INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

134
i INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC SANDS IN NIGER DELTA BASIN A THESIS PRESENTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING AFRICAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, ABUJA In Partial Fulfillment of the Requirement for the Award of Masters of Science (M.Sc.) In Petroleum Engineering By AWEJORI GABRIEL ADUA Abuja, Nigeria [2014]

Transcript of INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

Page 1: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

i

INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC SANDS IN NIGER

DELTA BASIN

AA TTHHEESSIISS PPRREESSEENNTTEEDD TTOO TTHHEE DDEEPPAARRTTMMEENNTT OOFF

PPEETTRROOLLEEUUMM EENNGGIINNEEEERRIINNGG

AAFFRRIICCAANN UUNNIIVVEERRSSIITTYY OOFF SSCCIIEENNCCEE AANNDD TTEECCHHNNOOLLOOGGYY,, AABBUUJJAA

IInn PPaarrttiiaall FFuullffiillllmmeenntt ooff tthhee RReeqquuiirreemmeenntt ffoorr tthhee AAwwaarrdd ooff MMaasstteerrss ooff

SScciieennccee ((MM..SScc..))

IInn

PPeettrroolleeuumm EEnnggiinneeeerriinngg

BByy

AWEJORI GABRIEL ADUA

AAbbuujjaa,, NNiiggeerriiaa

[[22001144]]

Page 2: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

ii

INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC SANDS IN NIGER

DELTA BASIN

BBYY

AAWWEEJJOORRII GGAABBRRIIEELL AADDUUAA

AA TTHHEESSIISS AAPPPPRROOVVEEDD BBYY TTHHEE PPEETTRROOLLEEUUMM EENNGGIINNEEEERRIINNGG DDEEPPAARRTTMMEENNTT

RREECCOOMMMMEENNDDEEDD:: ……………………………………………………………………………………………………………………..

PPrrooff.. TTiiaabb DDjjeebbbbaarr ((SSuuppeerrvviissoorr))

………………………………………………………………………………………………................................

DDrr.. AAllpphheeuuss IIggbbookkooyyii ((CCoommmmiitttteeee mmeemmbbeerr))

……………………………………………………………………………………………………........................

PPrrooff.. DDaavviidd OOggbbee ((CCoommmmiitttteeee mmeemmbbeerr))

…………………………………………………………………………………………………………....................

PPrrooff.. WWuummii IIlllleeddaarree

IInntteerriimm HHeeaadd,, PPeettrroolleeuumm EEnnggiinneeeerriinngg DDeeppaarrttmmeenntt

AAPPPPRROOVVEEDD:: ………………………………………………………………………………………………………………..

CChhiieeff AAccaaddeemmiicc OOffffiicceerr

………………………………………………………………

DDaattee

©© CCooppyyrriigghhtt bbyy AWEJORI GABRIEL ADUA [[22001144]]

AAllll RRiigghhttss RReesseerrvveedd

Page 3: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

i

ABSTRACT

Large quantities of petroleum resources in the Niger Delta province are confined to

unconsolidated turbiditic and silici-clastic rocks. These rocks are usually associated with high

volumes of shale. The high volumes of shale create discontinuities within the reservoir units

causing division of the reservoir into several flow units. The complex nature of these reservoir

units coupled with the incidence of many thin beds within them makes it difficult to conduct

credible petrophysical evaluation using conventional log and core data. These types of data are

however the most common data available for most wells in the Niger Delta region. In this

research, an integrated approach is adopted in petrophysical evaluation of the reservoir sands

using conventional log and core data. The stock tank oil originally in place is estimated using

three different methods. These include;

I. Deterministic approach without consideration to the internal divisions (flow units) within

the reservoir.

II. Deterministic approach with consideration to internal divisions (flow units) within the

reservoir and

III. Probabilistic approach with sensitivity analysis for three different cases of net pay

thickness.

The outcome of the research showed that, when a deterministic evaluation is done without

considering internal divisions, the value for STOOIP is greater than that which considers internal

divisions of the reservoir. The range of STOOIP’s observed for the probabilistic approach is

relatively wide and therefore lends credence to the unpredictable nature of turbiditic sands. Many

internal divisions within a relatively thin thickness of sand also highlights the internal

discontinuities within the reservoir units. The research also highlighted that, sensitivity of

STOOIP to particular input parameters is reservoir dependent.

In conclusion, the integrated approach for petrophysical evaluation of turbiditic formations

enables better and thorough understanding of the reservoir units. Decisions can therefore be

based on the outcomes from this method going forward.

Page 4: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

ii

ACKNOWLEDGEMENTS

I acknowledge the love of God from the day I was born to today. I appreciation my family for all

the support they have given me. To my mother, Mrs. Helen Awejori Agaasah and my siblings,

Rose, Richard and Raymond, I say, I am forever grateful for your love and support.

I am grateful to my supervisor, Prof. Djebbar Tiab. I thank you for your time and efforts

especially at the beginning of the research. You strengthened me at the beginning and that is

what has gotten me this far. I thank in a special way my second supervisor, Dr. Alpheus

Igbokoyi. You were always there for me. My appreciation also goes to all faculty of AUST

especially the heads of department: Prof. Godwin Chukwu, Prof. Wumi Iledare and Dr.

Abdulkadir Muktar.

My sincerest gratitude also goes to my mentor, Mr. Onuh Haruna (Boss). I am full of

appreciation for all the effort you put to get me data and prepare me for this research. I could not

have done it without you. I can never forget how you sacrificed your time to teach Prosper and I

continuously throughout the day and night when we came to your office at Lagos. Thank you

and God bless you.

I also acknowledge the support of my classmates and friends. Special thanks goes to Prosper

Sani, Ismael and Bismark, it is great having friends like you.

Page 5: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

iii

DEDICATION

I dedicate this thesis to God Almighty for how far He has brought me. I thank you, father for

your love, blessings, guidance and protection during my stay in the African University of

Science and Technology, Abuja, Nigeria.

Page 6: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

iv

TABLE OF CONTENT

ABSTRACT .................................................................................................................................................. i

ACKNOWLEDGEMENTS .......................................................................................................................... ii

DEDICATION ............................................................................................................................................. iii

TABLE OF CONTENT ................................................................................................................................iv

LIST OF FIGURES .................................................................................................................................... viii

LIST OF TABLES ........................................................................................................................................ xi

CHAPTER 1 ................................................................................................................................................. 1

PROBLEM DEFINITION ............................................................................................................................ 1

1.1 STATEMENT OF PROBLEM ..................................................................................................... 1

1.2 OBJECTIVES ............................................................................................................................... 2

1.3 METHODOLOGY ....................................................................................................................... 2

1.3.1 Flow chat .............................................................................................................................. 3

1.4 FACILITIES AND PERSONNEL ............................................................................................... 3

1.5 STRUCTURE OF REPORT ......................................................................................................... 4

CHAPTER 2 ................................................................................................................................................. 5

OVERVIEW OF STUDY AREA AND LITERATURE REVIEW ............................................................. 5

2.1 GEOLOGY OF THE NIGER DELTA ......................................................................................... 5

2.1.1 Geological Overview ............................................................................................................ 5

2.1.2 Structural Province ............................................................................................................... 5

2.1.3 Stratigraphy ........................................................................................................................... 5

2.1.4 Tectonics and Structure ........................................................................................................ 6

2.1.5 Lithology ............................................................................................................................... 7

2.1.6 Depo-belts ............................................................................................................................. 7

2.1.7 Hydrocarbon Source ............................................................................................................. 8

2.1.8 Reservoir Rock ..................................................................................................................... 8

2.2 GRAVITY SEDIMENT FLOW ................................................................................................... 9

2.2.1 Turbidity Currents............................................................................................................... 10

Page 7: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

v

2.2.2 Debris Flows ....................................................................................................................... 13

2.2.3 Slumps ................................................................................................................................ 14

2.2.4 Submarine Slope Canyon and Slope Channels ................................................................... 16

2.2.5 Submarine Canyon .............................................................................................................. 18

2.3 TYPES OF PETROPHYSICAL LOGS ..................................................................................... 19

2.3.1 Resistivity Log .................................................................................................................... 19

2.3.2 Gamma Ray Log ................................................................................................................. 20

2.3.3 Density Log ........................................................................................................................ 22

2.3.4 Neutron Log ........................................................................................................................ 23

2.3.5 Sonic Log ............................................................................................................................ 24

2.4 METHODS FOR PETROPHYSICAL ANALYSIS OF THIN BEDS/TURBIDITES .............. 24

2.4.1 Thin Bed Analysis Using Resistivity Borehole Image Tools ............................................. 24

2.4.2 Resistivity Anisotropy Method ........................................................................................... 26

2.5 MONTE CARLO SIMULATION/ RISK ANALYSIS SOFTWARE ....................................... 29

2.5.1 Introduction ......................................................................................................................... 29

2.5.2 Risk Simulator ........................................................................................................................... 29

CHAPTER 3 ............................................................................................................................................... 32

MATERIALS AND METHODS ............................................................................................................... 32

3.1 SUMMARISED FLOWCHART OF METHODOLOGY .......................................................... 32

3.2 OUTLINE OF METHODOLOGY ............................................................................................. 33

3.3 DETERMINATION OF LITHOLOGY FROM WIRE LINE LOGS ........................................ 34

3.4 ESTIMATION OF PETROPHYSICAL PARAMETERS ......................................................... 34

3.4.1 Net Pay Thickness (Net/Gross) ........................................................................................... 34

3.4.2 Shale Volume ...................................................................................................................... 35

3.5.3 Porosity ............................................................................................................................... 35

3.4.4 Water Saturation ................................................................................................................. 36

3.4.5 Net Pay ................................................................................................................................ 38

3.4.6 Permeability ........................................................................................................................ 38

Page 8: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

vi

3.4.7 Hydrocarbons-in-place Volumes ........................................................................................ 39

3.5 CORES ....................................................................................................................................... 40

CHAPTER 4 ............................................................................................................................................... 41

DATA PROCESSING AND ANALYSIS ................................................................................................. 41

4.1 PROCESS OF EVALUATION .................................................................................................. 41

4.1.1 Reservoir Quality Index (RQI) ........................................................................................... 41

4.1.2 Flow Zone Index (FZI) ....................................................................................................... 41

4.1.3 Tiab Hydraulic Flow Unit (HT) ........................................................................................... 42

4.1.4 Normalised Reservoir Quality Index (nRQI) ...................................................................... 42

4.1.5 Normalised Porosity (Φz) .................................................................................................... 43

4.1.6 Stratigraphic Modified Lorenz Plot (SMLP) ...................................................................... 43

4.2 CALCULATION STOOIP FOR RESERVOIR 7 ...................................................................... 45

4.3 STOCHASTIC EVALUATION TECHNIQUES ....................................................................... 47

4.3.1 Graphs obtained from Stochastic Modelling of STOOIP for reservoir 7 ........................... 48

4.4 ANALYSIS OF FLOW UNITS FOR RESERVOIR 7 ............................................................... 55

4.4.1 Analysis of Well 01 ............................................................................................................ 56

4.4.2 Analysis of Well 02 ............................................................................................................ 58

4.4.3 Analysis of Well 03 ............................................................................................................ 61

4.4.4 Analysis of Well 04 ............................................................................................................ 63

4.4.5 Analysis of Well 05 ............................................................................................................ 66

4.4.6 Analysis of Well 06 ............................................................................................................ 66

4.5 CALCULATION OF STOOIP USING FLOW UNITS ............................................................. 66

4.6 CALCULATION OF STOOIP FOR RESERVOIR 6 ................................................................ 68

4.7 STOCHASTIC EVALUATION TECHNIQUES (RESERVOIR 6) .......................................... 70

4.7.1 Graphs obtained from Stochastic Modelling of STOOIP for Reservoir 6 .......................... 71

4.8 ANALYSIS OF FLOW UNITS FOR RESERVOIR 6 ............................................................... 78

4.8.1 Analysis of Well 02 ............................................................................................................ 79

4.8.2 Analysis of Well 03 ............................................................................................................ 81

Page 9: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

vii

4.8.3 Analysis of other wells ....................................................................................................... 84

4.9 CALCULATION OF STOOIP USING FLOW UNITS (RESERVOIR 6) ................................ 84

CHAPTER 5 ............................................................................................................................................... 85

DISCUSSION AND CONCLUSION ........................................................................................................ 85

5.1 DISCUSSION ............................................................................................................................. 85

5.1.1 Flow Unit Identification for Reservoir 7 ............................................................................ 85

5.1.2 Uncertainty Analysis for Reservoir 7 ................................................................................. 86

5.1.3 Flow Unit Identification for Reservoir 6 ............................................................................ 86

5.1.4 Uncertainty Analysis for Reservoir 6 ................................................................................. 87

5.2 CONCLUSIONS ........................................................................................................................ 88

NOMENCLATURE ................................................................................................................................... 90

REFERENCES ........................................................................................................................................... 91

APPENDIX A: ADDITIONAL FIGURES FOR CHAPTER 4 (RESERVOIR 7) .................................... 95

APPENDIX B: ADDITIONAL TABLES FOR CHAPTER 4 (RESERVOIR 7) .................................... 100

APPENDIX C: ADDITIONAL FIGURES FOR CHAPTER 4 (RESERVOIR 6) ................................... 101

APPENDIX D: ADDITIONAL TABLES FOR CHAPTER 4 (RESERVOIR 6) .................................... 105

APPENDIX E: DATA OF WELL 01 FOR FLOW UNIT CHARTS FOR RESERVOIR 7 .................... 106

APPENDIX F: DATA OF WELL 02 FOR FLOW UNIT CHARTS FOR RESERVOIR 7 .................... 108

APPENDIX G: DATA OF WELL 03 FOR FLOW UNIT CHARTS FOR RESERVOIR 7 ................... 110

APPENDIX H: DATA OF WELL 04 FOR FLOW UNIT CHARTS FOR RESERVOIR 7 ................... 113

APPENDIX I: DATA OF WELL 02 FOR FLOW UNIT CHARTS FOR RESERVOIR 6 ..................... 115

APPENDIX J: DATA OF WELL 03 FOR FLOW UNIT CHARTS FOR RESERVOIR 6 .................... 117

Page 10: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

viii

LIST OF FIGURES Figure 1. 1: Flow chart of methods adopted in conducting research ............................................. 3

Figure 2. 1: Schematic play map showing the Niger Delta Depo-belts. ......................................... 9

Figure 2. 2: Differences in transport and deposition by turbidity currents and debris flow. .... 10

Figure 2. 3: Structure of head and body of turbidity current advancing into deep water. ........ 11

Figure 2. 4: Ideal Bouma sequence showing Ta, Tb, Tc, Td, and Te divisions . ......................... 13

Figure 2. 5: Schematic illustration of head and toe of slumps. ..................................................... 15

Figure 2. 6: Difference between slide, slump, debris flow and turbidity current process. ......... 16

Figure 2. 7: Schematic illustration of slope and deep marine environments. .............................. 17

Figure 2. 8: Illustration of section views across a A) canyon B) slope channel or gully. ............ 17

Figure 3. 1: Flow chart showing the processes involved in analysis of data. ............................... 32

Figure 3. 2: Graph showing the determination of porosity cutoff for delineation of pay zone. 38

Figure 3. 3: Relationship between core data and log data for quality control. ........................... 40

Figure 4. 1: Log view of petrophysical parameters on Schlumburger Techlog Software. ......... 45

Figure 4. 2: Graph of Relative Probabilities for calculated STOOIPs. ....................................... 48

Figure 4. 3: Graph of Cumulative Frequencies of calculated STOOIPs. .................................... 49

Figure 4. 4: Graph of Probability Density Functions for STOOIPs calculated. ......................... 50

Figure 4. 5: Tornado Chart of Correlation Coefficients for Input Parameters on STOOIP. .... 51

Figure 4. 6: Tornado Chart of Regression Coefficients for input Parameters on STOOIP. ..... 52

Figure 4. 7: Tornado Chart of effects of input parameters on STOOIP. .................................... 53

Figure 4. 8: Spider Chart of impact of input parameters on output STOOIP ............................ 54

Figure 4. 9: Graph of RQI versus Normalised Porosity of reservoir for well 01. ....................... 57

Figure 4. 10: SMLP of the reservoir of interest for well 01........................................................... 57

Figure 4. 11: nRQI plot of the reservoir of interest for well 01. ................................................... 58

Figure 4. 12: Graph of RQI versus Normalised Porosity of reservoir for well 02. ..................... 59

Figure 4. 13: SMLP of the reservoir of interest for well 02........................................................... 60

Figure 4. 14: nRQI plot of the reservoir of interest for well 02. ................................................... 60

Figure 4. 15: Graph of RQI versus Normalised Porosity of reservoir for well 03. ..................... 62

Page 11: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

ix

Figure 4. 16: SMLP of the reservoir of interest for well 03........................................................... 62

Figure 4. 17: nRQI plot of the reservoir of interest for well 03. ................................................... 63

Figure 4. 18: Graph of RQI versus Normalised Porosity of reservoir for well 04. ..................... 64

Figure 4. 19: SMLP of the reservoir of interest for well 04........................................................... 65

Figure 4. 20: nRQI plot of the reservoir of interest for well 04. ................................................... 65

Figure 4. 21: Log view of petrophysical parameters on Schlumburger Techlog Software. ....... 68

Figure 4. 22: Graph of Relative Probabilities for calculated STOOIPs. ..................................... 71

Figure 4. 23: Graph of Cumulative Frequencies of calculated STOOIPs. .................................. 72

Figure 4. 24: Graph of Probability Density Functions for STOOIPs calculated. ....................... 73

Figure 4. 25: Tornado Chart of Correlation Coefficients for Input Parameters on STOOIP. .. 74

Figure 4. 26: Tornado Chart of Regression Coefficients for input Parameters on STOOIP. ... 75

Figure 4. 27: Tornado Chart of effects of input parameters on STOOIP ................................... 76

Figure 4. 28: Spider Chart of impact of input parameters on output STOOIP .......................... 77

Figure 4. 29: Graph of RQI versus Normalised Porosity of reservoir for well 02. ..................... 80

Figure 4. 30: SMLP of the reservoir of interest for well 02........................................................... 80

Figure 4. 31: nRQI plot of the reservoir of interest for well 02. ................................................... 81

Figure 4. 32: Graph of RQI versus Normalised Porosity of reservoir for well 03. ..................... 82

Figure 4. 33: SMLP of the reservoir of interest for well 03........................................................... 83

Figure 4. 34: nRQI plot of the reservoir of interest for well 03. ................................................... 83

Figure A. 1: Spider Charts showing impact of input parameters on STOOIP. .......................... 95

Figure A. 2: Tornado Charts of effect of input Parameters on STOOIP. ................................... 95

Figure A. 3: Tornado Charts of regression coefficients for input parameters on STOOIP. ..... 96

Figure A. 4: Tornado Charts of correlation coefficients for input parameters on STOOIP. .... 96

Figure A. 5: Shows the Relative Probability Graphs of calculated STOOIPs. ........................... 97

Figure A. 6: Cumulative Frequency Graphs of calculated STOOIPs .......................................... 97

Figure A. 7: Schlumbuger Techlog log view of reservoir 7 in well 01 to well 04......................... 98

Figure A. 8: Regressions for flow units in well 01 to well 04 for reservoir 7. .............................. 99

Figure C. 1: Spider Charts showing impact of input parameters on STOOIP ......................... 101

Figure C. 2: Tornado Charts of effect of input Parameters on STOOIP .................................. 101

Page 12: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

x

Figure C. 3: Tornado Charts of regression coefficients for input parameters on STOOIP. ... 102

Figure C. 4: Tornado Charts of correlation coefficients for input parameters on STOOIP. .. 102

Figure C. 5: Shows the Probability Density Function Graphs of calculated STOOIPs. .......... 103

Figure C. 6: Cumulative Frequency Graphs of calculated STOOIPs ........................................ 103

Figure C. 7: Schlumbuger Techlog log view of reservoir 6 in well 02 and well 03. .................. 104

Figure C. 8: Regressions for flow units in well 02 and well 03 for reservoir 6. ......................... 104

Page 13: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

xi

LIST OF TABLES

Table 4. 1: Shows the values obtained for input parameters for the calculation of STOOIP ... 46

Table 4. 2: Deterministic STOOIP for various reservoirs and entire field. ................................ 46

Table 4. 3: Distributions fitted for input parameters for stochastic analysis. ............................. 47

Table 4. 4: Table showing flow units present in reservoir 7 and their properties. ..................... 55

Table 4. 5: Calculation of STOOIP for each flow unit and entire reservoir. .............................. 67

Table 4. 6: Shows the values obtained for input parameters for the calculation of STOOIP ... 69

Table 4. 7: Deterministic STOOIP for various reservoirs and entire field. ................................ 69

Table 4. 8: Distributions fitted for input parameters for stochastic analysis .............................. 70

Table 4. 9: Flow units present in reservoir 7 and their properties. .............................................. 78

Table 4. 10: Calculation of STOOIP for each flow unit and entire reservoir. ............................ 84

Table B. 1: Summary of statistics for STOOIP simulation runs. ............................................... 100

Table D. 1: Summary of statistics for STOOIP simulation runs ................................................ 105

Page 14: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

1

CHAPTER 1

PROBLEM DEFINITION

1.1 STATEMENT OF PROBLEM

Globally, significant amounts of hydrocarbon volumes in silici-clastic reservoirs are contained in

thin-bedded turbidite pay zones. These include hydrocarbon resources located in channel-

complex reservoirs composed of various genetic reservoir units which ranges from clean channel

lag and storey axis sands with a high net-to-gross to thin-bedded levee over-bank deposits

containing lower sand fractions. The significant discovery of these types of highly prolific thin-

bedded turbidite sand reservoirs in deep waters of the Niger Delta petroleum province in recent

times has shifted more attention to the zone. This has resulted in increased exploration activity

within the deep water Nigerian asset.

A significant proportion of the pay in both onshore and Deep Water (DW) Nigeria fields is mud

rich and inter-channel beds. Key uncertainties of reservoir models are the distribution of

properties as well as connectivity of these thin-bedded reservoirs. Thin beds can be subdivided

into; “thin sand beds” if they are 20 to 60 inches, and “very thin beds” if they are less than 4 to 8

inches or less. The main distinction is that in thin beds you can measure petrophysical properties

such as porosity and water saturation, although with some difficulty, whereas in very thin beds

you have to extrapolate those values from a nearby thick bed. These variations within formations

are not always observed with standard logging methods. They are often thus characterised by

low resistivity and low contrast pay layers. These complexities present major challenges during

the study of these reservoir sands and can cause a significant deviation during interpretation.

Efficient identification of the net pay zones, porosity, water saturation and ultimately the amount

of original hydrocarbons in place within the reservoir are paramount to achieving complete

petrophysical evaluation. The best and most accurate way to estimate these parameters is core

analysis but the cost of obtaining core data for all the wells and well-sections is highly

prohibitive. The standard practice therefore is to obtain petrophysical core data for some well-

sections and augment this data with data obtained from petrophysical logs. This method is

economical but introduces a higher level of uncertainty into the petrophysical evaluation

exercise.

Page 15: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

2

Given the high cost associated with petroleum exploration projects especially so for exploration

in deep water environments, it is imperative that investors know the degree of risks going

forward with a particular project after the petrophysical properties have been estimated. The

uncertainty in the accuracy of log data as well as the sensitivity of estimated petrophysical

parameters must be considered during petrophysical analysis especially for thin bedded turbidite

reservoirs. This thesis work incorporates probability and sensitivity analysis in petrophysical

evaluation of deep water turbidite reservoirs in Niger Delta Petroleum Province using

conventional petrophysical core and log data.

1.2 OBJECTIVES

It is expected that the following will be achieved at the end of this research:

Petrophysical evaluation of turbidite sands in Niger Delta Basin using deterministic

methods.

Petrophysical evaluation of turbidite sands in Niger Delta Basin using stochastic or

probabilistic methods.

Stochastic modeling and uncertainty analysis of Petrophysical parameters within the deep

water turbiditic sands in Niger Delta asset.

Sensitivity analysis to establish key parameters affecting the estimation of the amount of

original hydrocarbon in place.

Flow unit characterisation of the tubiditic reservoirs in the Niger Delta asset.

1.3 METHODOLOGY

The methods used in this research include:

Data gathering

Data quality analysis and quality control.

Data Analysis which include;

Correlation and regression analysis

Page 16: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

3

Simulation runs

Calculations of parameters

Discussions and conclusions

1.3.1 Flow chat

Proposed Flow Chat for integrated petrophysical evaluation of turbidite sand reservoirs in the

Niger Delta Petroleum Province is as follows:

1.4 FACILITIES AND PERSONNEL

The facilities to be used for this project include:

Internet and library facilities at the African University of Science and Technology, Abuja.

Technical and academic expertise of supervisor

Computer Software which include;

Gamma Ray Log

Self-Potential Log

Delineate the clean

Sandstone reservoir

zones.

Density Log

Neutron Log

Estimate the Porosity.

Estimate the

original

Hydrocarbon

in Place (Oil

and Gas)

Estimate the fluid

composition.

Subject the results to sensitivity

analysis (Impose distributions on Net

thickness, porosity, fluid

composition).

Draw conclusion based on

outcome of sensitivity

analysis.

Resistivity Logs

Density-Neutron Logs

Figure 1. 1: Flow chart of methods adopted in conducting research

Page 17: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

4

Schlumberger Techlog Application suite for Petrophysical and Core Analysis

@ Risk Simulation Modelling Tool

1.5 STRUCTURE OF REPORT

This report consist of five (5) chapters

The problem definition, objectives, methods and the facilities and persons that were

consulted during the process of carrying out this research are all outlined in this chapter. This

chapter introduces as well as gives a summary of the processes adopted in organising and

executing this research as well as the process of writing this thesis.

Chapter two gives in-depth information of relevant literature concerning this research. The

main topics handled in this chapter include an overview of the area of study and the

processes that culminate to creating these kind of areas and structures. In this chapter, the

present methods employed for the research area are also outlined. The sensitivity software is

also discussed in this chapter.

Chapter three talks about the specific method adopted in this research. The methods used to

estimate and establish the relevant parameters been investigated are each outlined in this

chapter. The significance of the various parameters estimated is also discussed in this

chapter.

Chapter four presents the outline of how all the analysis and preliminary interpretations of

the results were done. The formulae applied and the result from each is outlined in this

chapter. The manipulations of the data to obtain meaningful parameters are all outlined in

this chapter.

Chapter five covers the discussions, conclusions and recommendations. The full length

interpretation of the results from chapter four are carried out in this chapter.

Page 18: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

5

CHAPTER 2

OVERVIEW OF STUDY AREA AND LITERATURE REVIEW

2.1 GEOLOGY OF THE NIGER DELTA

2.1.1 Geological Overview

The Niger Delta is located in the Gulf of Guinea and extends throughout the Niger Delta

Province. The delta has pro-graded southwestward from Eocene to present, forming series of

depo-belts that represent the most active portion of the delta at each stage of its development.

These depo-belts form one of the largest regressive deltas in the world with an area of about

300,000 km2 (Kulke, 1995). The sediment has an average thickness of about 10km in the centre

of the depo-belts and the estimated sediment volume is 500,000 km3 (Kaplan, 1994).

2.1.2 Structural Province

The onshore portion of the Niger Delta Province is described by the geology of southern Nigeria

and southwestern portions of Cameroon. It is bounded from the north by the Benin Flank, a

hinge line that trends east-northeast and is south of the West Africa basement massif. The

northeastern boundary is delineated by outcrops of the Cretaceous on the Abakaliki High. The

Calabar flank which is a hinge line bordering the precambrian is found at the east-south-east. In

offshore the boundary of the province is defined by the Cameroon volcanic line to the east, the

eastern boundary of the Dahomey Basin (the eastern-most West African transform-fault passive

margin) to the west, and the two kilometer sediment thickness contour or the 4000-meter

bathymetric contour in areas where sediment thickness is greater than two kilometers to the south

and southwest. The province covers 300,000Km2 and includes the geologic extent of the Tertiary

Niger Delta (Akata-Agbada) Petroleum System.

2.1.3 Stratigraphy

The Niger Delta Basin covers an area of about 75,000Km2 and is composed of an overall

regressive clastic sequence that reaches a maximum thickness of 9,000 metres to 12,000 metres

(29,500 ft. to 39,400 ft.). There are basically three distinct formations in the Niger Delta

representing pro-grading depositional facies that are distinguished mostly by their sand-shale

ratios.

Page 19: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

6

The Akata Formation at the base of the delta is of marine origin and is composed of thick shale

sequence (potential source rock), turbidite sand (potential reservoirs in deep water) and minor

amounts of clay and silt. Beginning in the Paleocene and through the Recent, the Akata

Formation formed during low stands when terrestrial organic matter and clays were transported

to deep water areas characterised by low energy conditions and oxygen deficiency (Stacher,

1995). The formation underlies the entire delta, and is characteristically over pressured. The

approximate thickness of the Akata formation is 6,000m. The Agbada formation which overlies

the Akata was deposited beginning from Eocene and continues into the Recent. This formation

is the major petroleum bearing formation in the Niger Delta. The formation consists of paralic

silici-clastics approximately 3,700 meters thick. It represents the actual deltaic portion of the

sequence. The clastics accumulated in delta-front, delta-topset, and fluvio-deltaic environments.

The Agbada Formation is overlain by the third formation, the Benin Formation, a continental

latest Eocene to recent deposit of alluvial and upper coastal plain sands that are up to 2,000 m

thick, (Avbovbo, 1978).

2.1.4 Tectonics and Structure

The tectonic framework of the continental margin along the West Coast of equatorial Africa is

controlled by Cretaceous fracture zones in the form of trenches and ridges in the deep Atlantic.

The fracture zone ridges subdivide the margin into individual basins. In Nigeria, they form the

boundary faults of the Cretaceous Benue-Abakaliki Trough, which cuts far into the West African

shield. The trough represents a failed arm of a rift triple junction (aulacogen) associated with the

opening of the South Atlantic. In this region, rifting started in the Late Jurassic and persisted into

the Middle Cretaceous, (Lehner and De Ruiter, 1977). It is believed that rifting diminished in the

Niger Delta altogether in the Late Cretaceous.

Gravity tectonism became the primary deformational process after the end of rifting. Shale

mobility induced internal deformation and occurred in response to two processes (Kulke, 1995).

First, the formation of shale diapirs as a result of loading of poorly compacted, over-pressured,

and pro-delta and delta-slope clays (Akata Formation) by the higher density delta front sands

(Agbada Formation). Second, the occurrence of slope instability due to a lack of lateral, basin

ward, support for the under-compacted delta-slope clays (Akata Formation). Gravity tectonics

were completed for each depobelt before deposition of the Benin Formation and are expressed in

Page 20: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

7

complex structures, including shale diapirs, roll-over anticlines, collapsed growth fault crests,

back-to-back features, and steeply dipping, closely spaced flank faults, (Evamy et al., 1978).

These faults mostly offset different parts of the Agbada Formation and flatten into detachment

planes near the top of the Akata Formation.

2.1.5 Lithology

Lithologies of Cretaceous rocks deposited in what is now the Niger Delta basin can only be

extrapolated from the exposed Cretaceous section in the next basin to the northeast--the

Anambra. From the Campanian through the Paleocene, the shoreline was concave into the

Anambra Basin (Hospers, 1965) resulting in convergent long shore drift cells that led to

formation of tide-dominated deltaic sedimentation for periods of sea transgressions and river

dominated sedimentation during periods of regressions (Reijers, 1997). Shallow marine clastics

were deposited farther offshore. These are represented by the Albian-Cenomanian Asu River

Group, Cenomanian-Santonian Eze-Aku and Awgu Shale, and Campanian/Maastrichtian Nkporo

Shale, among others in the Anambra Basin (Nwachukwu, 1972 Reijers). The distribution of Late

Cretaceous shale beneath the Niger Delta is unknown.

A major transgression referred to as the Sokoto transgression which occurred in Paleocene

(Reijers, 1997) began with the Imo Shale being deposited in the Anambra Basin to the northeast

and the Akata Shale in the Niger Delta Basin area to the southwest. In the Eocene, the coastline

shape became convexly curvilinear, the long shore drift cells switched to divergent and

sedimentation changed to being wave-dominated, (Reijers, 1997). Deposition of paralic

sediments fully began in the Niger Delta Basin at this time and as the sediments prograded south,

the coastline became progressively more convex seaward.

2.1.6 Depo-belts

Deposition of the three formations occurred in each of the five off lapping siliciclastics

sedimentation cycles that make up the Niger Delta. These cycles (depo-belts) are 30-60

kilometers wide, prograded south-westward 250 kilometers over oceanic crust into the Gulf of

Guinea (Stacher, 1995). These are defined by syn-sedimentary faulting that resulted from the

different rates of subsidence and sediment supply (Doust and Omatsola, 1990). Each depo-belt is

a distinct unit that corresponds to changes in regional dip of the delta. The depo-belts are

Page 21: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

8

bounded landward by growth faults and seaward by large counter-regional faults or the growth

fault of the next seaward belt (Evamy, Doust and Omatsola, 1990).

Five main depo-belts are generally recognized, with each of them exhibiting their own

sedimentation, deformation, and petroleum history (Doust and Omatsola, 1990). The northern

delta province, which overlies relatively shallow basement, has the oldest growth faults that are

generally rotational, evenly spaced with increased steepness seaward. The central delta province

has depo-belts with well-defined structures such as successively deeper rollover crests that shift

seaward for any given growth fault. The distal delta province is the most structurally complex

due to internal gravity tectonics on the modern continental slope.

2.1.7 Hydrocarbon Source

Much discussion has been made about the source rock for petroleum in the Niger Delta. The

main possibilities including variable contributions from the marine shale inter-bedded with

paralic sandstone in the Agbada Formation and the marine Akata shale. Based on organic matter

content and type (Evamy, 1978) proposed that both the marine shale (Akata Formation) and the

shale inter-bedded with paralic sandstone (Lower Agbada Formation) were the source rocks for

the Niger Delta oils.

However, Stacher proposes that the Akata Formation is the only source rock volumetrically

significant and whose burial depth is consistent with the depth of the oil window as well as the

level of maturity of the oil.

2.1.8 Reservoir Rock

Petroleum in the Niger Delta is recovered from sandstone and unconsolidated sands

predominantly in the Agbada Formation. The depositional environment and the depth of burial

control the characteristics of the reservoirs in the Agbada Formation. Reservoir rocks are

frequently Eocene to Pliocene in age, and are often stacked (Evamy, 1978). Based on reservoir

geometry and quality, Kulke describes the most important reservoir types as point bars of

distributary channels and coastal barrier bars intermittently cut by sand-filled channels. The grain

size of the reservoir sandstone is highly variable with fluvial sandstones tending to be coarser

than their delta front counterparts; point bars fine upward, and barrier bars tend to have the best

grain sorting. Much of this sandstone is nearly unconsolidated, some with a minor component of

Page 22: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

9

argillo-silicic cement (Kulke, 1995). Porosity only slowly decreases with depth because of the

young age of the sediment and the coolness of the delta complex.

Figure 2. 1: Schematic play map showing the Niger Delta Depo-belts.

2.2 GRAVITY SEDIMENT FLOW

The movement of mixture of particles and water down a slope as a result of the influence of

gravity is known as sediment gravity flow (Middleton and Hampton, 1973). There are four major

types of sediment gravity flow which include; Grain flow, Fluidised sediment flow, Debris flow

and Turbidity currents.

Grain flow describes grains held in suspension by grain to grain collisions. For fluidised

sediment flows, grains are held in suspension by inter-granular flow and fluid escaping upward

through the grains as they settle. In debris flow however, grains are held in suspension by matrix

strength. Grains are held together in turbidity current by fluid turbulence. Sediment gravity flows

have different forms of support mechanisms. These support mechanisms depends some variables

Page 23: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

10

such as flow conditions, the concentration and types of particles, and grain-size distribution of

the particles in the flow (Mulder and Alexander, 2001).

In this study, Turbidity current flow and Debris flow will be reviewed since they are the main

types of gravity sediment flow responsible for deposition of turbidite sands such as those seen in

offshore Niger Delta. These mechanisms are similar but have significant differences as seen in

Figure 2.2 which shows the differences between transportation and depositional processes for

turbidity current flow and debris flow.

Figure 2. 2: Differences in transport and deposition by turbidity currents and debris flow (after

Shanmugam, 2000).

2.2.1 Turbidity Currents

2.2.1.1 Formation

Turbidity currents are Newtonian flows in which the sediments are buoyed by turbulence in the

current. This current moves down slopes due to gravity and density difference between the flow

and the surrounding ambient fluid. The flow loses its ability to support the sediment with coarse

and dense grains when the velocity of the turbulence reduces. The coarse and denser grains are

therefore the first to settle out from suspension (Middleton, 1993; Shanmugam, 1997; Boggs,

Page 24: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

11

2006). Turbidity currents can occur in any part of the system, be it proximal or distal. Turbidity

currents can also occur above debris flow due to flow transformation in density-stratified flows.

2.2.1.2 Morphology

Turbidity currents are made up of a head, body and tail (figure 2.3). The thickness of the head of

turbidity current is two times the rest of the flow and is defined by intense turbulence. The body

of the turbidity current is stable and uniform as well as characterised by steadier flow. It however

moves faster than the head. The concentration of sediments in the tail diminishes rapidly when it

mixes with the surrounding water and becomes more dilute (Boggs, 2006).

Figure 2. 3: Structure of head and body of turbidity current advancing into deep water (after

Boggs, 2006).

2.2.1.3 Deposits

Sediments which are deposited by turbidity currents are called turbidites. Turbidity currents are

defined by the high concentrations of sediments they have. They tend to form thick bedded

successions which consist of coarse-grained sandstones or gravel. The sedimentary structures

which are from high density flow with coarse grains may grade upward to finer grained deposits.

These expose traction structures such as laminations and small-scale cross bedding. These kinds

of turbidites are normally deposited in the main submarine fan transport channel.

Page 25: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

12

Low density flows are associated with low sediment concentration. Deposits from these are

characterised by thin bedded, graded deposits with lamination and cross-bedding. These

turbidites characteristically represent over bank deposits or thin sheet deposits which is further

away from the source (Lowe, 1976; Boggs, 2006).

Turbidite sediments which are coarse-grained, massive and poorly laminated are those whose

site of deposition is close to the source within the main transport channel where suspended

sediment concentrations are high. Coarse-grained turbidites are deposited within the main

channel and can be also observed at considerable distance from the source. There may also be

deposition of thin, fine-grained turbidites near the source, where turbidity currents overflow the

banks of a channel. Away from the source, turbidity current deposits become progressively more

dilute and spread out over the seafloor (Boggs, 2006).

2.2.1.4 Turbidite Models

The Bouma sequence describes the ideal sequence of sedimentary structures in a turbidite beds

(figure 8) (Bouma, 1962). This ideal sequence comprises five structural units labeled as Ta, Tb,

Tc, Td and Te which are stacked in vertical sequence. The layer “Ta” is the lower divisions of

the Bouma sequence that may be structureless or graded to granule. “Tb” is the second division

of the Bouma sequence with parallel-laminated sandstone. The third division of the sequence is

“Tc” which is made up of current rippled laminated sandstone. Next division is the “Td”,

containing parallel laminated finer-grained and silty deposits. The last division of the Bouma

sequence “Te”, is a pelitic division. The complete Bouma sequence is rarely perceived at an

outcrop. The reason for this is the fact that the top layers may have been eroded away as a result

of turbidity flows of high sediment concentration that have ability to be erosive (Mulder and

Alexander, 2001).

The “Ta” and “Tb” units are frequently observed in thick, coarse-grained turbidites whereas “Tc”

and “Te” units are normally absent or poorly developed in thick, coarse-grained turbidites. The

Bouma sequence is still a subject of discussion and doubt to some geologists. The “Te” pelitic

unit may be hemi-pelagic mudstone which is not part of the turbidite sequence (Figure 2.4). In

most turbidite sequences, the “Td” with parallel laminated unit may be absent, thus the turbidite

beds will only be made up of only a lower parallel-laminated unit (Tb) and an upper cross-

Page 26: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

13

laminated unit (Tc) (Boggs, 2006). Middleton and Hampton (1973) proposed that the entire

sequence is a product of turbidity current. Lowe (1982) is of the view that the “Ta” division is

not a member of the Bouma sequence. According to Lowe, the Ta division is considered as a

deposit of high density turbidity current, while “Tb”, “Tc” and “Td” divisions are considered to

be deposits of low density turbidity current (Figure 2.4). According to Shanmugam (1997), the

“Ta” is considered as turbidity current if it is normally graded, otherwise it is a product of a

sandy debris flow. “Tb”, “Tc” and “Td” divisions are considered to be deposits of bottom-current

reworking.

Figure 2. 4: Ideal Bouma sequence showing Ta, Tb, Tc, Td, and Te divisions ( after Shanmugam,

1997).

2.2.2 Debris Flows

Flow that is described by high viscosity and sediment concentration is known as debris flow. It is

also classified as plastic flow as it may often be reinforced by a matrix of sand or mud

(Middleton, 1993). This kind of flow can occur in both subaerial and subaqueous environments

as the trend in the Niger Delta development period.

Debris flows with slow-moving laminate slurry can originate on steep slopes more than 10º, but

they can continue flowing across large distance on gentle slope 5 º or less. Debris flow can also

be in the form of fast-moving semi-rigid plug of material that contains aquaplanes over a basal

Page 27: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

14

shearing layer as a result of the lack of friction. With the buildup of pore pressure in the basal

zone as well as the that resulting from water entrapment under a plug of material, a slow-moving

debris flow can be transformed into a fast moving debris flow (Stow and Johansson, 2000).

Debris flows comprise the motion of large poorly sorted combinations of clastic material. These

may range from boulder-size to fine gravel, sand, silty sand or mud matrix. The Debris flow is

characterized by a vicious frontal impact surging and flow cessation on steep slope. The total

mass of debris flow as well as the flowing muds is deposited quickly.

The cessation of movement occurs when the shear stress due to gravity becomes less than the

yield strength of the base of the moving material. The whole mass then ceases to flow and

freezes at that point (Boggs, 2006). Due to plastic rheology of debris flow, the flow freezes

immediately after shear stress becomes less than internal shear stress strength of the sediment

water mixture, then the formation of thrust fault and compressional ridges is caused by the

freezing process.

2.2.2.1 Debris-Flow Deposits

The main characteristic of debris flow deposits is the occurrence of thick, poorly sorted units

which lack internal layering. They are also poorly developed in clastic fabric, irregular mounded

tops as well as tapered flow margins (Pickering et al., 1989). Grading of debris flow is usually

poor, but both normal and reverse grading may occur (Boggs, 2006). Deposits of debris flow

material are known as debrite. Conventionally, debris flows are considered as moving mass of

rock, clay minerals and water, which may be viewed as plastic flow (Lowe, 1982).

2.2.3 Slumps

One of the many mass flows that show order and coherence is referred to as slump. Slumps are

one of the coherent mass flows and when the shear strength of the sediment on the slope is

surpassed by the slope shear stresses then there is the possible occurrence of slump. Slumps

consist of large different kinds of deformed sediments. The lithology of slumps is various, it can

be only mudstone or sandstones bed which is pulled-apart or rolled-up (Walker and Posamentier,

2006). The most important facies of slumps are mudstones whose deposition is relatively rapid.

Slumps are described by tensional fractures at the head and compression and folding at toe.

Page 28: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

15

The indication of folding and shearing is observed in sediments of slumps. Folds in slumps can

be in the given direction of slump movement. The distance of transportation of material with this

method varies widely. Transport distance of slump can vary from a few meters to hundreds of

kilometres across basin floors.

