Innovative Technologien bewegen Europa

56
INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA INNOVATIVE TECHNOLOGIES MOVE EUROPE Ein Schul-Wettbewerb von Science on Stage Deutschland e.V. und der Lenord, Bauer & Co. GmbH

description

Ein Leitfaden für Schulen und Unternehmen für Kooperationen.

Transcript of Innovative Technologien bewegen Europa

Page 1: Innovative Technologien bewegen Europa

InnovatIve technologIen bewegen europa

InnovatIve technologIeS Move europe

Ein Schul-Wettbewerb von Science on Stage Deutschland e.V. und der Lenord, Bauer & Co. GmbH

Page 2: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

2

Page 3: Innovative Technologien bewegen Europa

3

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

INNOVATIVE TECHNOLOGIES MOVE EUROPE

Ein Schul-Wettbewerb von Science on Stage Deutschland e.V. und der Lenord, Bauer & Co. GmbH

INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

Page 4: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

4

Page 5: Innovative Technologien bewegen Europa

5

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

INHALT

TEIL 1

Grußwort

Vorworte

Innovative Technologien bewegen Europa[08] Projekt[08] Hintergrund[09] Ziele[09] Förderung von Schlüsselkompetenzen[10] Prinzipieller Projektablauf[11] Projektpartner

Leitfaden zur Umsetzung des Projekts

Ablauf und Korrespondenz

Ablauf der Veranstaltungen

Teilnehmer- und Pressestimmen

Erfolge und Nachhaltigkeit

Siegerarbeiten

TEIL 2

Teilnehmerliste

Projektbeschreibungen der Teilnehmer

06 (

07 (

08 (

12 (

14 (

18 (

20 (

22 (

24 (

30 (

31 (

Page 6: Innovative Technologien bewegen Europa

6

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

GRUSSWORT

Ich freue mich sehr, dass Lenord & Bauer als nordrhein-westfä-

lisches Unternehmen gemeinsam mit Science on Stage diesen

internationalen Wettbewerb ausschreibt. Und das bereits zum

vierten Mal. Der Wettbewerb „Innovative Technologien bewegen

Europa“ richtet sich an Schülerinnen und Schüler der Sekundar-

stufe II. Gemeinsam mit Unternehmen sollen sie spannende

Aufgaben aus Technik und Naturwissenschaften lösen.

Ziel ist es, auf diese Weise einen Beitrag für den praxisnahen

und lebendigen naturwissenschaftlichen Unterricht zu leisten,

bei Jugendlichen Neugier und Lust auf Technik zu wecken und

ihnen den engen Kontakt zu technologisch orientierten Unter-

nehmen zu ermöglichen.

Ein gutes Konzept, denn schon heute fehlen viele tausend

Fachkräfte in den Ingenieurberufen. Und nur wenn wir bereits

Schülerinnen und Schüler anschaulich zeigen, wie spannend

Naturwissenschaften und Technik sind und welche hervorra-

genden Berufschancen ihnen innovative Unternehmen bieten,

können wir daran nachhaltig etwas ändern.

Ich finde es daher sehr gut, dass ein mittelständisches und in-

ternational aufgestelltes Unternehmen einen solchen europa-

weiten Wettbewerb auf die Beine stellt. Schon im letzten Jahr

konnte ich mich davon überzeugen, dass der Wettbewerb bei den

Jugendlichen hervorragend ankommt. Es war beeindruckend,

mit welcher Freude und Kreativität die einzelnen Gruppen an

die Aufgaben herangegangen sind und mit welcher Kompetenz

sie ihre Arbeitsergebnisse vorgestellt haben. Ich kann daher nur

sagen: Mitmachen lohnt sich!

Das scheint sich auch bereits herumgesprochen zu haben. In

den vergangenen drei Jahren hat sich die Zahl der Teilnehmer-

teams aus Schulen und Unternehmen in Deutschland und den

angrenzenden Ländern bereits verdoppelt – ein tolles Ergebnis.

In diesem Jahr haben sich die Träger des Wettbewerbes vor-

genommen, die Zahl der Bewerber weiter zu erhöhen. Gerne

er mun tere ich alle Gymnasien und Gesamtschulen in Nordrhein-

Westfalen, aber auch in den anderen europäischen Regionen,

sich zu beteiligen.

Der Wettbewerb ist ein hervorragendes Beispiel für unterneh-

merisches Engagement zur Förderung des naturwissenschaftlich-

technischen Nachwuchses. Dem gleichen Ziel hat sich in Nordrhein-

Westfalen die Landesinitiative Zukunft durch Innovation.NRW

verschrieben. Wir wollen mit anspruchsvollen, dauerhaften An-

geboten möglichst viele Schülerinnen und Schüler für ein inge-

nieur- und naturwissenschaftliches Studium begeistern. Dafür

bringt die von meinem Haus getragene Initiative in den Regio-

nen Schulen, Hochschulen, Wirtschaft und Politik zusammen.

Schon heute erreichen die ZdI-Partner mit ihren Angeboten

über 100 000 Schülerinnen und Schüler im Jahr. Bis zum Jahr

2010 werden wir landesweit 25 ZdI-Zentren gründen, die für

eine Region oder eine Stadt Technikunterricht mit modernsten

Mitteln anbieten. Die kreativen Wettbewerbslösungen von „Inno-

vative Technologien bewegen Europa“ können für diesen Un-

terricht sicher anregende Impulse geben.

Ich wünsche daher den Trägern und allen teilnehmenden Teams

viel Vergnügen, Kreativität und Erfolg!

Prof. Dr. Andreas Pinkwart

Minister für Innovation, Wissenschaft, Forschung und

Technologie Nordrhein-Westfalen

Stellvertretender Ministerpräsident Nordrhein-Westfalen

Page 7: Innovative Technologien bewegen Europa

7

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

VORWORTE

Als wir im Jahre 2005 das Engagement

für den tech nischen Nachwuchs ver-

stärken wollten, kamen wir in Kontakt

mit Science on Stage Deutsch land e.V.

Damals spürten wir, dass der Fachkräf-

temangel in Deutschland problematisch wird und kurzfristig un-

ser Unternehmen und die restliche Wirtschaft treffen wird. Noch

bevor die Öffentlichkeit durch die Medien auf das Problem des

Fachkräftemangels in tensiv hingewiesen wurde, konzipierten wir

mit Science on Stage Deutschland den gemeinsamen Wett be-

werb „Innovative Technologien bewegen Europa“.

Die anfängliche Herausforderung bestand darin, den Kontakt zu

Schulen zu finden und ausreichend Lehrer für diesen Wettbe-

werb zu gewinnen. Gestartet haben wir im ersten Durchlauf mit

einigen wenigen Teilnehmern. Heute übersteigen die An mel-

dun gen bei weitem die mögliche Teilnehmerzahl.

Drei erfolgreich durchgeführte Wettbewerbe haben dazu beige-

tragen, dass wir zahlreiche Schüler in ih rer Entscheidung unter-

stützen konnten, einen tech nischen Beruf zu wählen. Auch die

öffentliche Wahrnehmung des Problems Fachkräftemangel konn-

te durch unseren Wettbewerb gesteigert werden, denn die Fach-

presse hat dieses Thema dankenswerter Weise gerne aufgenom-

men. Doch haben wir noch lange nicht erreicht, was nötig ist,

um den Fach kräftemangel abzuschwächen.

Diese Broschüre dient dazu, weitere Unternehmen zu motivieren,

gleiche oder ähnliche Engagements zu initiieren und mitzuhel-

fen, mehr junge Menschen für technisch-naturwissenschaftliche

Berufswege zu interessieren. Ich hoffe, der Leser aus dem un ter-

nehmerischen Umfeld findet in dieser Broschüre ausreichend An-

reize, sich ebenfalls für den technischen Nachwuchs zu engagie ren.

Für einen Erfah rungsaustausch stehe ich auch gerne per sönlich

zur Verfügung.

Hans-Georg Wilk

Geschäftsführer der Lenord, Bauer & Co. GmbH

) OPPORTUNITIES fOR yOUNG TALENTS!Europa wächst zusammen und bewegt sich auch in Fragen der

Bildung. Am Ende der Ausbildung erwarten wir alle eine kluge

Jugend, fit für Europa, vor allem in den wichtigen natur wissen-

schaftlich-techni schen Feldern. Internationale Studien zei gen

aber gerade hier Defizite auf.

Was kann man tun?

Seit dem Jahr 2000 fördert Science on Stage Deutschland e.V. im

europäischen Rahmen Entwicklung und Austausch innovativer

Lehrkonzepte und Methoden und gestaltet den Transfer in die

pädagogische Praxis. Der Blick über den nationalen Tellerrand,

die Einsicht in ‚good practice’, ungewohnte Perspektiven und

überraschende Lösungen sind geeignet, Problemlagen des eige-

nen Bildungssystems zu entschärfen.

Unter den außerschulischen Bildungsangeboten zur Förderung des

naturwis sen schaftlich-technischen Un-

ter richts neh men Koo pe rationen mit Un -

ternehmen der Wirtschaft und Industrie

eine prominente Stellung ein, denn sie

verbinden das in den Schulen nur theo-

retisch erarbeitbare Modell einer moder-

nen In dustriegesellschaft mit aktueller

Lebenswirklichkeit.

Um in der Bildung außergewöhnliche Vorhaben zu verwirkli-

chen braucht man außergewöhnliche Partner. Das Unterneh men

Lenord + Bauer zeigte keinerlei Berührungsängste mit dem

schu li schen Alltag und brachte sich bei dem gemeinsam gestalte-

ten europäischen Wettbewerb „Innovative Technologien bewegen

Europa“ mit großem Einfühlungsvermögen und außerordent-

lichem, erfolgssicherndem Engagement ein. Die nun seit über drei

Jahren währende Kooperation hat wunderbare Gelegenheiten

geschaffen, europäische und deutsche Schülerinnen und Schüler

Tatkraft und Erfindungsreichtum sprühen und präsentieren zu

lassen. Auf diese Weise ist ein Wettbewerb entstanden, der Ler nen-

de, Lehrende, Politik und Wirtschaft gleichermaßen begeistert.

Diese Publikation dokumentiert die anspruchsvollen Aufgaben

und überraschenden Lösungen der jungen Entwicklergruppen.

Sie soll zur Nachahmung anregen, mit praktischen Ideen zur

Qua litätsentwicklung in der naturwissenschaftlich-tech nischen

Bildung unserer Jugend beizutragen. Gestalten Sie mit uns

„more opportunities for young talents“!

Dr. Wolfgang Welz

Vorstand Science on Stage Deutschland e.V.

Page 8: Innovative Technologien bewegen Europa

8

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

) PROjEkT

Gemeinsam mit Science on Stage Deutschland e.V. (SonSD) lädt das Unternehmen Lenord, Bau-er & Co. GmbH bereits seit 2005 jedes Jahr zum Schul-Wettbewerb „Innovative Technologien be-wegen Europa“ ein. Teams bestehend aus zwei Lehrkräften und vier bis sechs Schülerinnen und Schülern stellen dabei ihr Können im Bereich der Naturwissenschaften und Technik unter Beweis, indem sie an Projekten tüfteln, die auch im Un-terricht eingesetzt werden können. Angelehnt an das Unternehmensprofil sind die Themen vielfältig und reichen vom Modell eines Raster-kraftmikroskops und elektronischen Hampel-mann im ersten Durchgang, über Bewegung, Energie und Chaos im folgenden Jahr, bis hin zur Bionik im Jahr 2008. Unterstützt werden die jungen Tüftler im laufenden Wettbewerb mit dem Know-how der Entwicklungsingenieure und mit technischen Baueinheiten von Lenord + Bauer.

So können die Teams jederzeit auf die Betreu-ung durch die Ingenieure zählen und sich bei fachlichen Fragen an sie wenden. Für die päd-agogische Organisation des Wettbewerbs und die Koordination der Teams sorgt der Verein Science on Stage Deutschland e.V.

) HINTERGRUNd

Laut dem Institut der deutschen Wirtschaft fehl-ten allein im April 2008 etwa 70.000 Ingenieure. Durch die sich ändernde Demografie und das mangelnde Interesse an technischen Berufen wird sich dieses Problem in den nächsten Jah-ren weiter verschärfen. Ein Problem, das auch das Unternehmen Lenord + Bauer bereits spürt: nicht nur der Mangel an Bewerbern macht sich bemerkbar, auch mangelnde Qualität ist immer öfter festzustellen. Doch dass es auch anders geht, zeigt die Initiative „Innovative Technolo-gien bewegen Europa“. Mit reizvollen, kniffligen Projekten im Bereich der Technik und durch den Kontakt zu einem erfolgreichen Unternehmen wer-den Schülerinnen und Schüler für die Naturwis-senschaften begeistert und erhalten einen Ein-blick in die Praxis und das spätere Berufsleben.

01

ABBILdUNGEN01 Teilnehmer der Auftakt-veranstaltung im Dezember 200602 Schüler des Gymnasium Remigianum Borken mit ihrem Modell eines Raster-kraftmikroskops03 Prof. Dr. Pinkwart be-staunt das Projekt des Landrat-Lucas-Gymnasiums.

