Karl Gatterer, Festkörperspektroskopie und … · Synthese, Struktur und Magnetismus von...

65
Institute of Physical and Theoretical Chemistry Habilitierte Mitglieder des Institutes und ihre Arbeitsgebiete: Karl Gatterer, Festkörperspektroskopie und Magnetochemie in Material Science Georg Gescheidt, Paramagnetische Systeme Günter Grampp, EPR und Photochemie Stephan Landgraf, Spektroskopie und Elektrochemie Franz A. Mautner, Strukturforschung Michael Ramek, Quantenchemie

Transcript of Karl Gatterer, Festkörperspektroskopie und … · Synthese, Struktur und Magnetismus von...

Institute of Physical and Theoretical Chemistry

Habilitierte Mitglieder des Institutes und ihre Arbeitsgebiete:

Karl Gatterer, Festkörperspektroskopie und Magnetochemie in Material

Science

Georg Gescheidt, Paramagnetische Systeme

Günter Grampp, EPR und Photochemie

Stephan Landgraf, Spektroskopie und Elektrochemie

Franz A. Mautner, Strukturforschung

Michael Ramek, Quantenchemie

Institute of Physical and Theoretical Chemistry

Research Group Solid State Spectroscopy and Magnetochemistry in Material Science.

Prof. Dr. K. Gatterer

Current Fields of Research.

General.

The research activities of the group focus on the spectroscopic and magnetic investigation of rare-earth and transition metal ions in diverse solids. Four topics can presently be identified:

Glasses;

Crystalline nano- or mesostructured materials;

Spectroscopy and energy transfer in cubic hexachloro elapsolites;

Molecular magnetism.

Institute of Physical and Theoretical Chemistry

Equipment and facilities of the Group.

UV-VIS-NIR spectrometer (Omega 10, Bruins Instruments, fully computerised) for transparent materials in the 200-1500 nm range. A continuous flow helium cryostat (ROK-10, Leybold-Heraeus) can be attached to the spectrometer to cover the temperature range from 10 to 300 K.

UV-VIS-NIRspectro-reflectometer with integrating sphere (DK 2A, Beckmann Instruments, interfaced to PC) for non-transparent materials in the 200-2500 nm range. A liquid nitrogen flow cryostat (CF-200, Oxford Instruments) can be attached to the integrating sphere to cover the temperature range from 77 to 300 K.

IR spectrometer (325, Perkin Elmer, interfaced to PC) for IR transmission and reflection measurements in the 400-4000 cm-1 region and the temperature range from 10 to 300 K.

DC magnetic susceptometer (SUS-10, PAAR KG, interfaced to PC) operating from 0-1.4 Tesla within the 77-500 K range.

AC/DC susceptometer, together with the research group Molecular Magnetism at the ICTOS at the Graz University of Technology (Model 7221, LAKE SHORE CRYOTRONICS, fully computerised) in the 0-1 Tesla range for DC and AC measurements. Temperature range 300-4.2 K.

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Arbeitsbereich Strukturforschung: Aktuelle Arbeitsgebiete.

Prof. Dr. F. Mautner

Kristallstrukturen von Übergangsmetallverbindungen (Dr. Mautner) – In Zusammenarbeit mit Prof. Goher (Unversität Kuwait) werden Kristallstrukturanalysen

an Komplexverbindungen an Übergangsmetallen (insbesondere mit Cu(I)-Zentralatomen) mit (Pseudo)-halogenid-Liganden durchgeführt.

Strukturchemie von Aziden (Dr. Mautner) – In Kooperation mit Prof. Massoud (Alexandria University) und Prof. Goher (Unversität

Kuwait) erfolgen Kristallstrukturanalysen von komplexen Festkörperaziden.

