sitzkissen (z) (N = 1024)

Abbildung A-2: Effektdiagramme (normiert), DFG 35, Sitzkissen (z) (N = 1023)

0,1

0,3

gering hoch

Fahrgeschwindigkeit

0,1

0,3

gering hoch

Last

0,1

0,3

ohne mit

Kabinenlagerung

0,1

0,3

normal groß

Reifendämpfung

0,1

0,3

normal groß

Reifensteifigkeit

0,1

0,3

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Neigung Hubgerüst

0,1

0,3

rückwärts vorwärts

Fahrtrichtung

0,1

0,3

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregungno

rm. E

ffektivw

ert

[-]

no

rm. E

ffektivw

ert

[-]

0,1

0,5

gering hoch

Fahrgeschwindigkeit

0,1

0,5

gering hoch

Last

0,1

0,5

ohne mit

Kabinenlagerung

0,1

0,5

normal groß

Reifendämpfung

0,1

0,5

normal groß

Reifensteifigkeit

0,1

0,5

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Neigung Hubgerüst

0,1

0,5

rückwärts vorwärts

Fahrtrichtung

0,1

0,5

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

no

rm. E

ffektivw

ert

[-]

no

rm. E

ffektivw

ert

[-]

Page 351: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A.2 Haupteffekte

A-13

Tabelle A-9: Zusammengefasste Effekte (normiert) der Gabelstapler EFG 20 (N = 1024) und DFG 35 (N = 1023), Sitzkissen (z)

Nr. Einflussfaktor Ausprägungen EFG 20 DFG 35

3 Fahrbahnanregung gering stark 0,09 0,16

4 Fahrtrichtung rückwärts vorwärts 0,00 0,00

5 Fahrer leicht schwer 0,06 -0,08

6 Last gering hoch 0,01 -0,04

7 Fahrgeschwindigkeit gering hoch 0,08 0,11

8 Neigung Hubgerüst gering hoch 0,00 0,00

9 Reifensteifigkeit normal groß 0,01 0,03

10 Reifendämpfung normal groß -0,01 -0,04

11 Kabinenlagerung ohne mit 0,02 -0,01

12 Sitz kleine Baugr. große Baugr. -0,15 0,25

Mittelwert 0,20 0,32

Tabelle A-10: Effekte (normiert) für Gabelstapler EFG 20 (N = 1024) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzkissen (z)

Nr. Einflussfaktor Faktorstufen Mittelwerte

Effekte Standardabwei.

Stufe 1 Stufe 2 Stufe 1 Stufe 2 Stufe 1 Stufe 2

3 Fahrbahnanregung gering stark 0,15 0,25 0,09 0,08 0,12

4 Fahrtrichtung rückwärts vorwärts 0,20 0,20 0,00 0,12 0,11

5 Fahrer leicht schwer 0,17 0,23 0,06 0,07 0,14

6 Last gering hoch 0,20 0,20 0,01 0,11 0,12

7 Fahrgeschwindigkeit gering hoch 0,16 0,24 0,08 0,09 0,12

8 Neigung Hubgerüst gering hoch 0,20 0,20 0,00 0,12 0,11

9 Reifensteifigkeit normal groß 0,20 0,20 0,01 0,11 0,11

10 Reifendämpfung normal groß 0,20 0,20 -0,01 0,12 0,11

11 Kabinenlagerung ohne mit 0,19 0,21 0,02 0,11 0,12

12 Sitz kleine Baugr. große Baugr. 0,28 0,13 -0,15 0,11 0,05

Gesamt 0,20 0,11

Page 352: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A Ergänzungen zu grundlegenden Einflussfaktoren

A-14

Tabelle A-11: Effekte (normiert) für Gabelstapler DFG 25 (N = 1023) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzkissen (z)

Nr. Einflussfaktor Faktorstufen Mittelwerte

Effekte Standardabwei.

Stufe 1 Stufe 2 Stufe 1 Stufe 2 Stufe 1 Stufe 2

3 Fahrbahnanregung gering stark 0,24 0,40 0,16 0,11 0,20

4 Fahrtrichtung rückwärts vorwärts 0,32 0,32 0,00 0,18 0,18

5 Fahrer leicht schwer 0,36 0,28 -0,08 0,20 0,14

6 Last gering hoch 0,34 0,29 -0,04 0,19 0,17

7 Fahrgeschwindigkeit gering hoch 0,26 0,37 0,11 0,14 0,20

8 Neigung Hubgerüst gering hoch 0,32 0,32 0,00 0,18 0,18

9 Reifensteifigkeit normal groß 0,30 0,33 0,03 0,17 0,19

10 Reifendämpfung normal groß 0,34 0,30 -0,04 0,19 0,17

11 Kabinenlagerung ohne mit 0,32 0,31 -0,01 0,19 0,17

12 Sitz kleine Baugr. große Baugr. 0,19 0,44 0,25 0,07 0,17

Gesamt 0,32 0,18

Tabelle A-12: Effekte (normiert) für Schubmaststapler EFM 14 (N = 486) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzmontagepunkt (z)

Nr. Einflussfaktor Faktorstufen Mittelwerte

Effekte Standardabwei.

Stufe 1 Stufe 2 Stufe 1 Stufe 2 Stufe 1 Stufe 2

3 Fahrbahnanregung gering stark 0,79 1,61 0,82 0,32 0,69

4 Fahrtrichtung rückwärts vorwärts 1,19 1,17 -0,02 0,67 0,67

5 Fahrer leicht schwer 1,20 1,16 -0,04 0,68 0,66

6 Last gering hoch 1,17 1,18 0,01 0,69 0,65

7 Fahrgeschwindigkeit gering hoch 0,71 1,66 0,95 0,27 0,61

8 Neigung Hubgerüst gering hoch 1,18 1,17 -0,01 0,67 0,67

9 Reifensteifigkeit normal groß 1,15 1,20 0,05 0,67 0,67

10 Reifendämpfung normal groß 1,21 1,15 -0,05 0,68 0,65

12 Sitz kleine Baugr. große Baugr. 1,20 1,15 -0,05 0,70 0,64

Gesamt 1,18 0,67

Page 353: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A.2 Haupteffekte

A-15

Abbildung A-3: Effektdiagramme (normiert), EFM 14, Sitzkissen (z) (N = 486)

Tabelle A-13: Effekte (normiert) für Schubmaststapler EFM 14 (N = 486) mit Angabe von Mittelwert und Standardabweichung der Faktorstufen, Sitzkissen (z)

Nr. Einflussfaktor Faktorstufen Mittelwerte

Effekte Standardabwei.