Page 9: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

9

) ZIELE

Zusammenführung von Ingenieuren und Schü- ( lerinnen und Schülern zu praxisnahen Einbli-cken in die Naturwissenschaften und Technik europaweite Zusammenarbeit von Schulen (länderübergreifender Erfahrungsaustausch (über Konzepte und Methoden des naturwis-senschaftlichen Unterrichtskurzfristig: Gestaltung kreativer Lösungen tech- (nischer Problemelangfristig: Förderung des Ingenieur- und (Fachkräftenachwuchses

) föRdERUNG VON SCHLüSSELkOMPETENZEN

Das Projekt fördert Schlüsselkompetenzen, die junge Talente im Europa von heute brauchen:

Kreativität: Die Schülerinnen und Schüler ent- (wickeln selbstständig Lösungsansätze und funktionstüchtige Modelle zu konkreten Pro-blemen in technischen Themenfeldern.Kommunikations- und Verhandlungskompe- (tenz: Die Schülerinnen und Schüler verhan-deln selbst mit dem Industriepartner, Teil-nehmern und Organisatoren.Präsentationskompetenz / Fremdsprachen: Die (Schülerinnen und Schüler präsentieren und be werben ihre Projektlösungen vor allen Teil-nehmern und der Öffentlichkeit in englischer Sprache.Kooperationskompetenz: Im Erfahrungsaus- (tausch über verschiedene Alters- und Interes-sengruppen hinweg, teilweise klassenüber-greifend, widmen sich die Mitglieder der Teams den verschiedenen Teilaufgaben und koordinieren das Projekt.

02 03

Page 10: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

10

) INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

) PRINZIPIELLER PROjEkTABLAUf

I Vorbereitung: September – DezemberAnfang September: Anschreiben an die Schulen (Bis Anfang Oktober: verbindliche Anmeldung (Anfang Dezember: Auftaktveranstaltung, (Vorstellen der Projektvorhaben

II Umsetzung: Januar – April / MaiUmsetzung der Projektvorhaben in den (Schulen und Projektgruppennach Bedarf Zusammenarbeit mit (Lenord + BauerDokumentation der Zwischenstände (

III Präsentation: April / MaiAbschlussveranstaltung: (Präsentation der Ergebnisse Prämierung der herausragendsten Projekte durch die Jury

IV NachbereitungVeröffentlichung der Projekte und Ergebnisse (im InternetFortsetzung der Zusammenarbeit zwischen (Teilnehmern und Projektpartnern

05

04

ABBILdUNGEN04+05 Das Team des Landrat-Lucas-Gymnasiums und sein Rasterkraftmikroskop

Page 11: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

11

) dIE PROjEkTPARTNER

Lenord, Bauer & Co. GmbH:Lenord + Bauer ist ein mittelständisches Unterneh-men der Automatisierungstechnik. Als interna-tional tätiger Spezialist im Bereich der Automa-tisierungstechnik entwickelt Lenord + Bauer mit 195 hochqualifizierten Mitarbeitern innovative Systeme für die Automatisierung von industriel-len Bewegungsabläufen.

Innerhalb relevanter Segmente, etwa im Maschi-nenbau, in der Schienenverkehrstechnik und der Wind energietechnik, konzentriert sich Lenord + Bauer auf kundenspezifische Systemlösungen. Der Kom- petenzbereich umfasst insbesondere die Ent -wick lung und Produktion robuster Sensoren und hochwertiger, intelligenter Steuerungen.

Seit Jahren beschäftigt sich Lenord + Bauer mit dem Nachwuchsproblem: erhöhte Auftrags-eingangs zahlen und neue Produktentwicklun-gen fordern das Unternehmen. Die vorhandene Anzahl der qualifizierten Arbeitskräfte reicht je-doch bei weitem nicht aus, um die Nachfrage nach qualifizierten Ingenieuren zu sättigen.

Ansprechpartner: Björn Schlüter (Leiter Unternehmenskommunikation)Lenord, Bauer & Co. GmbHDohlenstraße 32 | D-46145 OberhausenTel.: +49 208 9963-315 | [email protected]

Science on Stage Deutschland e.V.Seit dem Jahr 2000 zunächst als Organisations-komitee, seit 2003 als gemeinnütziger Verein, arbeitet Science on Stage Deutschland e.V. (SonSD) im europäischen Rahmen für die Förderung der naturwissenschaftlichen Bildung. Eine zentrale Aufgabe von SonSD ist die Vernet-zung europäischer und deutscher Lehrkräfte. Die Entwicklung und Verbreitung guter Unterrichts-konzepte und Experimente („good practice“) soll den Unterricht qualitativ verbessern und mehr junge Menschen für naturwissenschaftlich-tech-nische Berufsfelder gewinnen. SonSD fördert in-novative Ideen und engagierte Lehrkräfte mit ungewöhnlichen Konzepten und lädt sie zu na-tionalen Lehrerfortbildungen und europäischen Aktivitäten ein.

Ansprechpartner: Stefanie Schlunk (Geschäftsführung)Vorsitzender: Prof. Otto LührsScience on Stage Deutschland e.V.Poststraße 4/5 | 10178 BerlinTel.: +49 30 400067-40 | [email protected]

Weitere Informationen zu „Innovative Techno-logien bewegen Europa“ und den Projektpart-nern finden Sie im Internet unter:

www.lenord.dewww.schule-bewegt.dewww.science-on-stage.de

Björn Schlüter

Stefanie Schlunk

Page 12: Innovative Technologien bewegen Europa

12

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

LEITfAdEN ZUR UMSETZUNG dES PROjEkTS

) NOTWENdIG SINd

Ein Unternehmen, möglichst mit Vertriebs- (partnern oder Tochtergesellschaften im be-nach barten europäischen Ausland.Schulen in der Umgebung, in der Bundesre- (publik und im europäischen Ausland.Ein Kooperationspartner oder ein Koordina- (tionslehrer, der die pädagogische Gesamtko-ordination (hier Science on Stage Deutschland) innehat.Ein Kooperationsteam (Pädagogen und Inge- (nieure) für die Entwicklung kreativer authen-tischer Aufgabenstellungen für die Schulteams.

) HINWEISE füR dAS UNTERNEHMEN

Aufgaben:Beratung der Projektgruppen (Technische Unterstützung der Teams durch (Material und Wissenstransfer von den Ingenieu-ren und Mitarbeitern des UnternehmensBegleitung und Durchführung der Auftakt- und (AbschlussveranstaltungEine Person des Unternehmens ist als Ansprech- (partner für die Teams erreichbar.Öffentlichkeitsarbeit für das Projekt (

Kosten: (Erfahrungswerte auf der Basis von 7 teilnehmen- den Schulen, 56 Schülern und 10 Lehrern)

Auftakt- und Abschlussveranstaltung: (ca. 7.000 €Technischer Support für die Schulen: 2.500 ( € Kleine Anerkennungen (z.B. Buch) für die (Teams bei der Abschlusspräsentation: 1.000 €Arbeitszeit der Mitarbeiter für die Betreuung (der Teams: fiktiv 2.000 € Öffentlichkeits-/Pressearbeit: 15.000 ( € (bei Beauftragung einer Agentur)Übernahme der Reisekosten für die Schüler (Gesamt etwa 27.500 ( €

Nutzen:Kontakt zu potentiellen Nachwuchs inge- (nieu ren/-mitarbeiternLokaler und regionaler Imagegewinn (Aufmerksamkeit für das Unternehmen in der (Öffentlichkeit (Presse- und Berichterstattung!)

06

ABBILdUNGEN06 Ein Ingenieur von Lenord + Bauer erklärt technische Grundlagen.07 Die Teilnehmer im Austausch mit dem Unternehmen08 Schüler aus Lemgo mit ihrer „Wasserrakete“

Page 13: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

13

) HINWEISE füR dIE SCHULEN

1 Team:2 Lehrer (möglichst aus verschiedenen Fächern) (sowie mindestens 4 Schülerinnen und Schüler

Aufgaben:Mit den Schülerinnen und Schülern kreative (Unterrichtsprojekte entwickeln, die die Schü-lerinnen und Schüler in englischer Sprache vorstellenKoordination der Schülerteams (Präsentation der Teams und der Projekte bei (der Auftakt- und Abschlussveranstaltung (je-weils an einem Schultag)

Nutzen:Technischer Support und Know-how durch (das UnternehmenKnüpfen von hilfreichen Kontakten zu Indus- (trie und WirtschaftDer Austausch mit Kolleginnen und Kollegen (aus anderen LändernDie Gelegenheit, innovative Projekte zu ent- (wickeln, die in der Schule wiederholt und fortgesetzt werden könnenEin „Schub“ in der pädagogischen und fach- (lichen Entwicklung des naturwissenschaftlich-technischen Unterrichts (und darüber hinaus!)

07

08

Page 14: Innovative Technologien bewegen Europa

14

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

ABLAUf UNd kORRESPONdENZAM BEISPIEL VON INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA III

) AUGUST / SEPTEMBER – EINLAdUNG AN SCHULEN UNd LEHRER ZUR TEILNAHME

» Dear Science Teachers,

Following the success of the project “Innovative Technologies Move Europe II” (see also http://www.schule-bewegt.de), we are pleased to be able to announce the continuation of this teacher/student project during the school year 2007/2008. Together with Science on Stage Deutschland e.V., the company Lenord, Bauer & Co GmbH cordially invites teachers in the natural sciences to participate. «

) EINLAdUNG UNd INfORMATIONEN ZURERöffNUNGSVERANSTALTUNG

» Dear participants in “Innovative Technologies Move Europe III”,

Our kick-off meeting on the 7th of December at 3 pm is approaching and we are looking forward to meeting you at the enterprise of Lenord, Bauer & Co. GmbH, Dohlenstrasse 32 in 46145 Oberhau sen. For the instruction “how to get there” please visit www.lenord.de. If the foreign participants need help to get from the station to the company, please contact us.

I would like to remind you to send us your 3 power point slides (see attachment) for the pre-sentation until next Monday, the 3rd of December, so we are able to put the 13 presentations to-gether in one.

Presentation:Each team should present the own project plan in max. 5 minutes / 3 power point slides in English. The teams will present in the following order:[…]After the presentations you will have time to visit the company, to get to know each other and to enjoy the small buffet.

If you have any further questions, please do not hesitate to contact us. You will find all project information also on our homepage www.science-on-stage.de or www.schule-bewegt.de.We are looking forward to your project plan and hope you enjoy the realisation of the biomimetic topic you have chosen.

Best wishes,Science on Stage Deutschland e.V. «

09

ABBILdUNGEN09 Das Gymnasium Remigianum Borken präsentiert „Herbie“.10 Schüler aus Oberhausen bei der Abschlussveranstal-tung 2008

Page 15: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

15

) dEZEMBER – ZWISCHENSTANd

» Dear participants in “Innovative Technologies Move Europe III”,

Thank you all for coming to our kick-off meeting on the 7th of December in Oberhausen. We en-joyed your presentations a lot and are already looking forward to seeing your final results on 11th of April 2008.

Below you will find the next steps until our final meeting:

January-April 08: Implementation of the project plan; Lenord + Bauer provide any cooperative support that may be required (material, know-how); exchange of information between teams via e-mail.1. April 08: Deadline for project description: word file – see attachment – and 3 ppt-slides for the final presentation.11. April 08, 3 pm: Presentation of the results in English by the students in Oberhausen.Once again we would like to encourage you to contact the engineers of Lenord + Bauer via e-mail. You will find the addresses below… «

) jANUAR - BITTE UM ZWISCHENBERICHT

» Dear participants in “Innovative Technologies Move Europe III”,

This is just to remind you to send us your short interim report (max. ½ page) about your project, e.g. what you have done so far, how you coope-rate with the engineers of Lenord + Bauer, what are your next steps etc. (guideline: see attach-ment) until 25th of February 2008.

If you have any further questions, please do not hesitate to contact us.

Best wishes,Science on Stage Deutschland e.V. «

10

Page 16: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

16

) fEBRUAR - EINLAdUNG ABSCHLUSSVERANSTALTUNG

» Dear participants in “Innovative Technologies Move Europe III”,

In August 2007 we invited you to participate in our teacher-student-projects “Innovative Tech-nologies move Europe III”. You and twelve other groups from North Rhine-Westphalia and groups from Belgium, the Netherlands, the United King-dom and Czech Republic worked on projects such as “Crawler”, “Jumper” and “Flyer”.

Today we invite you to present your results at the concluding event on April 11th, 2008 at the Rhei-nische Industrie Museum in Oberhausen. ... «

) BITTE UM ABSCHLUSSBERICHT UNd INfORMATION üBER WEITEREN VERLAUf

» Dear participants in “Innovative Technologies Move Europe III”,

I hope you had a good start in 2008 and your Biomimetics project plans are progressing.Below we send you further information about our final meeting, taking place on Friday, 11th of April, at 2 pm in Oberhausen. Due to the large number of teams we had to change the start of the meeting to 2 pm; we hope this is fine with you.

