Grundlagen Kryptografie

50
Folie 1 von 50 KRYPTOGRAPHIE KRYPTPOGRAPHIE Grundlagen, Geschichte, Anwendung Referat von Pawel Strzyzewski, Wintersemester 2006, FH Aachen Seminare »Privacy 2.0« und »We-Blog«

description

Grundlagen der Kryptografie und moderne Anwendung

Transcript of Grundlagen Kryptografie

Page 1: Grundlagen Kryptografie

Folie 1 von 50 KRYPTOGRAPHIE

K R Y P T P O G R A P H I E Grundlagen, Geschichte, Anwendung

Referat von Pawel Strzyzewski, Wintersemester 2006, FH Aachen Seminare »Privacy 2.0« und »We-Blog«

Page 2: Grundlagen Kryptografie

Folie 2 von 50 KRYPTOGRAPHIE

_ 1. Grundlagen ~ 15 Minuten

_ 1a Crashkurs: »Wozu Kryptographie?« _ 1b Wie funktioniert Verschlüsselung? _ 1c Historische Beispiele

_ 2. Moderne Anwendung ~ 15 Minuten

_ 2a Symmetrisch, asymmetrisch? _ 2b Elektronische Signatur _ 2c Zertifikate _ 2d Hybride Systeme

_ 3. Fragen, Diskussionsrunde ~ ? Minuten

Übersicht

Page 3: Grundlagen Kryptografie

Folie 3 von 50 KRYPTOGRAPHIE

1. Grundlagen

Page 4: Grundlagen Kryptografie

Folie 4 von 50 KRYPTOGRAPHIE

Crashkurs: »Wozu Kryptographie?«

Page 5: Grundlagen Kryptografie

Folie 5 von 50 KRYPTOGRAPHIE

Page 6: Grundlagen Kryptografie

Folie 6 von 50 KRYPTOGRAPHIE

_ Bedrohungsszenarien

_ Unbefugtes Einsehen von Nachrichten

_ Unbefugtes Ändern von Nachrichten

_ Fälschen von Absenderangaben

Crashkurs: »Wozu Kryptographie?«

Page 7: Grundlagen Kryptografie

Folie 7 von 50 KRYPTOGRAPHIE

_ Was können kryptographische Systeme leisten?

_ Geheimhaltung —> Abhörsicherheit vor »unbefugten Dritten«

_ Integrität —> Unversehrtheit der Nachricht garantiert

_ Authentizität —> Identität von Sender und Empfänger prüfbar

Crashkurs: »Wozu Kryptographie?«

Page 8: Grundlagen Kryptografie

Folie 8 von 50 KRYPTOGRAPHIE

Page 9: Grundlagen Kryptografie

Folie 9 von 50 KRYPTOGRAPHIE

_ Dschungel der Fachbegriffe

_ Verschlüsselung —> Nachrichten wiederruflich unlesbar machen _ Verschl.-Algorithmus —> Bes. Ablauf, der Nachrichten verschlüsselt

_ Kryptographie —> Wissenschaft vom Verschlüsseln

_ Kryptoanalyse —> Verschlüsselung brechen

_ Steganographie —> Existenz von Nachrichten verbergen

Crashkurs: »Wozu Kryptographie?«

Page 10: Grundlagen Kryptografie

Folie 10 von 50 KRYPTOGRAPHIE

Wie funktioniert Verschlüsselung?

Page 11: Grundlagen Kryptografie

Folie 11 von 50 KRYPTOGRAPHIE

_ Definition

Verschlüsselung nennt man den Vorgang, bei dem ein Klartext mit Hilf eines Verschlüsselungsverfahrens (Algorithmus) in einen Geheimtext umgewandelt wird.

Als Parameter des Verschlüsselungsverfahrens werden ein oder mehrere Schlüssel verwendet. […]

Den umgekehrten Vorgang, also die Verwandlung des Geheimtextes zurück in den Klartext, nennt man Ent-schlüsselung.

Wie funktioniert Verschlüsselung?

Page 12: Grundlagen Kryptografie

Folie 12 von 50 KRYPTOGRAPHIE

Wie funktioniert Verschlüsselung?

Ver- schlüsselungs-

verfahren

Page 13: Grundlagen Kryptografie

Folie 13 von 50 KRYPTOGRAPHIE

Wie funktioniert Verschlüsselung?

Klartext

Ver- schlüsselungs-

verfahren

Page 14: Grundlagen Kryptografie

Folie 14 von 50 KRYPTOGRAPHIE

Wie funktioniert Verschlüsselung?