Stufe 1 Stufe 2 Stufe 1 Stufe 2 Stufe 1 Stufe 2

3 Fahrbahnanregung gering stark 0,20 0,41 0,21 0,12 0,23

4 Fahrtrichtung rückwärts vorwärts 0,29 0,31 0,02 0,19 0,23

5 Fahrer leicht schwer 0,29 0,32 0,03 0,19 0,23

6 Last gering hoch 0,30 0,30 0,00 0,20 0,22

7 Fahrgeschwindigkeit gering hoch 0,19 0,42 0,23 0,11 0,22

8 Neigung Hubgerüst gering hoch 0,30 0,30 0,00 0,21 0,21

9 Reifensteifigkeit normal groß 0,29 0,31 0,01 0,20 0,21

10 Reifendämpfung normal groß 0,31 0,29 -0,02 0,22 0,20

12 Sitz kleine Baugr. große Baugr. 0,40 0,21 -0,19 0,21 0,16

Gesamt 0,30 0,21

0,1

0,5

gering hoch

Fahrgeschwindigkeit

0,1

0,5

gering hoch

Last

0,1

0,5

normal groß

Reifendämpfung

0,1

0,5

normal groß

Reifensteifigkeit

0,1

0,5

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Neigung Hubgerüst

0,1

0,5

PUF PUB

Fahrtrichtung

0,1

0,5

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

no

rm. E

ffektivw

ert

[-]

no

rm. E

ffektivw

ert

[-]

Page 354: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A Ergänzungen zu grundlegenden Einflussfaktoren

A-16

A.3 Wechselwirkungen

Abbildung A-4: Wechselwirkungen zwischen Fahrgeschwindigkeit und den restlichen Faktoren, EFG 20, Sitzmontagepunkt (z)

0,3

1,2Fahrgeschwindigkeit

0,3

1,2

gering hoch

Last

0,3

1,2

ohne mit

Kabinenlagerung

0,3

1,2

normal groß

Reifendämpfung

0,3

1,2

normal groß

Reifensteifigkeit

0,3

1,2

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Neigung Hubgerüst

0,3

1,2

rückwärts vorwärts

Fahrtrichtung

0,3

1,2

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

gering

hoch

no

rm. E

ffektivw

ert

[-]

no

rm. E

ffektivw

ert

[-]

Page 355: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A.3 Wechselwirkungen

A-17

Abbildung A-5: Wechselwirkungen zwischen Fahrgeschwindigkeit und den restlichen Faktoren, DFG 35, Sitzmontagepunkt (z)

Abbildung A-6: Wechselwirkung der Faktoren Fahrbahnanregung und Fahrgeschwindigkeit bei den Gabelstaplern EFG 20 und DFG 35, Sitzkissen (z)

0,3

1,2Fahrgeschwindigkeit

0,3

1,2

gering hoch

Last

0,3

1,2

ohne mit

Kabinenlagerung

0,3

1,2

normal groß

Reifendämpfung

0,3

1,2

normal groß

Reifensteifigkeit

0,3

1,2

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Neigung Hubgerüst

0,3

1,2

rückwärts vorwärts

Fahrtrichtung

0,3

1,2

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

gering

hoch

no

rm. E

ffektivw

ert

[-]

no

rm. E

ffektivw

ert

[-]

0,1

0,3

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

0,1

0,5

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

FahrbahnanregungEFG 20

FahrbahnanregungDFG 35

gering

hoch

Fahrgeschwindigkeit

no

rm.

Eff

ektivw

ert

[-]

no

rm.

Eff

ektivw

ert

[-]

Page 356: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A Ergänzungen zu grundlegenden Einflussfaktoren

A-18

Abbildung A-7: Wechselwirkung der Faktoren Last und Fahrgeschwindigkeit bei den Gabelstaplern EFG 20 und DFG 35, Sitzkissen (z)

Abbildung A-8: Wechselwirkung der Faktoren Fahrbahnanregung, Last und Fahrgeschwindigkeit mit Sitz, EFG 20, Sitzkissen (z)

Abbildung A-9: Wechselwirkung der Faktoren Fahrbahnanregung, Last und Fahrgeschwindigkeit mit Sitz, DFG 35, Sitzkissen (z)

0,1

0,3

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Last - EFG 20

0,2

0,4

gering hoch

no

rm.

Eff

ek

tivw

ert

[-]

Last - DFG 35

gering

hoch

Fahrgeschwindigkeit

no

rm. E

ffektivw

ert

[-]

no

rm. E

ffektivw

ert

[-]

0,0

0,4Sitz

0,0

0,4

gering hoch

Fahrgeschwindigkeit

0,0

0,4

gering hoch

Last

0,0

0,4

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

MSG 65

MSG 20

no

rm.

Eff

ektivw

ert

[-]

0,1

0,6Sitz

0,1

0,6

gering hoch

Fahrgeschwindigkeit

0,1

0,6

gering hoch

Last

0,1

0,6

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

MSG 65

MSG 85

no

rm.

Eff

ektivw

ert

[-]

Page 357: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

A.3 Wechselwirkungen

A-19

Abbildung A-10: Wechselwirkung der Faktoren Fahrbahnanregung und Fahrgeschwindigkeit, EFM 14, Sitzkissen (z)

0,1

0,7

gering stark

no

rm.

Eff

ek

tivw

ert

[-]

Fahrbahnanregung

gering

hoch

Fahrgeschwindigkeit

no

rm.