Next steps:Until 25th of February 2008: Please send us a short interim report (max. ½ page) about your project, e.g. what you have done so far, how you cooperate with the engineers of Lenord + Bauer, what are your next steps etc. (guideline interim report: see attachment).April 1st 2008: Deadline for project description: Word file and 3 Powerpoint slides for the final presentation (see attachments).April 11th 2008, 2 pm: Presentation of the results in English by the students in Oberhausen.

Competition Criteria:Please keep in mind the competition criteria. In all three cases (crawling, jumping, flying) the technical entity should be as small as possible! The “crawler” (task I) and “jumper” (task II) should incorporate their own means of propulsion and should energise themselves and move by absor-bing external heat energy or incident light. The judges will assess the idea/creativity, functio-nality, elegance of solution, presentation, appli ca- bility to classroom teaching, practical orien tation and the teamwork.

) ABLAUf UNd kORRESPONdENZ AM BEISPIEL VON INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA III

11

ABBILdUNGEN11 Vorführung der “Elektro-nischen Hampelmänner“ von Schülern aus Mönchen-gladbach im Mai 2006.

Page 17: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

17

Draft final meeting:Starting at 12 pm: Time for setting up 2 pm: Opening Slide presentations of the teams: one person per team will be on stage presenting the 3 Power-point slides and explaining the project. […]The presentations will be organised in two ses-sions (1st session: 7 teams; 2nd session: 6 teams […]We will send you the order of presentations in March 2008.[…]

Arrival – Accommodation:Teams from Belgium, the Netherlands, UK and the Czech Republic, please send your arrival and departure times and the number of your team members to Mr. Schlueter. He will book the hotel for you.

Further information:You will find further information, e.g. the talk “Biomimetics” by Jürgen Bertling (next week) from the kick-off-meeting, on www.schule-be-wegt.de and www.science-on-stage.de.Once again we would like to encourage you to contact the engineers of Lenord + Bauer via e-mail (see addresses below). If you need any materials please get in touch with Mr. Schlueter ([email protected]).If you have any further questions, please do not hesitate to contact us.

We wish you a successful and enjoyable conti-nuation of your projects!Science on Stage Deutschland e.V. «

) MAI – NACHBEARBEITUNG

» Dear participants in “Innovative Technologies Move Europe III”,

On behalf of Lenord + Bauer and Science on Stage Deutschland e.V. I would like to thank you very much for your presentations on Friday, 11th of April 2008 in Oberhausen.

We were impressed about the quality of your projects, the way you presented the results on stage, the enthusiasm and the teamwork.

We hope that your “Biomimetics-project” was for each of your team members an enrichment concerning your personal knowledge, your sci-ence classes, the possibilities how to cooperate with a company in a school related context and the European exchange.

We will upload your project descriptions and some pictures on our webpages www.science-on-stage.de and www.schule-bewegt.de. This way other students and teachers can be inspired from your ideas.

As it was already mentioned at the final mee-ting, we will also summarise the project results of our European competitions “Innovative Tech-nologies Move Europe I, II and III” in a small booklet. Therefore we will contact you again in the next weeks.

Once again we would like to encourage you to continue your work and to stay in touch with Science on Stage Deutschland (e.g. Science on Stage-Festival 2008) and with Lenord + Bauer (work experience etc.).

Thank you all for your participation and best wishes,Science on Stage Deutschland e.V. «

Page 18: Innovative Technologien bewegen Europa

18

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

ABLAUf dER VERANSTALTUNGEN

Page 19: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

19

4.

Page 20: Innovative Technologien bewegen Europa

20

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

TEILNEHMER- UNd PRESSESTIMMEN

„Dear Lenord + Bauer,Thank you for the opportunity you gave us, we are very grateful. The experience was fantastic; and has helped us in many ways possible. During the time of the Innovative Technologies Move Europe III Project we found out many interesting facts; and it expanded our knowledge of engi-neering as a whole. We enjoyed the final presen-tation the most as every one was there from the last presentation and also telling everyone about our robot and how we made it. […] We also had a great time having dinner with the Lenord + Bauer associates, which we enjoyed, and was good to get to know the associates and learn more about the project and the sponsors. Thanks again!” Rick’s Robotic Rangers - St Georges R.C High School, UKSophie, Zeta, Emma, Shannen, Tom and Ashleigh

„Wir haben viel Freizeit in das Projekt inves-tiert“, erzählt Sebastian Goderbauer, „aber es hat sich gelohnt!“

„Die Diskussion der Schüler mit ‚gestandenen‘ Ingenieuren – auf Augenhöhe – ist immer wieder ein Höhepunkt des Ganzen“, so Günter Niehues (Lehrer am Gymnasium Remigianum Borken).

„Die Schüler präsentieren hier Ideen, die so pfiffig sind, dass sie auch aus unserer Entwicklungsab-teilung stammen könnten.“ Hans-Georg Wilk, kauf-männischer Geschäftsführer von Lenord + Bauer.

„Durch den fächerübergreifenden Ansatz mit Technik, Physik und Informatik haben alle Be-teiligten – Schüler, Lehrer und Schule – eine Menge gelernt und interessante Einblicke be-kommen“, so der Physiklehrer Uwe Brinkmann.

Wolfgang Brockerhoff (Jury Mitglied) von der Universität Duisburg-Essen in der WAZ vom 17.05.2007: „Das ist klasse, was die jungen Leu-te da gebaut haben. Solche Geräte verwenden wir auch in der Forschung“, erklärt er beim An-blick eines Rasterkraftmikroskops.

„Wir hatten jeden Tag neue Ideen, die wir oft am nächsten Morgen direkt wieder verworfen haben“, erinnert sich Anna Lena Müller. „Bei so einem Pro-jekt gibt es natürlich auch Rückschläge, doch die haben die Schüler vor allem durch ihr Teamwork weggesteckt“, lobt Lehrer Gerber sein Forschungs-Team in der Rheinischen Post im Mai 2006.

Schüler gegenüber dem WDR (08.05.2008):„Aus den einfachen Dingen des Alltags so etwas kompliziertes zu machen und das alles selbst zu entwerfen, das macht viel Spaß“, sagt der 16-jäh-rige Mark von der Heinrich-Böll-Gesamtschule.„Ich hatte vorher noch nicht soviel Erfahrung mit Technik, aber es ist klasse“ so die 16-jährige Carmen.

» Wir haben viel freizeit in das Projekt investiert, aber es hat sich gelohnt!«

» Ich hatte vorher noch nicht soviel Erfahrung mit Technik, aber es ist klasse«

12

ABBILdUNGEN12 Schüler zu Besuch bei Lenord + Bauer13 Prof. Dr. Pinkwart mit ei-nem belgischen Teilnehmer

Page 21: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

21

„Das ist echt schwierig, wenn man keine Anlei-tung hat“, sagt Phillip, 14 Jahre alt. „Aber das ist ja auch das Gute daran. Man kann es immer wieder neu versuchen und über kleine Fort-schritte freut man sich auch.“„Im normalen Unterricht macht man nur, was einem vorgegeben wird. Hier muss man sich das alles selbst erarbeiten“, erklärt Daniel seine Be-geisterung für die Schul-Arbeit in der Freizeit.

„Der Wettbewerb von Lenord + Bauer und Science on Stage braucht den Vergleich mit ,Jugend forscht’ nicht zu scheuen, denn technologisch bewegt er sich auf einem ähnlich hohen Niveau. Die Tatsache, dass die Schüler sich mit einer vor-gegebenen Fragestellung auseinandersetzen müssen, macht diesen Wettbewerb fast noch an-spruchsvoller und thematisch vielseitiger“, so Ministeriumsvertreter Peter Langel.

) PRESSESTIMMEN

Der Westen, 11.04.2008: „ … Wir hätten nicht gedacht, dass es so kompliziert wird“, sagt Max. Trotzdem: Sie hätten Riesenspaß gehabt. „Wir sind jetzt richtig heiß“ sagt Matthias. Mehr kann ein Unternehmen, das den Nachwuchs fördern will, sich nicht wünschen.“

Westfälische Nachrichten, 16.04.2008: „Das Ziel, den Nachwuchs zu fördern und junge Menschen für technisch-naturwissenschaftliche Berufe zu interessieren, haben die Macher erreicht. „Das

Projekt hat sehr viel Spaß gemacht und es hat mich in meiner Entscheidung für eine Laufbahn im naturwissenschaftlichen oder technischen Bereich bestärkt“, erklärt Olaf Minte vom Borkener Siegerteam.“

Wirtschaftsnachrichten Region Nordrhein, 11.06.2007: „Bei der Abschlussveranstaltung des Wissenschafts-wettbewerbs überzeugen die Schülerteams durch ausgereifte Technik und Originalität. Eine elek-tronische Fliegenfalle als Zündungsmechanismus, Bestandteile alter Fahrräder für eine Energie er-zeugende Treppe oder eine Computermaus als Schwingungsmesser. Dies sind nur einige Beispie-le der Kreativität der Schüler auf der Abschluss-veranstaltung des internationalen Schüler-Wett-bewerbs „Innovative Technologien bewegen Europa“. […] Entsprechend begeistert zeigt sich auch Professor Dr. Andreas Pinkwart, NRW-Minister für Innovation, Wissenschaft, Forschung und Tech-nologie: „Der Reiz dieses Wettbewerbs liegt da-rin, dass sich die Schüler mit Naturwissenschaft und Technik beschäftigen. Und wenn sie dann auch noch solche Ergebnisse erzielen, wie wir sie hier sehen – so vermittelbar! – dann ist das die Voraussetzung dafür, dass wir als Land der klugen Köpfe eine Zukunft haben. Das ist genau das was wir wollen.“ …“

» das Ziel den Nachwuchs zu fördern und junge Menschen für technisch-naturwissenschaftliche Berufe zu interessieren, haben die Macher erreicht.«

» Und wenn sie dann auch noch solche Ergebnisse erzielen, (...) dann ist das die Voraussetzung dafür, dass wir als Land der klugen köpfe eine Zukunft haben.«

» The experience was fantastic; and has helped us in many ways possible. (...) it expanded our knowledge of engineering as a whole.«

13

Page 22: Innovative Technologien bewegen Europa

22

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

ERfOLGE UNd NACHHALTIGkEIT

) ERfOLGE

Seit 2005 findet das Projekt „Innovative Tech- (nologien bewegen Europa“ jedes Jahr sehr erfolgreich statt und erfreut sich großem In-teresse bei den Teilnehmern, so dass aufgrund der hohen Anmeldezahlen leider nicht alle Teams berücksichtigt werden konnten.

Ein Team des Landrat-Lucas-Gymnasiums in (Leverkusen hat nach dem ersten Durchgang von „Innovative Technologien bewegen Europa“ (2005/2006) seine Arbeit „Modell eines Raster- kraftmikroskops“ bei „Jugend forscht“ fortge-setzt und wurde auf Bundesebene 2007 mit dem Sonderpreis in der Kategorie „Physik“ geehrt.

Das Projekt „Innovative Technologien bewe- (gen Europa“ wurde am 03.12.2007 mit dem Sonder preis der Initiative „Zukunft durch In-novation. NRW“ ausgezeichnet und Ende November 2007 im Landtag NRW gewürdigt. Dazu Dr. Michael Stückradt, Staatssekretär im Innovationsministerium: „Wenn wir die Zahl der Absolventen in den Ingenieur- und Natur-wissenschaften steigern wollen, müssen wir früh das Interesse bei Kindern und Jugend-lichen wecken. Dazu trägt das ausgezeichnete

Projekt aus Oberhausen bei. Ich bedanke mich bei den Preisträgern für ihr Engagement.“

Der ehemalige Schüler des Remigianum Borken (Tobias Finke nahm zweimal am Wettbewerb teil und hatte dabei Gelegenheit das Unter-nehmen Lenord + Bauer genauer kennen zu lernen. Schließlich bewarb er sich dort erfolg-reich für eine Ingenieurausbildung in Kom bi-nation mit einem Maschinen baustudium.

) “INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA I, II, III”: EIN RüCkBLICk VON GüNTER NIEHUES (GyMNASIUM REMIGIANUM BORkEN)

Im Spätsommer 2005 war es endlich soweit: auf dem Lehrerworkshop von SonSD in Bad Honnef 2004 hatte ich bereits von dem bevorstehenden Wettbewerb gehört. Laut Vorankündigung erschien er mir aus folgenden Gründen interessant:

Die Aufgaben beinhalteten mehrere natur- und (ingenieurwissenschaftliche Aspekte. Die Lösun-gen konnten die Schüler auf unterschiedlichen Niveaus erstellen - deshalb war eine Lösung mit ziemlicher Sicherheit machbar.