Klartext

Ver- schlüsselungs-

verfahren

Schlüssel

Page 15: Grundlagen Kryptografie

Folie 15 von 50 KRYPTOGRAPHIE

Wie funktioniert Verschlüsselung?

Klartext

Geheimtext

Ver- schlüsselungs-

verfahren

Schlüssel

Page 16: Grundlagen Kryptografie

Folie 16 von 50 KRYPTOGRAPHIE

Hallo, W

elt!

07tr043

zfoqörhqä dl-

jdsha #sw geds

aflh ds‘*

Wie funktioniert Verschlüsselung?

Klartext

Geheimtext

Ver- schlüsselungs-

verfahren

Schlüssel

Page 17: Grundlagen Kryptografie

Folie 17 von 50 KRYPTOGRAPHIE

Wie funktioniert Entschlüsselung?

Hallo, W

elt!

07tr043

zfoqörhqä dl-

jdsha #sw geds

aflh ds‘*

Klartext

Geheimtext

Ver- schlüsselungs-

verfahren

Schlüssel

Page 18: Grundlagen Kryptografie

Folie 18 von 50 KRYPTOGRAPHIE

_ Verschlüsselungsoperationen

_ Tr ansposition & Substitution

Wie funktioniert Verschlüsselung?

Page 19: Grundlagen Kryptografie

Folie 19 von 50 KRYPTOGRAPHIE

_ Verschlüsselungsoperationen

_ Tr ansposition

_ Bei einer Transposition werden die Zeichen untereinander vertauscht

_ L I E S M I C H —> H C I M S E I L _ L I E S M I C H —> S I E L H I C M

Wie funktioniert Verschlüsselung?

Page 20: Grundlagen Kryptografie

Folie 20 von 50 KRYPTOGRAPHIE

_ Verschlüsselungsoperationen

_ Substitution

_ Bei einer Substitution werden Zeichen durch andere Zeichen ersetzt

_ A B C D E F —> C D E F G H

_ A B C D E F —> 1 2 3 4 5 6

Wie funktioniert Verschlüsselung?

Page 21: Grundlagen Kryptografie

Folie 21 von 50 KRYPTOGRAPHIE

_ Verschlüsselungsoperationen

_ Tr ansposition & Substitution _ … bilden die einzigen zwei Möglichkeiten für Verschlüsselungsverfahren _ … können beliebig kombiniert werden

Wie funktioniert Verschlüsselung?

Page 22: Grundlagen Kryptografie

Folie 22 von 50 KRYPTOGRAPHIE

_ Skytale

Die älteste bekannte Transpositionsverschlüsse-lung wurde schon vor 2500 Jahren von den Sparta-nern zu militärischen Zwecken angewandt. Als Schlüssel diente ein Stab mit einem bestimmten Durchmesser, der als Skytale bezeichnet wurde.

Historische Beispiele

Page 23: Grundlagen Kryptografie

Folie 23 von 50 KRYPTOGRAPHIE

_ Skytale

Historische Beispiele

Page 24: Grundlagen Kryptografie

Folie 24 von 50 KRYPTOGRAPHIE

_ Cäsar-Chiffre / ROT13

Ein sehr bekanntes Beispiel für Substitutionsverschlüsselung ist der soge-nannte ROT13-Algorithmus, auch Cäsar-Chiffre genannt.Dabei wird von einem lateinischen Alphabet mit 26 Buchstaben ausgegangen, welches um 13 Stellen verschoben (rotiert) wird.

Historische Beispiele

Page 25: Grundlagen Kryptografie

Folie 25 von 50 KRYPTOGRAPHIE

Historische Beispiele

Page 26: Grundlagen Kryptografie

Folie 26 von 50 KRYPTOGRAPHIE

_ Päfne-Puvsser / EBG13

Rva frue orxnaagrf Orvfcvry süe Fhofgvghgvbafirefpuyüffryhat vfg qre fbtra-naagr EBG13-Nytbevguzhf, nhpu Päfne-Puvsser tranaag.Qnorv jveq iba rvarz yngrvavfpura Nycunorg zvg 26 Ohpufgnora nhftrtnatra, jrypurf hz 13 Fgryyra irefpubora (ebgvreg) jveq.