The initial deposition of sandstones in slumps is rapid therefore trapping in it a lot of fluid which

at the period has not yet been expelled. This fluid is subsequently sealed by impermeable shale

and mudstone units. As deposition continues, the lithostatic load would increase accompanied by

a rising fluid pressure for trapped fluids that are not able to escape. One key mechanism in the

formation of slumps is the occurrence of bed failure along weak planes and layers of high pore

pressure. In the course of de-watering of sediments, deposits may move a few meters so that

these sediments units would be recognised as slumps (Figure 2.6). Given that the sediments are

transported over long distances, deposits may be established as debris flow (Figure 2.6).

Figure 2. 5: Schematic illustration of head and toe of slumps.

Page 29: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

16

Figure 2. 6: Difference between slide, slump, debris flow and turbidity current process.

Slumps are generally made up of one or two beds which are characterised by un-deformed

bedding below as well as above the slump horizon and the presence of coherent beds that are

rolled-up in the interior of the slump.

2.2.4 Submarine Slope Canyon and Slope Channels

Submarine canyons and gullies are characterised by features which show a history of erosion that

are thought to have taken place on a slope. The size of a submarine canyon is generally bigger

than gullies, but there are no standardised sizes criteria to differentiate between them. Submarine

canyons are steep sided valleys looking more like escapement that incise the continental slope

and shelf. Submarine canyons serve as major channels for transportation of sediments from the

land and continental shelf to the basin floor/sea floor. The major difference between canyons and

slope channels is the full confinement of sediment gravity flows within the walls of the canyons

whereas in slope channels or gullies, the sediments are not fully confined by channel walls

(figure 2.8).

Levee channel deposits are generally witnessed outside the channel or gullies due to the fact that

the channel does not fully confine the flow of the sediments. In canyons, where the flows are

completely confined, levee formation does not take place. Both canyons and slope conduits can

be made deeper by the passage of turbidity currents, but canyons walls experience mass wasting

Page 30: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

17

events and tend to grow wider as compared to slope channels. The section of high sinuously

channel deposits are seen in the canyon trace which is positioned above the canyon floor.

Figure 2. 7: Schematic illustration of slope and deep marine environments.

Figure 2. 8: Illustration of section views across a A) canyon B) slope channel or gully ( after

Walker, 1984).

Channels are characterised by sharp erosional bases and up-dip. Channel fill is mostly confined

to the depression and they are frequently eroded into the sea floor. Merged stacking pattern of

channels are typically observed in canyons and valleys that are mid-slope and proximal fill of

these channels. The source area as well as the sedimentary slope determines the nature of the

channel deposits. As a result of this dependency, the sands are less likely to be merged and fine

Page 31: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

18

sediments may be inter-bedded in between sands deposits. At the base of slope where channels

emerge from canyons and valleys in the slope, channel widths may be in the range of 3km to

about 200km (Posamentier and Kolla, 2003).

Most of the deep marine channels are characterized by meandering systems that have moderate

to high sinuously feature. High-amplitude seismic reflection is determined by sand rich channel.

Elongate shape of channel is shaped in the down dip area. The shape of channel in the form of

gull wings is formed by proximal levee deposits closer to the canyon mouth. Erosion of channels

frequently occurs in the mid fan to distal parts of the base of shelf margin slope.

Description and estimation of turbidity reservoir channels are very challenging, even for

occasions in which high quality seismic data is available. This is principally due to variable

facies and complex stratigraphy of turbidity channel. Diverse processes make channel sinuously

and these include; erosion, lateral stacking accretion and sea floor topography. The distribution

of reservoir facies is predominantly dependent on the different style of sinuosity of the channel.

Continual cutting and filling structures can be seen in many turbidity channels. These

developments have major repercussions for reservoir and non-reservoir distribution (Mayalla,

2006). Four main facies can be recognised in a turbidity reservoir channel (Mayalla, 2006).

These include:

Basal lag of coarse sand/conglomerate, mud-clast conglomerate or shale drapes.

Slumps and debris flows which may have been derived locally from collapse of channel

walls or as a result of long distance transportation.

High net-gross stack channels from the best quality reservoirs.

Low net to gross sinuous channel levee caps that the channel fill and which may spill

away from the original erosional confinement. Additionally, during high stand periods,

channel is occupied by mud-dominated deposits.

2.2.5 Submarine Canyon

The specifications for the classification of modern canyons are comparatively narrow, deeply

engraved, steep-sided, often sinuous valley showing a V-shaped cross-section. Most canyons

Page 32: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

19

originate close to the continental shelf break and in general extend to the basin. Canyons are also

created near the mouths of the large rivers such as the Mississippi river. The significant factors

that control the formation of submarine canyons include the tectonic setting and changes of sea

level. The seismic reflection pattern of mud-dominated canyon is described by moderate to low

amplitude, discontinuous disordered contorted seismic reflection, which show mass transport

sediments like slides and debris flows (Posamentier and Kolla, 2003)

Isolated threads of sandy channels are also detected in seismic section of canyons, which are

characterised by high amplitude continuous or discontinuous seismic reflections at and close to

the canyon base or embedded within canyon fill near the canyon base. After the canyons or

channels have been bandoned, fine grain sediments are deposited in most of the canyons. When

the level of the sea rises, sediment supply of canyons is in the form of slump and slide material

from the canyon or slope channel walls with extra contribution of hemi-pelagic mud and silt that

steadily settle down over the area covered by the slope and in the canyon. During rapid sea level

rise, mass wasting of sediments fills the bulk of canyons thus making the fill principally part of

the transgressive and high stand systems tracts.

Facies of canyon sediments ranges from debrite to turbidite deposits. Mud-dominated deposits of

canyons are characterised by debris flows with minimal interior organization. Isolated channel

deposits can be seen within canyons and these are marked by turbidite facies. The units in the

Bouma facies sequence A and B, are frequently found in isolated channel deposits with the

absence of C, D and E units due to erosion by turbidity currents which passed through channel.

There is often the formation of isolated channel with levees in the middle or upper part of the

canyon fills or within the confines of the canyon walls. This situation can be shaping in as

turbidity flow sweeps across the relatively flat floor of a incompletely filled canyon.

2.3 TYPES OF PETROPHYSICAL LOGS

2.3.1 Resistivity Log

Resistivity logging is a method of well logging that works by characterising the rock or sediment

in a borehole by measuring its electrical resistivity. Resistivity is a fundamental material property

which represents how strongly a material opposes the flow of electric current. In these logs,

resistivity is measured using electrical probes to eliminate the resistance of the contact leads. The

Page 33: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

20

mud or fluid in the well must have electrical conductance in order to allow these types of logs to

be run.

Resistivity logging is sometimes applied in mineral exploration and water-well drilling, but most

commonly for formation evaluation in oil and gas industry. Most rock materials are essentially

insulators, while their enclosed fluids conduct electric current. Hydrocarbon fluids however do

not conduct electricity due to their infinite resistive nature. When a formation is porous and

contains salty water, overall resistivity will be lower. When the formation contains hydrocarbon,

or contains very low porosity, its resistivity will be higher. Higher resistivity values may indicate

a hydrocarbon bearing formation.

Fluids used during drilling sometimes invade the formation and the resistivity from this invaded

zone is measured by the tool as well as a deeper resistivity where there has not been any fluid

invasion. For this reason, several resistivity tools with different investigation lengths are used to

measure the formation resistivity. If water based mud is used and oil is displaced, deeper

resistivity logs (or those of the "virgin zone") will show higher resistivity than the invaded zone.

If oil based mud is used and water is displaced, deeper logs will show higher conductivity than

the invaded zone. This provides not only an indication of the fluids present, but also, at least

qualitatively, whether the formation is permeable or not.

2.3.2 Gamma Ray Log

Gamma ray logging is a method of measuring naturally occurring gamma radiation to

characterise the rock or sediment in a borehole or drill hole. It is a wire-line logging method used

in mining, mineral exploration, water-well drilling and for formation evaluation in oil and gas

industry. Different types of rocks emit different amounts and different spectra of natural gamma

radiation. Shales typically emit more gamma rays than other sedimentary rocks, such as

sandstone, gypsum, salt, coal, dolomite, or limestone. This is due to the fact that radioactive

potassium is a common component in the clay and the amount of clay is directly proportional to

the amount of radiation released. The cation exchange capacity of clay causes it to adsorb

uranium and thorium. This difference in radioactivity between shales and sandstones/carbonate

rocks allows the gamma tool to differentiate between shales and non-shales.

Page 34: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

21

The gamma ray log, like other types of well logging processes is conducted by lowering an

instrument down the drill hole and recording the amount of gamma radiations relative to depth.

Gamma radiation is generally recorded in API units, a measurement originated by the petroleum

industry. Gamma logs are attenuated by diameter of the borehole because of the properties of the

fluid filling the borehole, but because gamma logs are most often used in a qualitative way,

corrections are usually not necessary.

Some elements and their decay chains are responsible for the radiations that are emitted by rocks.

These include: potassium, thorium and uranium. Shales often contain potassium as part of their

clay content, and tend to absorb uranium and thorium as well. A common gamma-ray log records

the total radiation, and cannot distinguish between the radioactive elements, while a spectral

gamma ray log is able to distinguish between them.

For standard GR logs the value measured is calculated from thorium in ppm, Uranium in ppm

and potassium in percent. GR API = 8 × Uranium concentration in ppm + 4 × thorium

concentration in ppm + 15 × potassium concentration in percent. Due to the weight of uranium

concentration in the calculation anomalous concentrations of uranium can cause clean sand

reservoirs to appear shaley. Spectral Gamma ray is used to provide an individual reading for each

element so anomalies in concentration can be found and interpreted.

An advantage of the gamma log over some other types of well logs is that it works through the

steel and cement walls of cased boreholes. Although concrete and steel absorb some of the

gamma radiation, enough travels through the steel and cement to allow qualitative

determinations.

Sometimes non-shales also have elevated levels of gamma radiation. Sandstone can contain

uranium mineralization, potassium feldspar, clay filling, or rock fragments that cause it to have

higher-than usual gamma readings. Coal and dolomite may contain absorbed uranium.

Evaporites deposits may contain potassium minerals such as carnallite. When this is the case,

spectral gamma ray logging can be done to identify these anomalies.

Page 35: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

22

2.3.3 Density Log

Medium energy gamma rays are emitted into formation and detected. The number of these rays

detected depends on amount of Compton Scattering which depends on electron density of

formation. The electron density is related to bulk density.

To determine porosity, the medium-energy gamma rays emitted into the formation collide with

electrons in the formation. At each collision, a gamma ray loses some, but not all, of its energy

to the electron and then continues with reduced energy. This type of interaction is known as

Compton scattering. The scattered gamma rays reaching a detector at a fixed distance from the

point of emission are counted as an indication of the formation density. The number of Compton

scattering collisions is related directly to the number of electrons in the formation. Therefore, the

response of the density tool is determined essentially by the electron density (the number of

electrons per cubic cm) of the formation.

Electron density is related to the true bulk density in gm/cc, which in turn depends on the density

of the rock matrix, the formation porosity and the density of the pore fluids.

For a pure element, the electron density index, which is proportional to the electron density, is

defined as:

A

Zbe

2*

where:

ρe is the electron density index

ρb is the bulk density

Z is the atomic number of the element

A is the atomic weight of the element.

The density tool is calibrated in a fresh water filled limestone formation of high purity to give

an apparent density that is related to the electron density index by ρa = 1.0704ρe - 0.1883.

For liquid filled sandstones, limestones and dolomites, the apparent density read by the tool

Page 36: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

23

is practically equal to bulk density of the formation. The bulk density of a clean formation is

given by: 1mafb

This equation can be solved for porosity, but the matrix and fluid densities must either be known

or assumed. In most cases, the fluid density is assumed to be 1.0 gm/cc whereas the density for

sandstone matrix is assumed to be 2.65gm/cc. The depth of investigation of the density log is

relatively shallow. Therefore, in most permeable formations, the pore fluid is considered to be

the drilling mud filtrate along with any residual hydrocarbons. When residual hydrocarbon

saturations are fairly high, this can cause the calculated porosity values to be greater than the true

porosity. This effect should always be corrected.

2.3.4 Neutron Log

In this method, high energy neutrons are emitted into formation. The number of neutrons that are

captured are detected and the point of their capture from the transmission point recorded by two

receivers. This effect is mainly due to the amount of hydrogen in formation. This wire-line log

method is used in conjunction with the density log to indicate presence of gas in formation,

identification of GOC (gas oil contact) as well as identify the lithology of the formation.

The principle behind the neutron logging method is as follows; A neutron sonde which contains

a radioactive source emits fast neutrons into the formation. These neutrons loose energy as they

collide with the nuclei of the atoms in the formation and this process continues until the energy

of the neutrons has declined to the thermal energy. A peak in the distribution of thermal neutrons

will be created at a shorter or longer distance from the source, depending on the effectiveness of

the formation to slow the neutrons.

The ability of the formation to slow down neutrons is determined largely by the amount of

hydrogen present. This is because the nucleus of a hydrogen atom, a proton, has approximately

the same mass as a neutron, and causes the maximum amount of energy to be lost by the

neutrons for each collision.

Two neutron detectors are used to locate the position of the peak in the thermal neutron

distribution. The distance of this peak from the neutron source is interpreted in terms of the

Page 37: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

24

amount of hydrogen present in the formation. This can then be translated into the amount of

hydrocarbon or water present.

2.3.5 Sonic Log

The typical sonic logging tool will consist of transmitters and receivers placed in the wellbore.

The transmitter generates pressure pulse in the borehole fluid. When this pulse reaches the

borehole wall, Primary and Secondary wave-fronts are generated in the formation. As the waves

travel away from the source in the formation, the portions near the wellbore create pressure

disturbances in the borehole fluid. These fluid waves are called head waves and they move

at the same velocity as the wave-fronts that created them. It is these head waves that are recorded

by sonic logging tools.

2.4 METHODS FOR PETROPHYSICAL ANALYSIS OF THIN BEDS/TURBIDITES

The recent discovery of significant amounts of hydrocarbons in thin beds has necessitated the

need to re-focus on obtaining a better understanding of these formations. Much work has been

carried out all in an effort to increase confidence in the petrophysical analysis of these kinds of

reservoirs. The most common among these techniques include: 1. Thin bed analysis using

resistivity borehole image tools. 2. Resistivity Anisotropy.

These are discussed below:

2.4.1 Thin Bed Analysis Using Resistivity Borehole Image Tools

The resistivity borehole image method is one of the techniques used in reservoir characterisation

of turbidite sand sequences. This technique allows for the enhancement of the resolution of

standard logs. This can be achieved by using high resolution shallow resistivity log recorded by

borehole imager. This technique improves the normal log resolution enables better understanding

of the true layer properties.

2.4.1.1 Workflow

1. Input of resampled depth matched logs.

2. Delineate the bed boundaries using the resistivity log.

3. The various lithofacies are identified and classified.

Page 38: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

25

4. Filters are created for each facies.

5. Square logs are generated by applying the filters to each of the logs.

6. Optimization of iteration

7. The output logs have higher resolution. These include the RT, GR, RHOB, and NPHI logs.

8. Volumetric computation of shale volume, porosity and saturation are then carried out.

2.4.1.2 Bed Boundary Identification

For this method, the boundaries are delineated using inflection points in SRES data. This can be

achieved by manual methods or by the use of software. The software delineates the bed

boundaries using maximum slope change (second derivative method) in SRES log.

2.4.1.3 Classification and Identification of Different Lithofacies

In this method, the litho-facies are subdivided into three main litho-facies. These include sand,

silt, shale and two other supplementary facies labelled wet and tight. Litho-facies can be

recognised by the use of normal logs and volume of shale. Higher resistivity indicates sands,

moderate resistivity indicates silt and low resistivity indicates shale. The density and the neutron

logs are used to identify the hydrocarbon bearing zones. Oil Based Mud invaded wet sand and

silt can be differentiated by the deep resistivity curve. Low invaded water wet sand and shale can

be distinguished using volume of shale curve. The litho-facies model of sand, silt and shale can

be defined by using threshold values of shale volume as well as standard input logs. The deep

resistivity log and the bulk density are used to delineate the auxiliary litho-facies which may be

wet or tight.

2.4.1.4 Optimization of Iteration

After generation of the initial set of square logs optimiser would check whether the squared logs

are corresponding to the standard log from which they were generated or not Given that they do

not match, then optimiser iteratively changes the average value for each log for each facies to get

a best match.

Page 39: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

26

The generated data is adjusted by the use of the parameters gotten from core data. The

petrophysical parameters are then computed using the adjusted log values.

2.4.1.5 Limitations

1. The computation is based on modeled curves, in which the facies classification is completely

dependent on the person interpreting.

2. Hard streaks may also be picked as hydrocarbon bearing sand zones.

3. The resolution achieved from these operations is still not able to capture sand laminae that are

less than an inch. This may lead to resource underestimation.

4. Zones with thin shale layers within sand may also be over looked therefore overestimate the

net sand.

5. The sampling interval of the final output becomes very small or extremely fine. This means it

cannot be used in geo-cellular model building for property population as the number of cells in

the model goes to 100’s of million. The essence of the technique is lost in up-scaling for realistic

and practically workable geo-cellular model.

2.4.2 Resistivity Anisotropy Method

The 3D resistivity anisotropy method was developed as an improvement of the resolution ability

of the image logs. This enabled the study of sand beds which are thinner than the resolution of

the image logs. The resistivity of the sand layers is measured in the horizontal as well as the

vertical directions that is both parallel and perpendicular to the sand and shale layers.

The horizontal resistivity, Rh is generally affected by the presence of conductive shale layers as

it views the layers as resistors in parallel. The resistivity is therefore decreased. The vertical

resistivity, Rv on the other hand views the sand-shale layers to be series resistors and measures

the resistivity as such. By using the Rv (vertical resistivity) and Rh (horizontal resistivity),

resistivity of the sand and shale in both vertical and horizontal directions are estimated using

established equations. The set of equations used to achieve this are listed below:

Page 40: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

27

sd

sd

sh

sh

h R

V

R

V

R

1…………….. (1)

sdsdshshv RVRVR ** ……… (2)

1 sdsh VV …………………..…. (3)

The equations are established on the assumptions that sands are isotropic whereas shales show

anisotropy (Transversely Isotropic). Rv shale and Rh shale are the critical input parameters for the

estimation of Rsd. These are measured from the clean shale zone.

2.4.2.1 Generalised flowchart of laminated shaly sands

The porosity, volume of shale and water saturation are the key parameters needed for resource

estimation of sand layers. Volume of shale is the most critical of all the parameters and controls

the other two parameters. It is therefore imperative that the value for Vsh is accurate. This is

achieved by using more than one technique in estimation of Vsh and also needs to be

corroborated with external data such as core data. The values of Vsh and total porosity are used in

the Thomas Stieber method to find shale distribution.

For this model, there are three categories of shale distributions which include.

1. Laminated- layer of shale found in the sand.

2. Dispersed shale which is found on sand grains or pore filling.

3. Structural sand sized shale particles in load bearing position within the rock.

The shale distribution as well as the porosity can be computed form Thomas-Stieber cross-plot,

where Volume of shale is plotted on X-axis and the total porosity on Y-axis. Based on the

position of data points in this cross plot, laminar (Vl), dispersed (Vd), structural (Vs) shale

volumes and porosity of sand laminae can be established using following equations.

Page 41: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

28

For the cases where the amount of dispersed shale is small, then the Archie equation can be used

directly to estimate the hydrocarbon saturation. Other equations that can be used given that the

shale volume is significant include the Waxman-smith equation.

2.4.2.2 Limitations

1. The presence of calcareous sand streak or any other electrically anisotropic layer (like calcite)

will enhance the Rv. This leads to an overestimation of Rsd. This higher Rsd will give greater

saturation.

3. Silt is mostly present in clastic environments but the presence of any third facies like silt or

calcite is not taken into consideration by this technique. In view of the effects of a third facies in

the estimation of Rv and Rh, the computation becomes significantly more difficult.

4. Sand is considered to be isotropic in this method. It is however not true since laminations

(planar and cross-bedding) are quite common. The lack of consideration of internal anisotropy

renders this method less accurate and this leads to over-estimation of hydrocarbon volume.

5. Higher shale anisotropy may also lead to an increment in Rv in the shaly sand reservoir and

may therefore push down the contact by a few meters if existent near the contact.

Page 42: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

29

2.5 MONTE CARLO SIMULATION/ RISK ANALYSIS SOFTWARE

2.5.1 Introduction

The need to quantify uncertainty associated with petrophysical parameters determined in the

field has been an essential part in the development of Petrophysics. Many attempts have been

made to fully understand and describe the various uncertainties associated with petrophysical

parameters. The application of Monte Carlo simulation method to quantify uncertainties has

brought great enhancement in the accuracy of results from uncertain inputs. The technique was

first applied in a manufacturing company considering a new product line and has since been

adopted by other industries including the oil and gas industry.

To apply this method, the estimate of probability distributions of input parameters such as

porosity and water saturation are determined. The distributions are then combined through

simulation to estimate a probability distribution of the output parameter, say the STOOIP (Stock

Tank Oil Originally in Place). A decision can then be made on whether to move to the next phase

of the project, given the probability of certain outcomes. Monte Carlo has also been applied in

the simulation of economic models for exploration prospects, to estimate risk and manage

performance associated with drilling.

The following outlines the various aspects of simulation and its importance as a tool for

uncertainty determination.

2.5.2 Risk Simulator

Risk Simulator is a Monte Carlo simulation, forecasting, and optimization software. It is written

in Microsoft .NET C# and functions with Excel as an add-in. The different functions in software

applications are briefly described below.

2.5.2.1 Simulation Module

The Simulation Module allows you to:

Run simulations in your existing Excel-based models

Generate and extract simulation forecasts (distributions of results)

Perform distributional fitting (automatically finding the best-fitting statistical

Page 43: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

30

distribution)

Compute correlations (maintain relationships among simulated random variables)

Identify sensitivities (creating tornado and sensitivity charts)

Test statistical hypotheses (finding statistical differences between pairs of forecasts)

Run bootstrap simulation (testing the robustness of result statistics)

Run custom and nonparametric simulations (simulations using historical data without

specifying any distributions or their parameters for forecasting without data or applying

expert opinion forecasts)

2.5.2.2 Forecasting Module

The Forecasting Module can be used to generate:

Automatic time-series forecasts (with and without seasonality and trend)

Automatic ARIMA (automatically generate the best-fitting ARIMA forecasts)

Basic Econometrics (modified multivariate regression forecasts)

Box-Jenkins ARIMA (econometric forecasts)

GARCH Models (forecasting and modeling volatility)

J-Curves (exponential growth forecasts)

Markov Chains (market share and dynamics forecast)

Multivariate regressions (modeling linear and nonlinear relationships among variables)

Nonlinear extrapolations (curve fitting)

S-Curves (logistic growth forecasts)

Spline Curves (interpolating and extrapolating missing values)

Stochastic processes (random walks, mean-reversions, jump-diffusion, and mixed

processes)

Page 44: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

31

2.5.2.3 Optimisation Module

The Optimisation Module is used for optimizing multiple decision variables subject to

constraints to maximize or minimize an objective. It can be run as a static optimization, as a

dynamic optimization under uncertainty together with Monte Carlo simulation, or as a stochastic

optimisation. The software can handle linear and nonlinear optimizations with integer and

continuous variables.

The Real Options Super Lattice Solver (SLS) is another standalone software that complements

Risk Simulator, used for solving simple to complex real options problems.

Page 45: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

32

CHAPTER 3

MATERIALS AND METHODS

3.1 SUMMARISED FLOWCHART OF METHODOLOGY

Gamma Ray Log

Density Log

Neutron Log

Resistivity Logs

Delineate Gross Sand

Delineate Pay zones

Estimate Total Porosity

Delineate Net Pay

Estimate Volume of

shale (Vsh)

Estimate Effective

Porosity

Calculate Permeability Estimate Water

Saturation (Sw)

Establish Porosity

Cutoff

Establish Sw Cutoff

Calculate the Stock Tank Original Oil in

Place

Pick out Permeability-

Porosity Data

Establish Flow Units

Run results on @Risk

Software

Plot Data Calculate RQI and Фz

Sensitivity Analysis

Correlate Flow Units

Deterministic Result

Probabilistic Result

+

Figure 3. 1: Flow chart showing the processes involved in analysis of data.

Page 46: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

33

3.2 OUTLINE OF METHODOLOGY

The approach adopted for analysis of the corrected petrophysical log data is as follows:

1. The gamma ray log was used in Techlog to delineate the sand zones. This was done after

setting the baseline value of gamma ray reading for sand to 75gapi. The gamma ray log is

also employed in establishing the volume of shale for each of the gross sand zones

delineated. This is achieved by first calculating the gamma ray index and then using the

gamma ray index in the Dressler Atlas equation to evaluate the volume of shale.

2. The density log was used to estimate the total porosity for all the gross sand zones. The

estimated porosity is then corrected using the relationship between the core and the log data.

The porosities are averaged over the sand zones to generate a more representative porosity.

The effective porosity is determined from the corrected porosity by adjusting the calculated

porosity for volume of shale present.

3. The resistivity as well as density and neutron logs are used in techlog log-view to obtain

zones of hydrocarbons. These logs are used to establish the zones of hydrocarbons - the net

pay zone. The zones with hydrocarbons are recognized due to their higher resistivities. This

is especially so when the deep resistivity log reading is relatively higher than the shallow

resistivity reading. The nature of this type of reservoir does not allow the resistivity

differences to show clearly though.

4. The permeability within the gross sand zone is calculated from established equations. Some

of the parameters involved in this calculation include: effective porosity, irreducible water

saturation and cementation factor.

5. The permeability is used to establish net pay cutoff for porosity. The cutoffs are established

as deterministic cutoff which is fixed at one value and the probabilistic cutoff which ranges

from a lower limit to an upper limit within the distribution fitting during @Risk simulation.

6. The permeability is used with the porosity to establish the flow units within the reservoir

sands. This is done to establish the possible flow path of liquids during production as well as

to establish the best intervals for perforation.

Page 47: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

34

7. The sensitivity of the calculated stock tank oil originally in place to total porosity, shale

volume and water saturation is assessed using sensitivity analysis tool in @Risk simulator.

This is to establish how these input parameters affect the final evaluated STOOIP.

3.3 DETERMINATION OF LITHOLOGY FROM WIRE LINE LOGS

The interpretation of the log data was carried out for each of the wells using all the logs that were

acquired in the systematic methodology adopted above. This was done after the core data

obtained alongside the log data was used to correct the log data. Since there was core data for

only one well, the correction was first made for that well before it was extended to the other

wells.

The lithology basically of sand and/or shale was corroborated and compared at given depths to

the gamma ray logs horizontally. These interpretations were also carried out for other logs which

include: resistivity, sonic and density-neutron. The lithology was noted and matched to the core

for depths for which all the logs gave the same interpretation. There was quality checking in

areas where the various logs gave incoherent interpretations. This was done in order to identify

reasons for the errors as well as to correct the mismatch in the interpretations.

3.4 ESTIMATION OF PETROPHYSICAL PARAMETERS

The petrophysical parameters of interest were estimated using well established methods and

methods which have been known to work perfectly in the Niger Delta Petroleum province. The

petrophysical parameters of interest were those that were to be used in the estimation of the

reserves in the area of study. The procedure used for these estimations is described in the

following:

3.4.1 Net Pay Thickness (Net/Gross)

Net to Gross ratio is the ratio of the sum of the thicknesses of the net pay zone to the total

thickness or depth of the well. The gross thickness is gotten by measuring from the top of the

well to the bottom while for the net thickness is composed of the aggregation of delineated net

pay zones as established with the various petrophysical logs.

From this point, the ratio of the net to gross reservoir thickness is estimated for each of the wells.

An average net to gross is calculated to include the impact of all the wells net to gross values.

Page 48: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

35

3.4.2 Shale Volume

It is often expected that the zones delineated by the gamma ray log as sand are not actually 100%

sand but a combination of predominantly sand and some amount of shale or clay. The volume of

shale (Vsh), in these sand bodies can be estimated by means of the following equations.

The gamma ray index IGR is first calculated from the gamma ray log as presented below:

minmax

minlog

GRGR

GRGRIGR

…………………. a

Where:

IGR is the gamma ray index

GRlog is the Gamma Ray Log reading of the formation

GRmin is the Gamma Ray for a complete sand matrix zone (Clay free zone)

GRmax is the Gamma Ray for a complete shale zone (100% Clay zone)

The Volume of shale is then determined using the gamma ray index obtained above in the

following: Dressler Atlas equation for calculating volume of shale for unconsolidated sandstone.

12*083.0*7.3

GRI

shV …………………. b

3.5.3 Porosity

Porosity is the ratio of the volume of pore spaces in a rock to the total volume of the rock.

Primary porosity is the porosity developed during the original sedimentation process by which

the rock was formed. In reports, it is often referred to in terms of percentages, while in

calculations a decimal fraction is used. The porosity of the reservoir in this report is estimated by

using the density log. The porosity of the reservoir was calculated as shown in the following

equations:

Page 49: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

36

fma

bmaTD

Where,

ФT =ФTD = Total Porosity estimated from density log

ρma = Matrix (or grain) density

ρb = Bulk density (as obtained from the tool and hence includes porosity and grain density)

ρf = Density of the fluid.

Following the above calculation, the effective porosity was then determined using the equation

given below:

fma

shmash

fma

bmae V

*

Where:

Фe = Effective porosity

ρsh = Density of shale

fma

shmashV

* is the Clay bound water

(ρma = 2.65g/cc, ρf = 1.0g/cc, ρsh = 2.6g/cc)

3.4.4 Water Saturation

Water saturation refers to the ratio of water volume to that of the pore volume of the rock. Water

bound to the clay is not inclusive. This means shale corrections must be made if there is the

presence of shale. This is taken care of during the determination of the shale volume.

Page 50: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

37

Water saturation is estimated from the effective porosity and the resistivity logs. Just as it is done

for porosity, saturation data is usually stated in percentage units but for the sake of calculations

the decimal fraction is used. Porosity refers to the capacity of the rock to hold fluids whereas

saturation is the fraction of this capacity that is actually filled with any particular fluid. The

hydrocarbon saturation can be calculated directly using the water saturation.

The Archie Equation is employed in the estimation of water saturation. The irreducible water

saturation is estimated using the water saturation and the effective porosity. The bulk water

volume is first calculated for each depth of the reservoir and the lowest constant value is

obtained as the irreducible water saturation. The equations are as shown below:

n

t

m

e

ww

R

RaS

1

*

*

(a = 1.0, m = 2, n = 2)

Where:

Rt = Deep Resistivity

Rw = Down hole water resistivity

Фe = Effective porosity

Sw = water saturation

a = Archie’s exponent

m = cementation factor

n = Saturation exponent, it is the gradient of the line defined on the plot.

wSBVW *

BVW is Bulk Volume Water

Sw is Water saturation

Page 51: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

38

3.4.5 Net Pay

The porosity cut off is determined by the use of the permeability-porosity cross-plot and

applying the rule of thumb for base permeability to the estimation of the porosity cutoffs. The

porosity cut off for oil zones correspond to permeability equal to 1mD whereas for the gas zones,

the permeability applied to obtain cut off porosity is 0.1mD.

The shale volume cutoff applied was 45%. The cut-off applied for water saturation was also

45%. The reservoir is defined by porosity as determined from the permeability-porosity cutoff

analysis with a shale volume of less than 45%. The reservoir is considered to contain significant

amount of hydrocarbon when the water saturation is less than 60%. The following figure shows

the determination of porosity net pay cutoff for oil.

Figure 3. 2: Graph showing the determination of porosity cutoff for delineation of pay zone.

3.4.6 Permeability

Permeability controls the ability of fluid to migrate through the reservoir. Permeability is

essential in the study of subsurface fluid movement. This is so because it is one of the most

essential parameters in the prediction of fluid flow patterns. Normally, the permeability should

increases with increasing porosity, grain size as well as improved sorting in sandstone reservoirs.

Page 52: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

39

The permeability, despite the fact that is a key parameter cannot still be obtained directly from

well logs. It is therefore estimated from indirect methods such as the use of well-established and

applicable empirical correlations. In this project the Timur equation and the Morris Biggs Oil

equation which are experimental relations are adopted to estimate the permeability. The values of

permeability obtained from these methods are then averaged as the permeability. The following

is an outline of the equations employed:

Timur Equation:

2

4.4

*8581wi

e

SK

Morris Biggs Oil Equation:

2

6

*62500wi

e

SK

Where:

K = permeability

Φe = effective porosity

Swi = irreducible water saturation

3.4.7 Hydrocarbons-in-place Volumes

Both deterministic and probabilistic approaches were adopted to evaluate the original

hydrocarbon-in-place for the reservoir. The deterministic method was carried out using the mean

weighted averages of porosity, water saturation, gross rock volumes and net-to-gross ratios

whereas the probabilistic method comprised a series of parameters with weights for which a

sensitivity analysis is run.

Page 53: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

40

3.5 CORES

The data derived from core is presumed to be more accurate than the wire line log data and it is

used to basically calibrate the log data. They are also used as a reference to corroborate the

lithology interpretation obtained from wire line logs. The parameters obtained from the cores in

essence presents proper understanding of wire line logs and provide an interpreter real

subsurface lithologies. This process describes quality control process. The following shows the

relationship between the core and log data for porosity which is used for quality control

purposes.

Figure 3. 3: Relationship between core data and log data for quality control.

Page 54: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

41

CHAPTER 4

DATA PROCESSING AND ANALYSIS

4.1 PROCESS OF EVALUATION

For the purpose of this research work, two reservoirs are analysed here. The reservoirs of interest

are the two deepest reservoirs designated reservoir 7 and reservoir 6 respectively. Reservoir 7 is

present in four wells whereas reservoir 6 is present in two wells. The deterministic values of

STOOIP is first calculated for each reservoir. The value of STOOIP obtained for deterministic

method is subjected to uncertainty analysis. To achieve this, the input parameters are fit with

distributions, the objective variable (in this case Net Pay Thickness) is chosen for different cases

and the uncertainty analysis run with the output being the STOOIP obtained from the

deterministic method.

The next stage of the analysis involve the delineation of the flow units using different methods

and finally the calculation of a deterministic STOOIP with consideration to the flow units

present. Some of the parameters needed in the evaluation are discussed below;

4.1.1 Reservoir Quality Index (RQI)

This concept was introduced by Amaefule et al. It is used to express the relationship between

porosity and permeability of a reservoir unit. This takes into consideration the pore-throat, pore

and grain distribution, and other macroscopic parameters. In using this method, permeability is

expressed in millidarcies and porosity as a fraction. RQI is expressed mathematically as:

e

KRQI

0314.0

4.1.2 Flow Zone Index (FZI)

FZI is found on the RQI versus normalized porosity plot. The FZI is the intercept of a straight

line on RQI axis at a normalized porosity value of 1. Samples with different FZI values will lie

on other parallel lines. Samples that lie on the same straight line have similar pore throat

characteristics and, therefore, constitute a flow unit. Straight lines of slopes equal to unity should

be expected primarily in clean sandstone formations. Slopes greater than one indicate a shaly

formation.

Page 55: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

42

The flow zone indicator (FZI) is a unique parameter that includes the geological attributes of the

texture and mineralogy in the structure of distinct pore geometrical facies. In general, rocks

containing authogenic pore lining, pore filling and pore bridging clay as well as fine grained,

poorly sorted sands tend to exhibit high surface area and high tortuosity, hence low FZI. In

contrast, less shaly, coarse-grained, and well-sorted sand exhibit a lower surface area, low shape

factor, lower tortuosity, and higher FZI. Different depositional environments and digenetic

processes control the geometry of the reservoir and consequently the flow zone index (Tiab, D.

2004).

4.1.3 Tiab Hydraulic Flow Unit (HT)

Hydraulic flow unit is a continuous body over a specific reservoir volume that practically

possesses constant petrophysical and fluid properties, which uniquely characterize its static and

dynamic communication with the wellbore. Tiab, Tiab et al., and Amaefule et al. developed a

technique for identifying and characterising a formation having similar hydraulic characteristics,

or flow units, based on the microscopic measurements of rock core samples. This technique is

based on a modified Kozeny–Carman equation and the concept of mean hydraulic radius.

The hydraulic flow units for this thesis work are obtained from the equation below, this equation

is used to describe hydraulic flow units in a macroscopic scale:

2

1

FZIHT

4.1.4 Normalised Reservoir Quality Index (nRQI)

The normalized RQI plot is obtained from a plot of depth against cumulative normalized values

of RQI. The normalization and summation of the RQI values are carried out starting from the

bottom of the reservoir.

In this plot consistent zones are characterized by straight lines with the slope of the line

indicating the overall reservoir quality within a particular depth interval. The lower the slope the

better the reservoir quality. The equation below is used in generating the cumulative normalized

RQI’s at different depths.

Page 56: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

43

n

x i

i

i

x i

i

k

k

nRQI

1

1

4.1.5 Normalised Porosity (Φz)

The normalized porosity is obtained using the equation below:

e

e

z

1

4.1.6 Stratigraphic Modified Lorenz Plot (SMLP)

Stratigraphic Modified Lorenz Plot (SMLP) for a reservoir is obtained by computing on a foot-

by-foot basis the percent flow capacity (permeability-thickness, kh) and percent flow storage

(porosity – thickness, Φh). The flow capacity is subsequently plotted against the storage

capacity.

The shape of SMLP curve reveals the flow and storage qualities of the reservoir. These are

categorized as follows:

Sections with steep slopes are associated with a high percentage of reservoir flow capacity,

and therefore, a high production potential.

Sections with flat behaviour have storage capacity but little flow capacity and are typically

reservoir baffles.

Sections with neither flow nor storage capacity are considered seals.

The equations below indicate the calculation of flow capacity and storage capacity respectively.

Page 57: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

44

n

i

ii

L

i

ii

h

h

h

1

1

L= 1, 2….,n

n

i

ii

L

i

ii

hk

hk

kh

1

1 L=1, 2,…n

n is the total number of reservoir layers i

Φi is the porosity of layer i

ki is the permeability of layer i, and hi is the net thickness of layer i.

The layers are numbered in order from the shallowest layer i = 1 to the deepest layer i = L

Page 58: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

45

4.2 CALCULATION STOOIP FOR RESERVOIR 7

The STOOIP is calculated for each of the reservoirs in the field. The values for the input

parameters are read from the log view of the logs on Schlumburger techlog software as shown

below. (Tables of parameters found in Appendix E to H)

These values are then averaged using arithmetic averaging method to get a representative value

for each parameter to be used in STOOIP calculation. The table below is a summary of the input

parameters for the various reservoirs in the six wells under consideration. The shaded portion

represents the reservoir of interest.

Figure 4. 1: Log view of petrophysical parameters on Schlumburger Techlog Software.

Page 59: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

46

Table 4. 1: Shows the values obtained for input parameters for the calculation of STOOIP

Reservoir Name

Top, ft Bottom, ft Total Porosity

(фT)

Shale Volume

(Vsh)

Water Saturation

(Sw)

Net Pay Thickness

(h), ft

W4R1 9086.32 9123.65 0.2641 0.0405 0.0795 37.3300

W5R1 9059.41 9094.13 0.2658 0.6005 0.1399 34.7200

W6R1 8992.57 9075.03 0.2154 0.2716 0.3711 82.4600

W5R2 9231.28 9294.65 0.2126 0.4458 0.1652 63.3700

W6R2 9247.78 9305.07 0.2264 0.1563 0.2026 57.2900

W5R3 9496.04 9544.66 0.1823 0.3121 0.1817 48.6200

W6R3 9530.77 9590.66 0.1974 0.2957 0.3469 59.8900

W1R4 10056.60 10116.50 0.2360 0.0402 0.4410 59.9000

W5R4 9829.38 9871.92 0.2181 0.2795 0.1446 42.5400

W6R4 9864.10 9901.43 0.2091 0.1176 0.2047 37.3300

W4R5 11318.90 11334.90 0.2357 0.0484 0.0952 16.0000

W3R5 11329.40 11389.30 0.2203 0.2585 0.3169 59.9000

W3R6 11895.70 12038.90 0.1954 0.0294 0.1308 143.2000

W2R6 12039.80 12177.80 0.1595 0.1229 0.4308 138.0000

W1R7 12102.00 12223.50 0.2501 0.0734 0.3418 121.5000

W2R7 12084.10 12216.90 0.1894 0.1563 0.3425 132.8000

W3R7 12309.80 12545.00 0.1548 0.1180 0.3415 235.2000

W4R7 12490.90 12637.60 0.2024 0.0496 0.1125 146.7000

The STOOIP for the reservoir is calculated using the average (arithmetic) values of the input

parameters in the STOOIP equation below.

oi

wshTT

B

SVhAN

1*****7758

The following table shows the calculation of STOOIP for each reservoir and the entire field.

Table 4. 2: Deterministic STOOIP for various reservoirs and entire field.

Reservoir Name

Total Porosity

(фT)

Shale Volume

(Vsh)

Water Saturation

(Sw)

Net Pay Thickness (h), ft

Oil Formation Volume

Factor, (Boi)

Area (A),

Acres

STOOIP (N), STB

R1 0.2484 0.3042 0.1968 51.50 1.25 400 1.78E+07

R2 0.2195 0.3010 0.1839 60.33 1.25 400 1.88E+07

R3 0.1899 0.3039 0.2643 54.25 1.25 400 1.31E+07

R4 0.2211 0.1458 0.2634 46.59 1.25 400 1.61E+07

R5 0.2280 0.1534 0.2061 37.95 1.25 400 1.44E+07

R6 0.1774 0.0761 0.2808 140.60 1.25 400 4.12E+07

R7 0.1992 0.0993 0.2846 159.05 1.25 400 5.07E+07

Total STOOIP of Field, STB 1.72E+08

Page 60: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

47

Name Cell Sim# Graph Min Mean Max 5% 95% Errors

Category: R7

R7 / Total Porosity (?) B8NP15

00.1422275 0.21 0.3059437 0.1788924 0.2444794 0

R7 / Total Porosity (?) B8NP16

00.1422275 0.21 0.3059437 0.1788924 0.2444794 0

R7 / Total Porosity (?) B8NP17

00.1422275 0.21 0.3059437 0.1788924 0.2444794 0

R7 / Shale Volume (Vsh) C8NP15

0-0.02946091 0.1000004 0.2344921 0.04735057 0.1526224 0

R7 / Shale Volume (Vsh) C8NP16

0-0.02946091 0.1000004 0.2344921 0.04735057 0.1526224 0

R7 / Shale Volume (Vsh) C8NP17

0-0.02946091 0.1000004 0.2344921 0.04735057 0.1526224 0

R7 / Water Saturation (Sw) D8NP15

00.1476079 0.379998 0.8990614 0.2535177 0.543927 0

R7 / Water Saturation (Sw) D8NP16

00.1476079 0.379998 0.8990614 0.2535177 0.543927 0

R7 / Water Saturation (Sw) D8NP17

00.1476079 0.379998 0.8990614 0.2535177 0.543927 0

R7 / Net Pay Thickness (h), ft E8NP15

0150 150 150 150 150 0

R7 / Net Pay Thickness (h), ft E8NP16

0160 160 160 160 160 0

R7 / Net Pay Thickness (h), ft E8NP17

0170 170 170 170 170 0

4.3 STOCHASTIC EVALUATION TECHNIQUES

The stochastic method of evaluating the reservoir is carried out to enable a better understanding

of the values obtained from the deterministic method. The parameters are fitted with

distributions. These distributions indicate the occurrence and probability of occurrence of the

various input parameters. The distributions are determined by plotting the data available to

obtain trend or chosen from known trends that such parameters often follow. Other parameters

such as area and formation oil volume factor were assumed to be constant, that is 400acres and

1.25 respectively. The table below shows the table of the distributions and objective variable

selected for the stochastic modelling.