14 15

ABBILdUNGEN14 Schüler des Landrat- Lucas-Gymnasiums als Preisträger bei Jugend forscht (Quelle: Stiftung Jugend forscht e.V.)15 Verleihung des Sonder-preises „Zukunft durch Innovation.NRW“16 Die Gewinner des Wett-bewerbs 2007/2008 – das Gymnasium Remigianum mit „Herbie“

Page 23: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

23

Die Projekte konnten nur als Team vollendet (werden. Die komplexe Problemstellung und die Tatsache, dass die Aufgabenstellung nicht aus dem Unterricht direkt gelöst werden konnte, verlangte die Mitarbeit von Schülern mit unterschiedlichen Fähigkeiten. Anders als im Standardunterricht kannte auch der be-teiligte Lehrer im Vorhinein keine Lösung.

Einige Schüler der 12. und 13. Jahrgangsstufe zeigten Interesse - am Ende arbeiteten 11 Schü-ler in der Gruppe mit. Beim ersten Treffen entschie-den sich die Schüler, ein Modell eines Rasterkraft-mikroskopes herzustellen.Gemeinsam entschieden wir uns für die folgen-de Vorgehensweise:

Wir errichteten autonome Teilgruppen (ohne (Lehrer): Mechanik, Elektronik, Software.14-tägig - in der Endphase wöchentlich – (fand ein Plenum statt: Probleme und Lösungen wurden vorgestellt und diskutiert, Schnitt-stellen festgelegt.

Als Lehrer war ich für Anregungen und Nachfragen zuständig – vor allem aber für die finanziellen Bedingungen, außerdem ab und zu als Türöffner bei Firmen und Institutionen.Im Dezember fuhren wir zum Treffen nach Ober-hausen. Die Schüler konnten erste Erfahrungen sammeln, eine Präsentation vor fremdem Pub-likum in englischer Sprache zu gestalten. Im Nachhinein bewerteten die Schüler vor allem die vielen Diskussionen mit den Mitarbeiten von Lenord + Bauer als äußerst interessant und hilf-reich.Trotz Abitur wurden die Gruppen fertig und wir konnten unsere Lösung vorstellen. Der Lohn der Arbeit: ein zweiter Platz und viel Lob von den Mitarbeitern von Lenord + Bauer bei der Präsen-tation. Sechs Abiturienten aus der Gruppe ver-ließen die Schule, um zu studieren.Die verbliebenen fünf Gruppenmitglieder fragten mich schon zu Schuljahresbeginn: „Was ist un-

ser nächstes Problem?”. Erneut konnten Schüler der neuen 12. Jahrgangsstufe gewonnen werden. Auch der Physik-LK-Lehrer, Herr Bertram, betei-ligte sich. Wir Lehrer fungierten wieder als An-reger, Türöffner und Finanzmanager. Die Schüler entschieden sich zum Bau eines Fahrzeugs, das mit einem Liter Wasser fahren kann. Wir began-nen erneut: Teilgruppen bilden, Plenum zunächst 14-tägig, im Endspurt dann wöchentlich...Im Laufe des Jahres bürgerte sich der Name „SonSD-AG“ für unsere Gruppe ein. Die erfreu-lichen Erfahrungen des ersten Jahres wiederhol-ten sich, die Schüler arbeiteten mit großem Eifer. Bei der abschließenden Präsentation erreichte ihre Lösung den ersten Platz.Im nächsten Schuljahr war die „SonSD-AG“ ein Selbstläufer. Zur Lehrergruppe gesellte sich noch ein weiterer Kollege, Herr Herdering. Aber auch zu dritt veränderte sich unsere Funktion nicht. Die Schüler und eine Schülerin entschieden sich zur Entwicklung eines Käfermodells. Die Erfah-rungen und Ergebnisse des letzten Jahres konn-ten mit einem erneuten ersten Preis wiederholt werden.In allen drei Gruppen haben die Schüler nicht nur vieles aus unterschiedlichen Gebieten ken-nengelernt. Sie haben etwas konstruiert, das sie – zu Recht – stolz präsentieren konnten. Außer-dem haben sie über einen Zeitraum von etwa einem halben Jahr erfolgreiche Teamarbeit er-fahren können. Der Entschluss eine natur- oder ingenieurwissenschaftliche Ausbildung einzuge-hen, ist durch die Mitarbeit in diesen Gruppen zumindest bestärkt worden. Für die nächsten Jahre hoffe ich, dass die Wett-bewerbe „Innovative Technologien bewegen Europa I, II, III“ noch viele Nachfolger finden. Deshalb besteht an meiner Schule die „SonSD-AG“ weiter!

16

Page 24: Innovative Technologien bewegen Europa

24

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

SIEGERARBEITEN

) 2005/2006

1. Platz: Rasterkraftmikroskop des Landrat-Lucas- (Gymnasium aus Leverkusen

2. Platz: Rasterkraftmikroskop des Gymnasium (Remigianum aus Borken undRasterkraftmikroskop des Mathematisch- (Naturwissenschaftlichen-Gymnasiums aus Mönchengladbach

) 2006/2007

Sieger der Kategorie „Chaos“Chaotisches Wasserrad des Engelbert- (Kaempfer-Gymnasiums aus Lemgo und Chaotisches Pendel des Gymnázium (Christiana Dopplera aus Prag (Tschechien)

Sieger der Kategorie „Energie“1. Platz und Gesamtsieg: „Energieliefernde (Treppe“ des Koninklijk Atheneum aus Wetteren (Belgien) 2. Platz: „Alternative Energie durch den (Seebeck-Effekt“ des Engelbert-Kaempfer-Gymnasiums aus Lemgo

) 2007/2008

Sieger der Kategorie „Crawler“„Herbie“ des Gymnasiums Remigianum aus (Borken

Sieger der Kategorie „Jumper“„Frosch“ der Gesamtschule Weierheide aus (Oberhausen

Sieger der Kategorie „Flyer“„Flieger“ des Bonhoeffer Colleges aus (Enschede (Niederlande)

ABBILdUNGEN17 Die „Energieliefernde Treppe“ des Koninklijk Atheneum18 Schülerinnen aus Lemgo und ihr „Chaotisches Was-serrad19 Das Team aus Prag prä-sentiert ein „Chaotisches Pendel“.

17

18

19

Page 25: Innovative Technologien bewegen Europa

INNOVA

TIVE

TEC

HNOLO

GIE

N B

EWEG

EN E

UROPA

25

) kURZBESCHREIBUNGEN:

Rasterkraftmikroskop des Landrat-Lucas-Gym-nasium aus Leverkusen:Das extrem kostengünstige Modell aus alten Fest-platten, zusammengelöteten, elektrischen Plat-ten und einem x-y-Schreiber tastet die Oberfläche einer Münze ab und stellt diese vergrößert und äußerst detailreich auf dem Monitor dar.

Chaotisches Wasserrad des Engelbert-Kaempfer-Gymnasiums aus Lemgo:Ein Wasserrad bestehend aus einer Fahrradfelge und daran befestigten kleinen durchlöcherten Was-serschalen. Da das Wasser immer wieder aus den Schalen herausläuft ist die Bewegung des Rades chaotisch und die Drehrichtung nicht vorhersagbar.

Chaotisches Pendel des Gymnázium Christiana Dopplera aus Prag:Eine gut nachvollziehbare Darstellung des Themas Chaos: Ein Tennisball befestigt an einer Metall-feder, die wiederum an einem bewegten Zahnrad hängt und so die Bewegung des Pendels chao-tisch macht.

„Energieliefernde Treppe“ des Koninklijk Athe-neum aus Wetteren:Energiegewinnung durch Treppensteigen macht diese Erfindung möglich. Durch Fahrradketten werden bewegliche Stufen mit einem Generator verbunden und erzeugen so beim Betreten der Stufen Strom.

„Alternative Energie durch den Seebeck-Effekt“ des Engelbert-Kaempfer-Gymnasiums:Zwischen zwei Punkten eines elektrischen Leiters, die verschiedene Temperaturen haben, entsteht eine elektrische Spannung. Dieser sogenannte Seebeck-Effekt wurde bei diesem Modell ausge-nutzt, indem Drähte um eine kalte und eine heiße Quelle gespannt wurden.

„Herbie“ des Gymnasiums Remigianum:Der sechsbeinige Roboter-Käfer „Herbie“ kann in alle Richtungen krabbeln und erkennt durch Sensoren Hindernisse, die er so gezielt umgeht. Die dazu notwendige Energie stellen Solarzellen bereit.

„Frosch“ der Gesamtschule Weierheide aus Ober-hausen:Mit Hilfe eines Motors und Solarzellen hüpft das Modell ähnlich einem Frosch. Kernstück bildet dabei ein Zahnradgetriebe aus fünf Zahnrädern, welches dem Frosch die nötige Sprungkraft ver-leiht.

„Flieger“ des Bonhoeffer Colleges aus Enschede:Wie ein Vogel soll dieses Modell fliegen. Dazu treibt ein Motor eine Achse mit Kurbeln an, die schließ-lich die Flügel auf und ab bewegen. Ein sehr gutes Konzept, auch wenn das Problem Motorgewicht – Flügelgröße noch nicht ganz gelöst werden konnte.

ABBILdUNGEN20 Der „Frosch“ der Gesamtschule Weierheide21 Die Jury berät sich.

20

21

Page 26: Innovative Technologien bewegen Europa
Page 27: Innovative Technologien bewegen Europa

InnovatIve technologIen bewegen europa

proJeKtbeSchreIbungenteIl 2

InnovatIve technologIeS Move europe

proJect DeScrIptIonSte

Il 2

p

roJe

KtbeS

chreI

bungen

part

2: p

roJe

ct D

eScr

IptI

onS

Page 28: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

28

Page 29: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

29

contentS part 2

List of participants

proJect DeScrIptIonS oF the teaMSCoriolis force acting upon the rotating chair

Automated store

The Lorenz Waterwheel

The electronic jumping jack

Model of an atomic force microscope

Model of an atomic force microscope

Model of an atomic power microscope

The Carbide Car

The Soda Car

Hot-Water-Rocket-Car

Staircase power

The chaotic gambling table

Elastic pendulum

A chaotic water wheel

A scarab beetle

Herbie, a brainy beetle robot

A Small Ant Like a Robot

Construction of a Scorpion

Water strider

Jumping robot

Solar frog

7th generation of “SSU007”

Flying Object

Something that flies

30 (

31 (31 (

32 (

33 (

34 (

35 (

36 (

37 (

38 (

39 (

40 (

41 (

42 (

43 (

44 (

45 (

46 (

47 (

48 (

49 (

50 (

51 (

52 (

53 (

54 (

anYthIng You can Move wIth a wheel

the electronIc JuMpIng JacK

MoDel oF an atoMIc Force MIcroScope

MoveMent

energY

chaoS

SoMethIng that crawlS

SoMethIng that JuMpS

SoMethIng that FlIeS

Page 30: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

30

partIcIpatIngSchoolS

) 2005/2006:

Mathematisch-Naturwissenschaftliches (Gymnasium MönchengladbachEngelbert-Kaempfer-Gymnasium Lemgo (Gymnasium Remigianum Borken (Gymnàzium Bernarda Bolzana o.p.s. Praha, (Czech Republic Koninklijk Atheneüm Campus Noordlaan (Wetteren, BelgiumBonhoeffer College Enschede, Netherlands (

) 2006/2007

Sophie-Scholl-Gymnasium Oberhausen (Gesamtschule Osterfeld Oberhausen (Engelbert-Kaempfer-Gymnasium Lemgo (Gymnasium Remigianum Borken (Landrat Lucas Gymnasium Leverkusen (Bonhoeffer College Loc. Bruggertstraat (Enschede, NetherlandsGymnázium Christiana Dopplera (Czech Republic Praha, Czech RepublicVrij Technisch Instituut Sint-Laurentius (Lokeren, BelgiumKoninklijk Atheneüm Campus Nordlaan (Wetteren, Belgium

) 2007/2008

Heinrich-Böll-Gesamtschule Oberhausen ((2 Teams)Gesamtschule Weierheide Oberhausen (Engelbert-Kämpfer-Gymnasium Oberhausen (Gymnasium Remigianum Borken (Gymnasium Haus Overbach, Jülich (Käthe-Kollwitz-Gymnasium, Wesseling (JuniorAkademie NRW II (Hardenberg-Gymnasium Fürth (St George‘s RC High Manchester, United Kingdom (Koninklijk Atheneum Campus Noordlaan (Wetteren, BelgiumBonhoeffer College Loc. Bruggertstraat (Enschede, NetherlandsGymnázium Bernarda Bolzana o.p.s. Praha, (Czech Republic

Page 31: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

31

1 anYthIng You can Move wIth a wheel

corIolIS Force actIng upon the rotatIng chaIr

teaM:gymnázium bernarda bolzana, prague, czech republic

partIcIpantS:teachers: Daniel lessner, Doc. Jan obdržálekStudents: lenka hobziková, petr lessner, Daniel Suchan, Jonáš veselka

age group:18 years

uSeD MaterIalIn thIS proJect: rotating office chair (50 €), air gun (50 €), cardboard and other material, professional help (50 €)

) abStract:The gun shoots at a target on a rotating chair, fol-lowed by two cameras (rotating and non-rotating). The interpretation points towards the Coriolis force.