Molekulare magnetische Materialien (Dr. Mautner, Dr. Abu-Youssef) – Im Rahmen der wissenschaftlich-technischen Zusammenarbeit Österreich-Spanien

(Acciones Integradas) werden in Kooperation mit Prof. Escuer und Prof. Vicente(Universität Barcelona) Untersuchungen zu Struktur und Magnetismus von Koordinationsverbindungen durchgeführt. Das zu diesem Themenbereich laufende Nationalbank-Jubiläumsfondsprojekt Projekt Nr. 6630 mit dem Titel "Magnetische Materialien auf molekularer Basis. Synthese, Struktur und Magnetismus von Azid-Brückensystemen" wurde vor kurzem abgeschlossen und das gleichlautende Nachfolgeprojekt Nr. 7967 begonnen.

Institute of Physical and Theoretical Chemistry

Hoch- und Tieftemperatur-Pulverdiffraktion;

Strukturuntersuchungen an polykristallinen

Materialien (Dr. Bitschnau) – Dem Arbeitsbereich stehen mehrere Pulverdiffraktionsanlagen für

verschiedene Temperaturbereiche (11 K bis 2000°C) zur

Verfügung. Phasenübergänge und Temperaturabhängigkeiten im

Hoch- und Tieftemperaturbereich werden untersucht (z. B.

Piezomaterialen, Hochtemperatursupraleiter). Die Möglichkeiten

zur Bestimmung und Verfeinerung von Kristallstrukturen mittels

Pulveraufnahmen wurden weiter ausgebaut (neue Methoden,

Software) und an verschiedenen Substanzen (Minerale, organische

Verbindungen, Gast-Wirt-Systeme) durchgeführt. Die

Zusammenarbeit mit der Anton Paar GmbH zur Entwicklung von

Röntgen-Hochtemperatur-Pulverkammern wurde fortgeführt.

Institute of Physical and Theoretical Chemistry

Arbeitsbereich Quantenchemie / Quantum Chemistry Group.

Leiter / Head:

– Prof. Dr. Michael Ramek.

MitarbeiterInnnen / Co-worker:

– Ass.-Prof. Dr. Anne-Marie Kelterer

Institute of Physical and Theoretical Chemistry

Arbeitsbereich Quantenchemie: Aktuelle Arbeitsgebiete.

Hauptarbeitsgebiet des Arbeitsbereiches sind quantenchemische Molekülberechnungen, die zur Untersuchung von polyfunktionellen Molekülen eingesetzt werden.

Verwendete Methoden:

– ab initio Verfahren, Kraftfeldmethoden, Dichtefunktionaltheorie, Fourieranalyse der Potenzialflächen, semiempirische Methoden.

Berechnete Eigenschaften:

– Potenzialflächen (Struktur der stationären Punkte, Energie, Reaktionsbarrieren, Reaktionsverhalten), Hyperfeinkopplungskonstanten, elektronische Effekte.

Institute of Physical and Theoretical Chemistry

Untersuchte Systeme:

– Disaccharide und deren Modellsysteme [in Kooperation mit Dr. Alfred D. French, Southern Regional Research Center, New Orleans, LA (USA)]: Sucrose und Trehalose, Cellobiose, Glucosyl-(1,4)-galactopyranose, nichtglykosidische THP-O-THP Dimere;

Organische Radikalionen: Paraphenylendiamin-Radikalkationen mit verschiedenen Substituenten (H, Me, Et, n-Propyl, n-Butyl, i-Butyl, Pyrrolidin) und Cyclooktatetraen-Anionen;

Modell Di- und Tripeptide [in Zusammenarbeit mit Prof. Lothar Schäfer, University of Arkansas, Fayetteville, AR (USA)];

Auxine: 3-Indolessigsäure (IAA) sowie chlorierte und alkylierte Derivate dieser Verbindung [in Kooperation mit Dr. Sanja Tomic und Dr. Biserka Kojic-Prodic, Institut Rudjer Boskovic, Zagreb (Kroatien)];

Aminobuttersäure (GABA) und -Hydroxybuttersäure (GHB) [in Kooperation mit Prof. Peter Nagy, University of Toledo, Toledo, OH (USA)].