Table 4. 3: Distributions fitted for input parameters for stochastic analysis.

Page 61: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

48

4.3.1 Graphs obtained from Stochastic Modelling of STOOIP for reservoir 7

4.3.1.1 Relative Probability

The relative probability measures the relative probability of occurrence of the different outputs,

in this case the Stock tank oil originally in place. The three different scenarios are plotted

together on the same graph. It is clearly shown from the graph above that the probability of

obtaining the most probable STOOIP increases with decreasing net pay thickness. At 150 feet

the frequency of the most probable value is over 10% of all possible outcomes. This reduces for

160 feet and further decreases at 170 feet.

The most probable values for the output STOOIP is 46.4MMSTB, 49.5MMSTB and

52.6MMSTB for 150 feet, 160 feet and 170 feet respectively. It is observed from the graph that

the spread of values, that is the standard deviations for the output do not differ by a wide range

for all the simulation sets. The standard deviations increase with increasing net-pay thickness.

The range of values is 7.8MMSTB for 150 feet of net pay, 8.3MMSTB for 160 feet and then

8.9MMSTB for 170 feet of net pay thickness.

Figure 4. 2: Graph of Relative Probabilities for calculated STOOIPs.

Page 62: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

49

4.3.1.2 Cumulative Frequency

This graph shows the various cumulative frequencies of the different possible outcomes from the

simulations. The trends observed above indicates that there is no significant difference for the

cumulative frequencies of the three different scenarios. In all the cases, the frequency starts with

a low gradient and peaks sharply before another low gradient is experienced at the end. About

90% of the relatively higher frequency occurring values is found within a narrow bracket. This

means the frequencies of the outputs are very high between this narrow window. This is in

coherence with the behavior of the output in the relative frequency histogram.

The frequencies observed for the various scenarios show that at 150 feet the window is at a lower

STOOIP than at 160 feet and in the same way at 170 feet. This trend is expected since the net

pay thickness is directly proportional to the STOOIP. This means an increase in net pay

thickness directly translates into an increase in STOOIP. The trends are however observed to be

the same. This means the frequency behavior of the output is the same for all the cases.

Figure 4. 3: Graph of Cumulative Frequencies of calculated STOOIPs.

Page 63: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

50

4.3.1.3 Probability Density Function (PDF)

The probability density function is a function of a continuous variable such that the integral of

the function over a specific region yields the probability that its value will fall within the region.

It can be observed from the above three distributions that the highest probability density

functions decrease with increasing net pay thickness.

The highest, highest PDF is observed when the net pay thickness is 150 feet for the reservoir

followed by a relative lower highest PDF for 160 feet with the lowest highest PDF recorded

when the net pay thickness is 170 feet.

The PDF shows a relative normal distribution of the output for all the cases of simulation. The

output is mainly ranging from 20MMSTB to 80MMSTB for net pay off 170 feet. The PDF is

low at the lower limit of the output and gradually increases to a peak value at about 54MMSTB

before descending gradually to a very low value at the higher limit. The same distribution is

observed in the 150 feet and the 160 feet simulations where the lower limits are 15MMSTB and

18MMSTB with upper limits of 73MMSTB and 75MMSTB respectively.

Figure 4. 4: Graph of Probability Density Functions for STOOIPs calculated.

Page 64: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

51

4.3.1.4 Correlation Coefficient

The correlation coefficient serves to describe the degree to which two or more variables are

related to each other. It also describes the amount of change that is recorded for one variable per

unit change of the other. It is observed from the tornado plots above that the water saturation has

the highest correlation coefficient followed by the total porosity and shale volume follow

respectively.

The directions of the projections for the total porosity shows a positive relationship. This means

that the STOOIP increases per unit increase in total porosity. For every unit of total porosity

added, the STOOIP increases by a factor of 0.53 for all the three selected thicknesses. It however

decreases for both water saturation and shale volume considering the direction of their

projections. There is 0.79 and 0.20 decrease in the STOOIP for a unit increase in water saturation

and shale volume respectively. This implies that, the effect of every inaccuracy on the STOOIP

is 0.53, 0.79 and 0.20 for total porosity, water saturation and shale volume respectively.

The correlation coefficients are the same for the three simulation cases ran. The trend also

supports the interpretations obtained from the other methods that the water saturation is the key

Figure 4. 5: Tornado Chart of Correlation Coefficients for Input Parameters on STOOIP.

Page 65: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

52

input factor in the calculation of the STOOIP, followed by the total porosity and then shale

volume.

4.3.1.5 Regression Coefficient

The regression coefficient is a statistical quantity used to describe the statistical relationship

between a random variable and one or more independent variables. In the case above, the output

STOOIP is the random variable and each of the input parameters represent independent variables

necessary to calculate the output STOOIP. It is observed from the regression coefficients on the

tornado charts above that the relationship between the STOOIP and the water saturation is the

highest and negative. The net total porosity has the second highest degree of regression with the

output STOOIP but positive. The shale volume shows the lowest correlation which is a negative

relationship.

Figure 4. 6: Tornado Chart of Regression Coefficients for input Parameters on STOOIP.

Page 66: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

53

The observations above are same for all the three circumstances simulated by Monte Carlo

simulation software. They also show coherence with the other tornado plots and serve to lay

more emphasis on the importance of the water saturation on the calculation of the STOOIP.

4.3.1.6 Tornado Chart (Mean Output)

The charts above are used to ascertain the impact of each of the input parameters on the output

parameter (STOOIP). It can be viewed from the three different scenarios that the water saturation

has the greatest impact on the calculated STOOIP whereas the least impact is from the shale

volume. The total porosity has impact which is in between the water saturation and shale

volume.

The direction of the projections from the base indicates the type of relationship that the output

value has with the output value. The total porosity shows a positive correlation whereas the water

saturation and shale volume have a negative impact on the output (STOOIP).

All these values were obtained with some degree of uncertainty which made it necessary to test

their sensitivities with respect to the output (STOOIP) estimated. The information from the

Figure 4. 7: Tornado Chart of effects of input parameters on STOOIP.

Page 67: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

54

tornado charts above indicates that care should be applied, in order of preference to obtaining

accurate estimates of water saturation, total porosity and shale volume of reservoir 7.

4.3.1.7 Spider chart

These charts are very similar to the tornado charts in the sense that they also employed in

determining the sensitivity of the input parameters on the output. It is observed that the water

saturation shows the greatest degree of deviation from the horizontal and is the only parameter

trending NE to SW, that is a positive relationship. The steepness of the trend is observed to

increase as it moves away from the Centre. This shows that the sensitivity of the output

(STOOIP) increases with increasing input values.

Observing the NW to SE trending input parameters, it is observed that the water saturation shows

much steeper trend as the output parameter decreases relative to the shale volume. This means

the output is more sensitive to water saturation at lower and higher levels of STOOIP. The trend

Figure 4. 8: Spider Chart of impact of input parameters on output STOOIP

Page 68: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

55

also indicates a negative relationship in which output increases with decreasing input and vice

versa.

The three scenarios run all show the same trend therefore it can be concluded that the trend or

behavior of the input parameters to the output is independent of the different net pay thicknesses.

4.4 ANALYSIS OF FLOW UNITS FOR RESERVOIR 7

The flow units within the reservoirs observed were delineated using three different techniques.

These include; Reservoir Quality Index versus Normalised Porosity graphs, Normalised

Reservoir Quality Index graph and Stratigraphic Modified Lorenz Plot. The last two methods

were used to validate the results observed in the first graph. The main reservoir of interest was

the seventh reservoir.

In summary the table below shows the FZI’s, gradient, regressions and the wells of occurrence

for each of the flow units;

Table 4. 4: Table showing flow units present in reservoir 7 and their properties.

Flow Unit Gradient FZI HT

(µm2)

R2 Wells of

occurrence

A 2.9 42.05 5.66E-04 0.86 2,3

B 2.67 12.08 6.85E-03 0.93 2,3,4

C 2.3 2.13 2.20E-01 0.99 1,3,4

D 2.46 1.55 4.17E-01 0.85 3,4

Page 69: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

56

4.4.1 Analysis of Well 01

This well intercepts four out of the seven reservoir sands that were delineated. There were no log

records for the upper part of this well. This caused the first three reservoirs to be missed out. It is

observed from the respective graphs of RQI versus Normalized Porosity, normalised RQI and

Stratigraphic Modified Lorenz Plot that this well contains only one flow unit for the reservoir of

interest (Reservoir 7).

The possible cause for the presence of a single flow unit in this well compared to many flow

units in the other wells may be due to pinch-out of some flow units. The truncation of these flow

units causes their absence in some wells.

The quality of the reservoir flow units can be determined from the plots above. The gradient of

the flow unit in the normalized porosity line indicates the flow unit quality. High gradient

characterize poor quality whereas lower gradient is indicative of better reservoir quality.

Turbidite environments are characterised by high shale volumes and erratic environment. This is

due to the turbulent depositional regime from which these kinds of reservoirs are formed. The

point at which well 1 intercepts the reservoir may therefore contain less flow units compared to

other wells that intercept the same reservoir sand at some other point. The tendency of different

number of flow units in turbidite sands such as the ones in the Niger Delta therefore lies in the

nature of their deposition. It is observed from the graphs that the flow unit has some small partial

discontinuous boundaries probably the blockage caused by presence of shale. This is what causes

the small kinks on the normalized RQI graph and SML plot.

Page 70: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

57

FU C

FZI =2.3

FU C

Figure 4. 9: Graph of RQI versus Normalised Porosity of reservoir for well 01.

Figure 4. 10: SMLP of the reservoir of interest for well 01.

Page 71: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

58

4.4.2 Analysis of Well 02

The data present indicates that well 2 penetrates four out of the seven reservoir sands present in

the field. There were no log records present for the upper part of the well. There were no logs

present for some portions of the well. It is possible this part for which there were no logs

intercepts the other reservoirs that were not identified. It is observed from the respective graphs

of RQI versus Normalised Porosity, Normalised RQI graph and SML Plot that this well contains

two out of the four flow units present in the reservoir of interest (Reservoir 7).

The cause for this may be due to pinch out. The reservoir sand may have been pinching gradually

in the direction up to the point well 2 intercepts it. The presence of many flow units in well 3

with fewer flow units in well 2 is caused by truncation of the some of the flow units. The nature

of the depositional environment may also be possible cause for having only two flow units in the

reservoir at the point well 2 crosscuts the reservoir. Turbidite environments are associated with

heterogeneity which is responsible for the truncation of some other flow units.

FU C

Figure 4. 11: nRQI plot of the reservoir of interest for well 01.

Page 72: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

59

Another possible cause of what is happening in well 2 may be due to the presence of an

unconformity between the point of well 3 and well 2. This may have led to the washing away of

the area occupied by the other flow units present in well 3 thereby terminating them. The other

flow units observed in well 3 therefore may not be continuous to well 2. It is also observed from

the log-view graph on techlog software that, there is a fault between well 2 and well 3.

Turbidite environments are erratic considering the way they were formed. This means the

variation between two locations for the same lithologic unit is greater compared to a less

turbulent depositional environments. It is therefore possible for well 2 to exhibit different

properties relative to the other wells for the same reservoir sand unit.

The quality of the reservoir flow units can be determined from the plots above. The gradient of

the flow unit in the normalized porosity line indicates the flow unit quality. High gradient

characterize poor quality whereas lower gradient is indicative of better reservoir quality.

FU A

FU B

FZI=42.05

FZI=12.08

Figure 4. 12: Graph of RQI versus Normalised Porosity of reservoir for well 02.

Page 73: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

60

FU A

FU B

FU A

FU B

Figure 4. 13: SMLP of the reservoir of interest for well 02

Figure 4. 14: nRQI plot of the reservoir of interest for well 02.

Page 74: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

61

4.4.3 Analysis of Well 03

Well 3 gives the most complete view of the reservoir from a single well. All the flow units in the

reservoir can be observed in this well. This well, like the other wells had no log records present

for most of its upper part. There is possibility the first three reservoirs may have been missed out

due to this.

It is observed from the respective graphs of RQI versus Porosity, Normalised RQI and SML Plot

that, this well shows all four flow units present within the reservoir of interest (Reservoir 7). This

well shows the most complete picture of the reservoir under investigation.

It is expected that the number of flow units in turbidite reservoirs are relatively many. This is due

to the high volumes of shale present in turbidite sands compared to other reservoir types. High

volumes of shale can cause discontinuities within the unit thereby petitioning the reservoir into

many flow units. Well 3 intercepts the reservoir at a point where more the flow units are present

as compared to the other wells.

The erratic nature of turbidite sands causes heterogeneities to exist within a reservoir at different

directions. This property is the reason for the presence of differences between the various wells

intercepting the reservoir as well as the different zonations within the same well.

The quality of the reservoir flow units can be determined from the plots above. The gradient of

the flow unit in the normalized porosity line indicates the flow unit quality. High gradient

characterize poor quality whereas lower gradient is indicative of better reservoir quality.

Page 75: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

62

FU A FU B FU C

FU D

FZI=42.05

FZI=12.08

FZI=2.13

FZI=1.55

FU A

FU B

FU C

FU D

FU C

Figure 4. 15: Graph of RQI versus Normalised Porosity of reservoir for well 03.

Figure 4. 16: SMLP of the reservoir of interest for well 03.

Page 76: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

63

4.4.4 Analysis of Well 04

This well intercepts four out of the seven reservoir sands present in the field. This includes the

reservoir of interest (Reservoir 7). No log records were present for most of the upper portions of

this well. The unidentified reservoirs may be within this unlogged zone. This is because the

upper three reservoirs were the ones that were not delineated in this well.

It is observed from the respective graphs of RQI versus Normalised Porosity, Normalised RQI

graph and SML Plot that this well intercepts three out of the four flow units present in the

reservoir. Probable cause for the observation above vary but the most likely reason is pinch out.

It is observed from the log view on techlog software that the reservoir unit thins out from well 3

towards well 4. Much of the reservoir unit may have pinched out at the point well 4 intercepted

the reservoir sand. Some of the other flow units that were not present might have been truncated.

The nature of the depositional environment may also be possible explanation for having fewer

flow units in the reservoir at well 4. Turbidite environments are mostly erratic in nature. The

point at which well 4 intercepts the reservoir may therefore be significantly different and contain

fewer flow units. It is observed from the graphs that the flow units contain some minor partial

FU A

FU B

FU C

FU D

Figure 4. 17: nRQI plot of the reservoir of interest for well 03.

Page 77: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

64

discontinuities within. This is observed in minor and not continuous kinks in the normalized RQI

and SMLP graphs.

The quality of the reservoir flow units can be determined from the plots above. The gradient of

the flow unit in the normalized porosity line indicates the flow unit quality. High gradient

characterize poor quality whereas lower gradient is indicative of better reservoir quality.

FU B FU C FU D

FZI=12.08 FZI=2.13

FZI=1.55

Figure 4. 18: Graph of RQI versus Normalised Porosity of reservoir for well 04.

Page 78: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

65

FU B

FU C

FU D

FU B

FU C

FU D

Figure 4. 19: SMLP of the reservoir of interest for well 04.

Figure 4. 20: nRQI plot of the reservoir of interest for well 04.

Page 79: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

66

4.4.5 Analysis of Well 05

This well intercepts four out of the seven reservoir sands present in the field excluding the

reservoir of interest. No log records were present for most of the lower parts of the well. The

unidentified reservoirs may be within these zones for which there were no logs. This is because

the lower three reservoirs were not delineated in this well. The reservoir of interest could not be

identified within this well. The reservoir of interest is the deepest of all the seven reservoirs.

There were however no log records for this part (deepest) of this well.

4.4.6 Analysis of Well 06

This well intercepts four out of the seven reservoir sands present in the field. No log records

were present for most of the lower parts of the well. The reservoirs that were not delineated in

this well may be within the zones that there were no logs. The reservoir of interest could not be

delineated from this well. The reservoir of interest is the deepest of all the reservoirs. There were

however no log records for the deeper part of the well.

4.5 CALCULATION OF STOOIP USING FLOW UNITS

The Stock Tank Original Oil in Place (STOOIP) is calculated for each flow unit identified. This

is compared to the deterministic STOOIP obtained without consideration to flow units. The

difference between these two values gives an estimate of the amount oil in place that has no

direct conduit to the wellbore. The following assumptions are made in calculating STOOIP for

each flow unit.

1. The net pay thickness from the wells was assumed to be uniform and was calculated from

the average of the net pay thicknesses across each well.

2. Each well is assumed to cover an area of 100 acres, the number of wells a particular flow

unit traverses is used to estimate the area in STOOIP calculation.

The following table is the summary of the calculation of STOOIP for the reservoir:

Page 80: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

67

Table 4. 5: Calculation of STOOIP for each flow unit and entire reservoir.

Flow Unit Total Porosity

(ф)

Shale Volume

(Vsh)

Water Saturation

(Sw)

Net Pay Thickness

(h), ft

Area (A),

Acres

Oil Formation Volume

Factor, (Boi)

STOOIP, STB

A 0.1665 0.0826 0.2561 70.54 200 1.25 9.95E+06

B 0.2067 0.1096 0.2411 36.09 300 1.25 9.39E+06

C 0.2121 0.1014 0.2682 62.33 300 1.25 1.62E+07

D 0.1975 0.0889 0.2444 60.70 200 1.25 1.02E+07

Stock Tank Oil Originally in Place, STB 4.58E+07

Page 81: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

68

4.6 CALCULATION OF STOOIP FOR RESERVOIR 6

The STOOIP is calculated for each of the reservoirs in the field. The values for the input

parameters are read from the log view of the logs on techlog software as shown below. (Tables

of parameters found in Appendix I and J)

These values are averaged to get a representative values for each parameter to be used in

STOOIP calculation. The table below is a summary of the input parameters for the various

reservoirs in the six wells under consideration. The shaded portion represents the reservoir of

interest.

Figure 4. 21: Log view of petrophysical parameters on Schlumburger Techlog Software.

Page 82: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

69

Table 4. 6: Shows the values obtained for input parameters for the calculation of STOOIP

Reservoir Name

Top, ft Bottom, ft Total Porosity

(фT)

Shale Volume

(Vsh)

Water Saturation

(Sw)

Net Pay Thickness

(h), ft

W4R1 9086.32 9123.65 0.2641 0.0405 0.0795 37.3300

W5R1 9059.41 9094.13 0.2658 0.6005 0.1399 34.7200

W6R1 8992.57 9075.03 0.2154 0.2716 0.3711 82.4600

W5R2 9231.28 9294.65 0.2126 0.4458 0.1652 63.3700

W6R2 9247.78 9305.07 0.2264 0.1563 0.2026 57.2900

W5R3 9496.04 9544.66 0.1823 0.3121 0.1817 48.6200

W6R3 9530.77 9590.66 0.1974 0.2957 0.3469 59.8900

W1R4 10056.60 10116.50 0.2360 0.0402 0.4410 59.9000

W5R4 9829.38 9871.92 0.2181 0.2795 0.1446 42.5400

W6R4 9864.10 9901.43 0.2091 0.1176 0.2047 37.3300

W4R5 11318.90 11334.90 0.2357 0.0484 0.0952 16.0000

W3R5 11329.40 11389.30 0.2203 0.2585 0.3169 59.9000

W3R6 11895.70 12038.90 0.1954 0.0294 0.1308 143.2000

W2R6 12039.80 12177.80 0.1595 0.1229 0.4308 138.0000

W1R7 12102.00 12223.50 0.2501 0.0734 0.3418 121.5000

W2R7 12084.10 12216.90 0.1894 0.1563 0.3425 132.8000

W3R7 12309.80 12545.00 0.1548 0.1180 0.3415 235.2000

W4R7 12490.90 12637.60 0.2024 0.0496 0.1125 146.7000

The STOOIP for the reservoir is calculated using the average (arithmetic) values of the input

parameters in the STOOIP equation below.

oi

wshTT

B

SVhAN

1*****7758

The following table shows the calculation of STOOIP for each reservoir and the entire field.

Table 4. 7: Deterministic STOOIP for various reservoirs and entire field.

Reservoir Name

Total Porosity

(фT)

Shale Volume

(Vsh)

Water Saturation

(Sw)

Net Pay Thickness

(h), ft

Oil Formation

Volume Factor, (Boi)

Area, (A)

Acres

STOOIP (N), STB

R1 0.2484 0.3042 0.1968 51.50 1.25 400 1.78E+07

R2 0.2195 0.3010 0.1839 60.33 1.25 400 1.88E+07

R3 0.1899 0.3039 0.2643 54.25 1.25 400 1.31E+07

R4 0.2211 0.1458 0.2634 46.59 1.25 400 1.61E+07

R5 0.2280 0.1534 0.2061 37.95 1.25 400 1.44E+07

R6 0.1774 0.0761 0.2808 140.60 1.25 400 4.12E+07

R7 0.1992 0.0993 0.2846 159.05 1.25 400 5.07E+07

Total STOOIP of Field, STB 1.72E+08

Page 83: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

70

Name Cell Graph Function Min Mean Max

Category: R6

R6 / Total Porosity (?) B7RiskNormal(0.177449161033153,0.04,RiskS

tatic(0.177449161033153))-∞ 0.1774492 +∞

R6 / Shale Volume (Vsh) C7RiskNormal(0.0761412543751624,0.03,Risk

Static(0.0761412543751624))-∞ 0.07614125 +∞

R6 / Water Saturation (Sw) D7RiskLognorm(0.25,0.1,RiskShift(0.1),RiskSt

atic(0.28080773025422))0.1 0.35 +∞

R6 / Net Pay Thickness (h), ft E7 RiskSimtable({140,130,150})

4.7 STOCHASTIC EVALUATION TECHNIQUES (RESERVOIR 6)

The stochastic method of evaluating the reservoir is carried out to enable a better understanding

of the values obtained from the deterministic method. The parameters are fitted with

distributions. These distributions indicate the occurrence and probability of occurrence of the

various input parameters. The distributions are determined by plotting the data available to

obtain a trend or chosen from known trends that such parameters frequently follow. Other

parameters such as area and formation oil volume factor are assumed to be constant, that is 400

acres and 1.25 respectively. The table below shows the distributions and objective variable

selected for the stochastic modelling.

Table 4. 8: Distributions fitted for input parameters for stochastic analysis

Page 84: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

71

4.7.1 Graphs obtained from Stochastic Modelling of STOOIP for Reservoir 6

4.7.1.1 Relative Probability

The relative probability measures the relative probability of occurrence of the different outputs,

in this case the Stock tank oil originally in place. The three different scenarios are plotted

together on the same graph. It is clearly shown from the graph above that the probability of

obtaining the most probable STOOIP increases with decreasing net pay thickness. At 130 feet

the frequency of the most probable value is about 9% of all possible outcomes. This reduces for

140 feet and further decreases at 150 feet at 8% and less than 8% respectively.

The most probable values for the output STOOIP is 34.3MMSTB, 37.5MMSTB and

38.6MMSTB for 130 feet, 140 feet and 150 feet respectively. It is observed from the graph that

the spread of values, that is the standard deviations for the output do not differ by a wide range

for all the simulation sets. The deviations become substantial for increasing net-pay thickness.

Figure 4. 22: Graph of Relative Probabilities for calculated STOOIPs.

Page 85: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

72

4.7.1.2 Cumulative Frequency

This graph shows the various cumulative frequencies of the different possible outcomes from the

simulations. The trends observed above indicates that there is no significant difference for the

cumulative frequencies of the three different cases of net pay thickness. In all the cases, the

frequency starts with a low gradient and peaks sharply before another low gradient is

experienced at the end. About 90% of the relatively higher frequency occurring values is found

within a narrow bracket. This means the frequencies of the outputs are very high between this

narrow window. This is in coherence with the behavior of the output in the relative frequency

histogram.

The frequencies observed for the various scenarios show that at 130 feet the window has lower

STOOIP than at 140 feet and 150 feet in that order. This trend is expected since the net pay

thickness is directly proportional to the STOOIP. This means an increase in net pay thickness

directly translates into an increase in STOOIP. The trends are however observed to be the same

meaning the frequency behavior of the output is the same for all the cases.

Figure 4. 23: Graph of Cumulative Frequencies of calculated STOOIPs.

Page 86: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

73

4.7.1.3 Probability Density Function (PDF)

The probability density function is a function of a continuous variable such that the integral of

the function over a specific region yields the probability that its value will fall within the region.

It can be observed from the above three distributions that the highest probability density

functions decrease with increasing net pay thickness.

The highest, highest PDF is observed when the net pay thickness is 130 feet for the reservoir

followed by a relative lower highest PDF for 140 feet with the lowest highest PDF recorded

when the net pay thickness is 150 feet for the reservoir net pay.

The PDF shows a relative normal distribution of the output for all the cases of simulation. The

output is mainly ranging from 10MMSTB to 76MMSTB for net pay of 150 feet. The PDF is low

at the lower limit of the output and gradually increases to a peak value at about 38MMSTB

before descending gradually to lower values towards the higher limit. The same distribution is

observed in the 140 feet and the 150 feet simulations.

Figure 4. 24: Graph of Probability Density Functions for STOOIPs calculated.

Page 87: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

74

4.7.1.4 Correlation Coefficient

The correlation coefficient serves to describe the degree to which two or more variables are

related to each other. It also describes the amount of change that is recorded for one variable per

unit change of the other. It is observed from the tornado plots above that the total porosity has

the highest correlation coefficient followed by the water saturation and shale volume

respectively.

The directions of the projections for the total porosity shows a positive relationship. This means

that the STOOIP increases per unit increase in total porosity. For every unit of total porosity

added, the STOOIP increases by a factor of 0.81 for all the three selected thicknesses. It however

decreases for both water saturation and shale volume considering the direction of their

projections. There is 0.51 and 0.11 decrease in the STOOIP for a unit increase in water saturation

and shale volume respectively. This implies, the effect of every inaccuracy on the STOOIP is

0.81, 0.51 and 0.11 for total porosity, water saturation and shale volume respectively.

The correlation coefficients are the same for the three simulation cases ran. The trend also

supports the interpretations obtained from the other methods that the total porosity is the key

Figure 4. 25: Tornado Chart of Correlation Coefficients for Input Parameters on STOOIP.

Page 88: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

75

input parameter in the calculation of the STOOIP, followed by the water volume and then shale

volume.

4.7.1.5 Regression Coefficient

The regression coefficient is a statistical quantity used to describe the statistical relationship

between a random variable and one or more independent variables. In the case above, the output

STOOIP is the random variable and each of the input parameters represent independent variables

necessary to calculate the output STOOIP. It is observed from the regression coefficients on the

tornado charts above that the relationship between the STOOIP and the total porosity is the

highest and positive. The water saturation has the second highest degree of regression with the

output STOOIP but negative. The shale volume shows the lowest correlation and is a negative

relationship.

The observations above are same for all the three circumstances simulated by Monte Carlo

simulation software. They also show coherence with the other tornado plots and serve to lay

more emphasis on the importance of the total porosity on the calculation of the STOOIP.

Figure 4. 26: Tornado Chart of Regression Coefficients for input Parameters on STOOIP.

Page 89: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

76

4.7.1.6 Tornado Chart (Mean Output)

The charts above are used to ascertain the impact of each of the input parameters on the output

parameter (STOOIP). It can be viewed from the three different scenarios that total porosity has

the greatest impact on the calculated STOOIP whereas the least impact is from the shale volume.

The water saturation has impact which is in between the total porosity and shale volume.

The direction and extent of the projections from the base indicates the type and extent of

relationship whether positive or negative, that the output value has with the output value. The

total porosity shows a greater positive correlation whereas the water saturation and shale volume

have more negative impact on the output (STOOIP).

All these values were obtained with some degree of uncertainty which made it necessary to test

their sensitivities with respect to the output (STOOIP) estimated. The information from the

tornado charts above indicates that care should be applied, in order of preference to obtaining

Figure 4. 27: Tornado Chart of effects of input parameters on STOOIP

Page 90: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

77

accurate estimates of total porosity, water saturation and shale volume of reservoir 6 in the X

field of the Niger Delta.

4.7.1.7 Spider chart

These charts are very similar to the tornado charts in the sense that they also employed in

determining the sensitivity of the input parameters on the output. It is observed that total porosity

shows the greatest degree of deviation from the horizontal and is the only parameter trending NE

to SW, which is indicative of a positive relationship. The steepness of the trend is observed to

increase as it moves away from the Centre. This shows that the sensitivity of the output

(STOOIP) increases with increasing input values.

Observing the NW to SE trending input parameters, it is observed that the water saturation shows

much steeper trend as the output parameter decreases relative to the shale volume. This means

the output is more sensitive to water saturation at lower and higher levels of STOOIP relative to

shale volume. The trend also indicates a negative relationship in which output increases with

decreasing input and vice versa.

Figure 4. 28: Spider Chart of impact of input parameters on output STOOIP

Page 91: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

78

The three scenarios run all show the same trend therefore it can be concluded that the trend or

behavior of the input parameters to the output is independent of the different net pay thicknesses.

4.8 ANALYSIS OF FLOW UNITS FOR RESERVOIR 6

The flow units within the reservoirs observed were delineated using three different techniques.

These include; Reservoir Quality Index versus Porosity graph, Normalised Reservoir Quality

Index graph and Stratigraphic Modified Lorenz Plot. The last two methods were used to validate

the results observed in the first graph. The main reservoir of interest was the sixth reservoir (R6).

In summary the table below shows the FZI’s, gradient, regressions and the wells of occurrence

for each of the flow units;

Table 4. 9: Flow units present in reservoir 7 and their properties.

Flow Unit Gradient FZI HT R2 Wells of occurrence

E 2.75 43.87 5.20E-04 0.84 2,3

F 2.92 22.01 2.06E-03 0.91 2,3

Page 92: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

79

4.8.1 Analysis of Well 02

The data present indicates that well 2 penetrates four out of the seven reservoir sands present in

the field. There were no log records present for the upper part of the well. There were no logs

present for some portions of the well. It is possible this part for which there were no logs

intercepts the other reservoirs that were not identified. It is observed from the respective graphs

of RQI versus Normalised Porosity, Normalised RQI graph and SML Plot that this well contains

two flow units. These are the flow units that have been identified in the reservoir (Reservoir 6).

Comparing the number of flow units in this reservoir to the flow units in reservoir 7, it is

observed that, reservoir 6 has less number of flow units which show a better quality. This implies

that, the amount of clay in reservoir 7 is relatively high. The clay present in reservoir 6 has not

been able to form complete discontinuities between the different compartments of the reservoir.

Turbidite environments are erratic considering the way they were formed. This means the

variation between two locations for the same lithologic unit is greater compared to a less

turbulent depositional environments. It is therefore possible for well 2 to exhibit different

properties relative to the other wells for the same reservoir sand unit.

The quality of the reservoir flow units can be determined from the plots above. The gradient of

the flow unit in the normalized RQI graph indicates the flow unit quality. High gradient

characterise poor quality whereas lower gradient is indicative of better reservoir quality. High

FZI in the RQI versus normalised porosity plot indicates good reservoir quality whereas lower

values of FZI are indicative of lesser reservoir quality.

The following plots were used to delineate the flow units; The RQI versus normalized porosity

was the main graph used whilst the other graphs were used to validate the outcome from the

former.

Page 93: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

80

Figure 4. 29: Graph of RQI versus Normalised Porosity of reservoir for well 02.

Figure 4. 30: SMLP of the reservoir of interest for well 02.

FU E

FU F

FU E FU F

FZI=43.87 FZI=22.01

Page 94: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

81

Figure 4. 31: nRQI plot of the reservoir of interest for well 02.

4.8.2 Analysis of Well 03

Well 03 gives a complete view of the reservoir from a single-well point of view. The flow units

identified in the sixth reservoir are both present in this well. This well, like the other wells had no

log records present for most of its upper part. There is possibility the first three reservoirs may

have been missed out due to this.

It is observed from the respective graphs of RQI versus Porosity, Normalised RQI and SML Plot

that, this well shows both flow units present within the reservoir of interest (Reservoir 6). It is

expected that the number of flow units in turbidite reservoirs are relatively many for a small net

pay thickness. This is due to the high volumes of shale present in turbidite sands compared to

other reservoir types. High volumes of shale can cause discontinuities within the unit thereby

petitioning the reservoir into many flow units.

The erratic nature of turbidite sands causes heterogeneities to exist within a reservoir at different

directions. This property is the reason for the presence of at least two flow units in a relatively

smaller thickness of turbidite sand. The small kinks present on the SMLP and normalized RQI

graph indicate discontinuities that are not totally sealed. This points to the presence of significant

FU E

FU F

Page 95: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

82

amounts of clay within the reservoir. The quality of the reservoir flow units can be determined

from the plots below. The gradient of the flow unit line in the normalized RQI plot indicates the

quality of the flow unit. High gradient characterize poor quality whereas lower gradient is

indicative of better reservoir quality.

Figure 4. 32: Graph of RQI versus Normalised Porosity of reservoir for well 03.

FZI=43.87

FZI=22.01

FU E FU F

Page 96: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

83

Figure 4. 33: SMLP of the reservoir of interest for well 03.

Figure 4. 34: nRQI plot of the reservoir of interest for well 03.

FU F

FU E

FU F

FU E

Page 97: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

84

4.8.3 Analysis of other wells

This reservoir is not intercepted by wells 01, 04, 05 and 06. These wells will not be discussed for

reservoir 6.

4.9 CALCULATION OF STOOIP USING FLOW UNITS (RESERVOIR 6)

The Stock Tank Original Oil in Place (STOOIP) was calculated for each of the flow units

identified. This is compared to the deterministic STOOIP obtained without consideration of the

flow units. The difference between these two values gives an estimate of the amount of

estimation due to oil in place that has no direct conduit to the well. The following assumptions

were made in calculating STOOIP for each flow unit.

1. The net pay thickness from the wells was assumed to be uniform and was calculated from

the average of the net pay thicknesses across each well.

2. Each well is assumed to cover an area of 100 acres, the number of wells a particular flow

unit traverses is used to estimate the area in STOOIP calculation.

The following table is the summary of the calculation of STOOIP for each well and the total

STOOIP for the entire reservoir.

Table 4. 10: Calculation of STOOIP for each flow unit and entire reservoir.

Flow Unit Total

Porosity

(фT)

Shale

Volume

(Vsh)

Water

Saturation

(Sw)

Net Pay

Thickness

(h), ft

Area

(A),

Acres

Oil

Formation

Volume

Factor, (Boi)

STOOIP,

STB

E 0.1901 0.1277 0.0686 60.70 200 1.25 1.16E+07

F 0.1759 0.1626 0.1156 78.74 200 1.25 1.27E+07

Stock Tank Oil Originally in Place, STB 2.44E+07

Page 98: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

85

CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 DISCUSSION

The deposition of turbidite sands is such that, there is high degree of uncertainty for most

parameters, logged and calculated using the conventional petrophysical methodologies. This

makes it difficult to study and predict what will happen with further development. The

incorporation of uncertainty analysis is therefore necessary. This allows for the analysis of a

range of possible outcomes and the chances that these may be the case going forward.

5.1.1 Flow Unit Identification for Reservoir 7

As observed from the reservoir of interest, it is composed of clean sands that are inter-bedded

with shale intercalations. There is the presence of dirty sand having very high shale

compositions. The above mentioned characteristics are the cause of many flow units within the

relatively thin reservoir (reservoir 7). The number of flow units vary from well to well. This

confirms the erratic nature of turbidite beds in the Niger Delta Petroleum Province. Well 03

contains the highest number of flow units (four flow units) whereas well 01 contains the least

number of flow units (one flow unit). This is evidence to the possibility of pinching out of the

reservoir.

It is observed from the log view plot of the petrophysical logs that the reservoir of interest is not

continuous. There is a fault? or a fold? between well 02 and well 03. These wells are displaced

relative to each other. Well 03 and well 04 are displaced in the down-throw side (if fault) whiles

well 02 and well1 are displaced on the up-throw side.

The combination of complex reservoir depositional environment and latter geological

disturbance results in very high heterogeneity in the reservoir. This justifies the need for

uncertainty analysis on any result from this reservoir.

In order to produce from this reservoir, there is the need for proper placement of producing wells

as well as injection wells if needs be. In order for proper well placement, more information is

required. However, from the information available; from the core analysis and well logs, it is

easy to predict that the producing wells will be placed near the location of well 03 or will be well

Page 99: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

86

03 in order to produce from reservoir 7. Well 03 cross-cuts the highest thickness of the reservoir

of interest and therefore the highest amount of hydrocarbons in the seventh reservoir. The

discontinuity from one well to the other implies that, perforations for production will not be

located at the same level throughout the reservoir. Care must therefore be taken when designing

where to perforate.

5.1.2 Uncertainty Analysis for Reservoir 7

The uncertainty analysis run on the calculated STOOIP produced a wide range of possibilities.

The differences seen in the output attest the fact that turbidite formations are erratic and have the

possibility of changing drastically within a short range of distances.

The range varies from a little over 7MMSTB to about 84.97MMSTB. This means that, going

forward, there is the probability that the STOOIP will be less than 8MMSTB or more than 84.97

MMSTB. Plans must therefore be made for any of the possible situations and the possibilities

that lie within them.

The range of possible outcomes as discussed above have different probabilities of occurring

however. The focus must therefore be put on ranges with higher probabilities of occurrence.

From the probability density function and the probability distribution functions, it is observed

that the STOOIPs with highest probability of occurrence include; 46.4MMSTB, 49.4MMSTB

and 52.5MMSTB respectively for net-pay thickness of 150ft, 160ft and 170ft.

The next important output of the uncertainty analysis is the sensitivity of the various input

parameters on the output. The water saturation is seen to exhibit the highest sensitivity with the

output. This implies that, the change in output per unit change in water saturation is highest

compared to the rest of the other input parameters. Extra care must therefore be taken to ensure

that, values calculated for water saturation in this reservoir are accurate. Any deviation from the

true value produces significant errors in the calculated output. Accurate estimation of the other

parameters is also important to accurate output calculation.

5.1.3 Flow Unit Identification for Reservoir 6

As observed from the reservoir of interest, the reservoir is composed of clean sands that are

inter-bedded with shale intercalations. There is presence of dirty sand having very high shale

compositions. The above mentioned characteristics are the cause of relatively many flow units

Page 100: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

87

within the relatively thin reservoir (reservoir 6). The number of flow units in this reservoir are

less than those in reservoir 7 and the thickness of each reservoir is relatively thicker in this

reservoir. Both wells that intercept this reservoir contain the two flow units present. The

consistency as well as better reservoir quality for reservoir 6 indicates lower clay or shale

volumes especially of the smectite group in this reservoir. The absence of the reservoir in the

other wells apart from wells 02 and 03 shows that the reservoir is not extensive. This reservoir

may exist as an isolated unit.

Again, it is observed from the log view plot of the petrophysical logs that the reservoir of interest

is not continuous. There is a fault? or a fold? between well 02 and well 03. These wells are

displaced relative to each other. The presence of this same pattern of displacement in reservoir 7

confirms the presence of a fault or fold system. Well 03 is displaced in the down-throw side (if

fault) whereas well 02 is displaced on the up-throw side.

The combination of complex reservoir depositional environment and latter geological

disturbance results in very high heterogeneity in this reservoir. This justifies the need for

uncertainty analysis on any result from this reservoir.

5.1.4 Uncertainty Analysis for Reservoir 6

The uncertainty analysis run on the calculated STOOIP produced a wide range of possibilities.

The differences seen in the output attest the fact that turbidite formations are erratic and have the

possibility of giving drastically different outcomes for slight changes in parameters. This of

course is very likely.

The range varies from a little over 6.8MMSTB to about 83.8MMSTB. This means that, going

forward, there is the probability that the STOOIP will be less than 7MMSTB up to more than

83MMSTB. Plans must therefore be made for any of the possible situations and the possibilities

that lie between these extremes whiles taking cognizance of the probability of each outcome.

The range of possible outcomes as discussed above have different probabilities of occurring

however. The focus must therefore be put on ranges with higher probabilities of occurrence.

From the probability density function and the probability distribution functions, it is observed

that the highest probability of occurrences include; 43.1MMSTB, 46MMSTB and 48.8MMSTB

respectively for net-pay thickness of 130ft, 140ft and 150ft.

Page 101: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

88

The next important output of the uncertainty analysis is the sensitivity of the various input

parameters on the output. The total porosity is seen to exhibit the highest sensitivity with the

output. This implies that, the change in output per unit change in total porosity is higher

compared to the rest of the other input parameters. Extra care must therefore be taken to ensure

that, values estimated for total porosity are accurate. Any deviation from the true value produces

significant errors in the calculated output. Accurate estimation of the other parameters is also

important to accurate output calculation. The result obtained above is not in consonance with that

for reservoir 7 where the water saturation has the highest relation.

5.2 CONCLUSIONS

Based on the analysis conducted on the reservoirs above, the following can be concluded:

I. The amount of oil originally in place based on deterministic evaluation methods is

50.07MMSTB for reservoir 7 and 41.2MMSTB for reservoir 6.

II. The amount of oil originally in place based on deterministic evaluation methods with the

incorporation of flow unit effect is 45.8MMSTB for reservoir 7. The contributions of each

of the flow units is as follows: Flow unit A=9.95MMSTB, Flow unit B=9.37MMSTB Flow

unit C=16.2MMSTB and Flow unit D=10.2MMSTB. For reservoir 6, the STOOIP obtained

is 24.4MMSTB. Flow unit E=11.7MMSTB and F=12.7MMSTB.

III. The range of the amount of oil in place based on stochastic evaluation methods for

reservoir 7 is between 7.7MMSTB and 75MMSTB for net pay thickness of 150ft,

8.2MMSTB and 80MMSTB for a net pay thickness of 160ft and 8.7MMSTB and

85MMSTB for a net pay thickness of 170ft. The total range therefore is between

7.7MMSTB and 85MMSTB. The following values are obtained for reservoir 6;

6.9MMSTB and 74MMSTB for net pay thickness of 130ft, 7.3MMSTB and 79MMSTB for

a net pay thickness of 140ft and 7.8MMSTB and 84MMSTB for a net pay thickness of

150ft. The total range therefore is between 6.9MMSTB and 84MMSTB.

IV. The most likely values for STOOIP, according to the stochastic model are 46MMSTB,

49MMSTB and 52MMSTB for 150ft, 160ft and 170ft respectively for reservoir 7. For

reservoir 6, the following were obtained; 43.1MMSTB, 46MMSTB and 48.8MMSTB for

130ft, 140ft and 150ft respectively.

Page 102: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

89

V. The regression and correlation coefficients as well as the spider diagram show that the most

important parameters in reservoir 7 as regards the estimation of STOOIP include the

following; water saturation, total porosity and shale volume arranged in order of

importance. For reservoir 6, the total porosity has the highest sensitivity to STOOIP

followed by the water saturation and shale volume respectively.

VI. The following is a summarized view of the characteristics of the flow units present in the

two reservoirs;

The slopes for all the flow units on the RQI versus normalized porosity are greater

than 1. This points to the fact that, shale volume in each flow unit is high and by

extension high shale volume in the reservoir.

Comparing the flow unit quality using the three methods above, flow unit B is

observed to exhibit the best reservoir quality in reservoir 7. For well 04 however, flow

unit A shows the best quality whiles flow unit B shows the least quality. This

confirms the erratic nature of the turbiditic reservoirs in the Niger Delta Petroleum

province. Flow unit E exhibits superior quality for both wells for reservoir 6.