) what IS InnovatIve about Your proJect?Kinematic explanation of an effect known from geography (trade wind). Cooperative style of the students’ work.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

Cooperative style of the students’ work.

) proJect DeScrIptIon:When a gun shoots at a target (both being fastened to the chair), the bullet does not hit the centre of the target while the chair is rotating. From the inertial frame of the Earth: target shifts while the bullet is moving towards it. From the rotating frame: the bullet is subject to the Corio-lis force. The entire experiment is followed by two cameras [from the Earth and from the chair]. There are of course other experiments which could be done on the rotating chair, for example using a pendulum, etc.

02

03

01

FIgureS01-03 Shooting at a rotating chair

Page 32: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

32

2 anYthIng You can Move wIth a wheel

autoMateD Store

teaM:Koninklijk atheneüm, wetteren, belgium

partIcIpantS:teachers: luc D’hooge, Koen SergeantStudents: tom De pauw, alex Macharis, gregory van Den broecke, Jonas vermassen

age group:18 years

uSeD MaterIalIn thIS proJect: parts from an old washing machine, motors from an automated display, sensors, plc

) abStract:We determine with some sensors which material (iron, zinc, copper, wood, …) passes the sensors on a transport belt and display this information and a description of each material.

) what IS InnovatIve about Your proJect?The link between kinematics and automation and the integration of different technologies and mo-tions.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

The principles of determining a particular kind of material by means of sensors (analogue and digital) even without the motors, PLC…

) proJect DeScrIptIon:Basically, we let a block of a specific material pass an analogue inductive sensor and measure the output of that sensor. You will get a different value for different physical materials such as metals (copper, iron, zinc …) - so one can get a better in-sight into the physical differences between different materials (atomic structure …). However, we want to automate the whole process. Therefore, we use 4 cartridges or “mini storerooms”, containing 5 or 6 blocks of a specific material each (to reduce the weight, use a wooden block and stick a lamina (a couple of millimetres) of the spe-cific material on the block).Through 4 push-buttons (we even used a barcode reader system to choose), you select one of those

4 cartridges – the “mini storerooms”. Slowly, using a pneumatic cylinder, we push the chosen block out of the cartridge onto a turntable (made with the parts of an old washing machine). At a spe-cific point, the turntable stops and – again using a pneumatic cylinder - we pull the chosen block onto a conveyor belt (made with a recycled DC mo-tor – a roller and a self constructed rubber belt. We obtained these parts from an old motorised publicity panel).The block is then moved a couple of sensors – the most important one is an analogue inductive sen-sor with a voltage output 0–10V DC. According to the material that passes, you will achieve a dif-ferent output voltage on that sensor. Thus, you can determine what kind of material passed the sensor. In order to start and stop the measuring processes, we used some additional photo sensors.The PLC evaluates the result and then places a wooden plate with a 4-sided cube on it. Each side of the cube describes 1 of the 4 materials in the cartridges or “mini-storerooms”: the atomic rep-resentation, application field of that material …The wooden plate with the cube is moved forward (by using tube motors) onto a fork that can move up and turn 90 degrees by means of pneumatic cylinders. This fork will lift and turn, lift and turn … until the cube is oriented so that the originally chosen material is displayed at the front in the beginning: Atomic info, applications of the mate-rial in industrial and domestic environments …Once this orientation is done, the plate with the cube is sent to the “home” position by reversing the turning direction of the tube motors. Subse-quently, a beeper alert indicates that the “process” is finished and that you can read the “leaflet” with the description of the chosen material.The sound is also the signal that you can choose another material and start the whole cycle again. To complete the project, we also built a didactical panel with LED’s, showing all movements of the different parts and motors.

Page 33: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

33

3 anYthIng You can Move wIth a wheel

the lorenz waterwheel

teaM:bonhoeffer college, enschede, the netherlands

partIcIpantS:teachers: benno berendsen, hans van der MatenStudents: geertje hofstee, lauren weijers, Joris van der Meer, Ivo Meerwijk

age group:16-17 years

uSeD MaterIalIn thIS proJect: wood, water, plastic cups, iron wire, a bicycle wheel

) abStract:The aim is to make a Lorenz Waterwheel and represent the data in an artistic way. After all, it was already hard enough to construct the wheel and to obtain data.

) what IS InnovatIve about Your proJect?Teaching chaos is not common in high-school physics.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

The waterwheel is an interesting object for intro-ducing chaos. It is almost an attractor itself.

) proJect DeScrIptIon:The Lorenz Waterwheel is a wheel with a number of cups attached. Water can flow into the cups at the top and leave at the bottom. If a tap is opened above the wheel, water will pour into the top cup, causing the wheel to start turning. If the water flows in such a way that all the water has left the cup before the cup itself has reached the lowest point of the wheel, the wheel will keep turning evenly. However, if the incoming amount of water is increased, the wheel will show a more interest-ing behaviour: it will alternatively turn to the left or to the right, or even display chaotic behav-iour.Chaotic behaviour often coexists with a so-called strange attractor, which more or less summarises the behaviour of this system. More often than not, this strange attractor has a beautiful, irregular shape and is a work of art in itself. We are going to try and make this chaotic work of art tangible.

Page 34: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

34

4 the electronIc JuMpIng JacK

the electronIc JuMpIng JacK

teaM:Mathematisch-naturwissen-schaftliches gymnasium, Mönchengladbach, germany

partIcIpantS:teachers: eberhard eube, christoph pohlmannStudents: Marius Kreuder, Julia roschu, raphael voß-kämper, benjamin zingsem

age group:15-17 years

uSeD MaterIalIn thIS proJect: pc, I²c-bus interface, leDs, wood, wires

) abStract:We build LED figures, showing different positions and effects by controlling these LEDs with a com-puter.

) what IS InnovatIve about Your proJect?The pupils were working in teams. They had to build the hardware and to program the computer application.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

The project connects many aspects of information technology, physics and mathematics. Different computer bus systems are standard applications in technical systems.

) proJect DeScrIptIon:The basic idea of our project is the controllable LED figure that was given as an example. We’re going to construct about 14 figures with our MIP-class, (mathematics, computer science, physics) so this

project will be handled as teamwork. When the figures will have been built, they will be connected to a computer and they will be controllable by a self-programmed Visual Basic application.For this project, we are going to use an I²C-bus system with eight (or more) programmable out-puts (12V 300mA) in order to transmit the move-ment of the figure from the computer to the indi-vidual figures.The figures will not be as simple as shown in the example and we will certainly try to construct them in a more complex way than shown in the example. We want to demonstrate their functions and different ways to control them, for example by choosing already programmed movements, cre-ating own movements by using the control but-tons of our program or by clicking on a hardware-based switch on a board.In some cases, we used motors or stepper motors (normally used in printers) in order to move the models in two different ways: by visual effects and/or physical movements.

Page 35: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

35

5 MoDel oF an atoMIc Force MIcroScope

MoDel oF an atoMIc Force MIcroScope

teaM:landrat-lucas-gymnasium, leverkusen, germany

partIcIpantS:teachers: Klaus gerberStudents: anna lena Müller, Karoline Selbach, Soma Salamon, Max giljohann, artur Strebel

age group:18-20 years

uSeD MaterIalIn thIS proJect: old t-y-plotter, hDDs, capacitor

) abStract:We’ve built a working model of a capacitive atomic force microscope that can scan and display the to-pography of objects such as coins with sufficient detail.

) what IS InnovatIve about Your proJect?Contrary to the popular method of using a flexible probe and a laser, we utilized a purpose-built capa-citor and our own software to achieve precise scans.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

It isn’t necessary to follow the most common pro-cedure, as one’s own ideas and creativity can also lead to success, as our project shows.

) proJect DeScrIptIon:Our task was to design and build a working model of an atomic force microscope (AFM). For that pur-pose, we have chosen the more uncommon method of detecting differences in the height of a test sample by changing the clearance between the platters of a capacitor, therefore changing its capa-city. The resulting fluctuations in voltage can be measured through a computer’s printer port, and be converted into a 3-D image through our own software that was programmed with Delphi. At first, we started out with a simple layout, using an old t-y-plotter as our basic setup, powered by thread rods and multiphase motors from old HDDs, using a self- made capacitor as a probe. Half of the multiple platters were secured to the unit, while the others were free to move vertically within cer-tain limits, interconnected by an aluminium rod with a fine tip. When moving across the surface of the sample, the differences in height encountered by the reading head were converted into differ-ences in voltage, which can then be evaluated. Our first demonstration included plotting the change in voltage with a t-y-plotter, so that for example the pillars of the Brandenburg Gate could be recog-nized, as the height differences on the surface of the coin could be visualized through fluctuations

in voltage. This basic concept was very successful at the presentation in Oberhausen, with Dr. Landua’s final remark being “The capacitor made the dif-ference”, which sums everything up pretty well.Encouraged by this success, the equipment was revised, with a new base, formerly designed for a CNC-cutter, a refined probe with a smaller and therefore more precise tip – developed with the help of the University of Cologne – new electronics for the now specialized multiphase motors, and an improved software, which was not only able to control the movements of the probe across the sample, but could also render the topography of the probe with great precision and in real time. This project will also be shown to the public at next year’s Science on Stage Festival in Grenoble, and was also able to make it to the nationwide com-petition Jugend forscht, a proof of how far creati-vity and determination can develop such a project.

Page 36: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

36

6 MoDel oF an atoMIc Force MIcroScope

MoDel oF an atoMIc Force MIcroScope

teaM:Mathematisch-naturwis-senschaftliches gymnasi-um, Mönchengladbach, ger-many

partIcIpantS:teachers: eberhard eube, christoph pohlmannStudents: Jonny Duong, henning höfig, christoph hollenbeck, Marc Mühmel

age group:17-19 years

uSeD MaterIalIn thIS proJect: pc, Interface, recycled printer and scanner, position-sen-sitive photodiode.

) abStract:We built a model of an atomic-force microscope, which scanned the surface of a coin to show the picture on a PC-monitor.

) what IS InnovatIve about Your proJect?The pupils had to build the mechanics, to con-struct an interface which controlled the stepper motors and the PSD and to program the software.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

The model shows modern science in practise and can be applied in physics, chemistry and biology.

) proJect DeScrIptIon:All components of the atomic-force microscope are fixed on a single board.A sample can be fixed on the coordinate-table. One axis consists of tracks which are fixed at the edges of the board. This axis is driven by the step-per motor and thin cables of a recycled scanner. Between both tracks, one part of a matrix printer

is installed. This axis also moves into the right-angled direction driven by a stepper motor, so that an area can be scanned. At the reused matrix printer, the printing-operator is missing and a coin or another sample can be fixed there. Above the sample, a sensor is installed. The tip of the sensor is brought into close proximity with the sample surface until a contact with the target is established. The light of a laser pointer is reflected by a little mirror on this sensor and goes to the position-sensitive photodiode. The data stating the position of the sample and how deeply the sensor has to move down are registered by a com-puter. The electronic system is connected with the parallel port of the computer. Four lines of this port are used to control the stepper motors. The other lines are connected with the electronic sys-tem of the PSD. With the motor of the scanner, we can realize steps of about 0.0084cm and with the motor of the matrix printer, we can achieve appro-ximately 0.028cm, so we are able to build up pic-tures of high precision in the macroscopic sphere, but we cannot realize pictures of molecules or atoms. We don’t intend to gauge electric or mag-netic forces between the sample and the tip of the sensor. For steering these devices, we have programmed a special software, which controls the scanning and also the translation of data from the sensor into a three-dimensional image using OpenGL. It is programmed with the language Visual Basic and consists of several classes handling the main tasks of the software: steering of all external circuitry, calculation of measuring points, graphic-class dealing with OpenGL, graphic-class for all objects to be drawn and main-class for the user interface and scanning.

Page 37: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

37

7 MoDel oF an atoMIc Force MIcroScope

MoDel oF an atoMIc power MIcroScope

teaM:Koninklijk atheneüm, wetteren, belgium

partIcIpantS:teachers : luc D’hooge, Koen SergeantStudents : wesley De clerq, thomas De geest, Kevin leys, haïko De Koster, walid Soussou

age group:18 years

uSeD MaterIalIn thIS proJect: Stepper motors, spindles, laser sensors, electronic circuits

) abStract:We build a scanner with a scalable surface of about 50cm x 50cm x 2.5cm (X-Y-Z). The resolution: better than 0.01mm. Scanning results shown on PC in 3D.

) what IS InnovatIve about Your proJect?The scanner is searching the object to scan it auto-matically onto the surface of the scanner, using of 2 laser beam photo sensors (sender/receiver-type).

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

The principles of steering and controlling stepper motors, moving via spindles, measuring heights via an analogue optical sensor.