Institute of Physical and Theoretical Chemistry

Overview of current research activities

1. ESR-spectroscopy

2. Photochemical methods

3. MARY-Spectroscopy (Magnetic Field Effects in Chemistry)

4. Electrochemical methods

5. Other kinetic methods

G. Grampp, S. Landgraf

Spectroscopy, Photochemistry and Chemical Kinetics

Institute of Physical and Theoretical Chemistry

Research activities

1. Electron Spin Resonance (ESR)-Spectroscopy

- Kinetics of electron transfer reactions by ESR linebroadening

- Intra- and intermolecular charge transfer reactions (Uni Würzburg/D)

- ESR-spectroscopy inside nanotubes (DFG, TU Darmstadt/D)

Nanotechnology.

- Biradicals (RAS, Moscow)

- Spectroscopy in ionic liquids (MPI Mainz/D)

High Pressure Chemistry:

- Chemical kinetics up to 1000 bar in solution. ESR- and UV-VIS-spectroscopy.

Institute of Physical and Theoretical Chemistry

Introduction

Observables: Rate constants, activation parameters (DG* / DV*),

solvent dynamics (friction)

Our Aim: To investigate possible factors that may

influence a simple electron transfer reaction

Marcus-Theory of Electron Transfer. Nobel-Prize 1992.

Variables: reactants: redox potential, size

solvent: physical and chemical properties,

additives (liquid mixtures, electrolytes)

surroundings: temperature, pressure

(also changes solvent properties)

Method: ESR line broadening experiments

Time-resolved Laser- Spectroscopy

Institute of Physical and Theoretical Chemistry

Mixed-valence charge-transfer (MV-CT)

N

O

O

N

O

O

bridge

+

N

O

O

N

O

O

bridge

+

k et

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

ESR – linebroadening

(emim)EtSO4, 440K

1mT

kobs =1.0X107 s-1

kobs = 1.8x107 s-1

kobs = 4.9 x107 s-1

[MV++] = 9.5x10-3 M

[MV++] = 1.8x10-2 M

[MV++] = 5.0x10-2 M

Institute of Physical and Theoretical Chemistry

2. Photochemistry

•Time-resolved laser spectroscopy (excimer, dye-laser,

laserdiodes:

Resolution: 40 ps.

•Absorption, emission, fluorescence and photoconductivity

detection.

•Modulated Fluorescence Spectroscopy (LED)

•Single Photon Counting Spectroscopy (SPC)

•Flash Photolysis (triplet states)

•Gas Phase Fluorescence Detection

•Static and time-resolved fluorescence quenching

•Viscosity dependence of photoinduced electron transfer

•Photoinduced electron transfer reactions (PET)

•Burshtein theory of diffusion

Institute of Physical and Theoretical Chemistry

LASER spectroscopy:Apparatus and applications

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

4. Electrochemistry

• Cyclic Voltammetry

• Rotating Disc Electrode (RDE)

• Photomodulated Voltammetry

• Redox potentials of donors and acceptors

• Redox potentials of shorted-living radicals

• Redox potentials of excited states

Institute of Physical and Theoretical Chemistry

Photomodulated voltammetry

Principles and instrumentations

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Weitere Infos:

Wann? Jederzeit

Wo? Bei mir (PC-Z2)

Grau ist alle Theorie, anschauen ist besser!

Laborbesichtigung

möglich? Jederzeit

Institute of Physical and Theoretical Chemistry

UV-VIS time resolved absorption spectroscopy

Photochemical methods

Xe-lamp

tungsten lamp

XeCl excimer-laser

308 nm; 100 mJ; ~15 ns

dye laserBiBuQ/Dioxan 388nm, 11% eff.

mo

no

ch

rom

ato

r

PMT

sample

digital

storage

oscilloscope

LED

ph

oto

dio

de

PC

GP

IB

Laser

Teflon

Teflontubes

sample

+400 VepoxyHJS101

0 V

Au plate0.25 mm

transient absorption (>10 ns)

Photoconductivity

(>10 ns)