Eff

ektivw

ert

[-]

Page 358: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik
Page 359: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B-1

Anhang B Ergänzungen Detailbetrachtung Fahrbahnanregung

B.1 Fahrbahnunebenheiten

Tabelle B-1: Abweichungen im Oberflächenprofil von Fahrbahnen verschiedener Bauart und unter-schiedlichem Oberflächenzustand (vgl. Tabelle 5-1)

Fahrbahnbauart Fahrbahnzustand

(Subjektivurteil

mittlere Abweichung

[mm]

mittlere max. Abweichung

[mm]

Standardabw. Einzelwerte

[mm]

Zementbeton sehr gut 1,6 3,2 0,8

gut 6,2 10,5 2,4

mittel 8,6 14,6 3,2

schlecht 28,3 45,5 9,5

Asphalt-Beton sehr gut 2,5 4,7 1,2

gut 5,7 11,4 2,7

mittel 10,5 19,6 5,0

Macadam gut 6,2 12,7 3,2

mittel 9,4 18,5 4,8

schlecht 15,3 28,2 7,1

sehr schlecht 30,2 55,6 13,4

Pflaster gut 14,1 23,2 4,7

mittel 17,6 28,6 6,1

schlecht 20,8 33,6 7,0

sehr schlecht 63,1 98,7 21,3

Unbefestigte Fahrbahnen

gut 11,8 23,1 6,2

mittel 25,7 50,1 13,0

schlecht 58,6 107,6 27,1

sehr schlecht 302,4 566,6 136,9

Page 360: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-2

Tabelle B-2: Abweichungen im Oberflächenprofil von Fahrbahnen gleicher Welligkeit w und ver-schiedenem Unebenheitsmaß U

Unebenheit

U [-]

mittlere Abweichung

[mm]

mittlere max. Abweichung

[mm]

Standardabw. Einzelwerte

[mm]

1 2,7 5,0 1,1

2 3,8 6,7 1,7

3 4,8 8,3 1,9

4 5,4 9,5 2,4

5 6,2 11,6 2,5

6 6,8 11,8 2,6

7 7,4 12,5 2,8

8 8,1 14,2 3,0

9 8,4 14,4 3,3

10 8,8 15,9 3,6

15 11,1 18,5 4,3

20 12,6 22,0 5,0

25 14,0 22,8 5,5

30 15,6 26,0 6,0

35 16,2 30,0 7,1

40 17,6 30,6 7,2

45 19,2 33,3 7,7

50 19,0 33,2 8,2

60 21,6 36,0 8,5

70 22,1 39,2 10,1

80 24,6 42,7 10,3

90 27,1 49,3 10,0

100 28,9 48,7 10,5

200 39,6 66,8 15,1

300 45,8 84,3 20,3

400 56,1 92,3 21,2

500 62,2 114,2 25,3

Page 361: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.2 Streudiagramme

B-3

B.2 Streudiagramme

Abbildung B-1: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), EFG 20, Sitzkissen (z)

Abbildung B-2: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), DFG 35, Sitzmontagepunkt (z)

0

0

0

0

0

0

Page 362: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-4

Abbildung B-3: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), DFG 35, Sitzkissen (z)

Abbildung B-4: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), EFM 14, Sitzmontagepunkt (z)

0

0

0

0

0

0

Page 363: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.2 Streudiagramme

B-5

Abbildung B-5: Streudiagramm Einzelhindernisse (Schwellen, Versuchsumfang nach Tabelle 7-9), EFM 14, Sitzkissen (z)

Abbildung B-6: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), EFG 20, Sitzkissen (z)

0

0

0

0

0

0

Fahrgeschwindigkeit [km/h]

Page 364: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-6

Abbildung B-7: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), DFG 35, Sitzmontagepunkt (z)

Abbildung B-8: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), DFG 35, Sitzkissen (z)

0

0

Page 365: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.2 Streudiagramme

B-7

Abbildung B-9: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), EFM 14, Sitzmontagepunkt (z)

Abbildung B-10: Streudiagramm regellose Bodenunebenheiten (Versuchsumfang nach Tabelle 7-11), EFM 14, Sitzkissen (z)

0

0

Page 366: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-8

B.3 Diagramme zu Teilaspekten

Abbildung B-11: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwin-digkeiten mit Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z)

Abbildung B-12: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 8 mm, EFG 20, Sitzmontagepunkt (z)

0,0

0,1

0,2

0,3

0,4

4 6 8 10 12 14 16

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

0

1000

2000

Last [kg]

0,0

0,5

1,0

1,5

2,0

0 500 1000 1500 2000

no

rm.

Eff

ektivw

ert

[-]

Last [kg]

6

10

14

Fahrgeschwin-digkeit [km/h]

Page 367: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.3 Diagramme zu Teilaspekten

B-9

Abbildung B-13: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z)

Abbildung B-14: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwel-lenhöhen mit Last 1000 kg, EFG 20, Sitzkissen (z)

Abbildung B-15: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwin-digkeiten mit Schwellenhöhe 8 mm, DFG 35, Sitzmontagepunkt (z)

0,0

0,1

0,2

0,3

0 500 1000 1500 2000

no

rm. E

ffektivw

ert

[-]

Last [kg]

6

10

14

Fahrgeschwin-digkeit [km/h]

0,0

0,1

0,2

0,3

0,4

2 4 6 8 10 12

no

rm. E

ffektivw

ert

[-]

Schwellenhöhe [mm]

6

10

14

Fahrgeschwin-digkeit [km/h]

0,0

0,5

1,0

1,5

2,0

4 6 8 10 12 14 16 18 20 22

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

0

1750

3500

Last [kg]

Page 368: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-10

Abbildung B-16: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwin-digkeiten mit Schwellenhöhe 8 mm, DFG 35, Sitzkissen (z)

Abbildung B-17: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 8 mm, DFG 35, Sitzmontagepunkt (z)

Abbildung B-18: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 8 mm, DFG 35, Sitzkissen (z)

0,0

0,2

0,4

0,6

4 6 8 10 12 14 16 18 20 22

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

0

1750

3500

Last [kg]

0,0

0,5

1,0

1,5

2,0

0 500 1000 1500 2000 2500 3000 3500

no

rm.