) proJect DeScrIptIon:The scanning mechanism is basically a question of moving a sensor element that measures the height in an X- and Y direction. To measure the height, we chose a sensor LG10 from Banner which gave us a resolution of 10 micrometres with a maximum window (total height of the object to scan) of a couple of centimetres.Moving this sensor over the object to scan it was a matter of finding mechanisms which could be steered and controlled to “slice” the object for the scan. We used spindles (the Rapid Guide Screw from Kerk) directly controlled by stepper motors. That way we got a scanning resolution as fine as the smallest assured movement of the spindle-

stepper combination of 0.01mm.Of course we needed such a spindle for the X-axis and for the Y-axis – but to get a more stable me-chanical construction for the movement of the sensor that measures the height (Z–axis), we deci-ded to use 2 parallel spindles for the X–axis and mounted the Y-axis, which moves the height sen-sor type Banner LG10 on top.As an extra feature, we wanted the scanner to search automatically where the object is on the scanner surface (50 x 50cm) using 2 sender/receiv-er photo sensors with a laser beam (QS186LE from Banner). The first laser sensor was moved over the whole X-axis once to find the start- and ending points of the object to scan and then the second sensor is doing the same along the Y-axis to find the lower and upper “borders” of the object. Thus, we got a kind of window “framing” the object – then the scanner started moving the LG10 sensor up and down in the direction of the Y-axis, send-ing the measured Z-values (+ the X- and Y-value) through the RS232 port of the controller (PLC L&B GEL8230) to the COM port of a PC where X-Y and Z-values a stored in a file - which was then con-verted into a 3-D graphic image of the scanned object. After each “scan-slice”, the X-axis moved 0.01mm and Y moved up and down again to get a new series of Z-values (height of the object).To complete the project, we also built a didactical panel with LEDs that shows all movements of the scanner.

Page 38: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

38

8 MoveMent

the carbIDe car

teaM:bonhoeffer college, enschede, the netherlands

partIcIpantS:teachers: benno berendsen, hans van der MatenStudents: Sissy chen, gijsbert ter horst, niels de winter

age group:16-17 years

uSeD MaterIalIn thIS proJect: pvc-pipe, carbide, water, in-line wheels, wood, tin can

) abStract:Water and carbide make an explosive gas. In an inventive system, the forming of the gas is con-trolled. The explosions are used to drive the car.

) what IS InnovatIve about Your proJect?The forming of the explosive gas is controlled in an elegant, mechanical way

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

The laws of gases are demonstrated in an explo-sive way, which is always an eye-catching start of a new subject.

) proJect DeScrIptIon:We built a car with a reaction space on it. We applied carbide and let it react with the water we added. This way, an explosive gas develops, which makes our car shoot forward when we fire it up. It’s like a little rocket. This shouldn’t be dangerous as long as there aren’t people standing too closely to the experiment.

Page 39: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

39

9 MoveMent

the SoDa car

teaM:bonhoeffer college, enschede, the netherlands

partIcIpantS:teachers: benno berendsen, hans van der MatenStudents: Fenneke nieuwen-huis, gertjan Stokkers, raymon leusink, thijs ter Mors

age group:16-17 years

uSeD MaterIalIn thIS proJect: pet-bottle, wood, wheels

) abStract:Water mixed with acid and soda causes a reaction in which gas occurs. The high pressure of this gas causes the car to move.

) what IS InnovatIve about Your proJect?The mechanism to prevent the water/acid mixture to make contact with the soda too early is a nice thought.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

The pressure laws are combined with chemistry.

) proJect DeScrIptIon:We have built a cart with a plastic bottle with a capacity of 1.5 liters on top of it.The cart is made of a piece of wood which is bolted onto 4 wheels. On top of the wood, we made a sort of wooden bar which supports the bottle. The bottle is attached at a slight slant, so the contents of the bottle can easily escape once the pressure in the bottle is gone.

A sandwich bag is placed into the bottle containing half a litre of water with 20% acetic acid dissolved in it. This bag is tightly knotted so the liquid cannot leak. Then sodium hydrogen carbonate is put into the bottle. This part can be prepared in advance.To get a reaction, a cork with a knitting needle attached to it is put in the opening of the bottle, so that the bottle is airtight. With the knitting needle, cuts can be made in the sandwich bag, so that the liquid is mixed with the sodium hydrogen carbonate. These substances trigger a chemical reaction, whereby a big amount of carbon dioxide is released, which causes pressure. When this pressure is high enough, the cork is catapulted out of the bottle against the wall. Because the wall cannot move, the cart shoots away. This movement is very fast in one direction, which is opposite to the direction of the cork. When the cork is released, a lot of the mixture also escapes from the bottle, at first very quickly and eventually very slowly, which is due to gravity.

Page 40: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

40

10 MoveMent

hot-water-rocKet-car

teaM:gymnasium remigianum, borken, germany

partIcIpantS:teachers: günter niehues, rudolf bertramStudents: tobias bonhoff, tobias Finke, Michael goderbauer, Sebastian goderbauer, Johannes hopenau, olaf Minte, henrik wilming, Jan wetter, Jürgen Schmelting, Stefan Schulze-Schwering

age group:17-19 years

uSeD MaterIalIn thIS proJect: we used a specially con-structed tank, a heating element and a temperature sensor for the drive, a microcontroler, a servo and electronic components for the steering as well as wheels and carbon bars to built the car‘s body.

) abStract:We invented a car using the principals of a rocket. One litre of water is heated in the tank and sup-plies the energie for driving. The car stays on its track by following a line on the ground.

) what IS InnovatIve about Your proJect?The automatically steering realised by sensors and a microcontroler and the use of one litre of heated water for the movement are innovative.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

Working at this project teached us very much be-cause we invented and constructed something technical in a creative way and without any spe-cial help.

) proJect DeScrIptIon:We are building a car that uses the principles of a rocket to drive forward. To achieve our goal, we are going to install a tank at the back of our self-constructed car body. After the required one litre of water is filled into the tank, it will be closed and inside we are going to build up some pres-sure. When a certain level of pressure is reached, we are going to open a small outlet at the back of the tank. Due to the differences in pressure bet-ween the outside and the inside of the tank, the water will shoot out at the back of the car at a very high speed. According to Newton’s Second Law, the water going in one direction will now in turn accelerate the car in the other direction and it will move forward. Basically, one could say that our car is a rocket on wheels. To steer our car, we are going to use a black line that will be painted on the ground. Sensors mounted at the bottom of our car will detect this line and a built-in microcontroller will steer our automobile so that it stays on track.

Page 41: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

41

11 energY

StaIrcaSe power

teaM:Koninklijk atheneüm, wetteren, belgium

partIcIpantS:teachers: luc D’hooge, bob van den KerkhoveStudents: alex Macharis, nico De Smedt, Jan caestecker

age group:18-20 years

uSeD MaterIalIn thIS proJect: Most of the parts used in this project are from old bicycles, iron for the cons-truction, the frame and a Dc motor to produce the electrical energy

) abStract:By walking on and off a staircase, the tiles you step on will create a movement which is used to make the DC motor/generator spin, producing electricity.

) what IS InnovatIve about Your proJect?The principle of using the energy produced by walking on a staircase and transform it into elec-tricity.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

They can take the basic idea and use 1 or 2 tiles so they need less parts and less time to make the construction

) proJect DeScrIptIon:Wind- and solar energy are “hot” items in many countries, since global warming forces us to take more care about the globe we live on. Trying to be original in producing electrical energy – besides solar power or wind power – it is not that obvious but … we found a basic idea.Seeing all those people using staircases daily (at the railway station, the metro), the idea grew to produce energy when going up a staircase. All those people walking on the steps would produce their own energy for lights in the place, for some music, and so on. …

So we started brainstorming how to use the basic idea of all that potential energy of people using a stair case and to transform this into electrical power.A first drawing was born and then we were off: Some steps, a couple of springs, some parts of an old bicycle and an old DC motor or generator. This way, the linear movement of the moving step is transformed into a rotational movement for a gen-erator. That was our basic idea … but how to bring this to life by using parts of an old bicycle (pedal me-chanics and chain wheel) … there was some welding and measuring to be done... – then we could start mounting the first chain wheels to see if we could get these spinning when going on a step . …Adding a fly wheel brought more stability in the output together with a buffer capacitor which stores the energy - so even if the movement stops for a short while, we still have stored some elec-tricity. The idea came up to make the fly wheel heavier so it keeps on turning for a while. We used concrete for that purpose. A converter takes us up to line voltage 230V.We can obtain peak voltages of +/- 43V with a cur-rent capacity of several amps before the converter to line level. This means a potential somewhere between 100 and 200 Watts at line level.

Page 42: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

42

12 chaoS

the chaotIc gaMblIng table

teaM:Sophie-Scholl-gymnasium, oberhausen, germany

partIcIpantS:teachers: werner heinke, reinhard woköckStudents: Dennis Kaczmarek, Marcel Soltysik

age group:17 years

uSeD MaterIalIn thIS proJect: Magnets (magnetic balls and other magnets), some plastic for the tube, wood (the whole gambling table)

) abStract:A magnetic ball will be diffracted by other mag-nets and placed chaotically under our gambling table.

) what IS InnovatIve about Your proJect?Everybody can build such a gambling table, so it is not expensive and too complicated. Furthermore, there are only a few methods to show chaotic processes caused by magnets.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

This project could be introduced as something like a project thesis for pupils and students, as it is both fun and a very cheap and easy method to show chaotic movements caused by magnets.

) proJect DeScrIptIon:Some magnets are placed under a rectangular plate made of wood, which is divided into four equal parts. Now a magnetic ball will be put in a track/tube, which leads to our gambling table. With several tries it should be possible to observe that this ball reaches one of the four fields cha-otically and therefore incalculably.

Page 43: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

43

13 chaoS

elaStIc penDuluM

teaM:gymnázium christiana Dopplera, prague, czech republic

partIcIpantS:teachers: Mgr. Štepánka Jirošová, Doc. Jan obdržálekStudents: pavel Malý, petr hedvábný, Michal hakl, Jan voríšek, pavel obdržálek

age group:13-17 years

uSeD MaterIalIn thIS proJect: Merkur kit, motor, spring, tennis ball, camera

) abStract:We constructed an elastic pendulum whose mo-tion is chaotic. We proved this by measuring the detected position of the pendulum in time.

) what IS InnovatIve about Your proJect?Students from our team organised the meetings and worked mostly on their own in their free time, supported with the necessary equipment by our school.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

The method of pendulum position detection is re-ally useful in many physics experiments.

) proJect DeScrIptIon:Considering it’s not so difficult to make something chaotic, but much harder to prove it really is chaos, we decided to work out as simple a device as pos-sible. After we had spent some time searching for such a device, we chose the elastic pendulum. This pendulum differs from a standard pendulum in one way: it’s not suspended by a string but by an elastic spring. The pendulum motion then con-sists of swinging and vibrating. During the transi-tion between the movements, the motion of the pendulum is unstable and very sensitive to the slightest initial deviation of conditions. Right here, we expected to see the chaos. To become aware of what to expect, we created a computer simulation of our pendulum in the pro-gram Interactive Physics. We found that the swing-ing and the vibrations alternate very regularly. Now, we could proceed to the construction itself. Facing some construction problems like instability of the pendulum support, we constructed our pendulum. We observed its motion and, as ex-pected, it consisted of vibrations and swinging. We needed to detect its precise position, though.Firstly, we tried sonar detection, but it turned out to be inaccurate and it wasn’t clear whether the pendulum or the spring were detected. That’s why we decided in favour of another method. We re-

corded the motion of the pendulum by using a camera. Then, we used a computer program VIANA to analyse this video recording. This program works on the colour position detection principle. The col-our of our pendulum (yellow tennis ball) was in strong contrast to the blue background, so that we got very accurate results. We measured the dis-placement of the pendulum in horizontal direction, which means swinging, and vertical direction, which means vibrations. Unfortunately, they alternated absolutely regularly, exactly as in the computer model. So we needed to make our unstable pen-dulum chaotic. To do this, we decided to suspend our pendulum on a wheel rotated by a motor. This wheel applies an external force acting periodically. If the fre-quency of this force is slightly different from the pendulum frequency, the interference between them should result in chaotic pendulum motion. We observed the pendulum and in actual fact the swing-ing and vibrations alternated very irregularly. We recorded the motion of the pendulum with the camera and obtained what we wanted by analysing the recording: Proof that it really is chaos what we are watching.

Page 44: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

44

14 chaoS

a chaotIc water wheel

teaM:engelbert-Kaempfer- gymnasium lemgo, lemgo, germany

partIcIpantS:teachers: gerd eifflerStudents: annalena Stuewe, Franziska ebert

age group:15-16 years

uSeD MaterIalIn thIS proJect: aquarium, wood, bicycle rim, pump, leaky cups, a drill, nuts, tubes, gutter, screws, soldering iron

) abStract:We built a chaotic water wheel. It was impossible to say after how many turns the wheel would change its direction

) what IS InnovatIve about Your proJect?We built it in our free time and we didn’t know anything about chaos.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

It is a simple example to show a complicated phys-ical phenomenon. It is useful to apply it in physics.