Institute of Physical and Theoretical Chemistry

Overview of current research activities

Institute of Physical and Theoretical Chemistry

The electron self-exchange reaction

Non-degenerate

electron transferElectron self-exchange

A ex dK kk- - - -+A ++A ++A +A¾ ¾ ¾® ¾ ¾ ¾® ¾ ¾¾®¬ ¾ ¾¾A A A Ag g g g

precursor

complexsuccessor

complex

Institute of Physical and Theoretical Chemistry

ESR-Linebroadening Effects on

Electron-Self Exchange

[DDQ -] = 0,5 mM

D) [DDQ] = 9,5 mM

C) [DDQ] = 2,5 mM

B) [DDQ] = 1,5 mM

A) [DDQ] = 0 mM

Cl

Cl

O

O

CN

CN

DDQ =

3265 3266 3267 3268 3269 3270

D

C

B

A

B [10-4 T]

For example: The DDQ/DDQ _.

-couple

Institute of Physical and Theoretical Chemistry

ESR – Measurements : 1,2-

dicyanobenzene

aH1 = 0.041 mT, aH2 = 0.415 mT, aN = 0.176 MT

Electrolytic reduction in PC at 298K using a flow through cell

0.5 mT

0.5 mT

0.5 mT

Institute of Physical and Theoretical Chemistry

Structures of ionic liquids

N

N X

N

N EtSO4

X - = BF4- or PF6

-

Institute of Physical and Theoretical Chemistry

Electron transfer and high pressure

The volume of activation:

D

‡ ln et

T

kV RT

P

D D D D D D‡ ‡ ‡ ‡ ‡ ‡

IR SR coul DH SDV V V V V V

D D

D

D

D

‡ ‡

and : inner and solvent (outer) reorganization

: coulombic work term

: Debye-Hückel effects

: solvent dynamics

IR SR

coul

DH

SD

V V

V

V

V

Institute of Physical and Theoretical Chemistry

Our high pressure system

Beryllium copper

Glass: quartz, Duran

o.d. 8,0-8,2 mm, i.d. 0,6-1,4 mm

etched with 5% HF

oil coated

teflon protection cover

Pressure transmission fluids:

petrol ether, ethylene glycol

Range: 0,1-60(80) MPa

Institute of Physical and Theoretical Chemistry

Results - acetone

0 10 20 30 40 50

21,95

22,00

22,05

22,10

22,15

ln k

et

pressure / MPa

‡ 3

expΔ V = 7,7 cm /mol

D ‡ 3

, 5,8 cm /molSR calcV

D ‡ 3

, 4,7 cm /molSD calcV

‡ 3

calcΔ V = 10,5 cm /mol

O

O

Cl

Cl

NC

NC

DDQ/DDQ.- in acetone

[DDQ.-] = 0,1 mM

[DDQ] = 0 - 10 mM

P = 0,1 - 50 MPa

ket = (1,8 - 2,1) x109 M-1 s-1

2,2 2,4 2,6 2,8 3,0 3,2

175

180

185

190

195

200

linew

idth

/ m

G

h-1 / (cP)

-1

0 10 20 30 40 50

175

180

185

190

195

200

linew

idth

/ m

G

pressure / MPa

Institute of Physical and Theoretical Chemistry

ESR Spectra

1 mT 1 mT

CH2Cl2CH2Cl2

260 K310 K

1 x aN = 8.46 G 2 x aN = 4.00 G

Fast exchangeSlow exchange

Institute of Physical and Theoretical Chemistry

0.5 mT

in oDCB in MeCN

330 K

a1 (4H) a2 (2H) a3 (2H) a4 (4H) a5 (6H) a6 (H) a7(H) a8 (3H) a9 (N)

oDCB 1.75 1.59 0.78 0.47 1.01 0.52 0.22 0.84 8.62

MeCN 1.88 1.59 0.78 0.53 1.01 0.53 0.12 0.92 8.68

330 K

pumpn

260 KENDOR TRIPLE 260 K

1 mT

1 kHz

N

O

O

Institute of Physical and Theoretical Chemistry

38

260 280 300 320 340 360 380 400 420

0

20

40

60

80

100

UV

-LE

D 3

65

nm

UVTOP$ 270 300 310 325 340 nm

UV-LED

380 nm

LE

D 3

93

nm

LE

D 4

00

nm

LE

D 3

50

nm

LE

D 4

50

nm

(C

)