Eff

ektivw

ert

[-]

Last [kg]

8

14

20

Fahrgeschwin-digkeit [km/h]

0,0

0,2

0,4

0,6

0 500 1000 1500 2000 2500 3000 3500

no

rm.

Eff

ektivw

ert

[-]

Last [kg]

8

14

20

Fahrgeschwin-digkeit [km/h]

Page 369: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.3 Diagramme zu Teilaspekten

B-11

Abbildung B-19: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwel-lenhöhen mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z)

Abbildung B-20: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwel-lenhöhen mit Last 1750 kg, DFG 35, Sitzkissen (z)

Abbildung B-21: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwin-digkeiten mit Schwellenhöhe 5 mm, EFM 14, Sitzmontagepunkt (z)

0,0

0,5

1,0

1,5

2,0

2,5

2 4 6 8 10 12

no

rm. E

ffektivw

ert

[-]

Schwellenhöhe [mm]

8

14

20

Fahrgeschwin-digkeit [km/h]

0,0

0,2

0,4

0,6

0,8

2 4 6 8 10 12

no

rm. E

ffektivw

ert

[-]

Schwellenhöhe [mm]

8

14

20

Fahrgeschwin-digkeit [km/h]

0,0

1,0

2,0

3,0

2 4 6 8 10 12 14

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

0

700

1400

Last [kg]

Page 370: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-12

Abbildung B-22: Auszug Einzelhindernisse für unterschiedliche Transportlasten und Fahrgeschwin-digkeiten mit Schwellenhöhe 5 mm, EFM 14, Sitzkissen (z)

Abbildung B-23: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 5 mm, EFM 14, Sitzmontagepunkt (z)

Abbildung B-24: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle mit Schwellenhöhe 5 mm, EFM 14, Sitzkissen (z)

0,0

0,1

0,2

0,3

0,4

2 4 6 8 10 12 14

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

0

700

1400

Last [kg]

0,0

1,0

2,0

3,0

0 500 1000

no

rm. E

ffektivw

ert

[-]

Last [kg]

6

10

14

Fahrgeschwin-digkeit [km/h]

0,0

0,1

0,2

0,3

0 500 1000 1500 2000

no

rm. E

ffektivw

ert

[-]

Last [kg]

6

10

14

Fahrgeschwin-digkeit [km/h]

Page 371: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.3 Diagramme zu Teilaspekten

B-13

Abbildung B-25: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwel-lenhöhen mit Last 700 kg, EFM 14, Sitzmontagepunkt (z)

Abbildung B-26: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Schwel-lenhöhen mit Last 700 kg, EFM 14, Sitzkissen (z)

Abbildung B-27: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 1000 kg, EFG 20, Sitzkissen(z)

0,0

1,0

2,0

3,0

1 3 5 7 9

no

rm. E

ffektivw

ert

[-]

Schwellenhöhe [mm]

6

10

14

Fahrgeschwin-digkeit [km/h]

0,0

0,2

0,4

0,6

1 3 5 7 9

no

rm. E

ffektivw

ert

[-]

Schwellenhöhe [mm]

6

10

14

Fahrgeschwin-digkeit [km/h]

0,0

0,1

0,2

0,3

0,4

4 6 8 10 12 14 16

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

5

10

20

Unebenheits-maß U [-]

Page 372: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-14

Abbildung B-28: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 15, EFG 20, Sitzmontagepunkt (z)

Abbildung B-29: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 15, EFG 20, Sitzkissen (z)

Abbildung B-30: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1000 kg, EFG 20, Sitzkissen (z)

0,0

1,0

2,0

3,0

0 500 1000 1500 2000

no

rm. E

ffektivw

ert

[-]

Last [kg]

6

10

14

Fahrgeschwin-digkeit [km/h]

0,0

0,1

0,2

0,3

0,4

0 500 1000 1500 2000

no

rm. E

ffektivw

ert

[-]

Last [kg]

6

10

14

Fahrgeschwin-digkeit [km/h]

0,0

1,0

2,0

3,0

4,0

0 100 200 300 400 500

no

rm.

Eff

ektivw

ert

[-]

Unebenheitsmaß U [-]

6

10

14

Fahrgeschwin-digkeit [km/h]

Page 373: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.3 Diagramme zu Teilaspekten

B-15

Abbildung B-31: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1000 kg, EFG 20, Sitzkissen (z)

Abbildung B-32: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z)

Abbildung B-33: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 1750 kg, DFG 35, Sitzkissen (z)

0,0

1,0

2,0

3,0

4,0

1

no

rm. E

ffektivw

ert

[-]

6

10

14

Fahrgeschwin-digkeit [km/h]

100 200 300 400

Unebenheitsmaß U [-]

0,0

1,0

2,0

3,0

8 10 12 14 16 18 20 22

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

5

10

20

Unebenheitsmaß U [-]

0,0

0,2

0,4

0,6

0,8

1,0

8 10 12 14 16 18 20 22

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

51020

Unebenheits-maß U [-]

Page 374: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-16

Abbildung B-34: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 15, DFG 35, Sitzmontagepunkt (z)

Abbildung B-35: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 15, DFG 35, Sitzkissen (z)

Abbildung B-36: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 500 1000 1500 2000 2500 3000 3500

no

rm. E

ffektivw

ert

[-]

Last [kg]

12

16

20

Fahrgeschwin-digkeit [km/h]

0,0

0,2

0,4

0,6

0,8

1,0

0 500 1000 1500 2000 2500 3000 3500

no

rm. E

ffektivw

ert

[-]

Last [kg]

12

16

20

Fahrgeschwin-digkeit [km/h]

0,0

2,0

4,0

6,0

8,0

0 100 200 300 400 500

no

rm. E

ffektivw

ert

[-]

Unebenheitsmaß U [-]

12

16

20

Fahrgeschwin-digkeit [km/h]

Page 375: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.3 Diagramme zu Teilaspekten

B-17

Abbildung B-37: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1750 kg, DFG 35, Sitzkissen (z)

Abbildung B-38: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z)