Page 103: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

90

NOMENCLATURE

a = Archie’s Exponent

A =Area/ Atomic Weight of element

Boi = Oil Formation Volume Factor

BVW = Bulk Volume Water

FU = Flow Unit

FZI = Flow Zone Index

GRlog = Log reading for Gamma Ray

GRmax =Maximum Gamma Ray reading

GRmin = Minimum Gamma Ray reading

h = Net Pay Thickness

HT = Tiab Hydraulic Flow Unit

IGR = Gamma Ray Index

kh = Flow Capacity

K = Permeability

m = Cementation Factor

n = Saturation Exponent

nRQI = Normalised Reservoir Quality Index

N = Oil Originally in Place

PDF = Probability Density Function

R2 = Regression Coefficient

RQI = Reservoir Quality Index

Rt = Deep Resistivity

Rw = Water Resistivity

SMLP = Stratigraphic Modified Lorenz Plot

STOOIP = Stock Tank Original Oil in Place

Sw = water saturation

Swi =Irreducible Water Saturation

Vsh. = Shale Volume

Z = Atomic Number of Element

Φe = Effective Porosity

Φh = Storage Capacity

ΦT = Total Porosity

ΦTD = Total Porosity from Density log

Φz = Nomalised Porosity

ρa = Apparent Density of Electron

ρb =Bulk Density

ρe =Electron Density Index

ρf = Fluid Density

ρma = Matrix Density

ρsh =Shale Density

Page 104: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

91

REFERENCES

Amafule, J., Kersey, D., Marschall, D., et al. 1998. J. Society of Petroleum Engineers, 18167.

Amafule, J., Mehmet, A. 1993. J. Society of Petroleum Engineers, 68, 26436.

Anon. 1972. Schlumberger Log Interpretation. Schlumberger Ltd. New York, 1. pp 113.

Anon. 2010. www.springerlink.com/content/p0537372874j7102/fulltext.pdf. Accessed: 21st

March, 2014.

Anon. 2010. http://accessscience.com/search.aspx?rootID=792021. Accessed: 21st March, 2014.

Anon. 2010. www.science.mcmaster.ca/geo/faculty/boyce/3e03/3E03_22_23_deep_marine.pdf.

Accessed: 21st March, 2014.

Avbovbo, A. 1978. J. American Association of Petroleum Geologist, 62. pp 295-300.

Boggs S. Jr. 2006. Principles of Sedimentology and Stratigraphy, Fourth edition. 662pp.

Lowe, D. R. 1976. Sub-aqueous liquefied and fluidized sediment flows and their deposits.

Sedimentology. 23. pp. 285-308.

Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies

Interpretation. Elsevier. Amsterdam. 168 pp.

Doust, H., Omatsola, E. 1990. J. American Association of Petroleum Geologist. pp 239-248.

Ekweozor, M., Daukoru, E. 1994. J. American Association of Petroleum Geologist, 60. pp 599-

614.

Evamy, B., Haremboure, J., Kamerling, P. et al. 1978. J. American Association of Petroleum

Geologist, 62. pp 277-298.

Harris, D., Hewitt, C. 1977. J. Pet. Technol. pp 761-770.

Page 105: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

92

Hospers, J. 1965. J. American Association of Petroleum Geologist, 76. pp. 407-422.

Hunt, J. 1990. J. American Association of Petroleum Geologist, 74. pp. 1-12.

Iwuagwu, C. J. 1979. MSc thesis. University of Alberta, Canada.

Kaplan, A., Lusser, C., Norton, I. 1994. J. American Association of Petroleum Geologist, 60. pp.

230-237.

Keelan, D. 1982. J. Pet Tech.. pp. 2483-2491.

Kulke, H. 1995. Regional Petroleum Geology of the World Part II: Africa, America, Australia

and Antarctica. Berlin, Gebrüder Borntraege. pp. 143-172.

Lehner, P., De Ruiter, P. A. C. 1977. J. American Association of Petroleum Geologist, 61. pp.

961-981.

Lowe, D. R. 1982. Sediment gravity flows: Depositional models with special reference to the

deposits of high-density turbidity currents: Journal of Sedimentary Petrology, 52. pp. 279-

290.

Mayalla, M. E. J. 2006. Turbidite channel reservoirs-Key elements in facies prediction. Marine

and Petroleum Geology, 23, 8. pp. 821-841.

Merkel, R. 1979. J. American Association of Petroleum Geologist.

Middleton, G. V. 1993. Sediment deposition from turbidity currents. Earth and Planetary

Science. pp. 89-114.

Middleton, G. V., Hampton, M. A. 1973. Sediment gravity flows. Mechanics of flow and

deposition: Turbidites and Deep-Water Sedimentation. Pacific section SEPM, Los Angeles,

California. G.V. Middleton and A.H. Bouma (Eds.). pp. 1-38.

Mulder, T., Alexander, J. 2001. The physical character of subaqueous sedimentary density flows

and their deposits. Sedimentology, 48. pp. 269-299.

Page 106: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

93

Nwachukwu, S. 1972. J. Nigerian Geology Magazine, 109. pp. 411-419.

Paul, F. 2003. J. Society of Petroleum Engineers, 84387. pp. 1-16.

Pickering, K. T., Hiscott, R. N., and Hein, F. J. 1989. Deep Marine Environments Clastic

Sedimentation and Tectonics. Academic Division of Unwin Hyamnd, London. 416 p.

Posamentier, H. W., Kolla, V. 2003. Seismic Geomorphology and Stratigraphy of Depositional

Elements in Deep-Water Settings. Journal Sedimentary Research, 73, 3. pp. 367-388.

Posamentier, H.W., Walker, R.G. 2006. Deep-water turbidites and submarine fans. Facies

Models Revisited, 3rd edition. SEPM, Tulsa, Oklahoma. Posamentier, H.W. and Walker,

R.G. (Eds.). 527 pp.

Reijers, T., Petters, S., Nwajide, C. 1997. The Niger Delta Basin, African Basin. Sedimentary

Basins of the World 3. R.C. Selley (Ed.). Elsevier Science, Amsterdam. pp. 151-172.

Rider, M. 1986. The Geological Interpretation of Well Log. Blackie, Glasgow. pp. 151 -165.

Sanjeev T., Anil T., Anish T. K. et al. 2010. 8th Biennial International Conference and Exposition

on Petroleum Geophysics. Hyderbad.

Shanmugam, G. 2000. 50 years of the turbidite paradigm (1950s—1990s): deep-water processes

and facies models - A critical perspective. Marine and Petroleum Geology, 17. pp. 285-

342.

Shanmugam, G. 1997. The Bouma Sequence and the turbidite mindset. Earth-Science Review. pp.

201-222.

Sneider, R., King, H. 1978. J. American Association of Petroleum Geologist.

Stacher, P. 1995. Present understanding of the Niger Delta hydrocarbon habitat. M.N. Oti, G.

Postma (Ed.). pp. 257-267.

Stow, D.A.V., Johansson, M. 2000. Deep-water massive sands: Nature, origin and hydrocarbon

implications. Marine and Petroleum Geology. pp. 145-174.

Page 107: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

94

Tiab, D. 2014. Advance Petrophysics Lecture Material. Rock Typing, Reservoir Zoning and

Flow Units. African University of Science and Technology, Abuja, FCT, Nigeria.

Tiab, D., Donaldson, E.C. 2004. Theory and Practice of Measuring Reservoir Rock and Fluid

Transport Properties. Second Edition. Gulf Professional Publishing, 200 Wheeler Road,

Burlington, MA 01803, USA.

Walker, R.G. 1984. Facies Models: General Introduction. Geoscience, Reprint Series 1. Canada.

pp. 1-10.

Page 108: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

95

APPENDIX A: ADDITIONAL FIGURES FOR CHAPTER 4 (RESERVOIR 7)

Figure A. 1: Spider Charts showing impact of input parameters on STOOIP.

Figure A. 2: Tornado Charts of effect of input Parameters on STOOIP.

Page 109: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

96

Figure A. 3: Tornado Charts of regression coefficients for input parameters on STOOIP.

Figure A. 4: Tornado Charts of correlation coefficients for input parameters on STOOIP.

Page 110: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

97

Figure A. 5: Shows the Relative Probability Graphs of calculated STOOIPs.

Figure A. 6: Cumulative Frequency Graphs of calculated STOOIPs

Page 111: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

98

Figure A. 7: Schlumbuger Techlog log view of reservoir 7 in well 01 to well 04.

Page 112: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

99

Figure A. 8: Regressions for flow units in well 01 to well 04 for reservoir 7.

Page 113: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

100

Statistics Percentile

Minimum 8739705 5% 34796534

Maximum 84977045 10% 38297084

Mean 49453208 15% 40554022

Std Dev 8787478 20% 42284354

Variance 7.72198E+13 25% 43778037

Skewness -0.14916819 30% 45052167

Kurtosis 3.441394655 35% 46287742

Median 49751008 40% 47497434

Mode 52589384 45% 48699481

Left X 34796534 50% 49751008

Left P 5% 55% 50841131

Right X 63363578 60% 51885245

Right P 95% 65% 52900165

Diff X 28567044 70% 54044031

Diff P 90% 75% 55320175

#Errors 0 80% 56691802

Filter Min Off 85% 58144105

Filter Max Off 90% 60294121

#Filtered 0 95% 63363578

Summary Statistics for STOOIP, STB

Statistics Percentile

Minimum 8225605 5% 32749679

Maximum 79978395 10% 36044314

Mean 46544196 15% 38168491

Std Dev 8270567 20% 39797039

Variance 6.84023E+13 25% 41202858

Skewness -0.14916819 30% 42402040

Kurtosis 3.441394655 35% 43564934

Median 46824478 40% 44703468

Mode 49495891 45% 45834805

Left X 32749679 50% 46824478

Left P 5% 55% 47850476

Right X 59636309 60% 48833172

Right P 95% 65% 49788391

Diff X 26886630 70% 50864970

Diff P 90% 75% 52066047

#Errors 0 80% 53356990

Filter Min Off 85% 54723864

Filter Max Off 90% 56747408

#Filtered 0 95% 59636309

Summary Statistics for STOOIP, STB

Statistics Percentile

Minimum 7711505 5% 30702824

Maximum 74979745 10% 33791544

Mean 43635184 15% 35782960

Std Dev 7753657 20% 37309724

Variance 6.01192E+13 25% 38627679

Skewness -0.14916819 30% 39751912

Kurtosis 3.441394655 35% 40842125

Median 43897948 40% 41909501

Mode 46402397 45% 42970130

Left X 30702824 50% 43897948

Left P 5% 55% 44859821

Right X 55909039 60% 45781099

Right P 95% 65% 46676616

Diff X 25206215 70% 47685910

Diff P 90% 75% 48811919

#Errors 0 80% 50022178

Filter Min Off 85% 51303622

Filter Max Off 90% 53200695

#Filtered 0 95% 55909039

Summary Statistics for STOOIP, STB

APPENDIX B: ADDITIONAL TABLES FOR CHAPTER 4 (RESERVOIR 7)

Table B. 1: Summary of statistics for STOOIP simulation runs for 150ft, 160ft and 170ft respectively.

Page 114: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

101

APPENDIX C: ADDITIONAL FIGURES FOR CHAPTER 4 (RESERVOIR 6)

Figure C. 1: Spider Charts showing impact of input parameters on STOOIP

Figure C. 2: Tornado Charts of effect of input Parameters on STOOIP

Page 115: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

102

Figure C. 3: Tornado Charts of regression coefficients for input parameters on STOOIP.

Figure C. 4: Tornado Charts of correlation coefficients for input parameters on STOOIP.

Page 116: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

103

Figure C. 5: Shows the Probability Density Function Graphs of calculated STOOIPs.

Figure C. 6: Cumulative Frequency Graphs of calculated STOOIPs

Page 117: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

104

Figure C. 7: Schlumbuger Techlog log view of reservoir 6 in well 02 and well 03.

Figure C. 8: Regressions for flow units in well 02 and well 03 for reservoir 6.

Page 118: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

105

Statistics Percentile

Minimum 6879140.492 5% 31000073

Maximum 73977730.79 10% 33940396

Mean 43661903.9 15% 35891956

Std Dev 7630741.447 20% 37418591

Variance 5.82282E+13 25% 38688670

Skewness -0.120608431 30% 39818016

Kurtosis 3.24030441 35% 40896269

Median 43743042.01 40% 41890664

Mode 43081813.32 45% 42842390

Left X 31000072.9 50% 43743042

Left P 5% 55% 44748651

Right X 55969392.21 60% 45671013

Right P 95% 65% 46646019

Diff X 24969319.31 70% 47688648

Diff P 90% 75% 48787436

#Errors 0 80% 49981211

Filter Min Off 85% 51512229

Filter Max Off 90% 53289921

#Filtered 0 95% 55969392

Summary Statistics for STOOIP, STB

Statistics Percentile

Minimum 7337749.858 5% 33066744

Maximum 78909579.51 10% 36203089

Mean 46572697.49 15% 38284754

Std Dev 8139457.543 20% 39913164

Variance 6.62508E+13 25% 41267915

Skewness -0.120608431 30% 42472551

Kurtosis 3.24030441 35% 43622687

Median 46659244.81 40% 44683375

Mode 45953934.21 45% 45698549

Left X 33066744.43 50% 46659245

Left P 5% 55% 47731894

Right X 59700685.03 60% 48715748

Right P 95% 65% 49755754

Diff X 26633940.6 70% 50867891

Diff P 90% 75% 52039932

#Errors 0 80% 53313291

Filter Min Off 85% 54946377

Filter Max Off 90% 56842582

#Filtered 0 95% 59700685

Summary Statistics for STOOIP, STB

Statistics Percentile

Minimum 7796359.224 5% 35133416

Maximum 83841428.23 10% 38465782

Mean 49483491.08 15% 40677551

Std Dev 8648173.64 20% 42407736

Variance 7.47909E+13 25% 43847160

Skewness -0.120608431 30% 45127085

Kurtosis 3.24030441 35% 46349105

Median 49575447.61 40% 47476086

Mode 48826055.1 45% 48554709

Left X 35133415.96 50% 49575448

Left P 5% 55% 50715137

Right X 63431977.84 60% 51760482

Right P 95% 65% 52865489

Diff X 28298561.89 70% 54047134

Diff P 90% 75% 55292427

#Errors 0 80% 56645372

Filter Min Off 85% 58380526

Filter Max Off 90% 60395243

#Filtered 0 95% 63431978

Summary Statistics for STOOIP, STB

APPENDIX D: ADDITIONAL TABLES FOR CHAPTER 4 (RESERVOIR 6)

Table D. 1: Summary of statistics for STOOIP simulation runs for 130ft, 140ft and 150ft respectively