UV-LED

385 nm#

UV

-LE

D 3

70

nm

#

UV-LED 370 nm

+UG1 filter#

I LE

D =

30

mA

; $2

0 m

A;

#1

5 m

A

VISUV

Spectral response of the LEDs available (UV)

rel. I

nte

nsity

[nm]

Institute of Physical and Theoretical Chemistry

400 500 600 700

0

20

40

60

80

100

VISUV

Spectral response of the LEDs available, I=30 mA

370#

370UG1#

385#

450*

450

460

470

500

525

565

585

610

6201

6202

630

660# 15 mA *450C

rel. I

nte

nsity

[nm]

Institute of Physical and Theoretical Chemistry

7. UV-VIS Determination of fluorescence lifetimes

Photochemical methods

S. Landgraf, Spectrochimica Acta A 2001, 57, 2029-2048.

Spectrometer:SPT / EG&G

320-800 nm excitation

350-850 nm emission

Resolution: 0.2-2 ns

SPT / PicoQuant

375-630 nm excitation

400-850 nm emission

Resolution: 0.2-1 ns

Modulation fluorometry

350-670 nm excitation

370-850 nm emission

Resolution: 0.1-0.5 ns

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

3. Magnetic Field Effects in Chemistry

• Magnetic field dependence of fluorescence

• M.A.R.Y.-spectroscopy

Institute of Physical and Theoretical Chemistry

MARY =

MAgnetic field effect

on Reaction Yield

Institute of Physical and Theoretical Chemistry

Introduction

Introduction

The Experiment: Equipment and Results

The Theory: Basic Strategy and Density Matrix Model

Comparison of Theory and Experiment

Summary and Outlook

Institute of Physical and Theoretical Chemistry

Why Study Electron Self-Exchange?

ESR:

Non-degenerate

electron transferElectron self-exchange

MARY:

AHFI

1 + –D A• •• •

3 + –D A• •• • + A

HFI1 + –

D A• •• •3 + –

D A• •• •

+ DHFI

1 + –D A• •• •

3 + –D A• •• • + D

HFI1 + –

AD • •• •3 + –

AD • •• •

Institute of Physical and Theoretical Chemistry

MaryschemaMagnetic Field Effect and Electron Self-Exchange

h

1 D … A *

kdiss k'diss

1D + A

1

Energ

y / e

V

0

3

2

1

4

Magnetic field dependent process

Photoproducts

HFI

1D* + A

1

h ''

h '

•• •1 + –

D A• •• •

Exciplex

Radical ion pair

HFI ... Hyperfine Interaction (electron - nuclear)

MARY:

AHFI

1 + –D A• •• •

3 + –D A• •• • + A

HFI1 + –

D A• •• •3 + –

D A• •• •

+ DHFI

1 + –D A• •• •

3 + –D A• •• • + D

HFI1 + –

AD • •• •3 + –

AD • •• •

EPR: • A + A– • D +

+ D• D + D

+ •or

Institute of Physical and Theoretical Chemistry

8. UV-VIS magnetic field dependent fluorescence

and transient absorption

Equipment:

3. Photochemical methods

Anregung

Beobachtung

Thermostat

Mono-chromator

Magnet

Filter

Gaussmeter

DC-Quelle (Offset)

L. G.L. G.S. H.

L. G. Lichtleiter (260 nm < < 650 nm) S. H. Probenhalter H. P. Hallsonde

H. P.

Offset/Modul

Photomultiplier

Filter

I=f(B) =f(B)

Computer

Magnet

Offset/Modul

AC-Quelle(Modulation)+Feldscan

dIdBAnregungs-

lichtquelle

6 x

L. G.

S. H.

H. P.

Resolution:0.2 % static

0.01% modulated

200 mG = 20 µT

M. Justinek et al. JACS

2004, 126, 5635-5646.