Abbildung B-39: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 1750 kg, DFG 35, Sitzkissen (z)

0,0

1,0

2,0

3,0

4,0

0 100 200 300 400 500

no

rm. E

ffektivw

ert

[-]

Unebenheitsmaß U [-]

12

16

20

Fahrgeschwin-digkeit [km/h]

0,0

2,0

4,0

6,0

8,0

1

no

rm. E

ffektivw

ert

[-]

12

16

20

Fahrgeschwin-digkeit [km/h]

100 200 300 400

Unebenheitsmaß U [-]

0,0

1,0

2,0

3,0

1

no

rm. E

ffektivw

ert

[-]

12

16

20

Fahrgeschwin-digkeit [km/h]

100 200 300 400

Unebenheitsmaß U [-]

Page 376: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-18

Abbildung B-40: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 700 kg, EFM 14, Sitzmontagepunkt (z)

Abbildung B-41: Auszug regellose Bodenunebenheiten für unterschiedliche Unebenheitsmaße U und Fahrgeschwindigkeiten mit Last 700 kg, EFM 14, Sitzkissen (z)

Abbildung B-42: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 5, EFM 14, Sitzmontagepunkt (z)

0,0

2,0

4,0

6,0

2 4 6 8 10 12 14

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

5

10

15

Unebenheits-maß U [-]

0,0

0,2

0,4

0,6

0,8

2 4 6 8 10 12 14

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

5

10

15

Unebenheits-maß U [-]

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 700 1400

no

rm. E

ffektivw

ert

[-]

Last [kg]

6

10

14

Fahrgeschwin-digkeit [km/h]

Page 377: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.3 Diagramme zu Teilaspekten

B-19

Abbildung B-43: Auszug Einzelhindernisse für unterschiedliche Fahrgeschwindigkeiten und Lastfälle bei Fahrbahn mit Unebenheitsmaß U = 5, EFM 14, Sitzkissen (z)

Abbildung B-44: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 700 kg, EFM 14, Sitzmontagepunkt (z)

Abbildung B-45: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 700 kg, EFM 14, Sitzkissen (z)

0,0

0,2

0,4

0,6

0 700 1400

no

rm. E

ffektivw

ert

[-]

Last [kg]

6

10

14

Fahrgeschwin-digkeit [km/h]

0,0

2,0

4,0

6,0

8,0

10,0

0 10 20 30 40 50 60 70

no

rm. E

ffektivw

ert

[-]

Unebenheitsmaß U [-]

6

10

14

Fahrgeschwin-digkeit [km/h]

0,0

0,5

1,0

1,5

2,0

2,5

0 10 20 30 40 50 60 70

no

rm. E

ffektivw

ert

[-]

Unebenheitsmaß U [-]

6

10

14

Fahrgeschwin-digkeit [km/h]

Page 378: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-20

Abbildung B-46: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 700 kg, EFM 14, Sitzmontagepunkt (z)

Abbildung B-47: Auszug regellose Bodenunebenheiten für unterschiedliche Fahrgeschwindigkeiten und Unebenheitsmaße mit Last 700 kg, EFM 14, Sitzkissen (z)

Abbildung B-48 Vergleich Simulationsergeb. und Schätzung durch lin. Regression (Tabelle 7-23), Auszug regell. Unebenheiten mit Last 1000 kg, EFG 20, Sitzmontagepunkt (z)

0,0

2,5

5,0

7,5

10,0

1

no

rm. E

ffektivw

ert

[-]

6

10

14

Fahrgeschwin-digkeit [km/h]

10 20 30 40

Unebenheitsmaß U [-]

50 60

0,0

0,5

1,0

1,5

2,0

2,5

1

no

rm. E

ffektivw

ert

[-]

6

10

14

Fahrgeschwin-digkeit [km/h]

10 20 30 40

Unebenheitsmaß U [-]

50 60

0,0

2,0

4,0

6,0

8,0

1

no

rm.

Eff

ektivw

ert

[-]

Fahrgeschwin-digkeit [km/h]

6

10

14

Schätzung Regression Formel (7-29)Simulation

100 200 300 400

Unebenheitsmaß U [-]

Page 379: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.3 Diagramme zu Teilaspekten

B-21

Abbildung B-49: Vergleich Simulationsergeb. und Schätzung durch lin. Regression (Tabelle 7-24) anhand Auszug regellose Unebenheiten mit Last 1000 kg, EFG 20, Sitzkissen (z)

Abbildung B-50: Vergleich Simulationsergeb. und Schätzung durch lin. Regression (Tabelle B-3) an-hand Auszug regellose Unebenheiten mit Last 1750 kg, DFG 35, Sitzkissen (z)

Abbildung B-51: Vergleich Simulationsergeb. und Schätzung durch lin. Regression (Tabelle B-4) an-hand Auszug regellose Unebenheiten mit Last 700 kg, EFM 14, Sitzkissen (z)

0,0

0,5

1,0

0 25 50 75 100

no

rm. E

ffektivw

ert

[-]

Unebenheitsmaß U [-]

Fahrgeschwin-digkeit [km/h]

6

10

14

Schätzung Regression Formel (7-29)Simulation

0,0

1,0

2,0

3,0

4,0

0 100 200 300 400 500

no

rm. E

ffektivw

ert

[-]

Unebenheitsmaß U [-]

Fahrgeschwin-digkeit [km/h]

12

16

20

Schätzung Regression Formel (7-29)Simulation

0,0

0,5

1,0

1,5

2,0

2,5

0 10 20 30 40 50 60 70

no

rm. E

ffektivw

ert

[-]

Unebenheitsmaß U [-]

Schätzung Regression Formel (7-30)Simulation

Fahrgeschwin-digkeit [km/h]