Uvfgbevfpur Orvfcvryr

Page 27: Grundlagen Kryptografie

Folie 27 von 50 KRYPTOGRAPHIE

_ Enigma

Ein weiteres sehr bekanntes Beispiel für Verschlüsselung durch Substitution ist die deutsche Rotor-Verschlüsselungs-maschine Enigma, die sehr häufig im zweiten Weltkrieg von den Deutschen verwendet wurde.Wichtigste Eigenschaft der Enigma ist die polyalphabetische Rotorverschlüs-selung, welche die automatisierte Ver-wendung mehrerer Geheimalphabete ermöglicht. Ferner werden dabei für fast jeden einzelnen Klartext-Buchstaben eigene Schlüssel verwendet.

Historische Beispiele

Page 28: Grundlagen Kryptografie

Folie 28 von 50 KRYPTOGRAPHIE

_ Enigma

Das Herzstück der Enigma sind drei Walzen und zwei Umkehrwalzen, die man beliebig anordnen kann. Die Walzen verfügen über ein eigenes 26-Stelliges Geheim-alphabet, wwelches sich über eine Ringeinstellung ver-schieben lässt. Alle Walzen sind untereinander über un-terschiedlich einstellbare Steckverbindungen gekoppelt.

Historische Beispiele

Page 29: Grundlagen Kryptografie

Folie 29 von 50 KRYPTOGRAPHIE

_ Enigma

_ Die Enigma bietet vier Parameter zur Einstellung: 1. 120 verschiedene Walzenlagen 2. 676 Einstellungen der Ringe 3. 17.576 Grundstellungen der Walzen 4. 150.738.274.937.250 (~ 150 Bio.) Steckerverbindungen aller Walzen

_ Schlüsselraum circa 2·10²³ verschiedenen Möglichkeiten (~ 77 Bit)

_ Durch Sicherheits-Schwächen aber nur ca. 2 Mio. benutzbare Schlüssel

Historische Beispiele

Page 30: Grundlagen Kryptografie

Folie 30 von 50 KRYPTOGRAPHIE

2. Moderne Anwendung

Page 31: Grundlagen Kryptografie

Folie 31 von 50 KRYPTOGRAPHIE

Symmetrisch, asymmetrisch?

Page 32: Grundlagen Kryptografie

Folie 32 von 50 KRYPTOGRAPHIE

_ Symmetrische Verfahren

Symmetrisch, asymmetrisch?

Klartext

Geheimtext

Ver- schlüsselungs-

verfahren

Schlüssel

Page 33: Grundlagen Kryptografie

Folie 33 von 50 KRYPTOGRAPHIE

_ Symmetrische Verfahren

Symmetrisch, asymmetrisch?

Klartext

Geheimtext

Ver- schlüsselungs-

verfahren

Schlüssel

Page 34: Grundlagen Kryptografie

Folie 34 von 50 KRYPTOGRAPHIE

_ Symmetrische Verfahren

Symmetrisch, asymmetrisch?

Klartext GeheimtextSchlüssel

Page 35: Grundlagen Kryptografie

Folie 35 von 50 KRYPTOGRAPHIE

_ Symmetrische Verfahren

_ Schlüssel immer gleich

_ Kein gefahrloser Schlüssel- austausch möglich

Symmetrisch, asymmetrisch?

Klartext GeheimtextSchlüssel

Page 36: Grundlagen Kryptografie

Folie 36 von 50 KRYPTOGRAPHIE

_ Asymmetrische Verfahren: _ Geheimschlüssel wird durch Schlüsselpaar ersetzt

_ Private Key ist nur für den Besitzer zugänglich

_ Public Key ist für jeden Teilnehmer zugänglich

Symmetrisch, asymmetrisch?

Public Key

Private Key

Page 37: Grundlagen Kryptografie

Folie 37 von 50 KRYPTOGRAPHIE

_ Asymmetrische Verfahren: Public Key

Symmetrisch, asymmetrisch?

Klartext GeheimtextPublic Key

Page 38: Grundlagen Kryptografie

Folie 38 von 50 KRYPTOGRAPHIE

_ Asymmetrische Verfahren: Private Key

Symmetrisch, asymmetrisch?

Klartext GeheimtextPrivate Key

Page 39: Grundlagen Kryptografie

Folie 39 von 50 KRYPTOGRAPHIE

_ Asymmetrische Verfahren

_ Gedankliches Konzept

_ Public Key verschlüsselt Nachrichten _ Private Key entschlüsselt Nachrichten

_ Public Key kann mit dem Public Key verschlüsselte Nachrichten nicht entschlüsseln (»Asymmetrie«)

_ »Gefährlicher Schlüsselaustausch« entfällt (Public Key kann durch unsichere Kanäle verbreitet werden)

Symmetrisch, asymmetrisch?