Page 119: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

106

Depth ΦT Φe K RQI Φz kh Φh nRQI

3688.54 0.2072 0.0929 0.0324 0.0185 0.1024 1.0000 1.0000 0.0004

3688.69 0.2341 0.1035 0.0794 0.0275 0.1155 1.0000 0.9985 0.0009

3688.84 0.2538 0.1097 0.1264 0.0337 0.1233 1.0000 0.9969 0.0015

3688.99 0.2639 0.1131 0.1622 0.0376 0.1276 0.9999 0.9952 0.0023

3689.15 0.2639 0.1146 0.1760 0.0389 0.1294 0.9999 0.9934 0.0030

3689.30 0.2613 0.1200 0.2014 0.0407 0.1364 0.9998 0.9916 0.0038

3689.45 0.2625 0.1264 0.2499 0.0441 0.1447 0.9998 0.9897 0.0047

3689.60 0.2756 0.1281 0.3578 0.0525 0.1469 0.9997 0.9877 0.0057

3689.76 0.2734 0.1239 0.3200 0.0505 0.1414 0.9996 0.9857 0.0067

3689.91 0.2538 0.1157 0.1928 0.0405 0.1309 0.9995 0.9837 0.0074

3690.06 0.2461 0.1131 0.1700 0.0385 0.1275 0.9994 0.9819 0.0082

3690.21 0.2566 0.1232 0.2908 0.0482 0.1405 0.9994 0.9801 0.0091

3690.37 0.2564 0.1325 0.4035 0.0548 0.1527 0.9993 0.9782 0.0102

3690.52 0.2356 0.1301 0.2678 0.0450 0.1496 0.9992 0.9761 0.0111

3690.67 0.2264 0.1289 0.2617 0.0448 0.1479 0.9991 0.9740 0.0119

3690.82 0.2413 0.1390 0.6043 0.0655 0.1615 0.9990 0.9720 0.0132

3690.98 0.2671 0.1558 1.6238 0.1014 0.1846 0.9989 0.9698 0.0152

3691.13 0.2892 0.1727 3.2419 0.1360 0.2088 0.9984 0.9674 0.0178

3691.28 0.3065 0.1874 4.9422 0.1612 0.2306 0.9975 0.9646 0.0209

3691.43 0.3089 0.1912 4.7597 0.1567 0.2364 0.9960 0.9617 0.0239

3691.59 0.3041 0.1910 3.6418 0.1371 0.2361 0.9946 0.9587 0.0266

3691.74 0.3077 0.1960 3.5061 0.1328 0.2439 0.9936 0.9557 0.0292

3691.89 0.3219 0.2041 4.1193 0.1411 0.2565 0.9926 0.9526 0.0319

3692.04 0.3213 0.2027 3.8749 0.1373 0.2543 0.9914 0.9493 0.0346

3692.20 0.2975 0.1900 2.6417 0.1171 0.2346 0.9902 0.9462 0.0368

3692.35 0.2630 0.1720 1.4479 0.0911 0.2078 0.9895 0.9432 0.0386

3692.50 0.2333 0.1515 0.6451 0.0648 0.1785 0.9890 0.9404 0.0399

3692.65 0.2318 0.1459 0.4065 0.0524 0.1708 0.9889 0.9380 0.0409

3692.80 0.2547 0.1574 0.6281 0.0627 0.1868 0.9887 0.9358 0.0421

3692.96 0.2878 0.1816 1.8554 0.1004 0.2219 0.9886 0.9333 0.0440

3693.11 0.3093 0.2064 3.6093 0.1313 0.2601 0.9880 0.9304 0.0466

3693.26 0.3244 0.2281 5.7008 0.1570 0.2956 0.9870 0.9272 0.0496

3693.41 0.3341 0.2415 8.1144 0.1820 0.3185 0.9853 0.9235 0.0531

3693.57 0.3310 0.2422 7.7765 0.1779 0.3196 0.9829 0.9198 0.0566

3693.72 0.3198 0.2373 6.5497 0.1650 0.3111 0.9807 0.9159 0.0598

3693.87 0.3084 0.2297 5.3775 0.1519 0.2982 0.9788 0.9122 0.0627

3694.02 0.3013 0.2146 4.0198 0.1359 0.2732 0.9772 0.9086 0.0653

3694.18 0.3085 0.2104 3.7977 0.1334 0.2664 0.9760 0.9052 0.0679

3694.33 0.3282 0.2222 5.0139 0.1492 0.2857 0.9749 0.9019 0.0708

3694.48 0.3478 0.2383 8.2901 0.1852 0.3129 0.9735 0.8984 0.0744

3694.63 0.3522 0.2445 9.6103 0.1968 0.3237 0.9711 0.8946 0.0782

3694.79 0.3456 0.2395 8.0294 0.1818 0.3149 0.9683 0.8908 0.0817

3694.94 0.3352 0.2272 6.2792 0.1651 0.2940 0.9659 0.8870 0.0849

3695.09 0.3239 0.2186 4.6298 0.1445 0.2798 0.9641 0.8834 0.0877

3695.24 0.3211 0.2260 4.7788 0.1444 0.2920 0.9628 0.8800 0.0905

3695.40 0.3312 0.2467 7.4464 0.1725 0.3275 0.9614 0.8764 0.0939

3695.55 0.3381 0.2569 10.2603 0.1985 0.3456 0.9592 0.8725 0.0977

3695.70 0.3377 0.2491 10.2088 0.2010 0.3318 0.9562 0.8684 0.1016

3695.85 0.3344 0.2404 8.0664 0.1819 0.3165 0.9533 0.8645 0.1051

3696.01 0.3353 0.2396 7.0939 0.1709 0.3150 0.9509 0.8607 0.1084

3696.16 0.3387 0.2409 7.5056 0.1753 0.3174 0.9489 0.8569 0.1118

3696.31 0.3462 0.2530 10.3380 0.2007 0.3387 0.9467 0.8532 0.1157

3696.46 0.3544 0.2684 14.1751 0.2282 0.3668 0.9437 0.8492 0.1201

3696.62 0.3529 0.2692 13.4437 0.2219 0.3684 0.9396 0.8449 0.1244

3696.77 0.3427 0.2535 10.1893 0.1991 0.3396 0.9356 0.8407 0.1283

3696.92 0.3299 0.2329 6.7184 0.1687 0.3035 0.9327 0.8367 0.1316

3697.07 0.3263 0.2280 5.7177 0.1572 0.2954 0.9307 0.8330 0.1346

3697.22 0.3314 0.2407 7.2896 0.1728 0.3170 0.9291 0.8294 0.1379

3697.38 0.3444 0.2597 11.0496 0.2048 0.3508 0.9269 0.8256 0.1419

3697.53 0.3558 0.2688 14.3928 0.2298 0.3676 0.9237 0.8215 0.1464

3697.68 0.3621 0.2727 15.9625 0.2402 0.3750 0.9195 0.8173 0.1510

3697.83 0.3595 0.2771 16.6868 0.2437 0.3832 0.9149 0.8130 0.1557

3697.99 0.3545 0.2796 16.9858 0.2448 0.3881 0.9101 0.8086 0.1605

3698.14 0.3514 0.2763 15.7389 0.2370 0.3817 0.9051 0.8042 0.1651

3698.29 0.3495 0.2724 14.6554 0.2303 0.3744 0.9005 0.7999 0.1695

3698.44 0.3495 0.2709 14.0944 0.2265 0.3715 0.8963 0.7956 0.1739

3698.60 0.3490 0.2730 14.6456 0.2300 0.3756 0.8922 0.7913 0.1784

3698.75 0.3476 0.2744 14.2777 0.2265 0.3782 0.8879 0.7870 0.1827

3698.90 0.3478 0.2735 13.1586 0.2178 0.3765 0.8838 0.7827 0.1870

3699.05 0.3508 0.2748 13.9531 0.2237 0.3790 0.8799 0.7784 0.1913

3699.21 0.3552 0.2785 16.1304 0.2390 0.3860 0.8759 0.7740 0.1959

3699.36 0.3572 0.2793 17.0082 0.2451 0.3874 0.8712 0.7696 0.2007

3699.51 0.3597 0.2860 18.9550 0.2556 0.4006 0.8662 0.7652 0.2056

3699.66 0.3653 0.2925 21.0791 0.2665 0.4135 0.8607 0.7607 0.2108

3699.82 0.3696 0.2952 21.8964 0.2705 0.4188 0.8546 0.7561 0.2160

3699.97 0.3635 0.2877 19.0362 0.2554 0.4039 0.8482 0.7515 0.2210

3700.12 0.3565 0.2764 15.1450 0.2324 0.3820 0.8427 0.7469 0.2255

3700.27 0.3537 0.2675 13.0115 0.2190 0.3652 0.8383 0.7426 0.2297

3700.42 0.3560 0.2627 12.8065 0.2193 0.3562 0.8345 0.7383 0.2340

3700.58 0.3554 0.2665 13.3999 0.2227 0.3633 0.8308 0.7342 0.2383

Depth ΦT Φe K RQI Φz kh Φh nRQI

3700.73 0.3506 0.2730 14.0830 0.2255 0.3755 0.8269 0.7300 0.2426

3700.88 0.3418 0.2711 12.7583 0.2154 0.3719 0.8228 0.7257 0.2468

3701.03 0.3310 0.2587 9.6537 0.1918 0.3490 0.8191 0.7214 0.2505

3701.19 0.3263 0.2456 7.5546 0.1741 0.3256 0.8163 0.7173 0.2539

3701.34 0.3294 0.2426 7.4031 0.1735 0.3202 0.8141 0.7135 0.2573

3701.49 0.3404 0.2565 10.4380 0.2003 0.3450 0.8119 0.7096 0.2611

3701.64 0.3555 0.2744 15.7845 0.2382 0.3782 0.8089 0.7056 0.2657

3701.80 0.3682 0.2842 19.8895 0.2627 0.3971 0.8043 0.7013 0.2708

3701.95 0.3693 0.2806 19.2723 0.2602 0.3901 0.7985 0.6968 0.2759

3702.10 0.3620 0.2747 16.6964 0.2448 0.3787 0.7929 0.6924 0.2806

3702.25 0.3581 0.2706 14.5647 0.2304 0.3709 0.7881 0.6880 0.2851

3702.41 0.3570 0.2647 12.8012 0.2184 0.3600 0.7838 0.6838 0.2893

3702.56 0.3527 0.2566 11.2103 0.2076 0.3451 0.7801 0.6796 0.2933

3702.71 0.3454 0.2509 9.6231 0.1945 0.3350 0.7768 0.6756 0.2971

3702.86 0.3450 0.2532 10.0057 0.1974 0.3390 0.7741 0.6716 0.3009

3703.02 0.3478 0.2548 10.8017 0.2044 0.3420 0.7711 0.6676 0.3049

3703.17 0.3459 0.2562 10.7058 0.2030 0.3445 0.7680 0.6636 0.3088

3703.32 0.3416 0.2597 10.9067 0.2035 0.3508 0.7649 0.6596 0.3127

3703.47 0.3436 0.2662 12.4894 0.2151 0.3627 0.7617 0.6555 0.3169

3703.63 0.3476 0.2750 14.7719 0.2302 0.3792 0.7581 0.6513 0.3214

3703.78 0.3544 0.2878 18.6382 0.2527 0.4040 0.7538 0.6469 0.3263

3703.93 0.3559 0.2959 22.1325 0.2716 0.4202 0.7484 0.6424 0.3315

3704.08 0.3507 0.2948 21.4526 0.2679 0.4180 0.7419 0.6377 0.3367

3704.23 0.3421 0.2911 17.8703 0.2460 0.4107 0.7357 0.6331 0.3415

3704.39 0.3347 0.2906 16.5744 0.2371 0.4097 0.7305 0.6285 0.3461

3704.54 0.3337 0.2873 16.2006 0.2358 0.4030 0.7257 0.6239 0.3506

3704.69 0.3351 0.2777 14.1278 0.2240 0.3845 0.7210 0.6194 0.3550

3704.84 0.3417 0.2722 13.6811 0.2226 0.3741 0.7168 0.6150 0.3593

3705.00 0.3457 0.2682 13.0155 0.2187 0.3665 0.7129 0.6107 0.3635

3705.15 0.3479 0.2685 13.1517 0.2198 0.3671 0.7091 0.6065 0.3678

3705.30 0.3444 0.2666 12.4099 0.2142 0.3635 0.7053 0.6022 0.3719

3705.45 0.3425 0.2637 11.3473 0.2060 0.3582 0.7017 0.5981 0.3759

3705.61 0.3456 0.2659 12.1444 0.2122 0.3622 0.6984 0.5939 0.3800

3705.76 0.3552 0.2761 15.6834 0.2367 0.3813 0.6948 0.5897 0.3846

3705.91 0.3652 0.2870 20.3214 0.2642 0.4026 0.6903 0.5854 0.3897

3706.06 0.3738 0.2965 24.3595 0.2846 0.4215 0.6844 0.5808 0.3952

3706.22 0.3761 0.2973 23.5896 0.2797 0.4231 0.6773 0.5762 0.4006

3706.37 0.3736 0.2920 21.7729 0.2711 0.4125 0.6704 0.5714 0.4059

3706.52 0.3647 0.2822 17.9025 0.2501 0.3931 0.6641 0.5669 0.4107

3706.67 0.3552 0.2731 14.1734 0.2262 0.3757 0.6589 0.5624 0.4151

3706.83 0.3524 0.2726 13.8900 0.2242 0.3747 0.6547 0.5581 0.4195

3706.98 0.3636 0.2851 18.2316 0.2511 0.3988 0.6507 0.5538 0.4243

3707.13 0.3728 0.2942 22.1546 0.2725 0.4169 0.6454 0.5493 0.4296

3707.28 0.3712 0.2923 21.6586 0.2703 0.4131 0.6390 0.5447 0.4348

3707.44 0.3652 0.2875 19.0924 0.2559 0.4036 0.6327 0.5401 0.4398

3707.59 0.3623 0.2885 18.2524 0.2498 0.4054 0.6271 0.5355 0.4446

3707.74 0.3591 0.2904 18.6030 0.2513 0.4092 0.6218 0.5310 0.4495

3707.89 0.3532 0.2873 17.4590 0.2448 0.4031 0.6164 0.5264 0.4542

3708.04 0.3441 0.2752 13.4860 0.2198 0.3797 0.6113 0.5219 0.4585

3708.20 0.3452 0.2711 12.6964 0.2149 0.3719 0.6074 0.5175 0.4626

3708.35 0.3567 0.2823 16.2720 0.2384 0.3933 0.6037 0.5133 0.4673

3708.50 0.3702 0.2948 21.7985 0.2700 0.4181 0.5990 0.5088 0.4725

3708.65 0.3750 0.2993 24.1863 0.2822 0.4272 0.5926 0.5041 0.4780

3708.81 0.3724 0.3035 25.2433 0.2864 0.4357 0.5856 0.4994 0.4835

3708.96 0.3702 0.3066 26.2965 0.2908 0.4422 0.5783 0.4947 0.4891

3709.11 0.3667 0.3035 24.1116 0.2799 0.4358 0.5706 0.4898 0.4945

3709.26 0.3572 0.2917 18.6474 0.2511 0.4118 0.5636 0.4850 0.4994

3709.42 0.3470 0.2773 14.4120 0.2264 0.3837 0.5582 0.4804 0.5038

3709.57 0.3421 0.2719 12.9832 0.2170 0.3734 0.5540 0.4761 0.5080

3709.72 0.3450 0.2759 14.1376 0.2248 0.3810 0.5502 0.4718 0.5123

3709.87 0.3444 0.2764 14.4490 0.2270 0.3820 0.5461 0.4674 0.5167

3710.03 0.3388 0.2749 13.1361 0.2171 0.3790 0.5419 0.4631 0.5209

3710.18 0.3332 0.2711 11.4618 0.2042 0.3718 0.5381 0.4587 0.5249

3710.33 0.3319 0.2644 10.4244 0.1972 0.3595 0.5348 0.4545 0.5287

3710.48 0.3213 0.2451 7.1131 0.1691 0.3248 0.5317 0.4503 0.5320

3710.64 0.3043 0.2277 4.4062 0.1381 0.2949 0.5297 0.4464 0.5347

3710.79 0.2932 0.2204 3.3547 0.1225 0.2827 0.5284 0.4428 0.5370

3710.94 0.3036 0.2336 4.6837 0.1406 0.3048 0.5274 0.4394 0.5398

3711.09 0.3287 0.2582 8.9478 0.1849 0.3480 0.5260 0.4357 0.5433

3711.25 0.3438 0.2707 12.7461 0.2155 0.3712 0.5235 0.4316 0.5475

3711.40 0.3298 0.2592 9.7680 0.1927 0.3500 0.5197 0.4273 0.5513

3711.55 0.3107 0.2481 6.5889 0.1618 0.3300 0.5169 0.4233 0.5544

3711.70 0.3126 0.2596 7.9692 0.1740 0.3506 0.5150 0.4193 0.5578

3711.85 0.3352 0.2877 15.4227 0.2299 0.4039 0.5127 0.4153 0.5622

3712.01 0.3555 0.3080 24.6415 0.2809 0.4450 0.5082 0.4107 0.5676

3712.16 0.3626 0.3127 28.5223 0.2999 0.4550 0.5010 0.4059 0.5735

3712.31 0.3585 0.3068 25.5172 0.2863 0.4427 0.4927 0.4009 0.5790

3712.46 0.3535 0.3002 22.1071 0.2695 0.4290 0.4853 0.3961 0.5842

3712.62 0.3474 0.2968 19.8057 0.2565 0.4220 0.4789 0.3914 0.5892

APPENDIX E: DATA OF WELL 01 FOR FLOW UNIT CHARTS FOR RESERVOIR 7

Page 120: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

107

Depth ΦT Φe K RQI Φz kh Φh nRQI

3712.77 0.3415 0.2909 17.4545 0.2432 0.4102 0.4731 0.3867 0.5939

3712.92 0.3416 0.2861 16.3040 0.2371 0.4007 0.4680 0.3821 0.5985

3713.07 0.3491 0.2825 16.0639 0.2368 0.3938 0.4633 0.3776 0.6031

3713.23 0.3601 0.2821 17.4598 0.2470 0.3930 0.4586 0.3731 0.6079

3713.38 0.3612 0.2780 16.8434 0.2444 0.3850 0.4535 0.3687 0.6126

3713.53 0.3542 0.2740 14.8643 0.2313 0.3774 0.4487 0.3643 0.6171

3713.68 0.3471 0.2690 12.5154 0.2142 0.3680 0.4443 0.3600 0.6212

3713.84 0.3476 0.2698 12.6639 0.2151 0.3695 0.4407 0.3557 0.6254

3713.99 0.3537 0.2784 15.6009 0.2351 0.3858 0.4370 0.3515 0.6299

3714.14 0.3582 0.2825 17.4033 0.2464 0.3938 0.4325 0.3471 0.6347

3714.29 0.3579 0.2826 16.8788 0.2427 0.3940 0.4274 0.3427 0.6394

3714.45 0.3641 0.2918 19.9511 0.2596 0.4120 0.4225 0.3382 0.6444

3714.60 0.3735 0.3034 25.7961 0.2895 0.4356 0.4167 0.3336 0.6500

3714.75 0.3742 0.3036 26.6493 0.2942 0.4360 0.4092 0.3288 0.6557

3714.90 0.3550 0.2816 17.6562 0.2486 0.3920 0.4014 0.3240 0.6605

3715.06 0.3355 0.2611 11.4667 0.2081 0.3533 0.3963 0.3196 0.6646

3715.21 0.3335 0.2631 11.4573 0.2072 0.3571 0.3930 0.3155 0.6686

3715.36 0.3417 0.2728 13.7437 0.2229 0.3751 0.3897 0.3113 0.6729

3715.51 0.3419 0.2724 14.1905 0.2266 0.3743 0.3856 0.3070 0.6773

3715.66 0.3388 0.2700 12.7742 0.2160 0.3698 0.3815 0.3027 0.6815

3715.82 0.3435 0.2756 14.2275 0.2256 0.3804 0.3778 0.2985 0.6858

3715.97 0.3524 0.2855 18.1985 0.2507 0.3995 0.3737 0.2941 0.6907

3716.12 0.3574 0.2929 20.6809 0.2639 0.4141 0.3684 0.2896 0.6958

3716.27 0.3587 0.2999 23.4100 0.2774 0.4284 0.3624 0.2850 0.7012

3716.43 0.3578 0.3069 25.4390 0.2859 0.4428 0.3556 0.2803 0.7067

3716.58 0.3521 0.3128 25.8924 0.2857 0.4551 0.3481 0.2754 0.7123

3716.73 0.3425 0.3129 24.0525 0.2753 0.4554 0.3406 0.2705 0.7176

3716.88 0.3285 0.3044 18.9264 0.2476 0.4377 0.3337 0.2656 0.7224

3717.04 0.2984 0.2813 13.3167 0.2160 0.3915 0.3281 0.2608 0.7266

3717.19 0.2715 0.2620 8.8588 0.1826 0.3551 0.3243 0.2563 0.7301

3717.34 0.2724 0.2637 6.9865 0.1616 0.3581 0.3217 0.2522 0.7332

3717.49 0.2964 0.2782 10.1569 0.1897 0.3854 0.3197 0.2480 0.7369

3717.65 0.3074 0.2675 9.8960 0.1910 0.3652 0.3167 0.2437 0.7406

3717.80 0.3007 0.2388 5.9218 0.1564 0.3138 0.3138 0.2394 0.7436

3717.95 0.3047 0.2335 5.7528 0.1559 0.3046 0.3121 0.2357 0.7466

3718.10 0.3272 0.2554 10.6871 0.2031 0.3429 0.3104 0.2320 0.7506

3718.26 0.3615 0.2859 23.1041 0.2823 0.4003 0.3073 0.2280 0.7560

3718.41 0.3899 0.3074 38.5817 0.3518 0.4438 0.3006 0.2235 0.7629

3718.56 0.4006 0.3185 47.6381 0.3840 0.4673 0.2894 0.2186 0.7703

3718.71 0.3955 0.3210 44.5710 0.3700 0.4728 0.2755 0.2136 0.7775

3718.87 0.3798 0.3086 32.4659 0.3221 0.4464 0.2626 0.2085 0.7837

3719.02 0.3650 0.2946 23.2858 0.2792 0.4176 0.2531 0.2037 0.7891

3719.17 0.3607 0.2918 21.7531 0.2711 0.4119 0.2464 0.1990 0.7944

3719.32 0.3582 0.2904 21.5439 0.2704 0.4093 0.2400 0.1944 0.7996

3719.47 0.3487 0.2766 16.2093 0.2404 0.3823 0.2338 0.1898 0.8042

3719.63 0.3308 0.2555 10.2355 0.1987 0.3432 0.2291 0.1855 0.8081

3719.78 0.3184 0.2452 7.9619 0.1789 0.3248 0.2261 0.1815 0.8116

3719.93 0.3207 0.2513 8.3084 0.1805 0.3357 0.2238 0.1776 0.8151

3720.08 0.3351 0.2671 12.0065 0.2105 0.3644 0.2214 0.1736 0.8191

3720.24 0.3458 0.2770 15.9229 0.2381 0.3830 0.2179 0.1694 0.8237

3720.39 0.3470 0.2807 16.1534 0.2382 0.3902 0.2133 0.1651 0.8284

3720.54 0.3464 0.2847 16.5564 0.2394 0.3981 0.2085 0.1606 0.8330

3720.69 0.3521 0.2913 18.2203 0.2483 0.4110 0.2037 0.1561 0.8378

3720.85 0.3565 0.2928 19.0416 0.2532 0.4141 0.1984 0.1515 0.8427

3721.00 0.3581 0.2918 19.8501 0.2590 0.4121 0.1929 0.1469 0.8477

3721.15 0.3533 0.2880 18.5044 0.2517 0.4044 0.1871 0.1423 0.8526

3721.30 0.3524 0.2862 18.1091 0.2498 0.4009 0.1817 0.1378 0.8574

3721.46 0.3544 0.2861 18.5816 0.2531 0.4007 0.1765 0.1333 0.8623

3721.61 0.3539 0.2879 19.1090 0.2558 0.4043 0.1711 0.1288 0.8673

3721.76 0.3520 0.2886 18.8657 0.2539 0.4057 0.1655 0.1242 0.8722

3721.91 0.3507 0.2925 19.3583 0.2554 0.4135 0.1601 0.1197 0.8772

3722.07 0.3528 0.3030 22.3943 0.2699 0.4348 0.1544 0.1151 0.8824

3722.22 0.3458 0.3043 21.6928 0.2651 0.4373 0.1479 0.1103 0.8875

3722.37 0.3358 0.2980 19.0995 0.2514 0.4246 0.1416 0.1055 0.8924

3722.52 0.3371 0.2994 19.3087 0.2522 0.4273 0.1360 0.1008 0.8973

3722.68 0.3473 0.3077 23.6417 0.2752 0.4444 0.1304 0.0961 0.9026

3722.83 0.3568 0.3137 28.6012 0.2998 0.4572 0.1235 0.0912 0.9084

3722.98 0.3576 0.3106 27.6555 0.2963 0.4506 0.1152 0.0863 0.9141

3723.13 0.3552 0.3043 24.4564 0.2815 0.4374 0.1072 0.0814 0.9196

3723.28 0.3537 0.3045 23.0881 0.2734 0.4377 0.1001 0.0766 0.9249

3723.44 0.3496 0.3046 21.8560 0.2660 0.4380 0.0934 0.0718 0.9300

3723.59 0.3448 0.3002 19.6938 0.2543 0.4289 0.0870 0.0670 0.9350

3723.74 0.3424 0.2954 18.5943 0.2491 0.4192 0.0813 0.0623 0.9398

3723.89 0.3453 0.2970 19.1070 0.2519 0.4224 0.0759 0.0576 0.9447

3724.05 0.3510 0.3065 21.3813 0.2623 0.4420 0.0703 0.0529 0.9497

3724.20 0.3567 0.3154 25.2253 0.2808 0.4607 0.0641 0.0481 0.9552

3724.35 0.3662 0.3248 29.8492 0.3010 0.4809 0.0568 0.0431 0.9610

3724.50 0.3761 0.3356 34.1043 0.3165 0.5052 0.0481 0.0380 0.9671

3724.66 0.3785 0.3405 35.6709 0.3214 0.5163 0.0381 0.0327 0.9734

Depth ΦT Φe K RQI Φz kh Φh nRQI

3724.81 0.3651 0.3255 27.2754 0.2874 0.4827 0.0278 0.0273 0.9789

3724.96 0.3479 0.3030 18.2486 0.2437 0.4347 0.0199 0.0222 0.9836

3725.11 0.3395 0.2886 14.3891 0.2217 0.4057 0.0146 0.0174 0.9879

3725.27 0.3354 0.2810 13.1254 0.2146 0.3909 0.0104 0.0129 0.9921

3725.42 0.3283 0.2703 11.2629 0.2027 0.3703 0.0066 0.0084 0.9960

3725.57 0.3301 0.2653 11.3627 0.2055 0.3612 0.0033 0.0042 1.0000

Page 121: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

108

Depth ΦT Φe K RQI Φz kh Φh nRQI

3683.05 0.1167 0.0471 0.0000 0.0000 0.0494 1.0000 1.0000 0.0000

3683.20 0.1479 0.0601 0.0014 0.0048 0.0639 1.0000 0.9990 0.0000

3683.36 0.2205 0.1029 0.1984 0.0436 0.1147 1.0000 0.9978 0.0002

3683.51 0.3018 0.1777 9.1199 0.2250 0.2160 1.0000 0.9956 0.0009

3683.66 0.3408 0.2452 62.7184 0.5022 0.3249 1.0000 0.9919 0.0026

3683.81 0.3446 0.2788 105.3597 0.6104 0.3866 0.9997 0.9868 0.0046

3683.97 0.3423 0.2947 107.2538 0.5991 0.4178 0.9993 0.9810 0.0066

3684.12 0.3456 0.3051 113.0515 0.6044 0.4390 0.9989 0.9749 0.0087

3684.27 0.3466 0.3040 110.8316 0.5996 0.4367 0.9985 0.9685 0.0107

3684.42 0.3304 0.2778 183.7666 0.8076 0.3847 0.9981 0.9622 0.0134

3684.58 0.3027 0.2384 60.4320 0.5000 0.3130 0.9974 0.9564 0.0151

3684.73 0.2736 0.2025 31.7444 0.3931 0.2539 0.9972 0.9514 0.0164

3684.88 0.2342 0.1634 1.8218 0.1048 0.1953 0.9971 0.9472 0.0167

3685.03 0.1861 0.1202 0.0766 0.0251 0.1366 0.9971 0.9438 0.0168

3685.18 0.1440 0.0824 0.0008 0.0030 0.0898 0.9971 0.9413 0.0168

3685.34 0.1297 0.0637 0.0000 0.0001 0.0680 0.9971 0.9395 0.0168

3685.49 0.1305 0.0557 0.0000 0.0000 0.0589 0.9971 0.9382 0.0168

3685.64 0.1339 0.0523 0.0000 0.0005 0.0552 0.9971 0.9371 0.0168

3685.79 0.1330 0.0518 0.0001 0.0016 0.0546 0.9971 0.9360 0.0168

3685.95 0.1346 0.0553 0.0002 0.0020 0.0586 0.9971 0.9349 0.0168

3686.10 0.1423 0.0591 0.0003 0.0023 0.0629 0.9971 0.9337 0.0168

3686.25 0.1507 0.0601 0.0003 0.0022 0.0639 0.9971 0.9325 0.0168

3686.40 0.1513 0.0588 0.0001 0.0014 0.0624 0.9971 0.9313 0.0168

3686.56 0.1490 0.0576 0.0001 0.0010 0.0611 0.9971 0.9300 0.0168

3686.71 0.1468 0.0552 0.0001 0.0010 0.0585 0.9971 0.9288 0.0169

3686.86 0.1497 0.0551 0.0003 0.0023 0.0583 0.9971 0.9277 0.0169

3687.01 0.1632 0.0648 0.0055 0.0091 0.0693 0.9971 0.9265 0.0169

3687.17 0.1990 0.0903 0.1192 0.0361 0.0993 0.9971 0.9252 0.0170

3687.32 0.2514 0.1311 1.1491 0.0930 0.1509 0.9971 0.9233 0.0173

3687.47 0.2835 0.1699 2.8990 0.1297 0.2047 0.9971 0.9206 0.0178

3687.62 0.2739 0.1791 2.6246 0.1202 0.2182 0.9970 0.9170 0.0182

3687.78 0.2386 0.1555 1.1430 0.0851 0.1842 0.9970 0.9133 0.0184

3687.93 0.2115 0.1295 0.4366 0.0577 0.1488 0.9970 0.9100 0.0186

3688.08 0.2045 0.1230 0.3677 0.0543 0.1402 0.9970 0.9074 0.0188

3688.23 0.2187 0.1387 1.1719 0.0913 0.1610 0.9970 0.9048 0.0191

3688.39 0.2528 0.1733 6.4487 0.1915 0.2096 0.9970 0.9019 0.0198

3688.54 0.2981 0.2221 34.3262 0.3904 0.2855 0.9970 0.8983 0.0211

3688.69 0.3319 0.2645 84.4267 0.5610 0.3595 0.9969 0.8937 0.0229

3688.84 0.3368 0.2751 92.6405 0.5762 0.3796 0.9965 0.8881 0.0249

3688.99 0.3237 0.2647 68.3879 0.5047 0.3601 0.9962 0.8824 0.0266

3689.15 0.3158 0.2636 56.4137 0.4594 0.3579 0.9959 0.8769 0.0281

3689.30 0.3142 0.2723 51.2951 0.4309 0.3743 0.9957 0.8714 0.0295

3689.45 0.2823 0.2489 19.7312 0.2796 0.3313 0.9955 0.8657 0.0305

3689.60 0.2138 0.1798 1.3483 0.0860 0.2193 0.9955 0.8605 0.0308

3689.76 0.1573 0.1156 0.0309 0.0162 0.1307 0.9955 0.8568 0.0308

3689.91 0.1376 0.0824 0.0013 0.0040 0.0898 0.9955 0.8544 0.0308

3690.06 0.1393 0.0674 0.0004 0.0023 0.0723 0.9955 0.8526 0.0308

3690.21 0.1399 0.0594 0.0002 0.0017 0.0632 0.9955 0.8512 0.0309

3690.37 0.1424 0.0609 0.0002 0.0016 0.0649 0.9955 0.8500 0.0309

3690.52 0.1506 0.0657 0.0004 0.0023 0.0703 0.9955 0.8487 0.0309

3690.67 0.1567 0.0629 0.0005 0.0027 0.0671 0.9955 0.8474 0.0309

3690.82 0.1504 0.0499 0.0001 0.0010 0.0526 0.9955 0.8460 0.0309

3690.98 0.1374 0.0405 0.0000 0.0000 0.0422 0.9955 0.8450 0.0309

3691.13 0.1333 0.0401 0.0000 0.0000 0.0418 0.9955 0.8442 0.0309

3691.28 0.1406 0.0445 0.0000 0.0004 0.0466 0.9955 0.8433 0.0309

3691.43 0.1515 0.0526 0.0001 0.0015 0.0555 0.9955 0.8424 0.0309

3691.59 0.1567 0.0609 0.0004 0.0026 0.0648 0.9955 0.8413 0.0309

3691.74 0.1506 0.0615 0.0002 0.0017 0.0655 0.9955 0.8400 0.0309

3691.89 0.1427 0.0559 0.0000 0.0007 0.0593 0.9955 0.8388 0.0309

3692.04 0.1355 0.0515 0.0000 0.0002 0.0543 0.9955 0.8376 0.0309

3692.20 0.1335 0.0497 0.0000 0.0009 0.0523 0.9955 0.8365 0.0309

3692.35 0.1395 0.0523 0.0013 0.0049 0.0551 0.9955 0.8355 0.0309

3692.50 0.1499 0.0583 0.0176 0.0173 0.0619 0.9955 0.8344 0.0310

3692.65 0.1611 0.0730 0.0624 0.0290 0.0787 0.9955 0.8332 0.0311

3692.80 0.1781 0.1014 0.0671 0.0255 0.1128 0.9955 0.8317 0.0312

3692.96 0.1969 0.1265 0.0609 0.0218 0.1448 0.9955 0.8295 0.0312

3693.11 0.1908 0.1169 0.0412 0.0187 0.1323 0.9955 0.8269 0.0313

3693.26 0.1779 0.0926 0.0558 0.0244 0.1020 0.9955 0.8245 0.0314

3693.41 0.2124 0.1026 0.4290 0.0642 0.1143 0.9955 0.8225 0.0316

3693.57 0.2851 0.1594 3.8330 0.1540 0.1896 0.9955 0.8204 0.0321

3693.72 0.3219 0.2164 11.6355 0.2303 0.2761 0.9954 0.8171 0.0329

3693.87 0.3015 0.2146 7.4267 0.1847 0.2732 0.9954 0.8126 0.0335

3694.02 0.2652 0.1791 2.4854 0.1170 0.2182 0.9954 0.8081 0.0339

3694.18 0.2391 0.1590 1.1885 0.0858 0.1891 0.9954 0.8043 0.0342

3694.33 0.1890 0.1295 0.1996 0.0390 0.1488 0.9954 0.8010 0.0343

3694.48 0.1436 0.0932 0.0108 0.0107 0.1028 0.9954 0.7983 0.0343

3694.63 0.1225 0.0685 0.0003 0.0020 0.0736 0.9954 0.7964 0.0343

3694.79 0.1235 0.0564 0.0000 0.0006 0.0598 0.9954 0.7950 0.0344

3694.94 0.1279 0.0469 0.0000 0.0006 0.0492 0.9954 0.7938 0.0344

3695.09 0.1358 0.0421 0.0000 0.0010 0.0439 0.9954 0.7928 0.0344

Depth ΦT Φe K RQI Φz kh Φh nRQI

3695.24 0.1350 0.0398 0.0000 0.0007 0.0415 0.9954 0.7919 0.0344

3695.40 0.1307 0.0394 0.0000 0.0003 0.0410 0.9954 0.7911 0.0344

3695.55 0.1302 0.0414 0.0000 0.0004 0.0432 0.9954 0.7903 0.0344

3695.70 0.1379 0.0449 0.0001 0.0011 0.0470 0.9954 0.7894 0.0344

3695.85 0.1473 0.0469 0.0002 0.0020 0.0492 0.9954 0.7885 0.0344

3696.01 0.1467 0.0464 0.0002 0.0020 0.0487 0.9954 0.7875 0.0344

3696.16 0.1437 0.0469 0.0002 0.0019 0.0493 0.9954 0.7865 0.0344

3696.31 0.1425 0.0471 0.0002 0.0018 0.0495 0.9954 0.7856 0.0344

3696.46 0.1495 0.0470 0.0003 0.0023 0.0493 0.9954 0.7846 0.0344

3696.62 0.1515 0.0449 0.0002 0.0023 0.0470 0.9954 0.7836 0.0344

3696.77 0.1467 0.0429 0.0002 0.0019 0.0448 0.9954 0.7827 0.0344

3696.92 0.1425 0.0434 0.0002 0.0019 0.0453 0.9954 0.7818 0.0344

3697.07 0.1438 0.0475 0.0003 0.0026 0.0499 0.9954 0.7809 0.0344

3697.22 0.1519 0.0525 0.0007 0.0035 0.0554 0.9954 0.7799 0.0344

3697.38 0.1605 0.0564 0.0010 0.0042 0.0597 0.9954 0.7788 0.0345

3697.53 0.1612 0.0571 0.0009 0.0040 0.0605 0.9954 0.7776 0.0345

3697.68 0.1537 0.0576 0.0007 0.0034 0.0611 0.9954 0.7764 0.0345

3697.83 0.1425 0.0551 0.0002 0.0021 0.0583 0.9954 0.7752 0.0345

3697.99 0.1405 0.0519 0.0001 0.0016 0.0547 0.9954 0.7741 0.0345

3698.14 0.1382 0.0476 0.0001 0.0013 0.0500 0.9954 0.7730 0.0345

3698.29 0.1355 0.0459 0.0001 0.0011 0.0481 0.9954 0.7720 0.0345

3698.44 0.1312 0.0448 0.0000 0.0006 0.0469 0.9954 0.7710 0.0345

3698.60 0.1288 0.0438 0.0000 0.0004 0.0458 0.9954 0.7701 0.0345

3698.75 0.1313 0.0432 0.0000 0.0006 0.0451 0.9954 0.7692 0.0345

3698.90 0.1300 0.0406 0.0000 0.0008 0.0423 0.9954 0.7683 0.0345

3699.05 0.1276 0.0408 0.0001 0.0018 0.0425 0.9954 0.7675 0.0345

3699.21 0.1445 0.0530 0.0033 0.0078 0.0559 0.9954 0.7666 0.0345

3699.36 0.1926 0.0879 0.1455 0.0404 0.0964 0.9954 0.7655 0.0347

3699.51 0.2597 0.1460 3.3321 0.1500 0.1710 0.9954 0.7637 0.0352

3699.66 0.3148 0.1990 21.8801 0.3293 0.2484 0.9953 0.7606 0.0363

3699.82 0.3379 0.2189 46.8517 0.4594 0.2803 0.9953 0.7565 0.0378

3699.97 0.3382 0.2177 55.0810 0.4995 0.2782 0.9951 0.7519 0.0395

3700.12 0.3272 0.2063 45.7883 0.4678 0.2600 0.9949 0.7474 0.0411

3700.27 0.3090 0.1845 27.3483 0.3823 0.2262 0.9947 0.7431 0.0423

3700.42 0.2872 0.1594 11.8151 0.2704 0.1896 0.9946 0.7392 0.0432

3700.58 0.2605 0.1332 4.1027 0.1743 0.1537 0.9946 0.7359 0.0438

3700.73 0.2341 0.1116 1.0439 0.0961 0.1256 0.9946 0.7331 0.0441

3700.88 0.2135 0.0967 0.2482 0.0503 0.1071 0.9945 0.7308 0.0443

3701.03 0.1981 0.0897 0.1156 0.0356 0.0986 0.9945 0.7288 0.0444

3701.19 0.1949 0.0984 0.1893 0.0435 0.1092 0.9945 0.7269 0.0446

3701.34 0.2214 0.1348 1.6799 0.1108 0.1558 0.9945 0.7249 0.0449

3701.49 0.2692 0.1949 28.4880 0.3796 0.2421 0.9945 0.7221 0.0462

3701.64 0.3084 0.2524 126.6087 0.7033 0.3376 0.9944 0.7180 0.0486

3701.80 0.3205 0.2780 242.3523 0.9272 0.3850 0.9940 0.7127 0.0517

3701.95 0.3196 0.2771 213.5719 0.8717 0.3834 0.9931 0.7069 0.0546

3702.10 0.3212 0.2704 153.3611 0.7478 0.3706 0.9923 0.7012 0.0571

3702.25 0.3204 0.2580 99.1769 0.6156 0.3478 0.9917 0.6955 0.0592

3702.41 0.2993 0.2259 28.4611 0.3524 0.2919 0.9913 0.6902 0.0603

3702.56 0.2515 0.1664 2.7862 0.1285 0.1996 0.9912 0.6854 0.0608

3702.71 0.2046 0.1102 0.1834 0.0405 0.1239 0.9912 0.6820 0.0609

3702.86 0.1784 0.0797 0.0257 0.0179 0.0866 0.9912 0.6797 0.0610

3703.02 0.1692 0.0661 0.0092 0.0117 0.0707 0.9912 0.6780 0.0610

3703.17 0.1621 0.0609 0.0049 0.0089 0.0649 0.9912 0.6766 0.0610

3703.32 0.1679 0.0652 0.0083 0.0112 0.0697 0.9912 0.6754 0.0611

3703.47 0.1904 0.0821 0.0487 0.0242 0.0895 0.9912 0.6740 0.0611

3703.63 0.2065 0.0953 0.1009 0.0323 0.1053 0.9912 0.6723 0.0613

3703.78 0.1868 0.0799 0.0225 0.0167 0.0868 0.9912 0.6703 0.0613

3703.93 0.1527 0.0583 0.0025 0.0065 0.0619 0.9912 0.6686 0.0613

3704.08 0.1440 0.0584 0.0028 0.0069 0.0620 0.9912 0.6674 0.0614

3704.23 0.1670 0.0789 0.0255 0.0178 0.0856 0.9912 0.6662 0.0614

3704.39 0.1953 0.0980 0.1183 0.0345 0.1087 0.9912 0.6646 0.0615

3704.54 0.2020 0.0988 0.1359 0.0368 0.1096 0.9912 0.6625 0.0617

3704.69 0.1896 0.0902 0.0754 0.0287 0.0991 0.9912 0.6605 0.0617

3704.84 0.1803 0.0857 0.0635 0.0270 0.0938 0.9912 0.6586 0.0618

3705.00 0.1872 0.0891 0.0964 0.0327 0.0978 0.9912 0.6568 0.0619

3705.15 0.2002 0.0955 0.1556 0.0401 0.1055 0.9912 0.6549 0.0621

3705.30 0.2095 0.0997 0.2138 0.0460 0.1107 0.9912 0.6529 0.0622

3705.45 0.2127 0.1010 0.2316 0.0475 0.1124 0.9912 0.6509 0.0624

3705.61 0.2176 0.1034 0.2867 0.0523 0.1153 0.9912 0.6488 0.0626

3705.76 0.2316 0.1126 0.5324 0.0683 0.1269 0.9912 0.6466 0.0628

3705.91 0.2442 0.1254 1.0136 0.0893 0.1433 0.9912 0.6443 0.0631

3706.06 0.2484 0.1362 1.7403 0.1122 0.1577 0.9912 0.6416 0.0635

3706.22 0.2518 0.1460 3.1616 0.1461 0.1709 0.9912 0.6388 0.0640

3706.37 0.2705 0.1627 7.7142 0.2162 0.1943 0.9912 0.6358 0.0647

3706.52 0.2869 0.1772 21.7809 0.3482 0.2153 0.9911 0.6324 0.0659

3706.67 0.2951 0.1919 74.1528 0.6172 0.2375 0.9910 0.6287 0.0679

3706.83 0.3166 0.2185 140.0869 0.7951 0.2796 0.9908 0.6247 0.0706

3706.98 0.3474 0.2381 175.8000 0.8533 0.3124 0.9902 0.6201 0.0734

3707.13 0.3491 0.2163 96.9505 0.6648 0.2760 0.9896 0.6151 0.0757

APPENDIX F: DATA OF WELL 02 FOR FLOW UNIT CHARTS FOR RESERVOIR 7

Page 122: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

109

Depth ΦT Φe K RQI Φz kh Φh nRQI

3707.28 0.3067 0.1591 7.6012 0.2171 0.1892 0.9892 0.6107 0.0764

3707.44 0.2552 0.1104 0.7938 0.0842 0.1241 0.9892 0.6073 0.0767

3707.59 0.2205 0.0879 0.2921 0.0573 0.0963 0.9892 0.6050 0.0769

3707.74 0.2013 0.0863 0.2231 0.0505 0.0944 0.9892 0.6032 0.0770

3707.89 0.2031 0.1080 0.7019 0.0801 0.1211 0.9892 0.6014 0.0773

3708.04 0.2302 0.1511 9.0369 0.2428 0.1780 0.9892 0.5992 0.0781

3708.20 0.2771 0.2067 204.3406 0.9872 0.2606 0.9892 0.5960 0.0814

3708.35 0.3135 0.2477 577.9396 1.5169 0.3292 0.9884 0.5917 0.0865

3708.50 0.3235 0.2615 1034.1470 1.9746 0.3541 0.9862 0.5865 0.0931

3708.65 0.3216 0.2584 705.0332 1.6401 0.3485 0.9823 0.5811 0.0986

3708.81 0.3194 0.2493 427.0956 1.2996 0.3321 0.9797 0.5757 0.1029

3708.96 0.3224 0.2513 358.0578 1.1852 0.3357 0.9781 0.5705 0.1069

3709.11 0.3308 0.2693 508.1616 1.3640 0.3686 0.9768 0.5653 0.1115

3709.26 0.3425 0.2933 1132.1860 1.9510 0.4149 0.9749 0.5597 0.1180

3709.42 0.3459 0.3019 2204.4370 2.6833 0.4324 0.9706 0.5535 0.1270

3709.57 0.3450 0.3020 4286.1230 3.7410 0.4326 0.9624 0.5472 0.1395

3709.72 0.3408 0.3003 9204.3670 5.4973 0.4292 0.9464 0.5410 0.1579

3709.87 0.3367 0.2982 12303.5000 6.3784 0.4248 0.9118 0.5347 0.1793

3710.03 0.3347 0.2952 7222.5550 4.9115 0.4189 0.8658 0.5285 0.1957

3710.18 0.3336 0.2908 3895.1500 3.6344 0.4100 0.8387 0.5223 0.2079

3710.33 0.3310 0.2856 2294.1300 2.8145 0.3997 0.8241 0.5163 0.2173

3710.48 0.3271 0.2795 1621.5120 2.3919 0.3878 0.8156 0.5103 0.2253

3710.64 0.3261 0.2765 1426.9810 2.2558 0.3821 0.8095 0.5045 0.2328

3710.79 0.3293 0.2793 1506.0590 2.3057 0.3876 0.8041 0.4987 0.2405

3710.94 0.3367 0.2880 1901.0960 2.5513 0.4044 0.7985 0.4929 0.2491

3711.09 0.3418 0.2951 2555.2490 2.9218 0.4187 0.7914 0.4869 0.2589

3711.25 0.3419 0.2961 3220.2140 3.2747 0.4206 0.7818 0.4808 0.2698

3711.40 0.3415 0.2982 4377.6970 3.8046 0.4249 0.7697 0.4746 0.2826

3711.55 0.3462 0.3051 4859.5540 3.9630 0.4390 0.7534 0.4684 0.2958

3711.70 0.3503 0.3104 4953.6670 3.9665 0.4502 0.7351 0.4620 0.3091

3711.85 0.3493 0.3091 5697.7420 4.2629 0.4475 0.7166 0.4555 0.3234

3712.01 0.3445 0.3021 4868.4280 3.9864 0.4328 0.6953 0.4491 0.3367

3712.16 0.3423 0.2982 4072.6120 3.6695 0.4249 0.6770 0.4428 0.3490

3712.31 0.3438 0.2978 3786.7050 3.5405 0.4242 0.6618 0.4366 0.3608

3712.46 0.3415 0.2953 3546.5530 3.4411 0.4191 0.6476 0.4303 0.3724

3712.62 0.3343 0.2873 3088.1510 3.2556 0.4031 0.6343 0.4242 0.3833

3712.77 0.3298 0.2773 2739.3040 3.1211 0.3836 0.6228 0.4182 0.3937

3712.92 0.3316 0.2691 2277.8100 2.8888 0.3682 0.6125 0.4124 0.4034

3713.07 0.3338 0.2606 717.6343 1.6478 0.3525 0.6040 0.4068 0.4089

3713.23 0.3365 0.2558 438.6222 1.3002 0.3438 0.6013 0.4014 0.4132

3713.38 0.3417 0.2596 731.5939 1.6668 0.3507 0.5997 0.3961 0.4188

3713.53 0.3481 0.2723 1276.3620 2.1497 0.3742 0.5969 0.3907 0.4260

3713.68 0.3462 0.2851 1464.3060 2.2503 0.3988 0.5921 0.3850 0.4335

3713.84 0.3455 0.2973 3839.0890 3.5683 0.4230 0.5867 0.3790 0.4455

3713.99 0.3522 0.3046 5408.4790 4.1840 0.4381 0.5722 0.3728 0.4595

3714.14 0.3605 0.3092 3626.9380 3.4010 0.4475 0.5521 0.3665 0.4709

3714.29 0.3622 0.3107 5680.5600 4.2457 0.4508 0.5385 0.3601 0.4851

3714.45 0.3599 0.3108 6465.9910 4.5292 0.4509 0.5172 0.3536 0.5002

3714.60 0.3555 0.3067 6703.5480 4.6419 0.4425 0.4930 0.3471 0.5158

3714.75 0.3505 0.2991 6157.4230 4.5056 0.4266 0.4678 0.3407 0.5309

3714.90 0.3439 0.2907 4831.9330 4.0482 0.4099 0.4448 0.3345 0.5444

3715.06 0.3398 0.2866 4327.2430 3.8580 0.4018 0.4268 0.3284 0.5573

3715.21 0.3428 0.2896 4838.6790 4.0587 0.4077 0.4105 0.3224 0.5709

3715.36 0.3464 0.2906 5128.8020 4.1713 0.4097 0.3924 0.3164 0.5849

3715.51 0.3437 0.2862 4084.7240 3.7515 0.4009 0.3731 0.3103 0.5974

3715.66 0.3380 0.2790 2999.7340 3.2558 0.3870 0.3579 0.3044 0.6083

3715.82 0.3418 0.2777 2827.3420 3.1683 0.3845 0.3467 0.2986 0.6189

3715.97 0.3461 0.2793 3296.4220 3.4116 0.3874 0.3361 0.2927 0.6303

3716.12 0.3454 0.2835 3280.9030 3.3782 0.3956 0.3238 0.2869 0.6416

3716.27 0.3424 0.2871 3078.6460 3.2514 0.4028 0.3114 0.2810 0.6525