6

10

14

Page 380: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-22

B.4 Tabellen lineare Regression

Tabelle B-3: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-29), abhän-gige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, DFG 35, Sitzkissen (z), N = 3238, 2

korrR = 0,893, s = 0,23, p < 0,05

b b t Sig t kiu kio

Konstante 0,0367 0,0367 1,2 0,24 -0,0243 0,0978

Fahrgeschwindigkeit [km/h] -0,0033 -0,0211 -1,4 0,18 -0,0080 0,0015

Last [t] -0,0414 -0,0719 -5,7 0,00 -0,0557 -0,0271

Unebenheitsmaß U [-] 0,0828 0,6472 67,7 0,00 0,0804 0,0852

Fahrgeschwind. x Last [-] 0,0065 0,0899 5,1 0,00 0,0040 0,0089

Fahrgeschwind. x Unebenheit [-] 0,0054 0,3820 31,0 0,00 0,0050 0,0057

Tabelle B-4: Lineare Regression regellose Unebenheiten, Modellansatz nach Formel (7-29), abhän-gige Variable: normierter Effektivwert der frequenzbewerteten Beschleunigung, EFM 14, Sitzkissen (z), N = 1005, 2

korrR = 0,876, s = 0,18, p < 0,05

b b t Sig t kiu kio

Konstante -0,0473 -0,0473 -1,8 0,07 -0,0983 0,0036

Fahrgeschwindigkeit [km/h] -0,0001 -0,0010 0,0 0,96 -0,0055 0,0052

Last [t] -0,0102 -0,0107 -1,0 0,34 -0,0310 0,0106

Unebenheitsmaß U [-] 0,0009 0,0037 0,2 0,87 -0,0098 0,0115

Fahrgeschwind. x Unebenheit [-] 0,0149 0,9347 32,0 0,00 0,0140 0,0158

Page 381: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.5 Klassifizierte Böden

B-23

B.5 Klassifizierte Böden

Abbildung B-52: Belastungen für Pflaster und Macadam, EFG 20, Sitzmontagepunkt (z)

Abbildung B-53: Belastungen für unbefestigte Fahrbahnen, EFG 20, Sitzmontagepunkt (z)

0,0

2,0

4,0

6,0

8,0

no

rm.

Eff

ektivw

ert

[-]

8 km/h - 200 kg

8 km/h - 1800 kg

14 km/h - 200 kg

14 km/h - 1800 kg

0,0

2,0

4,0

6,0

8,0

unbefestigte Fahrbahn -gut

unbefestigte Fahrbahn -mittel

unbefestigte Fahrbahn -schlecht

no

rm. E

ffektivw

ert

[-]

8 km/h - 200 kg

8 km/h - 1800 kg

14 km/h - 200 kg

14 km/h - 1800 kg

Page 382: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-24

Abbildung B-54: Belastungen für Zementbeton und Asphalt-Beton, EFG 20, Sitzkissen (z)

Abbildung B-55: Belastungen für Pflaster und Macadam, EFG 20, Sitzkissen (z)

0,0

0,5

1,0

1,5n

orm

. E

ffektivw

ert

[-]

8 km/h - 200 kg

8 km/h - 1800 kg

14 km/h - 200 kg

14 km/h - 1800 kg

0,0

1,0

2,0

3,0

4,0

5,0

no

rm.

Eff

ektivw

ert

[-]

8 km/h - 200 kg

8 km/h - 1800 kg

14 km/h - 200 kg

14 km/h - 1800 kg

Page 383: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.5 Klassifizierte Böden

B-25

Abbildung B-56: Belastungen für unbefestigte Fahrbahnen, EFG 20, Sitzkissen (z)

Abbildung B-57: Belastungen für Pflaster und Macadam, DFG 35, Sitzmontagepunkt (z)

0,0

1,0

2,0

3,0

4,0

5,0

unbefestigte Fahrbahn -gut

unbefestigte Fahrbahn -mittel

unbefestigte Fahrbahn -schlecht

no

rm. E

ffektivw

ert

[-]

8 km/h - 200 kg

8 km/h - 1800 kg

14 km/h - 200 kg

14 km/h - 1800 kg

0,0

2,0

4,0

6,0

8,0

no

rm.

Eff

ektivw

ert

[-]

10 km/h - 500 kg

10 km/h - 3000 kg

20 km/h - 500 kg

20 km/h - 3000 kg

Page 384: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-26

Abbildung B-58: Belastungen für unbefestigte Fahrbahnen, DFG 35, Sitzmontagepunkt (z)

Abbildung B-59: Belastungen für Zementbeton und Asphalt-Beton, DFG 35, Sitzkissen (z)

0,0

3,0

6,0

9,0

unbefestigte Fahrbahn -gut

unbefestigte Fahrbahn -gut

unbefestigte Fahrbahn -gut

no

rm. E

ffektivw

ert

[-]

10 km/h - 500 kg

10 km/h - 3000 kg

20 km/h - 500 kg

20 km/h - 3000 kg

0,0

0,5

1,0

1,5

2,0

no

rm.

Eff

ektivw

ert

[-]

10 km/h - 500 kg

10 km/h - 3000 kg

20 km/h - 300 kg

20 km/h - 3000 kg

Page 385: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.5 Klassifizierte Böden

B-27

Abbildung B-60: Belastungen für Pflaster und Macadam, DFG 35, Sitzkissen (z)

Abbildung B-61: Belastungen für unbefestigte Fahrbahnen, DFG 35, Sitzkissen (z)

0,0

1,0

2,0

3,0

no

rm.

Eff

ektivw

ert

[-]

10 km/h - 500 kg

10 km/h - 3000 kg

20 km/h - 500 kg

20 km/h - 3000 kg

0,0

1,0

2,0

3,0

4,0

5,0

unbefestigte Fahrbahn -gut

unbefestigte Fahrbahn -gut

unbefestigte Fahrbahn -gut

no

rm. E

ffektivw

ert

[-]

10 km/h - 500 kg

10 km/h - 3000 kg

20 km/h - 500 kg

20 km/h - 3000 kg

Page 386: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-28

Abbildung B-62: Belastungen für Zementbeton und Asphalt-Beton, EFM 14, Sitzkissen (z)

Abbildung B-63: Belastungen für Pflaster, Macadam und unbefestigte Fahrbahnen, EFM 14, Sitzmon-tagepunkt (z)

0,0

0,3

0,5

0,8

1,0n

orm

. E

ffektivw

ert

[-]

5 km/h - 200 kg

5 km/h - 1200 kg

12 km/h - 200 kg

12 km/h - 1200 kg

0,0

2,5

5,0

7,5

10,0

no

rm.