) proJect DeScrIptIon:After we had got most of the materials, we started to build the mount for the chaotic water wheel. We built it with wood around the aquarium. After we finished with this, we cleaned our wheel and worked on the cups (8). We built a holder for them, so that they could not slip while we worked on them.With a special drill we made holes in their bottoms, all in the same place and of the same size. Then we drilled two more little holes into each cup to clamp them onto the wheel. Subsequently, we also drilled holes into the wheel to clamp the cups onto the wheel.In order to fix the cups on the wheel, we used spokes we had taken from another wheel. We tucked the spokes into the holes of the wheel. On every spoke, we first clamped a pearl, after that a cup and then another pearl. As a consequence, the cups couldn’t rub against the wheel and were able to rotate much better than without the pearls.We organized an axis for the wheel and the wheel was fixed to the mount. After that, we adjusted a gutter (our gutter already had holes, if not, we would have made them) and clamped it on the top of the mount above the cups.Then we installed the pump, so that the water can flow from the aquarium up to the gutter and through the holes of the gutter it flows into the cups and then through the holes in the cups back into the aquarium.Finally, we worked on some little mistakes until everything worked as it should!

Page 45: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

45

15 SoMethIng that crawlS

a Scarab beetle

teaM:Koninklijk atheneüm, wetteren, belgium

partIcIpantS:teachers: luc D’hooge, bob van den Kerkhove Students: Stephanie albers, Jonathan De Schaepmeester, Dimitri Delplace, Kenny De paepe

age group:18 years

uSeD MaterIalIn thIS proJect: Most important: Servo mo-tors as used in model construction (airplanes, helicopters, boats etc.). price: 10-15€ for a basic model (more powerful mo-tors are more expensive). Some simple electronics such as the Ic 555, some capacitors and resistors, switches.

) abStract:We build a scarab beetle which can move forward and reverse. It is powered by solar energy. As a special function, it is controllable by a PLC.

) what IS InnovatIve about Your proJect?The combination of simple electronics permitting to move the beetle. Cheap toggle switches are cou-pled with the automatic movement via high-tech CANBUS and PLC controller.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

The principles of steering and controlling cheap servo motors that can be used to create move-ments, combining 2 servos provides a cheap grip-per to grip and move small objects …

) proJect DeScrIptIon:Let’s start with the actuator: the servo motor. You can find this kind of motor in almost every store that sells model construction parts (helicopters, airplanes, boats, cars, etc.). We used the Futaba S3010 which is more powerful than the basic ser-vos because our beetle is heavy. These motors work on +/- 6V DC. They are PWM-steered (pulse wide modulation). So we need to create pulses. Searching the internet provides several solutions. We used the schematic found under the following link: http://www.uoguelph.ca/~antoon/gadgets/servo3.htm We replaced the potentiometer P1 by 2 resistors 1.2k Ohm in series. Over each resistor, we put a toggle switch contact. By opening and closing those switches, you can force the servo motor to go to 3 different positions: left – middle – right position. For each leg we used 2 servos: 1 for the up-down movement of the leg and a second servo to move the leg forward-reverse.If you want to keep it cheap, just use this simple schematic for each servo and modify it as just de-scribed (replace P1 by 2 resistors + 2 toggle switches). You don’t need anything else to start moving the legs of the beetle.

We wanted to get onto a higher level: PLC control. So instead of the cheap toggle switches, we putted 2 small 24V DC relays that are controlled by the outputs of the PLC for each servo. The contacts of these relays replace the toggle switches – so by programming the sequence of the outputs of the PLC, we control the movements (the positioning) of each servo through the relay contacts. Addition-ally, to reduce the wiring PLC ( the beetle, we used CANBUS.

Page 46: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

46

16 SoMethIng that crawlS

herbIe, a braInY beetle robot

teaM:gymnasium remigianum, borken, germany

partIcIpantS:teachers: rudolf bertram, Martin herdering, günter niehuesStudents: roman bender, tobias bonhoff, lars Deibel, Maren evers, Sebastian goderbauer, rayan guerdelli, lars langenhorst, olaf Minte, arne peters, Jürgen Schmelting, Manuel terliesner

age group:16-19 years

uSeD MaterIalIn thIS proJect: we used an ultrasonic sen-sor SrF 10, a controller-board rn-control 1.4 Mega32, a solar panel, 13 mini servo motors, a storage battery 7.2v niMh, polystyrene to model the legs, acrylic glass and diverse electronic components as well as cables.

) abStract:We invented a device that autonomously crawls on six legs and is self-realigning through ultra-sonic waves to avoid obstacles. It collects its ener gy from solar light.

) what IS InnovatIve about Your proJect?The totally independent and beetle-like move-ment of our robot including the recognition of ob-stacles and the regenerative energy supply are in-novative.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

We learned very much in science while we worked at this project in a group, inventing and construct-ing something technical without the help of our teachers.

) proJect DeScrIptIon:We built a six-legged beetle robot which we called Herbie. His movement is similar to a real beetle’s movements and completely controlled by a micro-processor. We simulated the movement from na-ture with the robot. Thus, Herbie is able to crawl and turn around in a very small space.To realize the movement, we installed a micro-processor, further electronics and a special sensor scanning the environment on our self-constructed beetle body. For construction, we used different plastics to save weight.

We invented a special control program by our-selves, giving Herbie a brain and making him in-dependent.Each of the six legs consists of two servo motors, features two degrees of freedom and is controlled separately by the processor. Therefore, Herbie is able to raise, rotate and drop each leg. The special crawling algorithm coordinates rising, rotating and dropping of the six legs to make Herbie able to crawl forwards, backwards and to rotate on the spot.The sensor emits ultrasonic waves and sends a sig-nal to the processor that analyzes it. Thus, Herbie recognizes while crawling if an obstacle is in front of him and how far away it is. If the obstacle is rather near, Herbie stops crawling and checks his environment from left to right with the rotating sensor which is applied at the front. Then Herbie rotates on the spot to continue crawling in the di-rection where no obstacle has been noticed.To achieve a regenerative energy supply, we in-stalled a solar panel on the beetle’s body. The solar panel is connected to the storage battery which can only be reloaded by solar energy. Consequently, Herbie is able to store the energy and to crawl for some time after charging.Furthermore, we used some coloured LEDs to be informed about the storage battery’s level. If the voltage reaches a critical level, a red LED is flashed and Herbie stops crawling to reload. Besides, we have the possibility to reload the storage battery with a battery charger.

Page 47: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

47

17 SoMethIng that crawlS

a SMall ant lIKe a robot

teaM:St. george’s rc high, Salford, united Kingdom

partIcIpantS:teachers: philip westcott, rik whittakerStudents: zeta Jhanji, Sophie backhouse, tom hall, emma bentham

age group:13-14 years

uSeD MaterIalIn thIS proJect: plastics, solar cells, gears, switch

) abStract:A crawling robot based on an insect design. Power is absorbed from solar cells, a photo-voltaic array, buffered by a capacitor, to drive a small and effi-cient solar motor.

) what IS InnovatIve about Your proJect?Solar power and an efficient motor. Small and effi-cient robot. Crawling action deals with uneven surfaces.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

A project teaching pupils to work as part of a team. Each of them has to take responsibility for a diffe-rent part of the project and work with the others to achieve success.

) proJect DeScrIptIon:Our introduction to this project involved research into: Robotics, electronics and insect movement (based on their skeletal structure). We looked at walking, flying, crawling, and jumping actions – and a helper from Salford University suggested we should consider mass and efficiency in design.Detailed research areas included: Smart memory alloys and the efficiency of various electric motors and solar cells in terms of current and voltages used and provided, and their ability to provide power to move a biomimetic robot.The use of heat as an energy source was attractive but difficult to control. Smart memory alloys pro-vide considerable power for given changes in tem-perature, but we could not see how to get suffi-cient heat to be transferred quickly enough to be productive. Solar panels appeared a workable so-lution from our experiments measuring voltages and current, if the solar panels could provide suf-ficient energy when coupled with a small, light-weight, efficient electric motor to provide motive power.Developing our design, we now have a plastic pro-totype and using CAD, we can adjust the dimen-sions quickly and accurately, producing a light and

strong body / chassis which will hold a motor and solar panel, capable of supporting the triangulated walking mechanism. Once built, the skeletal body design has considerable structural strength, but individual components need careful handling as they have been reduced to minimal proportions to minimise mass.This design was nearly sufficient but ambient light often let us down. As an alternative to recharge-able cells, a 2 Farad (10V max working) super-ca-pacitor now charges from the solar panels to a maximum of 3V and allows a running time of about 90 seconds. If running in dark conditions, alternative power sources can be used to charge the super-capacitor with energy.

01

02

FIgureS01 Drawing of the parts done in 2d Design 02 Our Final Robot

Page 48: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

48

18 SoMethIng that crawlS

conStructIon oF a ScorpIon

teaM:heinich-böll-gesamtschule, oberhausen, germany

partIcIpantS:teachers: uwe bugdollStudents: arno elspaß, carmen hennig, tobias hennig, rafael raake, Mark Sobania

age group:15-16 years

uSeD MaterIalIn thIS proJect: Solar cells, thread rod, plastics molding material, construction kits of gears, solar-powered engines, transistors, resistances, screws, lego Mindstorm nxt construction kit

) abStract:Constructing and programming a scorpion with Lego Mindstorm. Copying the movement of a scor-pion.

) what IS InnovatIve about Your proJect?Constructing with Lego Mindstorm. Programming with Lego Mindstorm.Converting a circular motion to move our Scorpi-on’s legs.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

How to construct self-directed vehicles

) proJect DeScrIptIon:We were planning a project that could be done in class easily, effectively and cheaply. That’s why we decided to make our scorpion small and efficient and use a modular construction, which means that Sunny, our scorpion, can expand and adapt to fu-ture needs.During the first step, we were concentrating on the mechanical robust part of the work. We have already carried out simple electronics like controlling the scorpion’s eyes. Assembling SMD-components – as required by complex control systems – is very difficult given our technical means. So we concen-trated on simple discrete circuits which make it possible to connect our engines directly to the so-

lar cells without using big interfaces. This can be done without damaging the electronics.Furthermore, the circuits can be easily connected to components of the Atmel Company (AVR Systems), which makes the whole system expandable for fu-ture projects. The Olimex Company sells exactly the kind of interfaces that we will need for future ex-tensions. Installing these complex circuits will make programming of motion patterns possible.With these boards, you can make circuits that are directly compatible with the Nxt Mindstorm Gene-ration by Lego Technology. Thus, existing models by students can be connected directly.Our scorpion works all right and can be carried out within the limits of a low school budget. It is powered by very thin, yet highly efficient solar cells. So even in dull weather, it is possible to set it in motion. The scorpion’s skin consists of thin plastic which is easy to shape.In order to meet the varied demands, we split our group into different teams that were responsible for different tasks. In this way, every student be-came a specialist in a certain field. One group was asked to look into and familiarize with the work of all the other groups. This way of organizing the project and our team’s excellent motivation have made it possible to build our product.

Page 49: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

49

19 SoMethIng that crawlS

water StrIDer

teaM:Käthe-Kollwitz-gymnasium, wesseling, germany

partIcIpantS:teachers: Sebastian zacharias, Michael FunkeStudents: anja Fischenich, Katharina ahlers, Sebastian Messner, patrick Klinik

age group:14-16 years

uSeD MaterIalIn thIS proJect: hot glue gun, cutter, soldering iron, tools, toothed wheels, engines, polystyrene, brass pipe, lacquer

) abStract:We wanted to build a robot that can walk over wa-ter and can produce its needed energy on its own. Our model was the water strider.

) what IS InnovatIve about Your proJect?The robot is able to walk over water and doesn’t need energy from the outside.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

Teachers can use it to explain surface energy to the pupils. In biology, teachers can use the robot to show how a water strider walks over water and how it adapts to its environment.

) proJect DeScrIptIon:General facts about the water strider: The water strider is an insect that lives only in Europe. It can grow up to 10mm. The body is covered with little hairs which reject water. Water striders have six legs. The legs at the front are only used to catch prey. The legs in the middle transfer the strength for the movement and the hind legs control the direction.

Technical solution: We wanted to use a forward movement so we used many joints and toothed wheels.The engine is connected with a toothed wheel which is also connected with others to get the right speed.A brass pipe is connected with the last toothed wheel and with two other pipes. The middle legs are linked through these two other pipes, which you can see on the drawing below.Result of our project: The robot we built is able to stand and walk on water because of the surface energy. At first, we had many ideas how to build the robot, but at last we decided to apply the most useful idea.First we built the model you can see below. In this model, the middle legs are missing. The function of all six legs works in the same way as the water strider’s legs.The front legs are the only legs on our robot that do not move. The middle legs are the ones for moving our robot and the hind legs are for steering. Then we worked on the technical solution and de-cided which form the body and the feet should get. After we had developed the robot, we only needed to build it.