Page 40: Grundlagen Kryptografie

Folie 40 von 50 KRYPTOGRAPHIE

Page 41: Grundlagen Kryptografie

Folie 41 von 50 KRYPTOGRAPHIE

Elektronische Signatur

Page 42: Grundlagen Kryptografie

Folie 42 von 50 KRYPTOGRAPHIE

_ Mit Schlüsselpaaren kann nachgewiesen werden, dass eine Person ein bestimmtes Dokument digital signiert hat

_ Durch einen speziellen Signier-Algorithmus kann der Besitzer eines privaten Schlüssels für ein bestimmtes Dokument eine digitale Signatur erstellen lassen

_ Die generierte digitale Signatur ist ausschließlich für das eine signierte Dokument gültig. Möchte man ein anderes Dokument signieren, muss der Vorgang wiederholt werden.

_ Anschließend kann über den öffentlichen Schlüssel der Person nachgewiesen werden, ob die Signatur authentisch ist oder nicht

Elektronische Signatur

Page 43: Grundlagen Kryptografie

Folie 43 von 50 KRYPTOGRAPHIE

Page 44: Grundlagen Kryptografie

Folie 44 von 50 KRYPTOGRAPHIE

Page 45: Grundlagen Kryptografie

Folie 45 von 50 KRYPTOGRAPHIE

Zertifikate

Page 46: Grundlagen Kryptografie

Folie 46 von 50 KRYPTOGRAPHIE

_ Zertifkate dienen zur Sicherstellung der Echtheit von öffentlichen Schlüsseln und weren von sog. Zertifizierungsstellen ausgestellt

_ Ein Zertifikat enthält Informationen über den Namen des Inhabers, dessen öffentlichen Schlüssel, eine Seriennummer, eine Gültigkeitsdauer und den Namen der Zertifizierungsstelle

_ Um die Echtheit des Zertifikates zu garantieren, wird dem Zertifikat eine digitale Signatur einer vertrauenswürdigen Organisation oder Instanz (z. B. eine Behörde) aufgeprägt. Durch dessen Signatur kann die Integrität und Echtheit des Zertifikates nachgewiesen werden.

_ In Deutschland übernimmt die Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen die Rolle der höchsten Zertifizierungsinstanz

Zertifikate

Page 47: Grundlagen Kryptografie

Folie 47 von 50 KRYPTOGRAPHIE

Hybride Systeme

Page 48: Grundlagen Kryptografie

Folie 48 von 50 KRYPTOGRAPHIE

_ Hybride Systeme arbeiten gemischt mit asymmetrischen und symmetrischen Verschlüsselungsverfahren, was einen großen Geschwindigkeitsvoteil bringt

_ Ein typisches Anwendungsbeispiel ist der Austausch des »Session-Keys« bei sicherheitskritischen Internet-Anwendungen (z. B. Onlinebanking)

_ Hierbei einigen sich beide Gegenstellen zuerst anhand von Zertifikaten und asymmetrischer Kryptographie auf einen Sitzungsschlüssel, welcher dann für eine symmetrische (und ressourcensparende) Verschlüsselung genutzt wird.

_ Bei vertrauenswürdigen Zertifikaten eine sichere Methode um den Geheimschlüssel für symmetrische Kryptographie zu übertragen

Hybride Systeme

Page 49: Grundlagen Kryptografie

Folie 49 von 50 KRYPTOGRAPHIE

_ Wie wird ein Session-Key generiert? (stark vereinfacht)

1. Dienstleister (Server) und Kunde (Client) bauen eine Verbindung auf

2. Server sendet seinen Public Key und ein Zertifikat, das die Echtheit des Public Keys bestätigt, an den Client 3. Client überprüft Zertifikat

4. Wenn Zertifikat vertrauenswürdig, generiert Client einen symmetrischen Schlüssel, welcher asymmetrisch mit dem Public Key des Servers verschlüsselt wird

5. Server erhält den Schlüssel und leitet eine symmetrisch verschlüsselte Verbindung zwischen sich und Client ein

Hybride Systeme

Page 50: Grundlagen Kryptografie

Folie 50 von 50 KRYPTOGRAPHIE

3. Fragen, DiskussionENDE.

Danke für eure Aufmerksamkeit