Eff

ektivw

ert

[-]

5 km/h - 200 kg

5 km/h - 1200 kg

12 km/h - 200 kg

12 km/h - 1200 kg

Page 387: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.6 Fugen

B-29

Abbildung B-64: Belastungen für Pflaster, Macadam und unbefestigte Fahrbahnen, EFM 14, Sitzkis-sen (z)

B.6 Fugen

Abbildung B-65: Fahrt über Scheinfugen mit Last 1750 kg, DFG 35, Sitzmontagepunkt (z)

0,0

1,0

2,0

3,0

no

rm.

Eff

ektivw

ert

[-]

5 km/h - 200 kg

5 km/h - 1200 kg

12 km/h - 200 kg

12 km/h - 1200 kg

0,00

0,25

0,50

10 20

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

ohne Fuge

Scheinfuge Tiefe 60 mm - Breite 4 mm

Scheinfuge Tiefe 25 mm - Breite 8 mm

Page 388: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-30

Abbildung B-66: Fahrt über Scheinfugen mit Last 700 kg, EFM 14, Sitzmontagepunkt (z)

Abbildung B-67: Fahrt über Raumfugen unterschiedlicher Breite mit Last 1750 kg, DFG 35, Sitzmon-tagepunkt (z)

Abbildung B-68: Fahrt über Raumfugen unterschiedlicher Breite mit Last 700 kg, EFM 14, Sitzmonta-gepunkt (z)

0,00

0,25

0,50

0,75

5 12

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

ohne Fuge

Scheinfuge Tiefe 60 mm - Breite 4 mm

Scheinfuge Tiefe 25 mm - Breite 8 mm

0,0

0,2

0,4

0,6

10 12 14 16 18 20

no

rm.

Eff

ektivw

ert

[-]

Fugenbreite [mm]

Raumfuge - 10 km/h Raumfuge - 20 km/h

ohne Fuge - 10 km/h ohne Fuge - 20 km/h

0,0

0,2

0,4

0,6

0,8

10 12 14 16 18 20

no

rm.

Eff

ektivw

ert

[-]

Fugenbreite [mm]

Raumfuge - 5 km/h Raumfuge - 12 km/h

ohne Fuge - 5 km/h ohne Fuge - 12 km/h

Page 389: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.6 Fugen

B-31

Abbildung B-69: Fahrt über Raumfugen unterschiedlicher Breite mit Last 1000 kg, EFG 20, Sitzkis-sen (z)

Abbildung B-70: Fahrt über Raumfugen unterschiedlicher Breite mit Last 1750 kg, DFG 35, Sitzkis-sen (z)

Abbildung B-71: Fahrt über Raumfugen unterschiedlicher Breite mit Last 700 kg, EFM 14, Sitzkis-sen (z)

0,00

0,05

0,10

0,15

10 12 14 16 18 20

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

Raumfuge - 10 km/h Raumfuge - 20 km/h

ohne Fuge - 10 km/h ohne Fuge - 20 km/h

0,00

0,05

0,10

0,15

10 12 14 16 18 20

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

Raumfuge - 10 km/h Raumfuge - 20 km/h

ohne Fuge - 10 km/h ohne Fuge - 20 km/h

0,00

0,03

0,06

0,09

10 12 14 16 18 20

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

Raumfuge - 5 km/h Raumfuge - 12 km/h

ohne Fuge - 5 km/h ohne Fuge - 12 km/h

Page 390: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-32

Abbildung B-72: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1000 kg und Fahrge-schwindigkeit 14 km/h, EFG 20, Sitzmontagepunkt (z)

Abbildung B-73: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1000 kg und Fahrge-schwindigkeit 8 km/h, EFG 20, Sitzkissen (z)

Abbildung B-74: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1000 kg und Fahrge-schwindigkeit 12 km/h, EFG 20, Sitzkissen (z)

0,0

1,0

2,0

3,0

20 40 60 80 100 120 140 160 180 200

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

515253545

Fugentiefe [mm] ohne Fuge

0,0

0,2

0,4

0,6

20 40 60 80 100 120 140 160 180 200

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

515253545

Fugentiefe [mm] ohne Fuge

0,0

0,1

0,2

0,3

0,4

20 40 60 80 100 120 140 160 180 200

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

515253545

Fugentiefe [mm] ohne Fuge

Page 391: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.6 Fugen

B-33

Abbildung B-75: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1750 kg und Fahrge-schwindigkeit 20 km/h, DFG 35, Sitzmontagepunkt (z)

Abbildung B-76: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1750 kg und Fahrge-schwindigkeit 10 km/h, DFG 35, Sitzkissen (z)

Abbildung B-77: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 1750 kg und Fahrge-schwindigkeit 20 km/h, DFG 35, Sitzkissen (z)

0,0

1,0

2,0

3,0

20 40 60 80 100 120 140 160 180 200

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

515253545

Fugentiefe [mm] ohne Fuge

0,0

0,3

0,6

0,9

1,2

20 40 60 80 100 120 140 160 180 200

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

515253545

Fugentiefe [mm] ohne Fuge

0,0

0,2

0,4

0,6

0,8

20 40 60 80 100 120 140 160 180 200

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

515253545

Fugentiefe [mm] ohne Fuge

Page 392: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-34

Abbildung B-78: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 700 kg und Fahrge-schwindigkeit 12 km/h, EFM 14, Sitzmontagepunkt (z)

Abbildung B-79: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 700 kg und Fahrge-schwindigkeit 5 km/h, EFM 14, Sitzkissen (z)

Abbildung B-80: Fahrt über Fugen unterschiedlicher Breite und Tiefe mit Last 700 kg und Fahrge-schwindigkeit 12 km/h, EFM 14, Sitzkissen (z)