Page 50: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

50

20 SoMethIng that JuMpS

JuMpIng robot

teaM:gymnásium bernarda bolzana, praha, czech republic

partIcIpantS:teachers: lucie Ilucová, Doc. Jan obdržálekStudents: Kristýna Krbcová, Karolína cihlárová, zbynek Šanda, Michal tengler

age group:16-18 years

uSeD MaterIalIn thIS proJect: Supermagnet (nd), cuprextit, coil (made of copper wire 0,1mm), SMD diodes, rubber bands.

) abStract:Magnetodynamic force acting upon a coil passed by a DC current in a strong magnetic field of an Nd-supermagnet moves the coil.

) what IS InnovatIve about Your proJect?Way of using a coil as a propulsion unit. Coopera-tive style of the students’ work.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

Cooperative style of the students’ work. Mechanical movement caused by a very simple mechanism.

) proJect DeScrIptIon:Our “bug” consists of a small printed circuit board (PCB) with SMD diodes on both sides and three legs forming a regular triangle sitting on the base. The main part of the base is a big PCB with a neodymium

magnet underneath. The base PCB has conducting strips, powered by an external source (12 V DC). With a proper configuration of the strips, the bug must land on a cathode with one leg and another leg on an anode (simple proof has been done by students). A set of diodes at the body of the bug will ensure the proper direction of the current flowing into a coil in the body of the “bug”, pushing it upwards. The coil is fastened by short cords to the legs of the bug; then the current passes through the coil for a certain time interval while the coil is moving upward until the cord is fully tight.Now the coil jumps up. When the coil is high enough and has a reasonable speed, the bottom PCB starts to be pulled and the current is broken. Both PCBs move upwards due to inertia and after a short time interval, they land back. Then the new connection is made and the whole loop repeats again. “Bugs” move up and down quite rapidly.

01 02

FIgureS01-02 When one leg is fixed in its position, the other two legs can only move along the red circle – blue and green triangles are the extreme cases (when all legs are between the stripes and the robot is not functional). The yellow triangle demonstrates the normal case (when the robot is working).

Page 51: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

51

21 SoMethIng that JuMpS

Solar Frog

teaM:gesamtschule weierheide, oberhausen, germany

partIcIpantS:teachers: uwe brinkmannStudents: björn hickel, Finn Friese, Daniel heiderich, philipp Kulse, Fabian Kristan

age group:14-16 years

uSeD MaterIalIn thIS proJect: acrylic glass, solar cells, gears, springs, electric engine

) abStract:This frog runs with solar energy. Gears transform the fast engine movement into a slow but power-ful rotation. The following mechanism pulls a spring, which makes the frog jump.

) what IS InnovatIve about Your proJect?Combination of physics and technical lessons, containing the traditional physical (mechanics) and the technical aspects of how to use gears.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

How to use solar power for movements although it seemingly has only very little power.

) proJect DeScrIptIon:We were taking part in the competition “Innovative Technologies move Europe”. The task we chose was: To build something that jumps (an animal) by using regenerative energy.Very early into the project, the students decided to use solar cells due to the light weight of this power source. Yet the first trials involving solar cells and an adequate motor came up with very disappointing results.The fast revolving motor can be easily held up by the touch of a fingertip and cannot tense a spring sufficiently to trigger a leaping movement.Careful research resulted in two different ap-proaches:1. The mechanical solutionA gear transmission with a very high gear reduction reverses the low rotary power and the high rota-tional speed at the motor shaft. Motor and gear transmission are in permanent operation.2. The electro-mechanical solutionA transformer increases the low voltage of the so-lar cells. A condenser is charged with the increased voltage. When fully charged, it conveys the stored energy to a “strong” motor. While loading up, the motor stalls. The motor runs joltingly.Considering all the factors (time!) and information from the field of model-making featuring similar

challenges, we have opted for the mechanical so-lution.Model SpecificationThe solar cells have been custom-made from break-age to fit this model and can generate a voltage of approximately 1.5 volt under our 500 watt headlamp at an 0.5 meter distance. However, they heat up during operation so they are fitted with a special adhesive. The motor is a low-cost standard unit. The heart of the model is the gear transmission (see illustration) consisting of five (twin) gears, two of which are identical and just loosely slid onto their respective shaft. This creates a high reduc-tion gear despite its very small size.The required accuracy in drilling the holes for the shafts proved to be a disadvantage for our routine school business. Each distance had to be exactly 14.5mm, not allowing for the slightest deviation unless the transmission gets stuck or doesn’t work.The transmission output features a crank that op-erates the gripping mechanism of the spiral springs. The sudden release of tension triggers the frog’s leap.

Page 52: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

52

22 SoMethIng that JuMpS

7th generatIon oF “SSu007”

teaM:Junioracademy nrw 2007, different schools from north rhine-westphalia, germany

partIcIpantS:teachers: Jacqueline nagel, Sebastian zachariasStudents: Jan niklas Fritz, glenn geidel, benedikt Kolbinger, Jana liebing, Marie Schützmann, liyang Sheng

age group:13-15 years

uSeD MaterIalIn thIS proJect: balsa wood, plexiglas, carbon-fibre reinforcedplastic tubes; springs, shrinkable plastic tubing, different screws and nails, solar cells, wire, engine transmission unit, gear wheels, cutting board (made of synthetic material), threaded rods and some paraphernalia

) abStract:Our model is built based on the biological aspects of a flea.

) what IS InnovatIve about Your proJect?We tried to build our model barely using any special material, but using many things almost every one has at home, e.g. a cutting board and in vented a method how to transfer the jumping process of the flea into a machine (e.g. storing force).

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

The way to store mechanical energy derived from a flea’s special method. What nature has invented perfectly and how human genius is able to imi-tate this in different ways with the resulting pos-sibilities (ideal for biology or technology).

) proJect DeScrIptIon:After some drafts, a brainstorming and a lot of dif-ferent conceptions and ideas, we restarted our

project SSU007 very late. We made our choice to build an energy-storing model based on a flea’s jumping mechanism. It is tiny, needs only little energy, jumps very infrequently and spends most of its time storing a huge mechanical potential in-ternally in different ways which are explosively available afterwards. In the same way, we devel-oped different propulsion units that are able to store energy in different ways, too. We installed a three-stage step-by-step power unit in our SSU007, using CRP-tubes which get strained by a triple-eccentric battery Because of the huge weight of the other used materials, we installed an additio nal fourth level in the form of a metal spring. A pincer-like jumping leg - also copied from the physique of the flea thigh - directly emits part of the ten-sion energies using pressure. Most of the other in-sects have tendons and pull with muscle power. We decided on a single-powered hind leg with a wide foot to transfer the main force by pushing and additional two-level animated and powered front legs. During the storing period, the back goes down and the front legs lift the front of our model to achieve an optimum jumping position. After the entire storing period, the jump is set free by the edge of the eccentric so that the relatively heavy construction (nearly 450g) is catapulted by the jumping leg. Precisely at that moment, a mecha-nism lifts the front legs a bit in order not to get caught by any scraggliness or obstacles on the sur-face at the bottom. It works surely with 6 solar power wafers and a craft-engine-gearing combi-nation. After full storing, it is able to jump up to 18cm. It is quite noisy and it was our 7th trial, so it got its name “Silent service unit 007”- SSU007. – We are sure that everybody wants to possess one in the future. Perhaps it might walk the dog or ac-tually replace it. Everything is possible. – Shortly before the presentation, some solar wafers were broken, we had no replacement and so we had to use a power supply. But it worked abso-lutely effectively and perfectly. We’re proud of SSU007 !!!

Page 53: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

53

23 SoMethIng that FlIeS

FlYIng obJect

teaM:bonhoeffer college, en-schede, the netherlands

partIcIpantS:teachers: benno berendsenStudents: Marijn Siemons, pim van asperen, Joeri bijleveld, pieter bas cornel

age group:15-16 years

uSeD MaterIalIn thIS proJect: wood, paper, rubber band, iron wire

) abStract:An object is constructed that flies like a bird. Origi-nally designed to be propelled by a small motor, but finally propelled by a rubber band.

) what IS InnovatIve about Your proJect?Although we did not succeed in making an actual ‘flying’ object, we made a design out of very or-dinary things which can be upgraded to the flying object.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

In constructing a flying object, very small changes in the design might have a great effect on the fi-nal result.

) proJect DeScrIptIon:When we first saw the project, we decided that making a flying object would be by far the most challenging project, so we tried that. After a few weeks, we had made a design that almost flew, but no engine. We were lucky enough to find two small toy cars, including engines we could use. At first it worked, until we found out we needed big-ger wings to actually make it fly. It turned out that we needed a bigger engine to make the bigger wings move fast enough, which would weigh too much for the bigger wings. It was a huge problem, and we have not found the solution yet. Although our design doesn’t actually fly, we be-lieve that the idea behind it is a good one. There were some unexpected flaws in our planning, which prevented us from really trying everything to make it fly. We are pretty disappointed we didn’t succeed, but we are confident that we will be able to make it fly if we continue to work on it after the project. The idea behind the design is actually pretty simple. An engine makes an axis rotate. 2 cranks are attached to the axis. Those cranks make the wings go up and down. If the wings go up and down, they push the air back. If they create an angle, part of the force they produce will be directed downwards.But how does the object create that angle? If the

object starts horizontally, it will go forward, if the tail creates an angle – as shown below – the ob-ject will automatically follow that angle.With that idea in our mind, we started to think how we could realise the idea in an actual design. The first result was our prototype 1 which we showed in the first meeting. In the second design, we built an engine and a gear box. The problem was that the wings weren’t able to create enough force, because the wings were too small and we had too much friction.

wings

force tail

wing'smovement

force

Page 54: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

54

24 SoMethIng that FlIeS

FlIer

teaM:hardenberg-gymnasium Fürth, germany

partIcIpantS:teachers: Jürgen KleinStudents: boris livertovsky, Quang tran

age group:14 years

uSeD MaterIalIn thIS proJect: polystyrene, balsa wood, wire, electric motor with gear, gold caps, carbon fiber bars, thin plastic foil

) abStract:We built a simple flier that imitates the wing beat of birds. We built one version with a rubber en-gine and tried to build another one powered by an electric motor.

) what IS InnovatIve about Your proJect?We tried storing electric energy directly in the field by using gold caps.

) what can other teacherS IMpleMent FroM Your proJect In theIr claSSeS?

Energy density vs. power density of energy storage and how birds fly

) proJect DeScrIptIon:Part I: (Research)a) How birds flyThe wings of birds do not work like stiff airplane wings. The wing of a bird produces lift by changing its shape while flapping. So the bird wing has to be flexible. There are several techniques to realise this wing twisting. The easiest way is so-called passive wing twisting, accomplished by using membrane wings.b) Mechanics for the wing beatThe purpose of the mechanics is to convert the ro-tation of the motor into a periodic rising and low-ering of the wings. The resulting motion should be as symmetrical for both wings as possible. We chose a very simple way: a staggered crank made from bent wire. We decreased deviation from the symmetrical movement with interactive geometry software by trying different values for parameters.Part II: (Flier with rubber engine)We then chose reasonable dimensions and started building our first flapping wing model. It is made of polystyrene, balsa wood, brass tube, steel wire and plastic foil. The total material cost is about 5 EUR. This model actually flies.Part III: (Flier with electric motor)We chose a geared motor and tried to operate it with gold caps as power supply. We found out that we need four gold caps (each 1F; 5,5V) to operate

it for about 30 seconds. Unfortunately, the weight of four gold caps is about the same as of a common 9V battery. Anyhow, the advantage of the capacitors as energy suppliers is that they can be recharged very quickly.Due to the weight of the motor (30g) and the ener-gy supply, we increased the wing span of the “bird” to produce more lift, but until now it does not fly.

Page 55: Innovative Technologien bewegen Europa

Innova

tIve

tec

hnolo

gIe

S M

ove

europe

55

herauSgeber:Science on Stage Deutschland e.V.Poststr. 4/510178 Berlin

geSaMtKoorDInatIon unD reDaKtIon:Dr. Wolfgang Welz, VorstandScience on Stage Deutschland e.V.

Stefanie Schlunk, GeschäftsführerinScience on Stage Deutschland e.V.

Ines HurrelbrinkScience on Stage Deutschland e.V.

bIlDer:Falls nicht anders angegeben, liegen die Bildrechte bei den Autoren. Die Autoren haben die Bildrechte für die Verwendung in dieser Publikation nach bestem Wissen geprüft.

laYout:weber. kreative dienstleistungenwww.christianweber.info

textKorreKtur:Angelika Weltwww.angelika-welt.de

DrucK:druckpunkt Druckerei & Repro GmbH Berlinwww.druckpunkt-berlin.de

FInanzIerung:Lenord, Bauer & Co. GmbHArbeitgeberverband Gesamtmetall - THINK ING.

beStellungen:[email protected]

ISBN 978-3-9811195-5-8 (PDF-Version)

1. Auflage 20082.500 Exemplare© Science on Stage Deutschland e.V.

Page 56: Innovative Technologien bewegen Europa

InnovatIve technologIen bewegen europa

InnovatIve technologIeS Move europe

Ein Schul-Wettbewerb von Science on Stage Deutschland e.V. und der Lenord, Bauer & Co. GmbH