3716.43 0.3428 0.2915 3527.9420 3.4546 0.4114 0.2999 0.2750 0.6641

3716.58 0.3393 0.2900 3328.7570 3.3640 0.4085 0.2867 0.2689 0.6754

3716.73 0.3307 0.2857 2762.6570 3.0875 0.4000 0.2742 0.2629 0.6857

3716.88 0.3242 0.2836 2452.6890 2.9203 0.3958 0.2639 0.2570 0.6955

3717.04 0.3227 0.2836 2481.5940 2.9374 0.3958 0.2547 0.2510 0.7053

3717.19 0.3192 0.2800 2355.7980 2.8800 0.3889 0.2454 0.2451 0.7149

3717.34 0.3132 0.2767 1986.4190 2.6605 0.3825 0.2366 0.2393 0.7238

3717.49 0.3136 0.2823 1791.3650 2.5013 0.3934 0.2292 0.2335 0.7322

3717.65 0.3233 0.2922 1647.9850 2.3581 0.4128 0.2225 0.2277 0.7401

3717.80 0.3316 0.2983 1093.2480 1.9010 0.4250 0.2163 0.2215 0.7465

3717.95 0.3299 0.2974 3519.1240 3.4156 0.4233 0.2122 0.2153 0.7579

3718.10 0.3241 0.2919 2843.2170 3.0987 0.4123 0.1990 0.2092 0.7683

3718.26 0.3229 0.2872 2069.4350 2.6653 0.4030 0.1884 0.2031 0.7772

3718.41 0.3268 0.2867 1576.5570 2.3284 0.4020 0.1806 0.1971 0.7850

3718.56 0.3313 0.2890 3033.8030 3.2172 0.4065 0.1747 0.1911 0.7957

3718.71 0.3392 0.2952 3616.9650 3.4756 0.4189 0.1634 0.1851 0.8074

3718.87 0.3456 0.2997 2299.5540 2.7505 0.4279 0.1499 0.1789 0.8166

3719.02 0.3426 0.3000 3175.5890 3.2304 0.4287 0.1412 0.1727 0.8274

3719.17 0.3326 0.2963 2130.2190 2.6623 0.4211 0.1294 0.1664 0.8363

Depth ΦT Φe K RQI Φz kh Φh nRQI

3719.32 0.3287 0.2952 1181.2700 1.9863 0.4188 0.1214 0.1602 0.8430

3719.47 0.3307 0.2953 2388.8530 2.8243 0.4190 0.1169 0.1541 0.8524

3719.63 0.3355 0.2977 2392.8040 2.8151 0.4239 0.1080 0.1479 0.8618

3719.78 0.3367 0.2937 1640.4110 2.3468 0.4158 0.0990 0.1417 0.8697

3719.93 0.3395 0.2917 1055.2940 1.8886 0.4119 0.0929 0.1356 0.8760

3720.08 0.3415 0.2900 841.2045 1.6910 0.4085 0.0889 0.1295 0.8817

3720.24 0.3447 0.2883 995.1403 1.8450 0.4050 0.0858 0.1235 0.8878

3720.39 0.3467 0.2850 1613.3010 2.3625 0.3986 0.0821 0.1175 0.8957

3720.54 0.3437 0.2795 3512.2710 3.5201 0.3879 0.0760 0.1115 0.9075

3720.69 0.3395 0.2765 2142.4150 2.7638 0.3823 0.0629 0.1057 0.9168

3720.85 0.3359 0.2779 1093.2640 1.9693 0.3849 0.0548 0.0999 0.9234

3721.00 0.3331 0.2766 631.5874 1.5004 0.3824 0.0508 0.0941 0.9284

3721.15 0.3327 0.2784 768.7755 1.6500 0.3858 0.0484 0.0884 0.9339

3721.30 0.3393 0.2875 2640.1300 3.0092 0.4034 0.0455 0.0826 0.9440

3721.46 0.3513 0.2998 3043.7980 3.1638 0.4282 0.0357 0.0766 0.9546

3721.61 0.3559 0.3020 2106.5740 2.6223 0.4327 0.0242 0.0703 0.9634

3721.76 0.3539 0.2932 979.5233 1.8150 0.4148 0.0163 0.0640 0.9694

3721.91 0.3527 0.2885 630.0834 1.4674 0.4055 0.0127 0.0579 0.9743

3722.07 0.3539 0.2965 652.0508 1.4726 0.4214 0.0103 0.0519 0.9793

3722.22 0.3505 0.3019 716.4249 1.5296 0.4325 0.0079 0.0457 0.9844

3722.37 0.3419 0.2967 575.0782 1.3824 0.4218 0.0052 0.0394 0.9890

3722.52 0.3347 0.2912 511.3123 1.3157 0.4109 0.0030 0.0333 0.9934

3722.68 0.3241 0.2798 194.8327 0.8286 0.3885 0.0011 0.0272 0.9962

3722.83 0.3034 0.2463 80.5016 0.5677 0.3268 0.0004 0.0213 0.9981

3722.98 0.2739 0.1971 22.5588 0.3359 0.2455 0.0001 0.0162 0.9992

3723.13 0.2428 0.1596 3.1710 0.1400 0.1898 0.0000 0.0121 0.9997

3723.28 0.2145 0.1367 0.3773 0.0522 0.1583 0.0000 0.0088 0.9999

3723.44 0.1866 0.1161 0.0665 0.0238 0.1313 0.0000 0.0059 0.9999

3723.59 0.1608 0.0935 0.0155 0.0128 0.1031 0.0000 0.0035 1.0000

3723.74 0.1464 0.0753 0.0020 0.0051 0.0814 0.0000 0.0016 1.0000

Page 123: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

110

Depth ΦT Φe K RQI Φz kh Φh nRQI

3752.09 0.1278 0.0396 0.0000 0.0000 0.0412 1.0000 1.0000 0.0000

3752.24 0.1007 0.0336 0.0000 0.0000 0.0347 1.0000 0.9995 0.0000

3752.39 0.0696 0.0274 0.0000 0.0000 0.0282 1.0000 0.9990 0.0000

3752.55 0.2334 0.1159 0.3087 0.0512 0.1312 1.0000 0.9986 0.0003

3752.70 0.3293 0.2063 15.9711 0.2763 0.2599 1.0000 0.9970 0.0017

3752.85 0.2967 0.2185 12.2025 0.2347 0.2796 0.9996 0.9941 0.0030

3753.00 0.2033 0.1554 0.4382 0.0527 0.1840 0.9992 0.9911 0.0033

3753.16 0.1461 0.1027 0.0088 0.0092 0.1145 0.9992 0.9890 0.0033

3753.31 0.1987 0.1197 0.0501 0.0203 0.1360 0.9992 0.9875 0.0034

3753.46 0.1726 0.0874 0.0010 0.0034 0.0958 0.9992 0.9859 0.0035

3753.61 0.1422 0.0598 0.0000 0.0000 0.0636 0.9992 0.9847 0.0035

3753.76 0.1428 0.0517 0.0000 0.0000 0.0545 0.9992 0.9839 0.0035

3753.92 0.1451 0.0507 0.0000 0.0000 0.0534 0.9992 0.9831 0.0035

3754.07 0.1415 0.0523 0.0000 0.0005 0.0551 0.9992 0.9824 0.0035

3754.22 0.1439 0.0643 0.0008 0.0036 0.0687 0.9992 0.9817 0.0035

3754.37 0.1261 0.0727 0.0076 0.0102 0.0784 0.9992 0.9808 0.0035

3754.53 0.1062 0.0776 0.0202 0.0160 0.0841 0.9992 0.9798 0.0036

3754.68 0.2593 0.2213 27.8393 0.3522 0.2842 0.9992 0.9787 0.0055

3754.83 0.3102 0.2866 144.4546 0.7049 0.4018 0.9985 0.9757 0.0093

3754.98 0.2747 0.2631 80.1029 0.5479 0.3570 0.9946 0.9717 0.0122

3755.14 0.2685 0.2646 70.5337 0.5127 0.3598 0.9924 0.9680 0.0149

3755.29 0.2574 0.2547 41.8385 0.4025 0.3417 0.9905 0.9644 0.0171

3755.44 0.2618 0.2490 29.3860 0.3411 0.3315 0.9894 0.9609 0.0189

3755.59 0.2775 0.2534 22.1505 0.2936 0.3394 0.9886 0.9574 0.0205

3755.75 0.2427 0.2088 11.6154 0.2342 0.2639 0.9880 0.9539 0.0217

3755.90 0.2017 0.1495 2.0650 0.1167 0.1757 0.9877 0.9510 0.0223

3756.05 0.1488 0.0865 0.0083 0.0097 0.0947 0.9876 0.9489 0.0224

3756.20 0.1303 0.0566 0.0000 0.0000 0.0599 0.9876 0.9477 0.0224

3756.36 0.1350 0.0504 0.0000 0.0000 0.0531 0.9876 0.9470 0.0224

3756.51 0.1591 0.0564 0.0001 0.0013 0.0598 0.9876 0.9463 0.0224

3756.66 0.1557 0.0537 0.0000 0.0008 0.0568 0.9876 0.9455 0.0224

3756.81 0.1398 0.0487 0.0000 0.0000 0.0512 0.9876 0.9447 0.0224

3756.97 0.1304 0.0460 0.0000 0.0000 0.0482 0.9876 0.9441 0.0224

3757.12 0.1402 0.0508 0.0000 0.0000 0.0535 0.9876 0.9434 0.0224

3757.27 0.1356 0.0509 0.0000 0.0000 0.0536 0.9876 0.9427 0.0224

3757.42 0.1242 0.0476 0.0000 0.0000 0.0500 0.9876 0.9420 0.0224

3757.57 0.1415 0.0545 0.0000 0.0002 0.0576 0.9876 0.9414 0.0224

3757.73 0.1510 0.0587 0.0000 0.0007 0.0624 0.9876 0.9406 0.0224

3757.88 0.1363 0.0526 0.0000 0.0000 0.0555 0.9876 0.9398 0.0224

3758.03 0.1242 0.0463 0.0000 0.0000 0.0486 0.9876 0.9391 0.0224

3758.18 0.1295 0.0459 0.0000 0.0000 0.0481 0.9876 0.9384 0.0224

3758.34 0.1319 0.0454 0.0000 0.0000 0.0475 0.9876 0.9378 0.0224

3758.49 0.1301 0.0444 0.0000 0.0000 0.0464 0.9876 0.9372 0.0224

3758.64 0.1264 0.0440 0.0000 0.0000 0.0460 0.9876 0.9365 0.0224

3758.79 0.1219 0.0448 0.0000 0.0000 0.0469 0.9876 0.9359 0.0224

3758.95 0.1336 0.0507 0.0000 0.0000 0.0534 0.9876 0.9353 0.0224

3759.10 0.1457 0.0559 0.0000 0.0006 0.0592 0.9876 0.9346 0.0224

3759.25 0.1638 0.0632 0.0005 0.0028 0.0674 0.9876 0.9338 0.0224

3759.40 0.1297 0.0505 0.0000 0.0000 0.0532 0.9876 0.9330 0.0224

3759.56 0.1233 0.0467 0.0000 0.0000 0.0490 0.9876 0.9323 0.0224

3759.71 0.1274 0.0446 0.0000 0.0000 0.0467 0.9876 0.9316 0.0224

3759.86 0.1379 0.0460 0.0000 0.0000 0.0482 0.9876 0.9310 0.0224

3760.01 0.1310 0.0443 0.0000 0.0000 0.0463 0.9876 0.9304 0.0224

3760.17 0.0981 0.0471 0.0000 0.0000 0.0494 0.9876 0.9297 0.0224

3760.32 0.1688 0.1054 0.1086 0.0319 0.1178 0.9876 0.9291 0.0226

3760.47 0.2847 0.2106 13.3760 0.2503 0.2668 0.9876 0.9276 0.0239

3760.62 0.2408 0.1850 3.4587 0.1358 0.2270 0.9873 0.9247 0.0247

3760.78 0.2645 0.1932 4.0102 0.1431 0.2394 0.9872 0.9222 0.0254

3760.93 0.2397 0.1648 1.9204 0.1072 0.1973 0.9870 0.9195 0.0260

3761.08 0.1638 0.1077 0.1860 0.0413 0.1207 0.9870 0.9172 0.0262

3761.23 0.2318 0.1521 2.1953 0.1193 0.1793 0.9870 0.9157 0.0269

3761.39 0.2203 0.1461 1.2357 0.0913 0.1712 0.9869 0.9136 0.0273

3761.54 0.1317 0.0854 0.0072 0.0091 0.0934 0.9869 0.9116 0.0274

3761.69 0.2728 0.1579 0.5688 0.0596 0.1874 0.9869 0.9104 0.0277

3761.84 0.2382 0.1142 0.0581 0.0224 0.1289 0.9869 0.9082 0.0278

3761.99 0.2015 0.0804 0.0062 0.0087 0.0874 0.9869 0.9066 0.0279

3762.15 0.1845 0.0664 0.0011 0.0040 0.0712 0.9869 0.9055 0.0279

3762.30 0.1860 0.0650 0.0007 0.0032 0.0695 0.9869 0.9046 0.0279

3762.45 0.1885 0.0645 0.0007 0.0032 0.0689 0.9869 0.9037 0.0279

3762.60 0.1931 0.0653 0.0009 0.0038 0.0699 0.9869 0.9028 0.0280

3762.76 0.1886 0.0658 0.0009 0.0036 0.0705 0.9869 0.9019 0.0280

3762.91 0.1936 0.0727 0.0043 0.0076 0.0784 0.9869 0.9010 0.0280

3763.06 0.1905 0.0783 0.0134 0.0130 0.0850 0.9869 0.9000 0.0281

3763.21 0.1922 0.0901 0.0403 0.0210 0.0990 0.9869 0.8989 0.0282

3763.37 0.1915 0.1085 0.1570 0.0378 0.1218 0.9869 0.8976 0.0284

3763.52 0.2208 0.1490 1.2879 0.0923 0.1750 0.9869 0.8961 0.0289

3763.67 0.2131 0.1529 0.6117 0.0628 0.1805 0.9868 0.8941 0.0292

3763.82 0.1803 0.1179 0.0171 0.0120 0.1336 0.9868 0.8920 0.0293

3763.98 0.1151 0.0611 0.0000 0.0000 0.0650 0.9868 0.8903 0.0293

Depth ΦT Φe K RQI Φz kh Φh nRQI

3764.13 0.1163 0.0492 0.0000 0.0000 0.0518 0.9868 0.8895 0.0293

3764.28 0.2327 0.0867 0.0328 0.0193 0.0949 0.9868 0.8888 0.0294

3764.43 0.2075 0.0746 0.0065 0.0093 0.0806 0.9868 0.8876 0.0294

3764.59 0.1643 0.0583 0.0002 0.0018 0.0619 0.9868 0.8866 0.0295

3764.74 0.1490 0.0525 0.0001 0.0013 0.0555 0.9868 0.8858 0.0295

3764.89 0.1465 0.0538 0.0005 0.0030 0.0568 0.9868 0.8850 0.0295

3765.04 0.1482 0.0627 0.0047 0.0086 0.0669 0.9868 0.8843 0.0295

3765.19 0.1401 0.0742 0.0278 0.0192 0.0801 0.9868 0.8834 0.0296

3765.35 0.1467 0.0966 0.2106 0.0464 0.1069 0.9868 0.8824 0.0299

3765.50 0.1690 0.1294 1.3457 0.1013 0.1486 0.9868 0.8811 0.0304

3765.65 0.1984 0.1675 6.3056 0.1926 0.2012 0.9868 0.8793 0.0314

3765.80 0.2261 0.2035 20.3839 0.3142 0.2555 0.9866 0.8769 0.0331

3765.96 0.2306 0.2158 31.9400 0.3820 0.2752 0.9861 0.8741 0.0352

3766.11 0.2144 0.2029 25.6420 0.3530 0.2546 0.9852 0.8711 0.0370

3766.26 0.2271 0.2125 40.2930 0.4323 0.2699 0.9845 0.8683 0.0394

3766.41 0.2422 0.2226 52.4328 0.4819 0.2863 0.9834 0.8654 0.0419

3766.57 0.2355 0.2125 38.4711 0.4225 0.2698 0.9820 0.8623 0.0442

3766.72 0.2328 0.2019 34.2422 0.4090 0.2529 0.9810 0.8594 0.0464

3766.87 0.1941 0.1539 2.8582 0.1353 0.1819 0.9800 0.8566 0.0471

3767.02 0.1504 0.1018 0.0354 0.0185 0.1134 0.9800 0.8544 0.0472

3767.18 0.1378 0.0747 0.0012 0.0040 0.0808 0.9800 0.8530 0.0472

3767.33 0.1481 0.0633 0.0004 0.0026 0.0676 0.9800 0.8520 0.0472

3767.48 0.1645 0.0576 0.0009 0.0040 0.0611 0.9800 0.8511 0.0472

3767.63 0.1393 0.0438 0.0000 0.0008 0.0458 0.9800 0.8503 0.0473

3767.79 0.1473 0.0467 0.0000 0.0005 0.0490 0.9800 0.8497 0.0473

3767.94 0.1445 0.0511 0.0000 0.0004 0.0539 0.9800 0.8491 0.0473

3768.09 0.1492 0.0687 0.0004 0.0023 0.0737 0.9800 0.8483 0.0473

3768.24 0.1324 0.0820 0.0078 0.0097 0.0893 0.9800 0.8474 0.0473

3768.40 0.2521 0.1943 9.0561 0.2144 0.2411 0.9800 0.8463 0.0485

3768.55 0.3079 0.2590 52.1483 0.4455 0.3496 0.9797 0.8436 0.0508

3768.70 0.2858 0.2284 14.5314 0.2504 0.2961 0.9783 0.8400 0.0522

3768.85 0.2448 0.1632 0.7087 0.0654 0.1951 0.9779 0.8368 0.0525

3769.00 0.1427 0.0721 0.0003 0.0019 0.0777 0.9779 0.8346 0.0525

3769.16 0.1088 0.0429 0.0000 0.0000 0.0449 0.9779 0.8336 0.0525

3769.31 0.1298 0.0466 0.0000 0.0001 0.0488 0.9779 0.8330 0.0525

3769.46 0.1384 0.0508 0.0001 0.0017 0.0535 0.9779 0.8323 0.0526

3769.61 0.1487 0.0565 0.0003 0.0023 0.0599 0.9779 0.8316 0.0526

3769.77 0.1590 0.0654 0.0013 0.0045 0.0700 0.9779 0.8308 0.0526

3769.92 0.2127 0.0985 0.0845 0.0291 0.1092 0.9779 0.8299 0.0527

3770.07 0.2401 0.1280 0.5098 0.0627 0.1468 0.9779 0.8286 0.0531

3770.22 0.2674 0.1679 5.1641 0.1741 0.2018 0.9779 0.8268 0.0540

3770.38 0.2669 0.1968 24.0828 0.3474 0.2450 0.9777 0.8245 0.0559

3770.53 0.2664 0.2233 47.2699 0.4568 0.2876 0.9771 0.8217 0.0583

3770.68 0.2661 0.2406 73.4669 0.5487 0.3168 0.9758 0.8186 0.0612

3770.83 0.2676 0.2499 101.4141 0.6326 0.3331 0.9738 0.8153 0.0646

3770.99 0.2738 0.2568 125.2733 0.6935 0.3455 0.9711 0.8119 0.0683

3771.14 0.2647 0.2461 93.8650 0.6132 0.3265 0.9677 0.8083 0.0716

3771.29 0.2724 0.2532 93.3083 0.6028 0.3390 0.9652 0.8049 0.0748

3771.44 0.2639 0.2285 39.5298 0.4130 0.2962 0.9627 0.8014 0.0770

3771.60 0.1688 0.1278 1.4581 0.1060 0.1466 0.9616 0.7982 0.0776

3771.75 0.1591 0.1100 0.4816 0.0657 0.1235 0.9616 0.7964 0.0779

3771.90 0.1293 0.0849 0.0180 0.0144 0.0928 0.9615 0.7949 0.0780

3772.05 0.0855 0.0508 0.0000 0.0000 0.0535 0.9615 0.7937 0.0780

3772.21 0.1120 0.0514 0.0000 0.0000 0.0542 0.9615 0.7930 0.0780

3772.36 0.1181 0.0413 0.0000 0.0000 0.0431 0.9615 0.7923 0.0780

3772.51 0.1326 0.0437 0.0000 0.0007 0.0457 0.9615 0.7918 0.0780

3772.66 0.1429 0.0510 0.0003 0.0023 0.0538 0.9615 0.7911 0.0780

3772.81 0.2239 0.1039 0.1115 0.0325 0.1160 0.9615 0.7904 0.0782

3772.97 0.2924 0.1838 6.0677 0.1804 0.2252 0.9615 0.7890 0.0792

3773.12 0.2946 0.2311 21.4819 0.3027 0.3005 0.9614 0.7864 0.0808

3773.27 0.2315 0.1905 3.0659 0.1260 0.2353 0.9608 0.7833 0.0815

3773.42 0.1032 0.0727 0.0000 0.0000 0.0784 0.9607 0.7806 0.0815

3773.58 0.0919 0.0527 0.0000 0.0000 0.0556 0.9607 0.7796 0.0815

3773.73 0.1486 0.0828 0.0154 0.0135 0.0903 0.9607 0.7789 0.0815

3773.88 0.2995 0.1994 12.4528 0.2481 0.2491 0.9607 0.7777 0.0829

3774.03 0.2595 0.1903 8.8226 0.2138 0.2351 0.9604 0.7750 0.0840

3774.19 0.1774 0.1174 0.2293 0.0439 0.1330 0.9601 0.7723 0.0842

3774.34 0.1984 0.1053 0.1164 0.0330 0.1177 0.9601 0.7707 0.0844

3774.49 0.1978 0.0863 0.0682 0.0279 0.0945 0.9601 0.7693 0.0846

3774.64 0.2178 0.0865 0.1027 0.0342 0.0946 0.9601 0.7681 0.0847

3774.80 0.1835 0.0670 0.0172 0.0159 0.0718 0.9601 0.7669 0.0848

3774.95 0.2023 0.0688 0.0279 0.0200 0.0739 0.9601 0.7659 0.0849

3775.10 0.3362 0.1173 1.3041 0.1047 0.1329 0.9601 0.7650 0.0855

3775.25 0.2832 0.1037 0.6738 0.0801 0.1157 0.9601 0.7634 0.0859

3775.41 0.1581 0.0556 0.0061 0.0104 0.0589 0.9601 0.7619 0.0860

3775.56 0.1779 0.0600 0.0074 0.0110 0.0639 0.9601 0.7611 0.0860

3775.71 0.2581 0.0967 0.3228 0.0574 0.1071 0.9601 0.7603 0.0863

3775.86 0.2487 0.1172 1.0049 0.0920 0.1327 0.9601 0.7590 0.0868

3776.02 0.2624 0.1525 6.2025 0.2002 0.1800 0.9600 0.7574 0.0879

APPENDIX G: DATA OF WELL 03 FOR FLOW UNIT CHARTS FOR RESERVOIR 7

Page 124: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

111

Depth ΦT Φe K RQI Φz kh Φh nRQI

3776.17 0.2738 0.1892 31.7371 0.4067 0.2333 0.9599 0.7552 0.0901

3776.32 0.2791 0.2233 76.5544 0.5815 0.2874 0.9590 0.7526 0.0932

3776.47 0.2844 0.2473 134.8779 0.7333 0.3285 0.9569 0.7495 0.0971

3776.63 0.2508 0.2217 82.9084 0.6072 0.2849 0.9533 0.7461 0.1003

3776.78 0.2541 0.2207 104.1867 0.6822 0.2832 0.9511 0.7430 0.1040

3776.93 0.2553 0.2212 127.7916 0.7547 0.2840 0.9483 0.7400 0.1080

3777.08 0.2578 0.2277 172.5345 0.8644 0.2948 0.9448 0.7369 0.1126

3777.23 0.2518 0.2285 182.3246 0.8871 0.2961 0.9401 0.7338 0.1174

3777.39 0.2641 0.2445 309.2788 1.1168 0.3236 0.9352 0.7306 0.1233

3777.54 0.2706 0.2509 401.9777 1.2568 0.3350 0.9269 0.7272 0.1300

3777.69 0.2699 0.2489 397.8896 1.2554 0.3314 0.9160 0.7237 0.1367

3777.84 0.2614 0.2391 321.7604 1.1519 0.3142 0.9053 0.7203 0.1429

3778.00 0.2685 0.2438 378.4404 1.2372 0.3224 0.8966 0.7170 0.1495

3778.15 0.2772 0.2486 443.3077 1.3258 0.3309 0.8864 0.7136 0.1566

3778.30 0.2815 0.2509 467.5580 1.3554 0.3350 0.8745 0.7102 0.1638

3778.45 0.2800 0.2514 457.7683 1.3400 0.3357 0.8618 0.7067 0.1710

3778.61 0.2677 0.2422 352.1971 1.1974 0.3196 0.8495 0.7032 0.1774

3778.76 0.2721 0.2460 381.6612 1.2367 0.3263 0.8399 0.6998 0.1840

3778.91 0.2721 0.2453 368.6499 1.2173 0.3250 0.8296 0.6964 0.1905

3779.06 0.2771 0.2522 418.8843 1.2796 0.3373 0.8197 0.6930 0.1973

3779.22 0.2723 0.2531 404.3094 1.2549 0.3389 0.8084 0.6895 0.2040

3779.37 0.2724 0.2566 412.4081 1.2587 0.3453 0.7975 0.6860 0.2107

3779.52 0.2690 0.2529 357.8782 1.1812 0.3385 0.7863 0.6825 0.2171

3779.67 0.2696 0.2517 340.5656 1.1550 0.3363 0.7767 0.6790 0.2232

3779.83 0.2606 0.2422 262.8411 1.0344 0.3196 0.7675 0.6755 0.2287

3779.98 0.2390 0.2214 148.4847 0.8133 0.2843 0.7604 0.6721 0.2331

3780.13 0.2267 0.2090 98.4247 0.6814 0.2642 0.7564 0.6691 0.2367

3780.28 0.2230 0.2050 82.1512 0.6285 0.2579 0.7537 0.6662 0.2401

3780.43 0.2290 0.2106 87.7690 0.6411 0.2668 0.7515 0.6633 0.2435

3780.59 0.2402 0.2212 98.8467 0.6637 0.2841 0.7491 0.6604 0.2471

3780.74 0.2324 0.2133 65.6717 0.5510 0.2711 0.7465 0.6574 0.2500

3780.89 0.2435 0.2218 68.6385 0.5524 0.2850 0.7447 0.6544 0.2529

3781.04 0.2168 0.1956 26.0774 0.3625 0.2432 0.7428 0.6513 0.2549

3781.20 0.1942 0.1702 8.3540 0.2200 0.2051 0.7421 0.6486 0.2561

3781.35 0.1375 0.1112 0.3349 0.0545 0.1251 0.7419 0.6463 0.2563

3781.50 0.1509 0.1084 0.2031 0.0430 0.1216 0.7419 0.6447 0.2566

3781.65 0.1811 0.1192 0.3358 0.0527 0.1353 0.7419 0.6432 0.2569

3781.81 0.1936 0.1256 0.4296 0.0581 0.1437 0.7419 0.6416 0.2572

3781.96 0.2127 0.1423 0.8455 0.0765 0.1659 0.7419 0.6398 0.2576

3782.11 0.1870 0.1269 0.3521 0.0523 0.1454 0.7418 0.6379 0.2579

3782.26 0.1501 0.1017 0.0621 0.0245 0.1132 0.7418 0.6361 0.2580

3782.42 0.1530 0.1029 0.0621 0.0244 0.1147 0.7418 0.6347 0.2581

3782.57 0.1595 0.1059 0.0806 0.0274 0.1185 0.7418 0.6333 0.2583

3782.72 0.1393 0.0905 0.0218 0.0154 0.0995 0.7418 0.6318 0.2583

3782.87 0.1479 0.0922 0.0298 0.0178 0.1015 0.7418 0.6306 0.2584

3783.03 0.1453 0.0883 0.0245 0.0165 0.0969 0.7418 0.6293 0.2585

3783.18 0.2041 0.1272 0.4192 0.0570 0.1457 0.7418 0.6281 0.2588

3783.33 0.1944 0.1284 0.4125 0.0563 0.1473 0.7418 0.6263 0.2591

3783.48 0.1768 0.1218 0.2489 0.0449 0.1386 0.7418 0.6245 0.2594

3783.64 0.1544 0.1077 0.0941 0.0294 0.1207 0.7418 0.6228 0.2595

3783.79 0.1510 0.1038 0.0769 0.0270 0.1158 0.7418 0.6213 0.2597

3783.94 0.1853 0.1259 0.3972 0.0558 0.1440 0.7418 0.6199 0.2600

3784.09 0.1972 0.1338 0.7092 0.0723 0.1545 0.7418 0.6182 0.2604

3784.24 0.2037 0.1385 0.9230 0.0811 0.1608 0.7418 0.6163 0.2608

3784.40 0.2123 0.1451 1.2468 0.0920 0.1697 0.7417 0.6144 0.2613

3784.55 0.2051 0.1403 0.9544 0.0819 0.1632 0.7417 0.6124 0.2617

3784.70 0.1947 0.1332 0.6384 0.0687 0.1537 0.7417 0.6104 0.2621

3784.85 0.1815 0.1239 0.3486 0.0527 0.1415 0.7417 0.6086 0.2624

3785.01 0.2145 0.1426 1.2203 0.0919 0.1663 0.7417 0.6069 0.2629

3785.16 0.2545 0.1578 2.8165 0.1326 0.1874 0.7416 0.6049 0.2636

3785.31 0.1920 0.1067 0.1919 0.0421 0.1195 0.7415 0.6027 0.2638

3785.46 0.1451 0.0707 0.0102 0.0119 0.0761 0.7415 0.6012 0.2639

3785.62 0.1524 0.0660 0.0060 0.0095 0.0707 0.7415 0.6002 0.2639

3785.77 0.1805 0.0726 0.0150 0.0143 0.0783 0.7415 0.5993 0.2640

3785.92 0.1676 0.0663 0.0097 0.0120 0.0710 0.7415 0.5983 0.2640

3786.07 0.2256 0.0895 0.0982 0.0329 0.0983 0.7415 0.5974 0.2642

3786.23 0.2610 0.1061 0.2712 0.0502 0.1187 0.7415 0.5962 0.2645

3786.38 0.2769 0.1200 0.8092 0.0815 0.1364 0.7415 0.5947 0.2649

3786.53 0.1853 0.0864 0.0786 0.0300 0.0945 0.7415 0.5930 0.2651

3786.68 0.0957 0.0449 0.0000 0.0007 0.0470 0.7415 0.5918 0.2651

3786.84 0.1207 0.0521 0.0003 0.0023 0.0549 0.7415 0.5912 0.2651

3786.99 0.1339 0.0532 0.0009 0.0041 0.0562 0.7415 0.5905 0.2651

3787.14 0.1749 0.0708 0.0281 0.0198 0.0762 0.7415 0.5898 0.2652

3787.29 0.2904 0.1284 2.5892 0.1410 0.1473 0.7415 0.5888 0.2660

3787.45 0.1921 0.0915 0.1721 0.0431 0.1008 0.7414 0.5870 0.2662

3787.60 0.1541 0.0747 0.0320 0.0206 0.0807 0.7414 0.5857 0.2663

3787.75 0.2144 0.1049 0.4478 0.0649 0.1171 0.7414 0.5847 0.2667

3787.90 0.2041 0.1056 0.5258 0.0701 0.1180 0.7414 0.5832 0.2670

3788.05 0.2361 0.1326 2.4624 0.1353 0.1529 0.7414 0.5818 0.2678

Depth ΦT Φe K RQI Φz kh Φh nRQI

3788.21 0.1894 0.1164 1.0792 0.0956 0.1317 0.7413 0.5800 0.2683

3788.36 0.2464 0.1657 15.5992 0.3047 0.1986 0.7413 0.5783 0.2699

3788.51 0.2221 0.1645 18.0817 0.3292 0.1969 0.7409 0.5760 0.2717

3788.66 0.2419 0.1931 50.5381 0.5080 0.2393 0.7404 0.5738 0.2744

3788.82 0.2077 0.1731 27.0924 0.3929 0.2093 0.7390 0.5711 0.2765

3788.97 0.1856 0.1598 17.3761 0.3274 0.1903 0.7383 0.5687 0.2782

3789.12 0.1960 0.1715 30.1332 0.4162 0.2070 0.7378 0.5665 0.2804

3789.27 0.2631 0.2277 223.3244 0.9833 0.2949 0.7370 0.5641 0.2857

3789.43 0.3142 0.2630 680.6837 1.5974 0.3569 0.7310 0.5609 0.2942

3789.58 0.2800 0.2265 284.7142 1.1134 0.2928 0.7126 0.5573 0.3002

3789.73 0.2738 0.2150 195.6296 0.9471 0.2740 0.7050 0.5542 0.3052

3789.88 0.2825 0.2136 183.8687 0.9212 0.2717 0.6997 0.5512 0.3102

3790.04 0.2927 0.2152 193.0499 0.9404 0.2743 0.6947 0.5482 0.3152

3790.19 0.2858 0.2088 142.8851 0.8214 0.2639 0.6895 0.5453 0.3196

3790.34 0.2934 0.2121 116.6962 0.7365 0.2692 0.6857 0.5424 0.3235

3790.49 0.2515 0.1787 32.1234 0.4210 0.2176 0.6825 0.5394 0.3257

3790.65 0.2877 0.2044 78.4673 0.6152 0.2569 0.6816 0.5370 0.3290

3790.80 0.2665 0.1958 56.4633 0.5332 0.2435 0.6795 0.5341 0.3319

3790.95 0.2064 0.1560 10.7543 0.2607 0.1848 0.6780 0.5314 0.3333

3791.10 0.1228 0.0889 0.1097 0.0349 0.0976 0.6777 0.5293 0.3335

3791.26 0.2354 0.1530 2.2997 0.1217 0.1806 0.6777 0.5280 0.3341

3791.41 0.1649 0.0962 0.2316 0.0487 0.1065 0.6776 0.5259 0.3344

3791.56 0.1139 0.0627 0.0190 0.0173 0.0669 0.6776 0.5246 0.3345

3791.71 0.1152 0.0613 0.0046 0.0086 0.0653 0.6776 0.5237 0.3345

3791.87 0.1367 0.0687 0.0111 0.0126 0.0738 0.6776 0.5228 0.3346

3792.02 0.1055 0.0606 0.0061 0.0099 0.0645 0.6776 0.5219 0.3346

3792.17 0.2065 0.1457 5.5452 0.1937 0.1705 0.6776 0.5211 0.3357

3792.32 0.2527 0.2133 64.9507 0.5479 0.2712 0.6775 0.5190 0.3386

3792.47 0.2527 0.2361 102.3793 0.6538 0.3091 0.6757 0.5161 0.3421

3792.63 0.2343 0.2295 96.3863 0.6436 0.2978 0.6730 0.5128 0.3455

3792.78 0.2352 0.2336 139.8832 0.7685 0.3047 0.6704 0.5096 0.3496

3792.93 0.2563 0.2548 289.2141 1.0578 0.3420 0.6666 0.5064 0.3553

3793.08 0.2542 0.2522 282.0067 1.0501 0.3372 0.6588 0.5029 0.3609

3793.24 0.2436 0.2415 199.8276 0.9033 0.3183 0.6512 0.4994 0.3657

3793.39 0.2515 0.2474 222.8788 0.9424 0.3287 0.6458 0.4960 0.3707

3793.54 0.2516 0.2404 187.2064 0.8762 0.3165 0.6398 0.4926 0.3754

3793.69 0.2344 0.2143 91.0671 0.6473 0.2727 0.6347 0.4893 0.3789

3793.85 0.2358 0.2067 69.2835 0.5749 0.2605 0.6323 0.4863 0.3819

3794.00 0.2344 0.1993 47.9032 0.4868 0.2489 0.6304 0.4834 0.3845

3794.15 0.2548 0.2100 67.6161 0.5635 0.2658 0.6291 0.4807 0.3876

3794.30 0.2590 0.2068 82.2497 0.6263 0.2606 0.6273 0.4778 0.3909

3794.46 0.3095 0.2423 269.7897 1.0477 0.3198 0.6250 0.4749 0.3965

3794.61 0.3230 0.2510 306.1224 1.0965 0.3352 0.6178 0.4716 0.4024

3794.76 0.3062 0.2365 178.3506 0.8622 0.3098 0.6095 0.4681 0.4070

3794.91 0.2952 0.2276 223.4616 0.9840 0.2946 0.6047 0.4648 0.4122

3795.07 0.3183 0.2508 648.8133 1.5970 0.3348 0.5987 0.4617 0.4207

3795.22 0.2185 0.1801 81.1550 0.6666 0.2196 0.5811 0.4582 0.4243

3795.37 0.2323 0.1996 157.7724 0.8827 0.2494 0.5789 0.4557 0.4290

3795.52 0.2572 0.2271 350.7630 1.2342 0.2937 0.5746 0.4529 0.4356

3795.67 0.2147 0.1923 132.8082 0.8252 0.2381 0.5652 0.4498 0.4400

3795.83 0.2130 0.1926 143.2434 0.8563 0.2386 0.5616 0.4471 0.4446

3795.98 0.2209 0.2008 181.7334 0.9446 0.2513 0.5577 0.4444 0.4496

3796.13 0.2372 0.2158 287.7935 1.1467 0.2752 0.5528 0.4417 0.4558

3796.28 0.2448 0.2211 359.3048 1.2659 0.2838 0.5450 0.4387 0.4625

3796.44 0.2533 0.2258 435.8394 1.3794 0.2917 0.5354 0.4356 0.4699

3796.59 0.2650 0.2341 566.1364 1.5440 0.3057 0.5236 0.4325 0.4781

3796.74 0.2353 0.2076 284.4537 1.1623 0.2620 0.5083 0.4292 0.4843

3796.89 0.2177 0.1929 186.6416 0.9768 0.2390 0.5006 0.4264 0.4896

3797.05 0.2221 0.1979 217.3259 1.0406 0.2467 0.4956 0.4237 0.4951

3797.20 0.2235 0.1990 230.2495 1.0680 0.2485 0.4897 0.4210 0.5008

3797.35 0.2284 0.2018 256.6476 1.1199 0.2528 0.4835 0.4182 0.5068

3797.50 0.2256 0.1987 235.3127 1.0805 0.2480 0.4766 0.4154 0.5126

3797.66 0.2128 0.1882 172.8754 0.9517 0.2318 0.4702 0.4127 0.5177

3797.81 0.2167 0.1934 203.9660 1.0197 0.2398 0.4655 0.4100 0.5231

3797.96 0.2162 0.1945 211.2150 1.0348 0.2414 0.4601 0.4074 0.5286

3798.11 0.2104 0.1921 195.5441 1.0019 0.2377 0.4544 0.4047 0.5340

3798.27 0.2189 0.2031 271.3705 1.1476 0.2549 0.4491 0.4020 0.5401

3798.42 0.2296 0.2136 364.1746 1.2964 0.2717 0.4418 0.3992 0.5470

3798.57 0.2225 0.2058 288.9477 1.1767 0.2591 0.4320 0.3963 0.5533

3798.72 0.2199 0.2018 261.6651 1.1307 0.2528 0.4241 0.3934 0.5594

3798.88 0.2096 0.1920 192.1994 0.9936 0.2376 0.4171 0.3906 0.5647

3799.03 0.1962 0.1792 125.3401 0.8304 0.2183 0.4119 0.3879 0.5691

3799.18 0.2136 0.1937 203.0224 1.0165 0.2403 0.4085 0.3855 0.5745

3799.33 0.2169 0.1948 212.0090 1.0358 0.2420 0.4030 0.3828 0.5801

3799.48 0.2399 0.2153 378.9680 1.3173 0.2744 0.3973 0.3801 0.5871

3799.64 0.2367 0.2131 345.3807 1.2642 0.2708 0.3871 0.3771 0.5938

3799.79 0.2301 0.2084 291.8994 1.1751 0.2633 0.3777 0.3741 0.6001

3799.94 0.2242 0.2031 232.2477 1.0619 0.2548 0.3699 0.3713 0.6058

3800.09 0.2356 0.2106 275.4731 1.1357 0.2668 0.3636 0.3684 0.6119

Page 125: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

112

Depth ΦT Φe K RQI Φz kh Φh nRQI

3800.25 0.2585 0.2276 440.5982 1.3815 0.2947 0.3562 0.3655 0.6192

3800.40 0.3130 0.2707 1282.9840 2.1615 0.3713 0.3443 0.3624 0.6308

3800.55 0.3001 0.2572 915.7422 1.8735 0.3463 0.3095 0.3586 0.6408

3800.70 0.3312 0.2801 1467.7140 2.2728 0.3892 0.2849 0.3551 0.6529

3800.86 0.3363 0.2790 1341.3390 2.1772 0.3870 0.2451 0.3512 0.6646

3801.01 0.3003 0.2454 593.5043 1.5442 0.3252 0.2090 0.3473 0.6728

3801.16 0.2488 0.2044 176.9945 0.9240 0.2569 0.1930 0.3439 0.6777

3801.31 0.2268 0.1903 96.4647 0.7069 0.2351 0.1882 0.3411 0.6815

3801.47 0.2048 0.1756 50.8054 0.5341 0.2130 0.1856 0.3385 0.6844

3801.62 0.2241 0.1953 89.2948 0.6714 0.2427 0.1842 0.3360 0.6880

3801.77 0.2269 0.2018 94.1017 0.6781 0.2528 0.1818 0.3333 0.6916

3801.92 0.2175 0.1986 64.5549 0.5661 0.2479 0.1793 0.3305 0.6946

3802.08 0.2244 0.2060 59.1110 0.5319 0.2594 0.1776 0.3278 0.6974

3802.23 0.2320 0.2046 49.5093 0.4884 0.2572 0.1760 0.3249 0.7000

3802.38 0.2362 0.1907 34.1592 0.4202 0.2357 0.1746 0.3221 0.7023

3802.53 0.2572 0.1803 29.7986 0.4037 0.2199 0.1737 0.3194 0.7044

3802.69 0.2882 0.1700 13.7990 0.2829 0.2049 0.1729 0.3170 0.7060

3802.84 0.2540 0.1311 1.2566 0.0972 0.1509 0.1725 0.3146 0.7065

3802.99 0.2299 0.1163 0.6841 0.0762 0.1316 0.1725 0.3128 0.7069

3803.14 0.2950 0.1601 6.7567 0.2040 0.1906 0.1725 0.3112 0.7080

3803.29 0.3159 0.1799 12.6580 0.2634 0.2194 0.1723 0.3089 0.7094

3803.45 0.2902 0.1683 12.0173 0.2653 0.2024 0.1719 0.3065 0.7108

3803.60 0.2854 0.1666 10.4090 0.2482 0.1999 0.1716 0.3041 0.7121

3803.75 0.3093 0.1789 11.6713 0.2536 0.2179 0.1713 0.3018 0.7135

3803.90 0.2968 0.1709 12.4252 0.2678 0.2061 0.1710 0.2993 0.7149

3804.06 0.3241 0.1904 32.3734 0.4094 0.2352 0.1707 0.2970 0.7171

3804.21 0.3299 0.2090 66.7610 0.5612 0.2643 0.1698 0.2943 0.7201

3804.36 0.2847 0.1988 47.8671 0.4872 0.2481 0.1680 0.2914 0.7227

3804.51 0.3005 0.2276 87.0939 0.6142 0.2947 0.1667 0.2887 0.7260

3804.67 0.3109 0.2474 121.3351 0.6953 0.3288 0.1644 0.2855 0.7297

3804.82 0.3143 0.2538 154.4730 0.7746 0.3402 0.1611 0.2821 0.7338

3804.97 0.2713 0.2131 42.6847 0.4444 0.2707 0.1569 0.2786 0.7362

3805.12 0.2078 0.1469 2.1909 0.1213 0.1722 0.1558 0.2756 0.7368

3805.28 0.2098 0.1401 3.7389 0.1622 0.1629 0.1557 0.2736 0.7377

3805.43 0.3016 0.2349 192.1124 0.8980 0.3070 0.1556 0.2717 0.7425

3805.58 0.2278 0.1991 60.5321 0.5475 0.2486 0.1504 0.2684 0.7454

3805.73 0.1843 0.1675 19.5592 0.3393 0.2012 0.1488 0.2657 0.7472

3805.89 0.1590 0.1467 8.3019 0.2362 0.1720 0.1483 0.2633 0.7485

3806.04 0.1736 0.1616 17.9891 0.3313 0.1927 0.1481 0.2613 0.7503

3806.19 0.1633 0.1526 18.7700 0.3483 0.1800 0.1476 0.2591 0.7521

3806.34 0.1567 0.1461 19.2986 0.3609 0.1711 0.1471 0.2570 0.7541

3806.50 0.1859 0.1728 59.6477 0.5834 0.2089 0.1466 0.2549 0.7572

3806.65 0.1833 0.1685 56.6675 0.5759 0.2026 0.1449 0.2525 0.7603

3806.80 0.1944 0.1769 84.1086 0.6847 0.2149 0.1434 0.2502 0.7639

3806.95 0.2128 0.1932 161.6400 0.9083 0.2395 0.1411 0.2478 0.7688

3807.10 0.2167 0.1984 204.1206 1.0071 0.2476 0.1368 0.2451 0.7741

3807.26 0.2213 0.2057 262.3900 1.1215 0.2590 0.1313 0.2423 0.7801

3807.41 0.2179 0.2037 263.8307 1.1300 0.2558 0.1242 0.2395 0.7862

3807.56 0.2142 0.2007 248.9691 1.1060 0.2510 0.1171 0.2367 0.7921

3807.71 0.2027 0.1889 176.7376 0.9604 0.2329 0.1103 0.2339 0.7972

3807.87 0.1938 0.1795 135.0550 0.8614 0.2187 0.1056 0.2313 0.8018

3808.02 0.1952 0.1792 138.5393 0.8730 0.2184 0.1019 0.2288 0.8065

3808.17 0.1793 0.1632 78.4972 0.6886 0.1950 0.0982 0.2263 0.8101

3808.32 0.1915 0.1741 114.0504 0.8037 0.2108 0.0961 0.2240 0.8144

3808.48 0.1848 0.1688 90.1100 0.7255 0.2030 0.0930 0.2216 0.8183

3808.63 0.1742 0.1607 62.6021 0.6198 0.1914 0.0905 0.2193 0.8216

3808.78 0.2033 0.1901 161.0867 0.9140 0.2348 0.0889 0.2171 0.8265

3808.93 0.2060 0.1940 166.9106 0.9211 0.2407 0.0845 0.2144 0.8314

3809.09 0.2066 0.1935 147.3315 0.8665 0.2399 0.0800 0.2117 0.8360

3809.24 0.1904 0.1758 73.6283 0.6426 0.2133 0.0760 0.2091 0.8395

3809.39 0.1987 0.1822 84.6034 0.6767 0.2228 0.0740 0.2066 0.8431

3809.54 0.2089 0.1934 116.1320 0.7695 0.2397 0.0718 0.2041 0.8472

3809.70 0.2299 0.2151 181.2907 0.9115 0.2741 0.0686 0.2014 0.8521

3809.85 0.2282 0.2139 109.1026 0.7092 0.2720 0.0637 0.1985 0.8559

3810.00 0.2156 0.2008 49.4916 0.4930 0.2512 0.0608 0.1955 0.8585

3810.15 0.2108 0.1945 33.1790 0.4101 0.2415 0.0594 0.1927 0.8607

3810.31 0.2107 0.1878 26.5875 0.3736 0.2312 0.0585 0.1900 0.8627

3810.46 0.2746 0.2203 71.1467 0.5643 0.2826 0.0578 0.1874 0.8657

3810.61 0.1282 0.0844 0.0532 0.0249 0.0921 0.0559 0.1844 0.8658

3810.76 0.0880 0.0452 0.0000 0.0005 0.0473 0.0559 0.1832 0.8658

3810.91 0.2266 0.0953 0.1628 0.0410 0.1054 0.0559 0.1826 0.8660

3811.07 0.2679 0.1134 0.5843 0.0713 0.1279 0.0559 0.1812 0.8664

3811.22 0.2314 0.1050 0.2511 0.0486 0.1173 0.0559 0.1797 0.8667

3811.37 0.2414 0.1163 0.4200 0.0597 0.1316 0.0559 0.1782 0.8670

3811.52 0.2173 0.1084 0.3264 0.0545 0.1216 0.0559 0.1766 0.8673

3811.68 0.1650 0.0833 0.0566 0.0259 0.0908 0.0559 0.1751 0.8674

3811.83 0.1833 0.0926 0.0862 0.0303 0.1021 0.0559 0.1739 0.8676

3811.98 0.2219 0.1134 0.3609 0.0560 0.1279 0.0559 0.1727 0.8679

3812.13 0.2665 0.1373 1.3322 0.0978 0.1591 0.0558 0.1711 0.8684

Depth ΦT Φe K RQI Φz kh Φh nRQI

3812.29 0.2653 0.1356 1.0485 0.0873 0.1569 0.0558 0.1692 0.8689

3812.44 0.2756 0.1415 1.4004 0.0988 0.1648 0.0558 0.1673 0.8694

3812.59 0.2541 0.1338 0.8046 0.0770 0.1545 0.0557 0.1654 0.8698

3812.74 0.2546 0.1375 0.8235 0.0768 0.1594 0.0557 0.1635 0.8702

3812.90 0.2465 0.1345 0.6577 0.0694 0.1554 0.0557 0.1616 0.8706

3813.05 0.2608 0.1419 0.8339 0.0761 0.1654 0.0557 0.1597 0.8710

3813.20 0.2570 0.1426 0.6528 0.0672 0.1663 0.0557 0.1578 0.8714

3813.35 0.2664 0.1530 0.9578 0.0786 0.1806 0.0556 0.1558 0.8718

3813.51 0.2528 0.1516 0.9384 0.0781 0.1787 0.0556 0.1537 0.8722

3813.66 0.2481 0.1565 1.1872 0.0865 0.1855 0.0556 0.1516 0.8727

3813.81 0.2587 0.1706 2.3454 0.1164 0.2057 0.0556 0.1494 0.8733

3813.96 0.2370 0.1615 1.6001 0.0988 0.1926 0.0555 0.1471 0.8738

3814.12 0.1836 0.1251 0.2248 0.0421 0.1430 0.0555 0.1448 0.8740

3814.27 0.1928 0.1294 0.2836 0.0465 0.1486 0.0554 0.1431 0.8743

3814.42 0.2004 0.1325 0.3871 0.0537 0.1527 0.0554 0.1413 0.8746

3814.57 0.2106 0.1378 0.5879 0.0649 0.1598 0.0554 0.1395 0.8749

3814.72 0.2199 0.1415 0.6488 0.0672 0.1649 0.0554 0.1375 0.8753

3814.88 0.1668 0.1057 0.0719 0.0259 0.1182 0.0554 0.1356 0.8754

3815.03 0.2454 0.1574 2.1826 0.1169 0.1868 0.0554 0.1341 0.8760

3815.18 0.2615 0.1801 12.0726 0.2571 0.2197 0.0553 0.1319 0.8774