0,0

1,0

2,0

3,0

4,0

5,0

20 40 60 80 100 120 140 160 180

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

51525354555

Fugentiefe [mm] ohne Fuge

0,0

0,5

1,0

1,5

20 40 60 80 100 120 140 160 180 200

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

51525354555

Fugentiefe [mm] ohne Fuge

0,0

0,2

0,4

0,6

20 40 60 80 100 120 140 160 180

no

rm. E

ffektivw

ert

[-]

Fugenbreite [mm]

51525354555

Fugentiefe [mm] ohne Fuge

Page 393: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B.7 Einzelradanregung

B-35

B.7 Einzelradanregung

Abbildung B-81: Vergleich der Belastungen bei beidseitiger Radanregung und unterschiedlichen Fahrgeschwindigkeiten mit Last 1000 kg bei Schwellenhöhe 8 mm, EFG 20, Sitzkis-sen (z)

Abbildung B-82: Vergleich der Belastungen bei rechtsseitiger Radanregung und untersch. Fahrge-schwindigkeiten mit Last 1000 kg und Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z)

0,0

0,1

0,2

0,3

4 6 8 10 12 14 16

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

alle Räder

beide links

beide rechts

Anregungsort

0,00

0,05

0,10

0,15

4 6 8 10 12 14 16

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

beide rechts

rechts vorne

rechts hinten

Anregungsort

Page 394: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

B Ergänzungen Detailbetrachtung Fahrbahnanregung

B-36

Abbildung B-83: Vergleich der Belastungen bei rechtsseitiger Radanregung und untersch. Fahrge-schwindigkeiten mit Last 0 kg und Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z)

Abbildung B-84: Vergleich der Belastungen bei rechtsseitiger Radanregung und untersch. Fahrge-schwindigkeiten mit Last 2000 kg und Schwellenhöhe 8 mm, EFG 20, Sitzkissen (z)

0,00

0,05

0,10

0,15

4 6 8 10 12 14 16

no

rm.

Eff

ektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

beide rechts

rechts vorne

rechts hinten

Anregungsort

0,00

0,05

0,10

0,15

4 6 8 10 12 14 16

no

rm. E

ffektivw

ert

[-]

Fahrgeschwindigkeit [km/h]

beide rechts

rechts vorne

rechts hinten

Anregungsort

Page 395: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

C-1

Anhang C Ergänzungen Fahrer und Sitz

Folgende Abbildungen ergänzen die Darlegungen in Kapitel 7.4 und enthalten die

Diagramme für die Gegenüberstellung der SEAT-Werte bei unterschiedlich schwe-

ren Fahrern und variierenden Gewichtseinstellungen für das Prüfspektrum IT 2.

Abbildung C-1 SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstel-lung, MSG 85, Prüfspektrum IT 2

Abbildung C-2: SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstel-lung, MSG 20, Prüfspektrum IT 2

0,0

0,5

1,0

1,5

50 60 70 80 90 100 110 120

SE

AT

[-]

Gewichtseinstellung am Sitz [kg]

55 75 98Fahrergewicht [kg]:

0,0

0,4

0,8

1,2

1,6

50 60 70 80 90 100 110 120

SE

AT

[-]

Gewichtseinstellung am Sitz [kg]

55 75 98Fahrergewicht [kg]:

Page 396: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

C Ergänzungen Fahrer und Sitz

C-2

Abbildung C-3: SEAT-Werte bei unterschiedlicher Kombination von Fahrergewicht und Sitzeinstel-lung, MSG 65, Prüfspektrum IT 2

Abbildung C-4: SEAT-Werte in Abhängigkeit der Belastung für Schwellenüberfahrt nach Tabelle 7-9, DFG 35, Sitz MSG 85

Abbildung C-5: SEAT-Werte in Abhängigkeit der Belastung für Schwellenüberfahrt nach Tabelle 7-9, EFM 14, Sitz MSG (Schwellenhöhe 1–10 mm)

0,0

0,5

1,0

1,5

50 60 70 80 90 100 110 120

SE

AT

[-]

Gewichtseinstellung am Sitz [kg]

55 75 98Fahrergewicht [kg]:

0,2

0,3

0,4

0 0,5 1 1,5 2 2,5

SE

AT

[-]

norm. Effektivwert am Sitzmontagepunkt (z) [-]

0,0

0,1

0,2

0,3

0 0,5 1 1,5 2 2,5 3

SE

AT

[-]

norm. Effektivwert [-]

Page 397: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

C Ergänzungen Fahrer und Sitz

C-3

Abbildung C-6: SEAT-Werte in Abhängigkeit der Belastung für Schwellenüberfahrt nach Tabelle 7-9, EFM 14, Sitz MSG 65 (Schwellenhöhe 1–6 mm)

Abbildung C-7: SEAT-Werte in Abhängigkeit der Belastung für Überfahrt von Böden mit regellosen Unebenheiten nach Tabelle 7-11, EFG 20, Sitz MSG 65

Abbildung C-8: SEAT-Werte in Abhängigkeit der Belastung für Überfahrt von Böden mit regellosen Unebenheiten nach Tabelle 7-11, DFG 35, Sitz MSG 85

0,0

0,1

0,2

0,3

0 0,5 1 1,5 2 2,5 3

SE

AT

[-]

norm. Effektivwert am Sitzmontagepunkt (z) [-]

0,0

0,2

0,4

0,6

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6

SE

AT

[-]

norm. Effektivwert [-]

0,0

0,2

0,4

0,6

0 1 2 3 4 5 6

SE

AT

[-]

norm. Effektivwert am Sitzmontagepunkt (z) [-]

Page 398: Einflussfaktoren auf die Exposition von ... Gabriel Fischer.pdf · TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Maschinenwesen Lehrstuhl für Fördertechnik Materialfluss Logistik

C Ergänzungen Fahrer und Sitz

C-4

Abbildung C-9: SEAT-Werte in Abhängigkeit der Belastung für Überfahrt von Böden mit regellosen Unebenheiten nach Tabelle 7-11, EFM 14, Sitz MSG 65

0,0

0,1

0,2

0,3

0 2 4 6 8

SE

AT

[-]

norm. Effektivwert am Sitzmontagepunkt (z) [-]