3815.33 0.2488 0.1813 18.0444 0.3133 0.2214 0.0550 0.1294 0.8791

3815.49 0.2252 0.1745 19.6805 0.3335 0.2114 0.0545 0.1269 0.8809

3815.64 0.2467 0.1956 54.1981 0.5227 0.2432 0.0540 0.1245 0.8837

3815.79 0.2189 0.1775 28.0003 0.3943 0.2159 0.0525 0.1218 0.8858

3815.94 0.1519 0.1262 2.6188 0.1430 0.1445 0.0518 0.1194 0.8865

3816.10 0.1470 0.1256 2.8981 0.1508 0.1436 0.0517 0.1176 0.8873

3816.25 0.1589 0.1385 6.7271 0.2188 0.1608 0.0516 0.1159 0.8885

3816.40 0.1689 0.1508 10.7829 0.2655 0.1776 0.0514 0.1140 0.8899

3816.55 0.1797 0.1653 15.9723 0.3087 0.1980 0.0511 0.1119 0.8916

3816.71 0.1970 0.1863 33.6062 0.4218 0.2289 0.0507 0.1096 0.8938

3816.86 0.2024 0.1959 42.4249 0.4621 0.2436 0.0498 0.1070 0.8963

3817.01 0.1958 0.1916 33.7831 0.4169 0.2370 0.0487 0.1043 0.8985

3817.16 0.1646 0.1615 11.0696 0.2600 0.1926 0.0478 0.1016 0.8999

3817.32 0.1491 0.1458 6.3640 0.2075 0.1706 0.0475 0.0994 0.9010

3817.47 0.1332 0.1299 3.4024 0.1607 0.1493 0.0473 0.0974 0.9019

3817.62 0.1085 0.1061 0.9647 0.0947 0.1187 0.0472 0.0956 0.9024

3817.77 0.0974 0.0957 0.5283 0.0738 0.1058 0.0472 0.0941 0.9028

3817.93 0.1068 0.1044 1.0363 0.0989 0.1166 0.0471 0.0928 0.9033

3818.08 0.1250 0.1208 2.9382 0.1549 0.1374 0.0471 0.0913 0.9041

3818.23 0.1572 0.1506 13.0539 0.2924 0.1773 0.0470 0.0897 0.9057

3818.38 0.1713 0.1644 24.0626 0.3799 0.1968 0.0467 0.0876 0.9077

3818.53 0.1613 0.1553 17.4234 0.3326 0.1839 0.0460 0.0853 0.9095

3818.69 0.1615 0.1553 18.0543 0.3385 0.1839 0.0456 0.0831 0.9113

3818.84 0.1597 0.1534 17.9786 0.3400 0.1812 0.0451 0.0810 0.9131

3818.99 0.1545 0.1490 15.8150 0.3235 0.1751 0.0446 0.0789 0.9149

3819.14 0.1519 0.1471 14.9486 0.3166 0.1725 0.0442 0.0768 0.9165

3819.30 0.1475 0.1418 12.8591 0.2990 0.1653 0.0438 0.0748 0.9181

3819.45 0.1589 0.1508 20.9525 0.3701 0.1776 0.0434 0.0728 0.9201

3819.60 0.1666 0.1572 29.0999 0.4272 0.1865 0.0429 0.0707 0.9224

3819.75 0.1639 0.1555 27.3598 0.4166 0.1841 0.0421 0.0685 0.9246

3819.91 0.1492 0.1425 15.9463 0.3322 0.1662 0.0413 0.0664 0.9264

3820.06 0.1444 0.1385 13.5215 0.3102 0.1608 0.0409 0.0644 0.9281

3820.21 0.1724 0.1673 43.9195 0.5087 0.2010 0.0405 0.0625 0.9308

3820.36 0.1927 0.1891 91.0402 0.6889 0.2332 0.0393 0.0602 0.9345

3820.52 0.1930 0.1901 91.4034 0.6886 0.2347 0.0369 0.0576 0.9381

3820.67 0.1864 0.1810 69.3065 0.6144 0.2210 0.0344 0.0549 0.9414

3820.82 0.1899 0.1809 70.9364 0.6219 0.2208 0.0325 0.0524 0.9447

3820.97 0.1890 0.1788 65.9298 0.6029 0.2178 0.0306 0.0499 0.9480

3821.13 0.1876 0.1787 63.4757 0.5918 0.2176 0.0289 0.0474 0.9511

3821.28 0.1819 0.1748 52.7507 0.5455 0.2118 0.0271 0.0450 0.9540

3821.43 0.1944 0.1867 77.3800 0.6393 0.2295 0.0257 0.0425 0.9574

3821.58 0.1835 0.1753 51.5365 0.5385 0.2125 0.0236 0.0399 0.9603

3821.74 0.1851 0.1762 53.4948 0.5471 0.2139 0.0222 0.0375 0.9632

3821.89 0.1847 0.1766 52.2640 0.5402 0.2145 0.0208 0.0351 0.9661

3822.04 0.1869 0.1801 55.1024 0.5492 0.2197 0.0194 0.0326 0.9691

3822.19 0.1949 0.1898 73.0115 0.6159 0.2342 0.0179 0.0301 0.9723

3822.34 0.1986 0.1950 80.5775 0.6384 0.2422 0.0159 0.0275 0.9758

3822.50 0.1733 0.1697 31.4780 0.4277 0.2044 0.0138 0.0248 0.9780

3822.65 0.1672 0.1630 23.3474 0.3758 0.1947 0.0129 0.0225 0.9800

3822.80 0.1997 0.1950 71.1077 0.5997 0.2422 0.0123 0.0202 0.9832

3822.95 0.2113 0.2077 108.0506 0.7162 0.2621 0.0104 0.0175 0.9871

3823.11 0.2179 0.2148 129.4446 0.7709 0.2735 0.0074 0.0146 0.9912

3823.26 0.2145 0.2096 85.9784 0.6360 0.2652 0.0040 0.0117 0.9946

3823.41 0.1991 0.1929 36.9266 0.4344 0.2390 0.0016 0.0087 0.9969

3823.56 0.1822 0.1745 15.0433 0.2915 0.2114 0.0006 0.0061 0.9985

3823.72 0.1722 0.1587 7.8608 0.2210 0.1886 0.0002 0.0037 0.9996

3823.87 0.1268 0.1059 0.4741 0.0664 0.1185 0.0000 0.0015 1.0000

Page 126: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

113

Depth ΦT Φe K RQI Φz kh Φh nRQI

3807.66 0.1313 0.0468 0.0007 0.0039 0.0491 1.0000 1.0000 0.0000

3807.81 0.1448 0.0625 0.0720 0.0337 0.0666 1.0000 0.9993 0.0001

3807.96 0.1847 0.1114 4.3185 0.1955 0.1254 1.0000 0.9984 0.0005

3808.12 0.2343 0.1773 53.8948 0.5475 0.2155 1.0000 0.9968 0.0016

3808.27 0.2827 0.2375 202.8595 0.9178 0.3114 0.9998 0.9942 0.0034

3808.42 0.2692 0.2304 148.9636 0.7983 0.2994 0.9990 0.9908 0.0050

3808.57 0.2712 0.2296 233.6708 1.0018 0.2979 0.9985 0.9874 0.0070

3808.73 0.2602 0.2248 799.9034 1.8731 0.2900 0.9976 0.9841 0.0108

3808.88 0.2705 0.2310 927.4870 1.9896 0.3004 0.9947 0.9808 0.0148

3809.03 0.2667 0.2344 455.9179 1.3848 0.3062 0.9913 0.9775 0.0176

3809.18 0.2716 0.2329 383.9347 1.2750 0.3036 0.9896 0.9741 0.0201

3809.34 0.2719 0.2358 361.8493 1.2299 0.3086 0.9882 0.9707 0.0226

3809.49 0.2755 0.2343 364.4196 1.2385 0.3059 0.9868 0.9673 0.0251

3809.64 0.2764 0.2407 449.6284 1.3570 0.3171 0.9855 0.9639 0.0278

3809.79 0.2772 0.2449 472.3990 1.3791 0.3243 0.9838 0.9604 0.0306

3809.95 0.2748 0.2446 440.9723 1.3333 0.3238 0.9821 0.9568 0.0333

3810.10 0.2707 0.2453 414.6020 1.2909 0.3251 0.9805 0.9533 0.0359

3810.25 0.2735 0.2490 433.1706 1.3096 0.3316 0.9789 0.9497 0.0385

3810.40 0.2800 0.2539 448.6869 1.3200 0.3403 0.9773 0.9461 0.0411

3810.56 0.2755 0.2445 350.0950 1.1881 0.3237 0.9757 0.9424 0.0435

3810.71 0.2778 0.2448 346.5196 1.1814 0.3241 0.9744 0.9389 0.0459

3810.86 0.2752 0.2426 343.4175 1.1814 0.3203 0.9731 0.9353 0.0483

3811.01 0.2680 0.2335 303.7582 1.1326 0.3046 0.9718 0.9318 0.0506

3811.17 0.2615 0.2225 136.4718 0.7777 0.2861 0.9707 0.9284 0.0521

3811.32 0.2679 0.2234 92.5621 0.6392 0.2877 0.9702 0.9252 0.0534

3811.47 0.2806 0.2290 157.8036 0.8243 0.2970 0.9699 0.9220 0.0551

3811.62 0.2828 0.2238 198.6772 0.9356 0.2883 0.9693 0.9186 0.0569

3811.77 0.2552 0.1847 105.2594 0.7495 0.2266 0.9686 0.9154 0.0584

3811.93 0.2095 0.1375 3.4862 0.1581 0.1594 0.9682 0.9127 0.0588

3812.08 0.1982 0.1182 0.3179 0.0515 0.1341 0.9682 0.9107 0.0589

3812.23 0.2686 0.1583 7.1809 0.2115 0.1881 0.9682 0.9090 0.0593

3812.38 0.2844 0.1691 69.6481 0.6373 0.2035 0.9681 0.9067 0.0606

3812.54 0.2895 0.1892 104.7622 0.7389 0.2333 0.9679 0.9042 0.0621

3812.69 0.2870 0.2062 153.4978 0.8567 0.2598 0.9675 0.9015 0.0638

3812.84 0.2840 0.2295 152.2764 0.8089 0.2978 0.9669 0.8985 0.0654

3812.99 0.2803 0.2423 191.5631 0.8829 0.3197 0.9664 0.8952 0.0672

3813.15 0.2831 0.2520 662.1786 1.6095 0.3370 0.9657 0.8917 0.0704

3813.30 0.2800 0.2548 1227.3790 2.1794 0.3419 0.9632 0.8880 0.0748

3813.45 0.2822 0.2545 1230.0270 2.1829 0.3414 0.9587 0.8843 0.0792

3813.60 0.2813 0.2580 1199.2390 2.1410 0.3476 0.9542 0.8806 0.0835

3813.76 0.2878 0.2580 1220.3470 2.1597 0.3476 0.9497 0.8769 0.0878

3813.91 0.2933 0.2638 1337.8130 2.2359 0.3584 0.9453 0.8731 0.0923

3814.06 0.3036 0.2768 1742.5280 2.4915 0.3827 0.9403 0.8693 0.0973

3814.21 0.3055 0.2888 2176.0740 2.7256 0.4061 0.9339 0.8653 0.1028

3814.37 0.3046 0.2915 2378.3180 2.8361 0.4115 0.9259 0.8611 0.1085

3814.52 0.3006 0.2868 2194.1940 2.7464 0.4022 0.9171 0.8569 0.1140

3814.67 0.2976 0.2782 2076.4870 2.7130 0.3853 0.9090 0.8527 0.1195

3814.82 0.2968 0.2758 2125.5310 2.7564 0.3809 0.9013 0.8487 0.1250

3814.97 0.2969 0.2775 2413.3210 2.9284 0.3840 0.8935 0.8447 0.1309

3815.13 0.3011 0.2862 2693.0130 3.0460 0.4009 0.8846 0.8407 0.1370

3815.28 0.2987 0.2882 2891.6440 3.1453 0.4049 0.8747 0.8365 0.1433

3815.43 0.2946 0.2823 2731.2100 3.0888 0.3933 0.8640 0.8323 0.1495

3815.58 0.2882 0.2782 2454.7810 2.9495 0.3854 0.8539 0.8282 0.1554

3815.74 0.2853 0.2757 2385.5510 2.9209 0.3806 0.8449 0.8242 0.1613

3815.89 0.2799 0.2714 2158.5450 2.8003 0.3725 0.8361 0.8202 0.1669

3816.04 0.2745 0.2660 1967.6070 2.7005 0.3624 0.8281 0.8162 0.1724

3816.19 0.2709 0.2629 1910.6780 2.6767 0.3567 0.8209 0.8124 0.1777

3816.35 0.2716 0.2648 1980.1390 2.7152 0.3602 0.8138 0.8086 0.1832

3816.50 0.2696 0.2600 1776.2930 2.5954 0.3513 0.8065 0.8047 0.1884

3816.65 0.2621 0.2480 1448.0570 2.3993 0.3298 0.8000 0.8009 0.1932

3816.80 0.2555 0.2396 1139.0140 2.1652 0.3150 0.7946 0.7973 0.1976

3816.96 0.2705 0.2510 1529.1600 2.4509 0.3351 0.7905 0.7939 0.2025

3817.11 0.2419 0.2252 780.8735 1.8491 0.2906 0.7848 0.7902 0.2062

3817.26 0.2282 0.2112 500.7128 1.5291 0.2677 0.7819 0.7870 0.2093

3817.41 0.2100 0.1927 304.9847 1.2493 0.2387 0.7801 0.7839 0.2118

3817.57 0.2518 0.2246 788.3799 1.8604 0.2896 0.7790 0.7811 0.2155

3817.72 0.2761 0.2417 1276.6490 2.2819 0.3188 0.7761 0.7778 0.2201

3817.87 0.2799 0.2455 1314.2240 2.2972 0.3255 0.7713 0.7743 0.2247

3818.02 0.2794 0.2506 1342.5460 2.2985 0.3343 0.7665 0.7708 0.2294

3818.18 0.2720 0.2495 1204.6500 2.1818 0.3325 0.7616 0.7671 0.2337

3818.33 0.2692 0.2479 1070.3800 2.0634 0.3296 0.7571 0.7635 0.2379

3818.48 0.2676 0.2490 1039.5230 2.0290 0.3315 0.7532 0.7599 0.2420

3818.63 0.2659 0.2483 986.8389 1.9794 0.3304 0.7493 0.7563 0.2459

3818.78 0.2700 0.2522 1009.0360 1.9862 0.3372 0.7457 0.7527 0.2499

3818.94 0.2708 0.2474 894.9664 1.8884 0.3288 0.7420 0.7491 0.2537

3819.09 0.2803 0.2548 1015.1960 1.9819 0.3420 0.7387 0.7455 0.2577

3819.24 0.2834 0.2589 1009.0220 1.9602 0.3494 0.7349 0.7418 0.2617

3819.39 0.2846 0.2625 1042.0320 1.9783 0.3560 0.7312 0.7380 0.2656

3819.55 0.2839 0.2614 980.8373 1.9233 0.3540 0.7274 0.7342 0.2695

Depth ΦT Φe K RQI Φz kh Φh nRQI

3819.70 0.2852 0.2609 980.9854 1.9253 0.3531 0.7238 0.7304 0.2734

3819.85 0.2867 0.2606 974.4288 1.9200 0.3525 0.7201 0.7266 0.2772

3820.00 0.2867 0.2535 868.6895 1.8381 0.3396 0.7165 0.7228 0.2809

3820.16 0.2711 0.2333 370.8766 1.2519 0.3043 0.7133 0.7191 0.2834

3820.31 0.2507 0.2075 179.1475 0.9226 0.2619 0.7120 0.7158 0.2853

3820.46 0.2404 0.1918 103.2955 0.7287 0.2374 0.7113 0.7128 0.2867

3820.61 0.2474 0.1902 123.3165 0.7995 0.2349 0.7109 0.7100 0.2883

3820.77 0.2680 0.1955 160.8833 0.9008 0.2430 0.7105 0.7072 0.2902

3820.92 0.2558 0.1748 27.0076 0.3903 0.2118 0.7099 0.7044 0.2909

3821.07 0.2592 0.1656 16.9847 0.3180 0.1984 0.7098 0.7018 0.2916

3821.22 0.2683 0.1753 49.3962 0.5271 0.2126 0.7097 0.6994 0.2926

3821.38 0.2944 0.2081 283.4290 1.1589 0.2628 0.7095 0.6969 0.2950

3821.53 0.3047 0.2412 1010.1690 2.0321 0.3179 0.7085 0.6939 0.2991

3821.68 0.3037 0.2591 875.3193 1.8252 0.3497 0.7047 0.6904 0.3027

3821.83 0.2946 0.2648 709.2515 1.6250 0.3602 0.7015 0.6866 0.3060

3821.99 0.2944 0.2679 697.1362 1.6018 0.3659 0.6989 0.6828 0.3092

3822.14 0.2965 0.2708 1074.7310 1.9781 0.3714 0.6963 0.6789 0.3132

3822.29 0.2978 0.2688 1192.1010 2.0911 0.3676 0.6924 0.6750 0.3174

3822.44 0.2940 0.2671 1046.1130 1.9651 0.3644 0.6880 0.6710 0.3213

3822.59 0.2872 0.2595 820.1694 1.7652 0.3505 0.6841 0.6672 0.3249

3822.75 0.2821 0.2561 672.4925 1.6089 0.3443 0.6811 0.6634 0.3281

3822.90 0.2769 0.2515 592.3880 1.5238 0.3361 0.6786 0.6597 0.3312

3823.05 0.2771 0.2536 609.5233 1.5393 0.3398 0.6764 0.6561 0.3343

3823.20 0.2735 0.2472 555.0873 1.4879 0.3284 0.6742 0.6524 0.3372

3823.36 0.2709 0.2434 610.2863 1.5722 0.3218 0.6721 0.6488 0.3404

3823.51 0.2707 0.2419 757.4346 1.7569 0.3192 0.6699 0.6453 0.3439

3823.66 0.2787 0.2528 1786.6530 2.6398 0.3383 0.6671 0.6417 0.3492

3823.81 0.2850 0.2588 1559.1710 2.4372 0.3492 0.6605 0.6381 0.3541

3823.97 0.2910 0.2578 826.7019 1.7782 0.3473 0.6548 0.6343 0.3577

3824.12 0.2946 0.2480 313.9615 1.1172 0.3298 0.6517 0.6306 0.3600

3824.27 0.2971 0.2335 280.4148 1.0882 0.3046 0.6506 0.6270 0.3621

3824.42 0.2842 0.1954 123.9100 0.7907 0.2429 0.6495 0.6236 0.3637

3824.58 0.2479 0.1396 1.8452 0.1142 0.1622 0.6491 0.6208 0.3640

3824.73 0.1954 0.0786 0.0112 0.0119 0.0853 0.6491 0.6187 0.3640

3824.88 0.1505 0.0459 0.0001 0.0017 0.0481 0.6491 0.6176 0.3640

3825.03 0.1877 0.0470 0.0011 0.0047 0.0493 0.6491 0.6169 0.3640

3825.19 0.2432 0.0703 0.0276 0.0197 0.0756 0.6491 0.6162 0.3640

3825.34 0.3022 0.1211 2.0224 0.1283 0.1378 0.6491 0.6152 0.3643

3825.49 0.3312 0.1913 60.0650 0.5564 0.2365 0.6491 0.6135 0.3654

3825.64 0.3287 0.2344 137.0719 0.7593 0.3062 0.6488 0.6107 0.3669

3825.80 0.3077 0.2460 131.0937 0.7248 0.3263 0.6483 0.6073 0.3684

3825.95 0.2919 0.2420 153.8520 0.7917 0.3192 0.6478 0.6037 0.3700

3826.10 0.2860 0.2416 191.2421 0.8834 0.3186 0.6473 0.6002 0.3718

3826.25 0.2848 0.2346 231.9326 0.9874 0.3064 0.6466 0.5967 0.3737

3826.41 0.2850 0.2230 200.0888 0.9405 0.2870 0.6457 0.5933 0.3756

3826.56 0.2884 0.2110 64.1597 0.5476 0.2674 0.6450 0.5900 0.3767

3826.71 0.3047 0.2188 95.9511 0.6576 0.2800 0.6447 0.5870 0.3781

3826.86 0.3154 0.2280 227.5326 0.9920 0.2953 0.6444 0.5838 0.3800

3827.01 0.3046 0.2243 95.8294 0.6491 0.2891 0.6435 0.5805 0.3813

3827.17 0.2854 0.2081 21.8110 0.3214 0.2628 0.6432 0.5773 0.3820

3827.32 0.2716 0.2001 22.5051 0.3330 0.2501 0.6431 0.5742 0.3827

3827.47 0.2835 0.2168 135.6101 0.7853 0.2768 0.6430 0.5713 0.3842

3827.62 0.2915 0.2380 229.8526 0.9759 0.3123 0.6425 0.5682 0.3862

3827.78 0.2974 0.2530 317.2051 1.1118 0.3387 0.6417 0.5647 0.3884

3827.93 0.2940 0.2620 335.8181 1.1242 0.3550 0.6405 0.5611 0.3907

3828.08 0.2924 0.2665 328.5863 1.1025 0.3634 0.6393 0.5573 0.3929

3828.23 0.2886 0.2638 356.4447 1.1542 0.3583 0.6381 0.5534 0.3952

3828.39 0.2879 0.2587 367.4780 1.1835 0.3490 0.6367 0.5496 0.3976

3828.54 0.2870 0.2559 368.4863 1.1916 0.3439 0.6354 0.5458 0.4000

3828.69 0.2817 0.2506 376.9652 1.2177 0.3345 0.6340 0.5421 0.4024

3828.84 0.2733 0.2356 393.4805 1.2833 0.3081 0.6326 0.5385 0.4050

3829.00 0.2496 0.2018 65.4434 0.5655 0.2528 0.6312 0.5350 0.4062

3829.15 0.2334 0.1790 16.6313 0.3026 0.2181 0.6310 0.5321 0.4068

3829.30 0.2355 0.1812 41.8270 0.4771 0.2213 0.6309 0.5295 0.4077

3829.45 0.2651 0.2171 254.4029 1.0750 0.2773 0.6307 0.5269 0.4099

3829.61 0.2885 0.2517 538.6392 1.4524 0.3364 0.6298 0.5238 0.4128

3829.76 0.2964 0.2655 683.7432 1.5934 0.3615 0.6278 0.5201 0.4160

3829.91 0.2884 0.2594 509.7018 1.3919 0.3502 0.6253 0.5162 0.4188

3830.06 0.2780 0.2511 548.9642 1.4682 0.3353 0.6234 0.5125 0.4218

3830.21 0.2688 0.2497 730.0985 1.6979 0.3328 0.6214 0.5088 0.4252

3830.37 0.2687 0.2506 995.6309 1.9791 0.3344 0.6187 0.5052 0.4291

3830.52 0.2724 0.2533 1058.1040 2.0295 0.3392 0.6150 0.5016 0.4332

3830.67 0.2783 0.2563 1138.0100 2.0923 0.3446 0.6111 0.4979 0.4374

3830.82 0.2837 0.2627 1347.5630 2.2489 0.3563 0.6069 0.4942 0.4419

3830.98 0.2894 0.2642 1484.6250 2.3540 0.3590 0.6020 0.4904 0.4467

3831.13 0.2933 0.2685 1692.4950 2.4928 0.3671 0.5965 0.4865 0.4517

3831.28 0.2900 0.2661 1660.9410 2.4808 0.3626 0.5902 0.4826 0.4567

3831.43 0.2812 0.2656 1572.1650 2.4156 0.3617 0.5841 0.4788 0.4615

3831.59 0.2726 0.2622 1442.0880 2.3285 0.3555 0.5783 0.4749 0.4662

APPENDIX H: DATA OF WELL 04 FOR FLOW UNIT CHARTS FOR RESERVOIR 7

Page 127: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

114

Depth ΦT Φe K RQI Φz kh Φh nRQI

3831.74 0.2699 0.2594 1424.5160 2.3267 0.3503 0.5730 0.4711 0.4709

3831.89 0.2701 0.2568 1388.0930 2.3085 0.3455 0.5677 0.4673 0.4755

3832.04 0.2702 0.2518 1318.4220 2.2721 0.3365 0.5626 0.4636 0.4801

3832.20 0.2692 0.2487 1253.0620 2.2290 0.3310 0.5578 0.4600 0.4846

3832.35 0.2683 0.2471 1211.6630 2.1988 0.3282 0.5531 0.4564 0.4890

3832.50 0.2655 0.2497 1205.2230 2.1817 0.3327 0.5487 0.4528 0.4934

3832.65 0.2634 0.2452 1083.8520 2.0875 0.3249 0.5442 0.4492 0.4975

3832.81 0.2619 0.2432 1036.2820 2.0498 0.3213 0.5402 0.4456 0.5017

3832.96 0.2599 0.2349 833.2590 1.8701 0.3071 0.5364 0.4421 0.5054

3833.11 0.2559 0.2348 854.0964 1.8940 0.3068 0.5333 0.4386 0.5092

3833.26 0.2532 0.2322 739.2206 1.7716 0.3024 0.5302 0.4353 0.5128

3833.42 0.2579 0.2366 821.3022 1.8498 0.3100 0.5275 0.4319 0.5165

3833.57 0.2631 0.2419 899.5884 1.9149 0.3191 0.5244 0.4284 0.5203

3833.72 0.2661 0.2441 934.7195 1.9430 0.3230 0.5211 0.4249 0.5243

3833.87 0.2670 0.2493 955.5724 1.9440 0.3321 0.5177 0.4214 0.5282

3834.02 0.2666 0.2458 799.7538 1.7910 0.3260 0.5142 0.4178 0.5318

3834.18 0.2671 0.2496 802.2776 1.7801 0.3327 0.5112 0.4142 0.5353

3834.33 0.2674 0.2512 789.5543 1.7604 0.3355 0.5082 0.4106 0.5389

3834.48 0.2644 0.2560 755.5102 1.7058 0.3441 0.5053 0.4069 0.5423

3834.63 0.2577 0.2525 677.5007 1.6266 0.3377 0.5025 0.4032 0.5456

3834.79 0.2494 0.2434 549.0982 1.4913 0.3217 0.5001 0.3996 0.5486

3834.94 0.2417 0.2317 358.9581 1.2359 0.3016 0.4980 0.3960 0.5510

3835.09 0.2360 0.2217 148.2296 0.8120 0.2848 0.4967 0.3927 0.5527

3835.24 0.2400 0.2225 130.4282 0.7602 0.2863 0.4962 0.3895 0.5542

3835.40 0.2506 0.2318 163.3363 0.8336 0.3017 0.4957 0.3862 0.5559

3835.55 0.2599 0.2372 225.4118 0.9680 0.3110 0.4951 0.3829 0.5578

3835.70 0.2478 0.2181 165.6619 0.8654 0.2789 0.4943 0.3794 0.5596

3835.85 0.2376 0.1805 15.4745 0.2907 0.2203 0.4936 0.3763 0.5601

3836.01 0.2449 0.1661 3.3602 0.1412 0.1992 0.4936 0.3736 0.5604

3836.16 0.2770 0.1799 52.3920 0.5359 0.2194 0.4936 0.3712 0.5615

3836.31 0.2998 0.2235 220.9693 0.9874 0.2878 0.4934 0.3686 0.5635

3836.46 0.2984 0.2429 264.3647 1.0360 0.3208 0.4926 0.3654 0.5656

3836.62 0.2878 0.2466 239.3995 0.9784 0.3273 0.4916 0.3618 0.5675

3836.77 0.2833 0.2428 216.4947 0.9377 0.3206 0.4907 0.3583 0.5694

3836.92 0.2767 0.2300 178.1083 0.8737 0.2988 0.4899 0.3547 0.5712

3837.07 0.2738 0.2057 109.7908 0.7254 0.2590 0.4892 0.3514 0.5726

3837.23 0.2764 0.1789 48.4590 0.5168 0.2178 0.4888 0.3484 0.5737

3837.38 0.2938 0.1644 43.4861 0.5108 0.1967 0.4887 0.3458 0.5747

3837.53 0.3060 0.1622 58.7370 0.5975 0.1937 0.4885 0.3434 0.5759

3837.68 0.3105 0.1768 100.0773 0.7471 0.2147 0.4883 0.3411 0.5774

3837.83 0.3126 0.2022 228.6012 1.0559 0.2534 0.4879 0.3385 0.5795

3837.99 0.3182 0.2330 470.2708 1.4108 0.3037 0.4871 0.3356 0.5824

3838.14 0.3268 0.2618 871.2328 1.8115 0.3546 0.4853 0.3322 0.5860

3838.29 0.3337 0.2826 1523.5660 2.3057 0.3939 0.4821 0.3284 0.5906

3838.44 0.3271 0.2890 1823.7280 2.4945 0.4064 0.4765 0.3243 0.5956

3838.60 0.3124 0.2795 1998.6800 2.6552 0.3880 0.4698 0.3201 0.6010

3838.75 0.3018 0.2776 1874.8070 2.5805 0.3843 0.4624 0.3161 0.6062

3838.90 0.2930 0.2662 1517.1640 2.3707 0.3627 0.4555 0.3120 0.6109

3839.05 0.2907 0.2640 1443.3650 2.3217 0.3587 0.4499 0.3082 0.6156

3839.21 0.2926 0.2551 1320.7940 2.2596 0.3424 0.4446 0.3043 0.6201

3839.36 0.2929 0.2561 1431.1720 2.3471 0.3444 0.4397 0.3006 0.6248

3839.51 0.2987 0.2613 1671.7270 2.5118 0.3537 0.4345 0.2969 0.6299

3839.66 0.2910 0.2581 1738.6290 2.5773 0.3478 0.4283 0.2931 0.6351

3839.82 0.2834 0.2525 1289.9200 2.2443 0.3378 0.4219 0.2894 0.6396

3839.97 0.2791 0.2506 1382.1030 2.3320 0.3344 0.4171 0.2857 0.6443

3840.12 0.2784 0.2536 1572.5630 2.4724 0.3398 0.4120 0.2821 0.6492

3840.27 0.2731 0.2494 1453.8030 2.3976 0.3322 0.4062 0.2784 0.6540

3840.43 0.2572 0.2354 1061.1370 2.1083 0.3078 0.4009 0.2748 0.6583

3840.58 0.2505 0.2295 911.4554 1.9788 0.2979 0.3969 0.2714 0.6623

3840.73 0.2505 0.2309 944.7200 2.0083 0.3003 0.3936 0.2680 0.6663

3840.88 0.2502 0.2289 937.4958 2.0097 0.2968 0.3901 0.2647 0.6703

3841.04 0.2524 0.2314 1035.5110 2.1004 0.3011 0.3867 0.2614 0.6745

3841.19 0.2487 0.2302 976.9363 2.0455 0.2991 0.3828 0.2580 0.6787

3841.34 0.2512 0.2369 1196.7230 2.2318 0.3104 0.3792 0.2547 0.6831

3841.49 0.2491 0.2367 1103.9260 2.1446 0.3100 0.3748 0.2512 0.6875

3841.65 0.2458 0.2322 1005.2750 2.0661 0.3024 0.3707 0.2478 0.6916

3841.80 0.2508 0.2378 1198.8830 2.2297 0.3119 0.3670 0.2444 0.6961

3841.95 0.2536 0.2407 1235.4380 2.2494 0.3171 0.3626 0.2410 0.7006

3842.10 0.2641 0.2508 1577.5500 2.4902 0.3348 0.3581 0.2375 0.7056

3842.25 0.2671 0.2498 1590.2970 2.5054 0.3330 0.3522 0.2338 0.7106

3842.41 0.2716 0.2505 1669.8680 2.5639 0.3341 0.3464 0.2302 0.7158

3842.56 0.2730 0.2534 1801.5130 2.6474 0.3395 0.3402 0.2266 0.7211

3842.71 0.2755 0.2538 1796.0390 2.6413 0.3402 0.3336 0.2229 0.7264

3842.86 0.2830 0.2592 2103.3900 2.8286 0.3499 0.3270 0.2192 0.7321

3843.02 0.2863 0.2549 1920.9870 2.7259 0.3421 0.3192 0.2155 0.7376

3843.17 0.2815 0.2486 1666.5610 2.5709 0.3309 0.3121 0.2118 0.7427

3843.32 0.2750 0.2417 1460.2110 2.4406 0.3187 0.3060 0.2082 0.7476

3843.47 0.2781 0.2486 1639.4330 2.5498 0.3309 0.3006 0.2047 0.7528

3843.63 0.2887 0.2616 2188.5830 2.8721 0.3542 0.2946 0.2011 0.7585

Depth ΦT Φe K RQI Φz kh Φh nRQI

3843.78 0.2990 0.2695 2553.0710 3.0563 0.3689 0.2864 0.1972 0.7647

3843.93 0.2942 0.2676 2439.0270 2.9979 0.3653 0.2771 0.1933 0.7707

3844.08 0.2850 0.2602 1949.1340 2.7174 0.3518 0.2681 0.1895 0.7762

3844.24 0.2833 0.2626 2098.5070 2.8071 0.3561 0.2609 0.1857 0.7818

3844.39 0.2859 0.2640 2088.6530 2.7931 0.3586 0.2532 0.1819 0.7874

3844.54 0.2873 0.2645 2083.8410 2.7869 0.3597 0.2454 0.1780 0.7930

3844.69 0.2764 0.2567 1727.8250 2.5759 0.3454 0.2378 0.1742 0.7982

3844.85 0.2736 0.2513 1545.3250 2.4622 0.3357 0.2314 0.1705 0.8031

3845.00 0.2799 0.2564 1700.6210 2.5572 0.3448 0.2257 0.1668 0.8083

3845.15 0.2878 0.2637 1953.9900 2.7028 0.3582 0.2194 0.1631 0.8137

3845.30 0.2955 0.2755 2460.5000 2.9672 0.3803 0.2122 0.1593 0.8197

3845.45 0.2948 0.2757 2449.1680 2.9597 0.3806 0.2032 0.1553 0.8256

3845.61 0.2940 0.2683 2156.8420 2.8154 0.3667 0.1941 0.1513 0.8313

3845.76 0.2809 0.2516 1466.5930 2.3972 0.3363 0.1862 0.1474 0.8361

3845.91 0.2777 0.2515 1404.4470 2.3465 0.3360 0.1808 0.1438 0.8408

3846.06 0.2808 0.2564 1545.8700 2.4384 0.3447 0.1756 0.1401 0.8457

3846.22 0.2822 0.2603 1671.3980 2.5161 0.3519 0.1699 0.1364 0.8508

3846.37 0.2746 0.2510 1316.8690 2.2746 0.3350 0.1637 0.1326 0.8553

3846.52 0.2618 0.2452 1060.4300 2.0650 0.3248 0.1589 0.1290 0.8595

3846.67 0.2590 0.2422 969.9840 1.9872 0.3196 0.1550 0.1254 0.8635

3846.83 0.2580 0.2429 978.2171 1.9927 0.3208 0.1514 0.1219 0.8675

3846.98 0.2557 0.2377 819.8885 1.8442 0.3118 0.1478 0.1184 0.8712

3847.13 0.2574 0.2399 847.1472 1.8661 0.3155 0.1447 0.1149 0.8749

3847.28 0.2613 0.2417 898.7640 1.9147 0.3188 0.1416 0.1114 0.8788

3847.44 0.2764 0.2556 1167.2280 2.1220 0.3433 0.1383 0.1079 0.8830

3847.59 0.2877 0.2681 1482.9000 2.3351 0.3664 0.1340 0.1042 0.8877

3847.74 0.2979 0.2796 1818.3340 2.5322 0.3881 0.1285 0.1003 0.8928

3847.89 0.2971 0.2803 1733.2130 2.4691 0.3895 0.1219 0.0963 0.8978

3848.05 0.2939 0.2807 1686.3780 2.4338 0.3903 0.1154 0.0922 0.9027

3848.20 0.2979 0.2849 1790.5920 2.4893 0.3984 0.1092 0.0881 0.9077

3848.35 0.3036 0.2903 1858.4660 2.5123 0.4091 0.1026 0.0840 0.9127

3848.50 0.3131 0.2939 1976.5830 2.5751 0.4162 0.0958 0.0798 0.9179

3848.66 0.3088 0.2924 1764.8590 2.4395 0.4132 0.0885 0.0755 0.9228

3848.81 0.3080 0.2859 1547.5890 2.3101 0.4004 0.0820 0.0713 0.9274

3848.96 0.3022 0.2781 1223.2100 2.0826 0.3852 0.0763 0.0671 0.9316

3849.11 0.3023 0.2745 1088.6660 1.9774 0.3784 0.0718 0.0631 0.9356

3849.26 0.3013 0.2780 1079.2660 1.9563 0.3851 0.0677 0.0591 0.9395

3849.42 0.3040 0.2800 1081.3900 1.9512 0.3890 0.0638 0.0551 0.9434

3849.57 0.3081 0.2773 1039.6710 1.9225 0.3838 0.0598 0.0510 0.9473

3849.72 0.3120 0.2736 1004.9370 1.9032 0.3766 0.0560 0.0470 0.9511

3849.87 0.3112 0.2723 972.9786 1.8771 0.3741 0.0522 0.0430 0.9549

3850.03 0.3089 0.2713 977.2264 1.8847 0.3722 0.0487 0.0391 0.9587

3850.18 0.3085 0.2798 1135.5450 2.0003 0.3885 0.0451 0.0351 0.9627

3850.33 0.3102 0.2825 1275.7280 2.1102 0.3937 0.0409 0.0311 0.9669

3850.48 0.3065 0.2783 1399.1300 2.2266 0.3855 0.0362 0.0270 0.9714

3850.64 0.2983 0.2672 1660.0690 2.4749 0.3647 0.0310 0.0229 0.9764

3850.79 0.2927 0.2566 1765.7370 2.6047 0.3452 0.0249 0.0191 0.9816

3850.94 0.2871 0.2489 2589.4550 3.2028 0.3314 0.0184 0.0153 0.9881

3851.09 0.2655 0.2248 1804.7170 2.8131 0.2901 0.0088 0.0117 0.9937

3851.25 0.2249 0.1841 383.4342 1.4332 0.2256 0.0022 0.0085 0.9966

3851.40 0.1789 0.1410 180.1098 1.1224 0.1641 0.0007 0.0058 0.9988

3851.55 0.1472 0.1058 22.7358 0.4603 0.1183 0.0001 0.0037 0.9998

3851.70 0.1356 0.0879 0.6999 0.0886 0.0964 0.0000 0.0022 0.9999

3851.86 0.1265 0.0644 0.0608 0.0305 0.0688 0.0000 0.0009 1.0000

Page 128: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

115

Depth ΦT Φe K RQI Φz kh Φh nRQI

3625.60 0.1903 0.0816 0.0216 0.0162 0.0889 1.0000 1.0000 0.0000

3625.75 0.2180 0.0983 0.0887 0.0298 0.1090 1.0000 0.9988 0.0001

3625.90 0.2332 0.1064 0.2249 0.0457 0.1191 1.0000 0.9974 0.0002

3626.05 0.2438 0.1120 0.5042 0.0666 0.1261 1.0000 0.9958 0.0003

3626.21 0.2550 0.1244 1.3385 0.1030 0.1421 1.0000 0.9942 0.0005

3626.36 0.2658 0.1439 3.8110 0.1616 0.1681 1.0000 0.9924 0.0009

3626.51 0.2692 0.1591 8.3877 0.2280 0.1893 1.0000 0.9903 0.0013

3626.66 0.2734 0.1685 17.8925 0.3236 0.2026 1.0000 0.9880 0.0020

3626.82 0.2814 0.1734 33.4981 0.4365 0.2097 0.9999 0.9855 0.0029

3626.97 0.2868 0.1786 66.1281 0.6042 0.2174 0.9998 0.9830 0.0041

3627.12 0.2865 0.1901 153.7163 0.8928 0.2348 0.9996 0.9804 0.0060

3627.27 0.2822 0.2100 419.5852 1.4036 0.2658 0.9991 0.9777 0.0089

3627.43 0.2808 0.2329 748.0430 1.7797 0.3035 0.9979 0.9746 0.0125

3627.58 0.2876 0.2504 912.1481 1.8951 0.3341 0.9956 0.9712 0.0164

3627.73 0.2998 0.2642 648.1052 1.5553 0.3590 0.9929 0.9676 0.0196

3627.88 0.3040 0.2681 464.8216 1.3075 0.3663 0.9909 0.9637 0.0223

3628.03 0.2949 0.2593 418.5417 1.2616 0.3500 0.9895 0.9598 0.0249

3628.19 0.2782 0.2473 316.7660 1.1237 0.3286 0.9882 0.9561 0.0272

3628.34 0.2665 0.2426 294.1485 1.0933 0.3204 0.9873 0.9524 0.0295

3628.49 0.2622 0.2453 375.0780 1.2278 0.3250 0.9864 0.9489 0.0320

3628.64 0.2578 0.2449 434.0341 1.3220 0.3243 0.9852 0.9453 0.0347

3628.80 0.2563 0.2459 495.3870 1.4093 0.3261 0.9839 0.9418 0.0376

3628.95 0.2591 0.2498 375.4925 1.2173 0.3330 0.9824 0.9382 0.0401

3629.10 0.2675 0.2561 386.0942 1.2192 0.3443 0.9813 0.9346 0.0426

3629.25 0.2709 0.2565 453.1191 1.3198 0.3450 0.9801 0.9308 0.0453

3629.41 0.2679 0.2524 424.1728 1.2873 0.3376 0.9788 0.9271 0.0480

3629.56 0.2662 0.2534 419.4022 1.2773 0.3395 0.9775 0.9234 0.0506

3629.71 0.2684 0.2605 511.3362 1.3911 0.3523 0.9762 0.9198 0.0535

3629.86 0.2804 0.2763 792.2367 1.6815 0.3817 0.9747 0.9160 0.0569

3630.02 0.2975 0.2918 1182.4280 1.9987 0.4121 0.9723 0.9119 0.0611

3630.17 0.3061 0.2957 1335.8360 2.1107 0.4197 0.9687 0.9077 0.0654

3630.32 0.2932 0.2775 896.0117 1.7842 0.3841 0.9646 0.9034 0.0691

3630.47 0.2662 0.2487 482.0715 1.3824 0.3310 0.9619 0.8994 0.0719

3630.63 0.2516 0.2347 310.6972 1.1426 0.3066 0.9605 0.8957 0.0743

3630.78 0.2561 0.2393 308.8167 1.1279 0.3146 0.9595 0.8923 0.0766

3630.93 0.2679 0.2518 318.4794 1.1166 0.3366 0.9586 0.8888 0.0789

3631.08 0.2720 0.2590 318.6284 1.1014 0.3495 0.9576 0.8852 0.0811

3631.24 0.2687 0.2589 265.2863 1.0052 0.3493 0.9567 0.8814 0.0832

3631.39 0.2672 0.2587 258.6854 0.9930 0.3490 0.9559 0.8776 0.0853

3631.54 0.2704 0.2621 342.0971 1.1345 0.3552 0.9551 0.8739 0.0876

3631.69 0.2806 0.2701 516.8422 1.3735 0.3701 0.9541 0.8701 0.0904

3631.84 0.2914 0.2769 750.6933 1.6349 0.3830 0.9525 0.8661 0.0938

3632.00 0.2938 0.2785 878.0602 1.7630 0.3861 0.9502 0.8621 0.0974

3632.15 0.2907 0.2772 790.6038 1.6769 0.3835 0.9476 0.8580 0.1009

3632.30 0.2904 0.2766 748.9970 1.6340 0.3824 0.9452 0.8540 0.1042

3632.45 0.2888 0.2735 569.4892 1.4329 0.3764 0.9429 0.8500 0.1072

3632.61 0.2845 0.2711 424.7618 1.2429 0.3719 0.9412 0.8460 0.1097

3632.76 0.2792 0.2685 363.8980 1.1560 0.3670 0.9399 0.8421 0.1121

3632.91 0.2782 0.2692 395.4553 1.2035 0.3683 0.9388 0.8382 0.1146

3633.06 0.2768 0.2693 397.5630 1.2066 0.3685 0.9376 0.8343 0.1171

3633.22 0.2759 0.2677 297.7110 1.0472 0.3655 0.9364 0.8303 0.1192

3633.37 0.2760 0.2655 137.9699 0.7158 0.3614 0.9355 0.8264 0.1207

3633.52 0.2747 0.2593 52.7214 0.4477 0.3501 0.9351 0.8226 0.1216

3633.67 0.2716 0.2494 21.0743 0.2886 0.3323 0.9349 0.8188 0.1222

3633.83 0.2478 0.2156 2.7075 0.1113 0.2748 0.9349 0.8152 0.1224

3633.98 0.1996 0.1555 0.1868 0.0344 0.1842 0.9349 0.8120 0.1225

3634.13 0.1543 0.0985 0.0042 0.0065 0.1092 0.9349 0.8098 0.1225

3634.28 0.1332 0.0663 0.0000 0.0005 0.0710 0.9349 0.8083 0.1225

3634.44 0.1322 0.0565 0.0000 0.0000 0.0599 0.9349 0.8074 0.1225

3634.59 0.1316 0.0560 0.0000 0.0004 0.0593 0.9349 0.8065 0.1225

3634.74 0.1407 0.0650 0.0009 0.0036 0.0695 0.9349 0.8057 0.1225

3634.89 0.1670 0.0878 0.0435 0.0221 0.0963 0.9349 0.8048 0.1226

3635.05 0.2155 0.1315 1.1785 0.0940 0.1514 0.9349 0.8035 0.1228

3635.20 0.2613 0.1810 4.9814 0.1647 0.2210 0.9349 0.8016 0.1231

3635.35 0.2816 0.2085 11.4011 0.2322 0.2634 0.9348 0.7990 0.1236

3635.50 0.2748 0.2038 12.0689 0.2416 0.2560 0.9348 0.7959 0.1241

3635.65 0.2653 0.1884 9.9678 0.2284 0.2321 0.9348 0.7930 0.1245

3635.81 0.2756 0.1934 24.4069 0.3528 0.2397 0.9347 0.7902 0.1253

3635.96 0.3020 0.2325 107.4931 0.6752 0.3029 0.9347 0.7874 0.1267

3636.11 0.3198 0.2763 405.2020 1.2024 0.3818 0.9343 0.7840 0.1291

3636.26 0.3232 0.3025 1384.8550 2.1247 0.4336 0.9331 0.7800 0.1335

3636.42 0.3212 0.3140 1182.8890 1.9271 0.4578 0.9289 0.7756 0.1375

3636.57 0.3155 0.3143 601.8949 1.3740 0.4584 0.9254 0.7710 0.1403

3636.72 0.3022 0.3009 327.1389 1.0353 0.4304 0.9235 0.7665 0.1424

3636.87 0.2891 0.2846 65.8812 0.4777 0.3979 0.9226 0.7621 0.1434

3637.03 0.2791 0.2674 32.8143 0.3478 0.3650 0.9224 0.7579 0.1441

3637.18 0.2626 0.2277 16.8171 0.2698 0.2949 0.9223 0.7540 0.1447

3637.33 0.2481 0.1834 8.6341 0.2154 0.2246 0.9222 0.7507 0.1451

3637.48 0.2604 0.1675 10.2811 0.2460 0.2012 0.9222 0.7481 0.1456

Depth ΦT Φe K RQI Φz kh Φh nRQI

3637.64 0.2982 0.1852 31.8257 0.4116 0.2273 0.9221 0.7456 0.1465

3637.79 0.3339 0.2154 104.8019 0.6926 0.2745 0.9220 0.7429 0.1479

3637.94 0.3588 0.2382 247.9943 1.0131 0.3127 0.9217 0.7398 0.1500

3638.09 0.3724 0.2533 442.4728 1.3125 0.3392 0.9210 0.7363 0.1527

3638.25 0.3770 0.2645 773.8450 1.6985 0.3595 0.9196 0.7326 0.1562

3638.40 0.3791 0.2745 1231.8040 2.1034 0.3784 0.9173 0.7288 0.1605

3638.55 0.3793 0.2889 2024.0820 2.6281 0.4064 0.9136 0.7248 0.1659

3638.70 0.3833 0.3148 3556.7690 3.3378 0.4594 0.9075 0.7206 0.1728

3638.86 0.3850 0.3377 4514.5580 3.6304 0.5099 0.8967 0.7160 0.1802

3639.01 0.3757 0.3385 4868.7620 3.7661 0.5116 0.8830 0.7111 0.1880

3639.16 0.3444 0.3159 3990.2460 3.5293 0.4617 0.8683 0.7062 0.1952

3639.31 0.3021 0.2808 4267.3130 3.8709 0.3904 0.8562 0.7016 0.2032

3639.46 0.2671 0.2498 3877.4050 3.9124 0.3329 0.8434 0.6975 0.2113

3639.62 0.2457 0.2301 4742.0800 4.5076 0.2989 0.8317 0.6939 0.2205

3639.77 0.2238 0.2127 2098.0380 3.1187 0.2701 0.8173 0.6905 0.2269

3639.92 0.2055 0.1985 753.6376 1.9348 0.2477 0.8109 0.6874 0.2309

3640.07 0.1972 0.1912 276.5573 1.1941 0.2365 0.8087 0.6845 0.2334

3640.23 0.2042 0.1978 228.6797 1.0676 0.2466 0.8078 0.6818 0.2356

3640.38 0.2111 0.2054 282.1344 1.1637 0.2585 0.8071 0.6789 0.2380

3640.53 0.2088 0.2036 257.6704 1.1170 0.2557 0.8063 0.6759 0.2403

3640.68 0.1998 0.1929 144.4886 0.8595 0.2389 0.8055 0.6729 0.2420

3640.84 0.1958 0.1826 96.3871 0.7213 0.2235 0.8051 0.6701 0.2435

3640.99 0.1992 0.1780 134.8182 0.8642 0.2165 0.8048 0.6675 0.2453

3641.14 0.2021 0.1753 241.9444 1.1665 0.2126 0.8044 0.6649 0.2477

3641.29 0.2017 0.1769 213.8360 1.0916 0.2150 0.8036 0.6623 0.2499

3641.45 0.2053 0.1872 206.8059 1.0437 0.2303 0.8030 0.6597 0.2521

3641.60 0.2210 0.2072 359.8281 1.3086 0.2613 0.8024 0.6570 0.2548

3641.75 0.2431 0.2280 686.1738 1.7228 0.2953 0.8013 0.6540 0.2583

3641.90 0.2597 0.2420 1021.0300 2.0394 0.3193 0.7992 0.6507 0.2625

3642.06 0.2702 0.2519 1562.4800 2.4729 0.3367 0.7961 0.6472 0.2676

3642.21 0.2781 0.2621 1720.0670 2.5435 0.3553 0.7914 0.6435 0.2728

3642.36 0.2912 0.2788 2219.4230 2.8016 0.3866 0.7862 0.6397 0.2786

3642.51 0.2986 0.2902 1401.4240 2.1820 0.4089 0.7795 0.6356 0.2831

3642.67 0.2998 0.2936 9349.0540 5.6035 0.4156 0.7753 0.6314 0.2946

3642.82 0.2985 0.2922 2942.1400 3.1507 0.4129 0.7469 0.6271 0.3011

3642.97 0.2948 0.2886 1998.3930 2.6129 0.4057 0.7380 0.6229 0.3065

3643.12 0.2882 0.2820 677.8126 1.5394 0.3927 0.7320 0.6187 0.3096

3643.27 0.2842 0.2767 1548.6190 2.3491 0.3825 0.7299 0.6146 0.3145

3643.43 0.2761 0.2696 1727.4300 2.5134 0.3691 0.7252 0.6106 0.3196

3643.58 0.2658 0.2620 1072.1970 2.0088 0.3550 0.7200 0.6066 0.3238

3643.73 0.2513 0.2470 1157.2410 2.1494 0.3280 0.7168 0.6028 0.3282

3643.88 0.2452 0.2361 821.5010 1.8520 0.3092 0.7133 0.5992 0.3320

3644.04 0.2522 0.2359 707.7954 1.7200 0.3087 0.7108 0.5958 0.3355

3644.19 0.2676 0.2458 457.2164 1.3543 0.3259 0.7086 0.5924 0.3383

3644.34 0.2796 0.2547 800.5283 1.7603 0.3418 0.7073 0.5888 0.3420

3644.49 0.2839 0.2601 1343.2280 2.2564 0.3516 0.7048 0.5851 0.3466

3644.65 0.2862 0.2647 1341.3230 2.2351 0.3600 0.7008 0.5813 0.3512

3644.80 0.2889 0.2682 847.4023 1.7651 0.3665 0.6967 0.5774 0.3548

3644.95 0.2921 0.2743 1518.9090 2.3367 0.3779 0.6942 0.5735 0.3596

3645.10 0.2884 0.2771 1934.9190 2.6238 0.3833 0.6896 0.5695 0.3650

3645.26 0.2849 0.2790 2498.8820 2.9715 0.3870 0.6837 0.5655 0.3711

3645.41 0.2836 0.2806 1371.5400 2.1952 0.3901 0.6761 0.5614 0.3757

3645.56 0.2821 0.2794 1571.1360 2.3548 0.3877 0.6720 0.5574 0.3805

3645.71 0.2749 0.2731 1258.7200 2.1317 0.3757 0.6673 0.5533 0.3849

3645.87 0.2642 0.2631 943.2285 1.8802 0.3570 0.6634 0.5493 0.3888

3646.02 0.2575 0.2565 1079.4090 2.0371 0.3449 0.6606 0.5455 0.3929

3646.17 0.2542 0.2534 757.6119 1.7169 0.3394 0.6573 0.5418 0.3965

3646.32 0.2469 0.2453 553.9868 1.4921 0.3251 0.6550 0.5381 0.3995

3646.48 0.2358 0.2320 430.3521 1.3524 0.3021 0.6533 0.5345 0.4023

3646.63 0.2255 0.2216 389.3759 1.3163 0.2846 0.6520 0.5311 0.4050

3646.78 0.2226 0.2196 520.0101 1.5280 0.2814 0.6509 0.5279 0.4082

3646.93 0.2248 0.2222 542.9550 1.5521 0.2857 0.6493 0.5247 0.4114

3647.08 0.2349 0.2320 522.3511 1.4900 0.3020 0.6477 0.5215 0.4144

3647.24 0.2496 0.2450 841.0093 1.8399 0.3244 0.6461 0.5181 0.4182

3647.39 0.2676 0.2569 1274.1200 2.2113 0.3457 0.6435 0.5145 0.4228

3647.54 0.2782 0.2575 1773.9190 2.6060 0.3469 0.6397 0.5108 0.4281

3647.69 0.2792 0.2514 2566.7420 3.1729 0.3358 0.6343 0.5070 0.4347

3647.85 0.2721 0.2430 2192.1850 2.9825 0.3210 0.6266 0.5034 0.4408

3648.00 0.2722 0.2431 1225.1000 2.2291 0.3212 0.6199 0.4999 0.4454

3648.15 0.2808 0.2508 1442.3700 2.3813 0.3348 0.6162 0.4963 0.4503

3648.30 0.2861 0.2596 2392.5460 3.0146 0.3506 0.6119 0.4927 0.4565

3648.46 0.2852 0.2661 3044.0740 3.3581 0.3627 0.6046 0.4889 0.4634

3648.61 0.2862 0.2738 4322.3990 3.9451 0.3771 0.5954 0.4850 0.4715

3648.76 0.2886 0.2784 3254.1290 3.3947 0.3858 0.5824 0.4811 0.4785

3648.91 0.2787 0.2670 2478.9880 3.0256 0.3642 0.5725 0.4770 0.4847

3649.07 0.2578 0.2450 1583.7680 2.5247 0.3245 0.5650 0.4731 0.4899

3649.22 0.2391 0.2273 870.7072 1.9435 0.2941 0.5602 0.4695 0.4939

3649.37 0.2339 0.2236 684.4438 1.7373 0.2880 0.5576 0.4662 0.4975

3649.52 0.2349 0.2261 1216.3230 2.3029 0.2922 0.5555 0.4630 0.5022

APPENDIX I: DATA OF WELL 02 FOR FLOW UNIT CHARTS FOR RESERVOIR 6

Page 129: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

116

Depth ΦT Φe K RQI Φz kh Φh nRQI

3649.68 0.2378 0.2305 1280.8540 2.3408 0.2995 0.5519 0.4597 0.5070

3649.83 0.2444 0.2383 1091.5690 2.1251 0.3129 0.5480 0.4563 0.5114

3649.98 0.2579 0.2502 1168.5220 2.1460 0.3336 0.5447 0.4529 0.5158

3650.13 0.2722 0.2614 1068.6880 2.0077 0.3539 0.5412 0.4492 0.5199

3650.29 0.2798 0.2691 3119.6970 3.3811 0.3681 0.5379 0.4454 0.5269

3650.44 0.2732 0.2635 2724.8420 3.1930 0.3578 0.5285 0.4415 0.5335

3650.59 0.2616 0.2512 1790.4810 2.6508 0.3355 0.5202 0.4377 0.5389

3650.74 0.2530 0.2417 861.2364 1.8744 0.3187 0.5148 0.4340 0.5428

3650.89 0.2465 0.2377 686.7520 1.6876 0.3119 0.5122 0.4305 0.5462

3651.05 0.2409 0.2353 558.2523 1.5294 0.3077 0.5101 0.4271 0.5494

3651.20 0.2368 0.2277 483.5349 1.4469 0.2949 0.5084 0.4236 0.5524

3651.35 0.2405 0.2172 419.8590 1.3807 0.2774 0.5070 0.4203 0.5552

3651.50 0.2521 0.2076 292.0313 1.1776 0.2621 0.5057 0.4171 0.5576

3651.66 0.2648 0.2081 136.0903 0.8030 0.2627 0.5048 0.4141 0.5593

3651.81 0.2714 0.2177 92.8325 0.6484 0.2783 0.5044 0.4111 0.5606

3651.96 0.2777 0.2341 108.7005 0.6767 0.3056 0.5041 0.4079 0.5620

3652.11 0.2961 0.2570 238.2048 0.9560 0.3459 0.5038 0.4045 0.5640

3652.27 0.3245 0.2847 882.1608 1.7480 0.3979 0.5031 0.4008 0.5676

3652.42 0.3481 0.3114 1633.7940 2.2744 0.4522 0.5004 0.3966 0.5722

3652.57 0.3536 0.3250 2433.7340 2.7171 0.4815 0.4955 0.3921 0.5778

3652.72 0.3424 0.3191 3942.1180 3.4899 0.4687 0.4881 0.3874 0.5850

3652.88 0.3225 0.3024 3754.0940 3.4988 0.4334 0.4762 0.3827 0.5922

3653.03 0.3036 0.2872 1176.5230 2.0097 0.4029 0.4649 0.3784 0.5963

3653.18 0.2913 0.2784 2383.7090 2.9054 0.3858 0.4613 0.3742 0.6023

3653.33 0.2801 0.2685 1786.1080 2.5612 0.3670 0.4541 0.3701 0.6076

3653.49 0.2668 0.2541 815.2263 1.7784 0.3407 0.4487 0.3662 0.6112

3653.64 0.2583 0.2442 429.5084 1.3169 0.3231 0.4463 0.3625 0.6140

3653.79 0.2619 0.2442 979.2325 1.9883 0.3231 0.4450 0.3589 0.6180

3653.94 0.2764 0.2550 1933.6610 2.7342 0.3423 0.4420 0.3554 0.6237

3654.10 0.2891 0.2669 3841.4250 3.7667 0.3642 0.4362 0.3517 0.6314

3654.25 0.2931 0.2720 6370.7370 4.8055 0.3736 0.4245 0.3478 0.6413

3654.40 0.2869 0.2680 4866.7320 4.2315 0.3661 0.4053 0.3439 0.6500

3654.55 0.2755 0.2587 3012.5940 3.3885 0.3490 0.3905 0.3399 0.6570

3654.70 0.2701 0.2543 2268.2480 2.9654 0.3410 0.3814 0.3362 0.6631

3654.86 0.2699 0.2553 2173.3410 2.8973 0.3428 0.3746 0.3325 0.6690

3655.01 0.2721 0.2595 2432.6670 3.0400 0.3505 0.3680 0.3288 0.6753

3655.16 0.2707 0.2594 2902.4410 3.3216 0.3502 0.3607 0.3250 0.6821

3655.31 0.2687 0.2552 2491.7100 3.1028 0.3426 0.3519 0.3212 0.6885

3655.47 0.2630 0.2474 1569.0980 2.5008 0.3287 0.3443 0.3175 0.6937

3655.62 0.2597 0.2449 1365.4510 2.3448 0.3242 0.3396 0.3139 0.6985

3655.77 0.2657 0.2517 1548.7110 2.4632 0.3363 0.3355 0.3103 0.7035

3655.92 0.2783 0.2626 2308.7140 2.9442 0.3561 0.3308 0.3067 0.7096

3656.08 0.2842 0.2662 2574.6870 3.0878 0.3629 0.3238 0.3029 0.7160

3656.23 0.2823 0.2652 2249.5940 2.8918 0.3610 0.3160 0.2990 0.7219

3656.38 0.2802 0.2664 2579.9300 3.0898 0.3632 0.3092 0.2951 0.7283

3656.53 0.2887 0.2775 3277.4330 3.4127 0.3840 0.3014 0.2912 0.7353

3656.69 0.3028 0.2932 4144.9210 3.7336 0.4148 0.2915 0.2872 0.7430

3656.84 0.3158 0.3070 5754.0610 4.2991 0.4429 0.2789 0.2829 0.7518

3656.99 0.3218 0.3132 7100.9080 4.7281 0.4560 0.2616 0.2785 0.7615

3657.14 0.3221 0.3122 6296.6920 4.4597 0.4538 0.2402 0.2739 0.7707

3657.30 0.3192 0.3091 5286.8210 4.1063 0.4475 0.2211 0.2694 0.7791

3657.45 0.3141 0.3053 4446.1600 3.7896 0.4394 0.2051 0.2649 0.7869

3657.60 0.3095 0.3015 4420.6910 3.8019 0.4317 0.1916 0.2604 0.7948

3657.75 0.3064 0.3002 4801.8830 3.9716 0.4289 0.1783 0.2561 0.8029

3657.91 0.3092 0.3036 5142.4490 4.0869 0.4359 0.1638 0.2517 0.8113

3658.06 0.3098 0.3051 4606.3660 3.8583 0.4390 0.1482 0.2473 0.8193

3658.21 0.3074 0.3034 4328.2040 3.7506 0.4355 0.1343 0.2428 0.8270

3658.36 0.3013 0.2981 4692.7340 3.9397 0.4247 0.1212 0.2384 0.8351

3658.51 0.3004 0.2956 4556.6750 3.8988 0.4196 0.1070 0.2341 0.8431

3658.67 0.3004 0.2925 3505.6510 3.4374 0.4135 0.0933 0.2298 0.8502

3658.82 0.2961 0.2884 2941.6470 3.1714 0.4052 0.0826 0.2255 0.8567

3658.97 0.2849 0.2803 2356.0110 2.8789 0.3894 0.0738 0.2213 0.8626

3659.12 0.2717 0.2694 1930.4830 2.6582 0.3687 0.0666 0.2172 0.8681

3659.28 0.2618 0.2602 1334.8170 2.2490 0.3517 0.0608 0.2133 0.8727

3659.43 0.2567 0.2554 1106.0520 2.0663 0.3430 0.0568 0.2096 0.8770

3659.58 0.2521 0.2506 1018.6290 2.0019 0.3344 0.0534 0.2058 0.8811

3659.73 0.2516 0.2495 949.0610 1.9366 0.3324 0.0503 0.2022 0.8851

3659.89 0.2528 0.2497 1068.0470 2.0538 0.3327 0.0474 0.1985 0.8893

3660.04 0.2509 0.2465 1139.2390 2.1346 0.3272 0.0442 0.1949 0.8937

3660.19 0.2452 0.2410 822.3549 1.8344 0.3174 0.0408 0.1913 0.8975

3660.34 0.2424 0.2386 762.6118 1.7753 0.3133 0.0383 0.1878 0.9011

3660.50 0.2415 0.2372 758.4016 1.7756 0.3109 0.0360 0.1844 0.9048

3660.65 0.2364 0.2313 593.6260 1.5907 0.3009 0.0337 0.1809 0.9080

3660.80 0.2298 0.2276 514.2435 1.4927 0.2946 0.0319 0.1775 0.9111

3660.95 0.2229 0.2229 473.0695 1.4465 0.2869 0.0304 0.1742 0.9141

3661.11 0.2172 0.2150 339.0117 1.2469 0.2739 0.0289 0.1710 0.9167

3661.26 0.2123 0.2066 274.2213 1.1440 0.2604 0.0279 0.1679 0.9190

3661.41 0.2116 0.2049 271.1225 1.1423 0.2577 0.0271 0.1648 0.9214

3661.56 0.2173 0.2116 300.0183 1.1824 0.2684 0.0262 0.1619 0.9238

Depth ΦT Φe K RQI Φz kh Φh nRQI

3661.72 0.2247 0.2177 349.0954 1.2575 0.2782 0.0253 0.1588 0.9264

3661.87 0.2322 0.2206 406.8332 1.3484 0.2831 0.0243 0.1556 0.9292

3662.02 0.2390 0.2197 411.0126 1.3583 0.2815 0.0231 0.1524 0.9320

3662.17 0.2425 0.2135 329.5620 1.2336 0.2715 0.0218 0.1492 0.9345

3662.32 0.2395 0.2011 394.9744 1.3915 0.2518 0.0208 0.1461 0.9374

3662.48 0.2298 0.1873 326.9065 1.3117 0.2305 0.0196 0.1432 0.9400

3662.63 0.2228 0.1815 170.7525 0.9632 0.2217 0.0186 0.1405 0.9420

3662.78 0.2229 0.1838 91.3446 0.7000 0.2252 0.0181 0.1378 0.9435

3662.93 0.2287 0.1941 124.0874 0.7939 0.2408 0.0178 0.1352 0.9451

3663.09 0.2375 0.2102 417.3246 1.3991 0.2662 0.0175 0.1323 0.9480

3663.24 0.2497 0.2306 652.9528 1.6709 0.2997 0.0162 0.1293 0.9514

3663.39 0.2624 0.2483 640.8728 1.5952 0.3303 0.0142 0.1259 0.9547

3663.54 0.2682 0.2554 558.2917 1.4681 0.3430 0.0123 0.1223 0.9577

3663.70 0.2655 0.2518 313.0595 1.1072 0.3365 0.0106 0.1186 0.9600

3663.85 0.2616 0.2474 244.9768 0.9881 0.3287 0.0096 0.1149 0.9620

3664.00 0.2608 0.2476 285.1277 1.0655 0.3291 0.0089 0.1113 0.9642

3664.15 0.2619 0.2504 334.3707 1.1474 0.3340 0.0080 0.1077 0.9666

3664.31 0.2595 0.2490 253.8975 1.0026 0.3316 0.0070 0.1041 0.9686

3664.46 0.2556 0.2453 227.1844 0.9556 0.3250 0.0063 0.1004 0.9706

3664.61 0.2490 0.2400 160.9608 0.8132 0.3158 0.0056 0.0969 0.9723

3664.76 0.2405 0.2328 119.6143 0.7118 0.3034 0.0051 0.0934 0.9737

3664.92 0.2356 0.2280 124.6962 0.7343 0.2953 0.0047 0.0900 0.9753

3665.07 0.2360 0.2274 85.0228 0.6072 0.2943 0.0044 0.0867 0.9765

3665.22 0.2411 0.2312 72.9386 0.5577 0.3007 0.0041 0.0834 0.9777

3665.37 0.2441 0.2330 78.3667 0.5759 0.3037 0.0039 0.0800 0.9788

3665.53 0.2393 0.2265 72.2419 0.5607 0.2929 0.0036 0.0766 0.9800

3665.68 0.2381 0.2246 73.9652 0.5699 0.2896 0.0034 0.0733 0.9812

3665.83 0.2430 0.2291 88.5411 0.6173 0.2972 0.0032 0.0701 0.9824

3665.98 0.2467 0.2332 103.5891 0.6618 0.3041 0.0029 0.0667 0.9838

3666.14 0.2419 0.2318 80.0219 0.5834 0.3018 0.0026 0.0633 0.9850

3666.29 0.2308 0.2234 44.6294 0.4438 0.2876 0.0024 0.0599 0.9859

3666.44 0.2257 0.2199 34.7833 0.3949 0.2820 0.0022 0.0567 0.9867

3666.59 0.2245 0.2186 35.4245 0.3997 0.2797 0.0021 0.0535 0.9875

3666.74 0.2275 0.2191 41.2942 0.4310 0.2806 0.0020 0.0503 0.9884

3666.90 0.2324 0.2231 51.5411 0.4773 0.2871 0.0019 0.0471 0.9894

3667.05 0.2369 0.2279 59.7729 0.5085 0.2952 0.0017 0.0439 0.9905

3667.20 0.2413 0.2321 74.1530 0.5612 0.3023 0.0016 0.0406 0.9916

3667.35 0.2401 0.2299 100.6178 0.6568 0.2986 0.0013 0.0372 0.9930

3667.51 0.2340 0.2241 136.6899 0.7755 0.2888 0.0010 0.0338 0.9946

3667.66 0.2260 0.2176 78.5196 0.5964 0.2782 0.0006 0.0306 0.9958

3667.81 0.2205 0.2124 38.2878 0.4216 0.2696 0.0004 0.0274 0.9967

3667.96 0.2175 0.2084 22.9971 0.3298 0.2633 0.0003 0.0243 0.9973

3668.12 0.2175 0.2085 15.1920 0.2680 0.2635 0.0002 0.0213 0.9979

3668.27 0.2162 0.2084 13.4295 0.2520 0.2633 0.0002 0.0183 0.9984

3668.42 0.2172 0.2109 15.6877 0.2708 0.2672 0.0001 0.0152 0.9990

3668.57 0.2123 0.2044 17.7169 0.2924 0.2569 0.0001 0.0122 0.9996

3668.73 0.1887 0.1741 3.9818 0.1502 0.2108 0.0000 0.0092 0.9999

3668.88 0.1495 0.1244 0.2765 0.0468 0.1421 0.0000 0.0067 1.0000

3669.03 0.1242 0.0865 0.0112 0.0113 0.0947 0.0000 0.0048 1.0000

3669.18 0.1269 0.0704 0.0010 0.0038 0.0757 0.0000 0.0036 1.0000

3669.34 0.1320 0.0596 0.0002 0.0017 0.0633 0.0000 0.0026 1.0000

3669.49 0.1228 0.0471 0.0000 0.0000 0.0495 0.0000 0.0017 1.0000

3669.64 0.1110 0.0368 0.0000 0.0000 0.0382 0.0000 0.0010 1.0000

Page 130: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

117

Depth ΦT Φe K RQI Φz kh Φh nRQI

3669.79 0.2737 0.1592 10.6295 0.2566 0.1893 1.0000 1.0000 0.0053

3669.94 0.3063 0.1871 26.7201 0.3752 0.2302 0.9997 0.9963 0.0096

3670.10 0.3345 0.2046 56.4539 0.5215 0.2573 0.9988 0.9920 0.0120

3670.25 0.2838 0.1692 14.1993 0.2877 0.2036 0.9971 0.9872 0.0147

3670.40 0.3230 0.1883 21.2367 0.3334 0.2321 0.9966 0.9833 0.0171

3670.55 0.2911 0.1705 14.4176 0.2888 0.2055 0.9960 0.9789 0.0184

3670.71 0.2182 0.1325 3.2374 0.1552 0.1528 0.9955 0.9749 0.0215

3670.86 0.2885 0.1874 26.1013 0.3706 0.2307 0.9954 0.9718 0.0268

3671.01 0.3224 0.2253 91.1340 0.6315 0.2908 0.9946 0.9674 0.0345

3671.16 0.3458 0.2533 220.7471 0.9269 0.3393 0.9918 0.9622 0.0405

3671.32 0.3270 0.2408 129.5220 0.7282 0.3172 0.9849 0.9563 0.0442

3671.47 0.3027 0.2155 41.8484 0.4376 0.2746 0.9808 0.9507 0.0460

3671.62 0.2720 0.1807 9.3937 0.2264 0.2206 0.9795 0.9457 0.0465

3671.77 0.1702 0.1049 0.2712 0.0505 0.1172 0.9792 0.9415 0.0510

3671.93 0.3245 0.1970 58.7855 0.5424 0.2454 0.9792 0.9390 0.0594

3672.08 0.3430 0.2220 234.0334 1.0195 0.2854 0.9774 0.9344 0.0703

3672.23 0.3572 0.2576 444.1821 1.3038 0.3470 0.9701 0.9293 0.0811

3672.38 0.3352 0.2662 456.0792 1.2996 0.3629 0.9563 0.9233 0.0931

3672.54 0.3304 0.2807 601.9818 1.4541 0.3902 0.9421 0.9171 0.1073

3672.69 0.3219 0.2822 826.6056 1.6995 0.3931 0.9234 0.9106 0.1232

3672.84 0.3127 0.2796 1036.4830 1.9120 0.3880 0.8975 0.9040 0.1379

3672.99 0.2944 0.2679 853.5988 1.7725 0.3659 0.8653 0.8975 0.1542

3673.15 0.3018 0.2791 1088.6820 1.9611 0.3872 0.8388 0.8913 0.1711

3673.30 0.3023 0.2834 1190.7680 2.0355 0.3954 0.8047 0.8847 0.1883

3673.45 0.3011 0.2854 1242.8600 2.0720 0.3994 0.7677 0.8782 0.2055

3673.60 0.2967 0.2860 1245.8150 2.0723 0.4006 0.7289 0.8715 0.2184

3673.75 0.2625 0.2550 617.4528 1.5450 0.3424 0.6902 0.8649 0.2309

3673.91 0.2588 0.2524 583.3832 1.5095 0.3377 0.6710 0.8589 0.2425

3674.06 0.2505 0.2441 479.6315 1.3919 0.3229 0.6527 0.8530 0.2567

3674.21 0.2715 0.2638 779.2977 1.7067 0.3583 0.6378 0.8474 0.2705

3674.36 0.2613 0.2527 706.1277 1.6600 0.3381 0.6135 0.8412 0.2813

3674.52 0.2382 0.2286 395.7489 1.3065 0.2964 0.5915 0.8353 0.2909

3674.67 0.2466 0.2326 312.5840 1.1510 0.3032 0.5792 0.8300 0.2990

3674.82 0.2561 0.2359 230.0650 0.9806 0.3087 0.5694 0.8246 0.3083

3674.97 0.2916 0.2635 334.1092 1.1180 0.3578 0.5623 0.8191 0.3160

3675.13 0.2812 0.2531 219.8390 0.9254 0.3389 0.5518 0.8130 0.3224

3675.28 0.2793 0.2463 149.6233 0.7739 0.3268 0.5450 0.8071 0.3276

3675.43 0.3253 0.2541 100.0338 0.6230 0.3407 0.5404 0.8014 0.3284

3675.58 0.2381 0.1470 1.5057 0.1005 0.1724 0.5372 0.7954 0.3285

3675.74 0.1522 0.0738 0.0041 0.0074 0.0797 0.5372 0.7920 0.3285

3675.89 0.0981 0.0425 0.0000 0.0000 0.0444 0.5372 0.7903 0.3285

3676.04 0.1262 0.0554 0.0001 0.0014 0.0586 0.5372 0.7893 0.3285

3676.19 0.1162 0.0509 0.0000 0.0003 0.0536 0.5372 0.7880 0.3285

3676.35 0.0989 0.0443 0.0000 0.0000 0.0463 0.5372 0.7868 0.3285

3676.50 0.1269 0.0596 0.0002 0.0018 0.0634 0.5372 0.7858 0.3286

3676.65 0.1264 0.0629 0.0003 0.0022 0.0672 0.5372 0.7844 0.3286

3676.80 0.1233 0.0641 0.0004 0.0025 0.0685 0.5372 0.7830 0.3287

3676.96 0.1511 0.0818 0.0136 0.0128 0.0891 0.5372 0.7815 0.3289

3677.11 0.1680 0.0942 0.0927 0.0311 0.1040 0.5372 0.7796 0.3297

3677.26 0.2108 0.1232 0.9405 0.0868 0.1405 0.5372 0.7774 0.3321

3677.41 0.3010 0.1833 15.8787 0.2923 0.2244 0.5372 0.7745 0.3337

3677.56 0.2519 0.1552 6.1695 0.1980 0.1837 0.5367 0.7702 0.3356

3677.72 0.2625 0.1626 8.2182 0.2233 0.1941 0.5365 0.7666 0.3372

3677.87 0.2387 0.1489 5.6624 0.1937 0.1749 0.5362 0.7628 0.3397

3678.02 0.2567 0.1679 14.9840 0.2966 0.2018 0.5360 0.7594 0.3432

3678.17 0.2679 0.1887 35.6021 0.4313 0.2326 0.5356 0.7555 0.3480

3678.33 0.2732 0.2097 68.3379 0.5669 0.2653 0.5345 0.7511 0.3533

3678.48 0.2742 0.2280 94.4843 0.6392 0.2953 0.5323 0.7462 0.3599

3678.63 0.2880 0.2548 163.9171 0.7964 0.3419 0.5294 0.7409 0.3674

3678.78 0.2962 0.2704 227.0260 0.9099 0.3705 0.5243 0.7350 0.3747

3678.94 0.2896 0.2653 202.6061 0.8677 0.3611 0.5172 0.7287 0.3817

3679.09 0.2867 0.2629 193.6605 0.8523 0.3566 0.5109 0.7225 0.3879

3679.24 0.2745 0.2532 139.3710 0.7366 0.3391 0.5049 0.7164 0.3934

3679.39 0.2729 0.2536 116.4299 0.6728 0.3398 0.5005 0.7105 0.3977

3679.55 0.2544 0.2352 62.8752 0.5134 0.3075 0.4969 0.7046 0.4019

3679.70 0.2608 0.2357 59.8947 0.5006 0.3083 0.4949 0.6991 0.4050

3679.85 0.2612 0.2195 31.3341 0.3752 0.2812 0.4931 0.6936 0.4066

3680.00 0.2481 0.1804 7.0780 0.1967 0.2202 0.4921 0.6885 0.4076

3680.16 0.2424 0.1427 1.8783 0.1139 0.1665 0.4919 0.6843 0.4080

3680.31 0.2021 0.1041 0.2830 0.0518 0.1161 0.4918 0.6810 0.4082

3680.46 0.1934 0.0897 0.0561 0.0248 0.0986 0.4918 0.6786 0.4088

3680.61 0.2523 0.1170 0.6779 0.0756 0.1325 0.4918 0.6765 0.4101

3680.77 0.2831 0.1372 3.0684 0.1485 0.1591 0.4918 0.6738 0.4123

3680.92 0.3019 0.1571 11.7990 0.2721 0.1864 0.4917 0.6706 0.4151

3681.07 0.3052 0.1661 19.2011 0.3376 0.1992 0.4913 0.6669 0.4166

3681.22 0.2657 0.1471 4.4573 0.1729 0.1725 0.4907 0.6630 0.4172

3681.38 0.2187 0.1202 0.6926 0.0754 0.1366 0.4906 0.6596 0.4209

3681.53 0.3372 0.1874 38.1374 0.4479 0.2306 0.4906 0.6568 0.4249

3681.68 0.2970 0.1710 40.5967 0.4838 0.2063 0.4894 0.6525 0.4304

Depth ΦT Φe K RQI Φz kh Φh nRQI

3681.83 0.3219 0.1990 87.9565 0.6602 0.2484 0.4881 0.6485 0.4371

3681.98 0.3269 0.2177 140.4509 0.7976 0.2783 0.4854 0.6439 0.4436

3682.14 0.3135 0.2253 143.2449 0.7918 0.2908 0.4810 0.6388 0.4492

3682.29 0.2825 0.2167 98.6903 0.6700 0.2767 0.4766 0.6336 0.4541

3682.44 0.2512 0.2036 72.2585 0.5916 0.2556 0.4735 0.6285 0.4579

3682.59 0.2162 0.1825 38.9832 0.4590 0.2232 0.4712 0.6238 0.4641

3682.75 0.2578 0.2214 121.9030 0.7367 0.2844 0.4700 0.6195 0.4720

3682.90 0.2897 0.2377 220.1035 0.9554 0.3119 0.4662 0.6144 0.4779

3683.05 0.2862 0.2128 108.1678 0.7079 0.2703 0.4594 0.6089 0.4801

3683.20 0.2415 0.1603 11.4597 0.2655 0.1909 0.4560 0.6039 0.4821

3683.36 0.2547 0.1554 9.4076 0.2443 0.1841 0.4556 0.6002 0.4857

3683.51 0.2849 0.1667 32.1229 0.4359 0.2000 0.4553 0.5965 0.4913

3683.66 0.2954 0.1777 80.0464 0.6664 0.2161 0.4543 0.5927 0.4983

3683.81 0.2990 0.1971 142.1387 0.8432 0.2455 0.4519 0.5885 0.5073

3683.97 0.3107 0.2299 275.6917 1.0872 0.2986 0.4474 0.5839 0.5153

3684.12 0.2859 0.2318 218.3305 0.9636 0.3018 0.4388 0.5786 0.5222

3684.27 0.2533 0.2165 149.0849 0.8239 0.2764 0.4320 0.5732 0.5297

3684.42 0.2342 0.2072 174.5670 0.9114 0.2614 0.4274 0.5682 0.5372

3684.58 0.2119 0.1928 156.7701 0.8955 0.2388 0.4220 0.5633 0.5417

3684.73 0.1693 0.1570 47.0919 0.5438 0.1862 0.4171 0.5588 0.5463

3684.88 0.1695 0.1591 50.3852 0.5588 0.1892 0.4156 0.5552 0.5498

3685.03 0.1501 0.1415 24.5322 0.4134 0.1648 0.4140 0.5515 0.5535

3685.18 0.1536 0.1434 28.9111 0.4458 0.1674 0.4133 0.5482 0.5610

3685.34 0.2017 0.1857 155.8836 0.9098 0.2280 0.4124 0.5449 0.5667

3685.49 0.1798 0.1648 78.6718 0.6861 0.1973 0.4075 0.5405 0.5740

3685.64 0.1953 0.1796 138.3421 0.8714 0.2189 0.4050 0.5367 0.5803

3685.79 0.1845 0.1696 100.6213 0.7648 0.2043 0.4007 0.5325 0.5871

3685.95 0.1874 0.1731 116.1458 0.8133 0.2094 0.3976 0.5286 0.5926

3686.10 0.1712 0.1603 71.6813 0.6639 0.1910 0.3940 0.5245 0.5967

3686.25 0.1502 0.1432 35.1071 0.4917 0.1671 0.3917 0.5208 0.6018

3686.40 0.1633 0.1563 60.2404 0.6164 0.1853 0.3906 0.5175 0.6073

3686.56 0.1675 0.1587 69.0460 0.6549 0.1887 0.3888 0.5138 0.6136

3686.71 0.1780 0.1666 97.0195 0.7576 0.2000 0.3866 0.5101 0.6216

3686.86 0.1962 0.1826 173.5577 0.9681 0.2234 0.3836 0.5063 0.6289

3687.01 0.1878 0.1750 137.3535 0.8797 0.2121 0.3782 0.5020 0.6335

3687.17 0.1550 0.1450 43.8253 0.5459 0.1696 0.3739 0.4979 0.6418

3687.32 0.1960 0.1833 186.9534 1.0028 0.2244 0.3725 0.4946 0.6505

3687.47 0.1999 0.1869 206.4147 1.0434 0.2299 0.3667 0.4903 0.6590

3687.62 0.1981 0.1853 197.1976 1.0243 0.2275 0.3603 0.4860 0.6712

3687.78 0.2285 0.2132 470.2043 1.4746 0.2710 0.3541 0.4816 0.6873

3687.93 0.2555 0.2376 899.1381 1.9318 0.3116 0.3395 0.4767 0.6918

3688.08 0.1549 0.1447 42.9258 0.5407 0.1692 0.3116 0.4712 0.6958

3688.23 0.1477 0.1394 33.9713 0.4901 0.1620 0.3103 0.4678 0.7020

3688.39 0.1724 0.1643 90.7835 0.7380 0.1966 0.3092 0.4646 0.7103

3688.54 0.1947 0.1863 191.4518 1.0065 0.2290 0.3064 0.4607 0.7249

3688.69 0.2414 0.2320 727.0987 1.7577 0.3022 0.3004 0.4564 0.7501

3688.84 0.2982 0.2889 2696.6350 3.0335 0.4063 0.2777 0.4510 0.7559

3688.99 0.1668 0.1618 78.2083 0.6904 0.1930 0.1939 0.4443 0.7688

3689.15 0.2291 0.2225 545.7479 1.5552 0.2861 0.1915 0.4405 0.7859

3689.30 0.2575 0.2499 1075.1700 2.0597 0.3331 0.1744 0.4353 0.7978

3689.45 0.2228 0.2178 451.2842 1.4294 0.2784 0.1410 0.4295 0.8138

3689.60 0.2516 0.2478 935.7182 1.9295 0.3295 0.1269 0.4244 0.8216

3689.76 0.1914 0.1892 169.6036 0.9401 0.2334 0.0978 0.4187 0.8327

3689.91 0.2207 0.2182 388.4979 1.3249 0.2791 0.0925 0.4143 0.8459

3690.06 0.2412 0.2376 616.1003 1.5989 0.3117 0.0804 0.4092 0.8508

3690.21 0.1662 0.1634 56.1704 0.5821 0.1953 0.0612 0.4037 0.8544

3690.37 0.1528 0.1495 29.1696 0.4386 0.1757 0.0595 0.3998 0.8582

3690.52 0.1580 0.1535 32.4106 0.4562 0.1814 0.0586 0.3964 0.8615

3690.67 0.1538 0.1478 24.0801 0.4008 0.1735 0.0576 0.3928 0.8663

3690.82 0.1838 0.1730 57.3053 0.5715 0.2092 0.0568 0.3894 0.8692

3690.98 0.1602 0.1459 17.6182 0.3450 0.1708 0.0550 0.3853 0.8710

3691.13 0.1444 0.1254 6.1472 0.2198 0.1434 0.0545 0.3819 0.8723

3691.28 0.1498 0.1220 3.2624 0.1623 0.1390 0.0543 0.3790 0.8755

3691.43 0.2357 0.1842 27.8182 0.3859 0.2257 0.0542 0.3762 0.8802

3691.59 0.2647 0.2081 66.4433 0.5611 0.2628 0.0533 0.3719 0.8869

3691.74 0.2887 0.2381 158.5005 0.8102 0.3125 0.0513 0.3671 0.8917

3691.89 0.2543 0.2184 74.0282 0.5782 0.2794 0.0463 0.3615 0.8942

3692.04 0.2077 0.1779 15.9072 0.2969 0.2164 0.0440 0.3564 0.8953

3692.20 0.1778 0.1420 2.6512 0.1357 0.1654 0.0435 0.3523 0.8959

3692.35 0.1440 0.1114 0.4796 0.0652 0.1254 0.0434 0.3490 0.8962

3692.50 0.1284 0.0953 0.1488 0.0392 0.1053 0.0434 0.3464 0.8966

3692.65 0.1447 0.1067 0.3165 0.0541 0.1194 0.0434 0.3442 0.8972

3692.80 0.1493 0.1106 0.4257 0.0616 0.1244 0.0434 0.3417 0.8977

3692.96 0.1484 0.1105 0.5186 0.0680 0.1242 0.0434 0.3391 0.8983

3693.11 0.1485 0.1121 0.6238 0.0741 0.1263 0.0434 0.3365 0.8990

3693.26 0.1499 0.1165 0.8416 0.0844 0.1319 0.0434 0.3339 0.8998

3693.41 0.1499 0.1211 1.1527 0.0969 0.1378 0.0433 0.3312 0.9007

3693.57 0.1472 0.1232 1.1867 0.0975 0.1405 0.0433 0.3284 0.9014

3693.72 0.1467 0.1265 1.1231 0.0936 0.1448 0.0433 0.3256 0.9022

APPENDIX J: DATA OF WELL 03 FOR FLOW UNIT CHARTS FOR RESERVOIR 6

Page 131: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

118

Depth ΦT Φe K RQI Φz kh Φh nRQI

3693.87 0.1501 0.1318 1.1577 0.0931 0.1518 0.0432 0.3226 0.9028

3694.02 0.1485 0.1308 0.7621 0.0758 0.1505 0.0432 0.3195 0.9033

3694.18 0.1488 0.1263 0.3636 0.0533 0.1446 0.0432 0.3165 0.9035

3694.33 0.1424 0.1081 0.0509 0.0215 0.1212 0.0431 0.3135 0.9035

3694.48 0.1314 0.0817 0.0021 0.0050 0.0890 0.0431 0.3110 0.9035

3694.63 0.1318 0.0646 0.0007 0.0032 0.0691 0.0431 0.3091 0.9035

3694.79 0.0970 0.0406 0.0000 0.0000 0.0423 0.0431 0.3076 0.9035

3694.94 0.1356 0.0516 0.0000 0.0000 0.0544 0.0431 0.3067 0.9036

3695.09 0.2078 0.0724 0.0022 0.0055 0.0781 0.0431 0.3055 0.9036

3695.24 0.1428 0.0460 0.0000 0.0000 0.0482 0.0431 0.3038 0.9036

3695.40 0.1260 0.0398 0.0000 0.0000 0.0415 0.0431 0.3027 0.9036

3695.55 0.1396 0.0470 0.0000 0.0000 0.0493 0.0431 0.3018 0.9036

3695.70 0.1218 0.0426 0.0000 0.0000 0.0445 0.0431 0.3007 0.9036

3695.85 0.1319 0.0442 0.0000 0.0000 0.0463 0.0431 0.2997 0.9036

3696.01 0.1492 0.0456 0.0000 0.0000 0.0478 0.0431 0.2987 0.9036

3696.16 0.1076 0.0310 0.0000 0.0000 0.0320 0.0431 0.2976 0.9036

3696.31 0.1128 0.0338 0.0000 0.0000 0.0350 0.0431 0.2969 0.9036

3696.46 0.1393 0.0435 0.0000 0.0000 0.0455 0.0431 0.2961 0.9036

3696.62 0.1252 0.0375 0.0000 0.0000 0.0390 0.0431 0.2951 0.9036

3696.77 0.1062 0.0300 0.0000 0.0000 0.0309 0.0431 0.2942 0.9036

3696.92 0.1192 0.0341 0.0000 0.0000 0.0353 0.0431 0.2935 0.9036

3697.07 0.1445 0.0458 0.0000 0.0000 0.0479 0.0431 0.2927 0.9036

3697.22 0.1205 0.0417 0.0000 0.0000 0.0435 0.0431 0.2917 0.9036

3697.38 0.1072 0.0390 0.0000 0.0000 0.0406 0.0431 0.2907 0.9036

3697.53 0.1308 0.0506 0.0000 0.0000 0.0533 0.0431 0.2898 0.9036

3697.68 0.1583 0.0721 0.0025 0.0059 0.0778 0.0431 0.2886 0.9039

3697.83 0.2307 0.1277 0.1752 0.0368 0.1464 0.0431 0.2869 0.9041

3697.99 0.1884 0.1196 0.0540 0.0211 0.1358 0.0431 0.2840 0.9044

3698.14 0.2141 0.1415 0.1956 0.0369 0.1649 0.0431 0.2812 0.9047

3698.29 0.2186 0.1380 0.1519 0.0329 0.1601 0.0431 0.2779 0.9048

3698.44 0.2004 0.1136 0.0266 0.0152 0.1282 0.0431 0.2747 0.9048

3698.60 0.1745 0.0845 0.0016 0.0044 0.0924 0.0431 0.2720 0.9048

3698.75 0.1442 0.0601 0.0000 0.0000 0.0639 0.0431 0.2701 0.9049

3698.90 0.1545 0.0622 0.0001 0.0015 0.0663 0.0431 0.2687 0.9049

3699.05 0.1317 0.0612 0.0001 0.0010 0.0652 0.0431 0.2672 0.9049

3699.21 0.1450 0.0821 0.0033 0.0063 0.0895 0.0431 0.2658 0.9051

3699.36 0.1885 0.1188 0.0620 0.0227 0.1349 0.0431 0.2639 0.9054

3699.51 0.2285 0.1413 0.1550 0.0329 0.1645 0.0431 0.2611 0.9056

3699.66 0.2351 0.1307 0.0715 0.0232 0.1503 0.0431 0.2578 0.9056

3699.82 0.1739 0.0840 0.0009 0.0032 0.0916 0.0431 0.2548 0.9056

3699.97 0.1541 0.0648 0.0000 0.0002 0.0693 0.0431 0.2528 0.9056

3700.12 0.1709 0.0634 0.0001 0.0013 0.0677 0.0431 0.2513 0.9056

3700.27 0.1745 0.0589 0.0001 0.0012 0.0626 0.0431 0.2499 0.9056

3700.42 0.1998 0.0632 0.0006 0.0030 0.0675 0.0431 0.2485 0.9057

3700.58 0.2021 0.0616 0.0006 0.0030 0.0656 0.0431 0.2470 0.9057

3700.73 0.1379 0.0449 0.0000 0.0000 0.0470 0.0431 0.2456 0.9057

3700.88 0.1988 0.0693 0.0005 0.0027 0.0745 0.0431 0.2445 0.9057

3701.03 0.1476 0.0518 0.0000 0.0000 0.0546 0.0431 0.2429 0.9057

3701.19 0.1618 0.0540 0.0000 0.0000 0.0571 0.0431 0.2417 0.9057

3701.34 0.1788 0.0571 0.0001 0.0015 0.0605 0.0431 0.2405 0.9057

3701.49 0.1481 0.0508 0.0000 0.0004 0.0535 0.0431 0.2391 0.9057

3701.64 0.0745 0.0325 0.0000 0.0000 0.0336 0.0431 0.2380 0.9058

3701.80 0.1428 0.0823 0.0149 0.0134 0.0897 0.0431 0.2372 0.9066

3701.95 0.2387 0.1533 1.4779 0.0975 0.1810 0.0431 0.2353 0.9075

3702.10 0.2353 0.1744 1.9991 0.1063 0.2112 0.0431 0.2317 0.9079

3702.25 0.1941 0.1381 0.3233 0.0480 0.1602 0.0430 0.2276 0.9082

3702.41 0.1798 0.1236 0.1396 0.0334 0.1411 0.0430 0.2244 0.9085

3702.56 0.1861 0.1214 0.1355 0.0332 0.1382 0.0430 0.2216 0.9087

3702.71 0.1873 0.1186 0.1251 0.0322 0.1346 0.0430 0.2187 0.9090

3702.86 0.1829 0.1160 0.1100 0.0306 0.1312 0.0430 0.2160 0.9093

3703.02 0.1808 0.1175 0.1303 0.0331 0.1332 0.0430 0.2133 0.9096

3703.17 0.1858 0.1199 0.1682 0.0372 0.1362 0.0430 0.2105 0.9099

3703.32 0.1921 0.1216 0.1647 0.0365 0.1384 0.0430 0.2078 0.9102

3703.47 0.1970 0.1239 0.2221 0.0420 0.1414 0.0430 0.2049 0.9109

3703.63 0.2298 0.1461 1.0024 0.0822 0.1711 0.0430 0.2020 0.9117

3703.78 0.2309 0.1564 1.2763 0.0897 0.1854 0.0429 0.1986 0.9124

3703.93 0.2232 0.1588 1.2103 0.0867 0.1888 0.0429 0.1950 0.9132

3704.08 0.2249 0.1704 1.7331 0.1001 0.2054 0.0429 0.1913 0.9140

3704.23 0.2229 0.1720 1.6975 0.0987 0.2077 0.0428 0.1873 0.9148

3704.39 0.2210 0.1695 1.4681 0.0924 0.2041 0.0427 0.1833 0.9155

3704.54 0.2175 0.1629 1.3478 0.0903 0.1946 0.0427 0.1794 0.9162

3704.69 0.2205 0.1611 1.1398 0.0835 0.1921 0.0427 0.1756 0.9169

3704.84 0.2222 0.1603 1.0526 0.0805 0.1909 0.0426 0.1718 0.9175

3705.00 0.2191 0.1514 0.7592 0.0703 0.1784 0.0426 0.1681 0.9180

3705.15 0.2178 0.1432 0.5703 0.0627 0.1672 0.0426 0.1646 0.9186

3705.30 0.2226 0.1429 0.6188 0.0653 0.1667 0.0425 0.1613 0.9192

3705.45 0.2281 0.1482 0.8542 0.0754 0.1739 0.0425 0.1579 0.9198

3705.61 0.2271 0.1484 0.7591 0.0710 0.1743 0.0425 0.1545 0.9203

3705.76 0.2235 0.1443 0.5619 0.0620 0.1686 0.0425 0.1510 0.9207

Depth ΦT Φe K RQI Φz kh Φh nRQI

3705.91 0.2178 0.1372 0.4146 0.0546 0.1590 0.0425 0.1477 0.9211

3706.06 0.2092 0.1276 0.2599 0.0448 0.1462 0.0424 0.1445 0.9215

3706.22 0.2192 0.1275 0.2752 0.0461 0.1461 0.0424 0.1415 0.9219

3706.37 0.2307 0.1250 0.2456 0.0440 0.1428 0.0424 0.1385 0.9222

3706.52 0.2354 0.1216 0.2056 0.0408 0.1385 0.0424 0.1356 0.9225

3706.67 0.2272 0.1149 0.1480 0.0356 0.1298 0.0424 0.1328 0.9228

3706.83 0.2213 0.1102 0.1126 0.0317 0.1238 0.0424 0.1301 0.9230

3706.98 0.2255 0.1103 0.1174 0.0324 0.1239 0.0424 0.1276 0.9233

3707.13 0.2295 0.1112 0.1092 0.0311 0.1251 0.0424 0.1250 0.9234

3707.28 0.1989 0.0978 0.0335 0.0184 0.1085 0.0424 0.1224 0.9235

3707.44 0.1450 0.0731 0.0026 0.0059 0.0789 0.0424 0.1201 0.9235

3707.59 0.1251 0.0617 0.0001 0.0012 0.0658 0.0424 0.1184 0.9235

3707.74 0.1320 0.0607 0.0000 0.0001 0.0646 0.0424 0.1170 0.9235

3707.89 0.1517 0.0665 0.0003 0.0020 0.0712 0.0424 0.1156 0.9236

3708.04 0.1740 0.0790 0.0041 0.0072 0.0857 0.0424 0.1140 0.9242

3708.20 0.2816 0.1462 0.7945 0.0732 0.1712 0.0424 0.1122 0.9248

3708.35 0.2530 0.1508 0.9406 0.0784 0.1776 0.0424 0.1088 0.9256

3708.50 0.2493 0.1639 1.4507 0.0934 0.1960 0.0423 0.1053 0.9268

3708.65 0.2711 0.1882 3.7886 0.1409 0.2318 0.0423 0.1015 0.9276

3708.81 0.2386 0.1655 1.6650 0.0996 0.1983 0.0422 0.0971 0.9278

3708.96 0.1438 0.0975 0.0305 0.0176 0.1080 0.0421 0.0933 0.9284

3709.11 0.2175 0.1422 0.7691 0.0730 0.1658 0.0421 0.0910 0.9290

3709.26 0.2116 0.1367 0.7602 0.0740 0.1584 0.0421 0.0877 0.9298

3709.42 0.2170 0.1479 1.3685 0.0955 0.1736 0.0421 0.0845 0.9306

3709.57 0.1841 0.1370 1.3620 0.0990 0.1588 0.0420 0.0810 0.9349

3709.72 0.2782 0.2273 62.1597 0.5193 0.2941 0.0420 0.0779 0.9403

3709.87 0.2806 0.2457 105.5036 0.6507 0.3257 0.0401 0.0726 0.9461

3710.03 0.2735 0.2498 123.2449 0.6974 0.3330 0.0368 0.0669 0.9520

3710.18 0.2675 0.2493 127.5045 0.7101 0.3321 0.0329 0.0610 0.9580

3710.33 0.2645 0.2482 129.0083 0.7159 0.3301 0.0290 0.0552 0.9655

3710.48 0.2702 0.2548 210.3896 0.9023 0.3419 0.0250 0.0495 0.9726

3710.64 0.2481 0.2365 178.2490 0.8620 0.3098 0.0184 0.0435 0.9789

3710.79 0.2358 0.2280 130.7016 0.7519 0.2953 0.0128 0.0380 0.9843

3710.94 0.2304 0.2262 97.0453 0.6503 0.2924 0.0087 0.0327 0.9890

3711.09 0.2312 0.2301 74.0948 0.5635 0.2988 0.0057 0.0274 0.9927

3711.25 0.2265 0.2265 46.3572 0.4492 0.2929 0.0034 0.0221 0.9962

3711.40 0.2335 0.2329 41.2893 0.4180 0.3037 0.0020 0.0168 0.9986

3711.55 0.2179 0.2121 18.3237 0.2919 0.2691 0.0007 0.0114 0.9998

3711.70 0.1880 0.1718 3.9244 0.1501 0.2075 0.0001 0.0065 1.0000

3711.85 0.1343 0.1062 0.0357 0.0182 0.1188 0.0000 0.0025 1.0000

Page 132: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

119

Page 133: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

120

Page 134: INTEGRATED PETROPHYSICAL EVALUATION OF TURBIDITIC …

121