Institute of Physical and Theoretical Chemistry

Origin of the MARY Spectrum

Zeeman-splitting

of radical pair spin levels

in a magnetic field

MARY spectrum

T-

T+

S, T0

0 B

EHFI

B1/2

B1/2

0

0

1I

I0

B

saturation

half-saturation

Institute of Physical and Theoretical Chemistry

-10 -5 0 5 10

147.0

147.5

148.0

148.5

149.0

149.5

PM

T-S

ignal [m

V]

B [mT]

-10 -5 0 5 10

-200

0

200

400 DBpp

(b)

(a)

B [mT]

dI/dB

DCB1,2-1,3-1,4-

CN

CN

pyrene

Measurement without (a)

and with (b) modulation of

the magnetic field

0,1 mM pyrene +0,02 M 1,2-DCB

in PC (propylencarbonate)

scan 3 mT/min, mod. 1 mT

=> simulation of a Lorentzian line

Institute of Physical and Theoretical Chemistry

Energy Broadening of Spin Levels

T-

T+

S, T0

0 B

EHFI

DE

B1/2 (0) B c1/2 ( )

Heisenberg:

ckt

E exel

D

D

H. Staerk, R. Treichel and A. Weller,

Chem. Phys. Lett.,1983, 96, 28.

ckg

BcB ex

B

)0()( 2/12/1

0.00 0.01 0.02

22

23

24

25

[1,2-DCNB] (M)

B1/2 (G)ex

B

kg

Institute of Physical and Theoretical Chemistry

Generation of radicals

Directly: Photolysis of an

adequate compound, like a

symmetric ketone:

-1500 -1000 -500 0 500 1000

-0.15

-0.10

-0.05

0.00

0.05

0.10

Eox

1/2= 388 mV

Ered

1/2=-1108 mV

i [

µA

]

E [mV/SCE]

1,1,3,3 Tetraphenylacetone 5mM in a 0.08M Bu4NBF

4/CH

3CN solution,

gold electrode, v = 10 mV/s; f = 120Hz, f = 00; t = 1s

O

h2. + CO

Institute of Physical and Theoretical Chemistry

counter electrode

inert gas inlet

cell Luggin cappilary

reference electrode

MOTOR

WE working electrodeRE reference electrodeCE counter electrode

Scheme

of the system

for RDE experiments

working electrode

Institute of Physical and Theoretical Chemistry

0,0E+00

1,0E-06

2,0E-06

3,0E-06

4,0E-06

5,0E-06

6,0E-06

7,0E-06

8,0E-06

9,0E-06

1,0E-05

0,0 10,0 20,0 30,0 40,0 50,0

temperature / oC

dif

fusi

on c

oeff

icie

nt /

cm

2 s

-1

TMPPD - e - TMPPD+

5,87 E-0635,0

8,85 E-0645,0

6,57 E-0630,0

5,50 E-06 *25,0

4,76 E-0615,0

2,29 E-065,0

DIFFUSION COEFFICIENT

/ cm2 s-1

TEMPERATURE

/ oC ± 0,1oC

(1st oxidation step)

-500 0 500 1000

0,00000

0,00004

0,00008

0,00012

0,00016

0,00020

0,00024

0,00028

curr

ent

/ A

potential / mV vs. SCE

T=25oC

w

Institute of Physical and Theoretical Chemistry

Co-operations

K. A. McLauchlan and P. Hore, University of Oxford, UK.

A. Burshtein, Weizmann-Institute, Chemical Physics, Rehovot, Israel.

N. Lukzen, Russian Academy of Science (RAS), Novosibirisk, Russia.

J. Schneider. Darmstadt University of Technology, Germany.

P. Jacques. Universite Haute Alsace, Mulhouse, France.

Ch. Lambert, University of Würzburg, Germany.

B. Herold, Technical University Lisbon, Portugal.

R. W. Fawcett, University of Davis, CA, U.S.A.

A. Kokorin, Institute of Chemical Physics, RAS, Moscow, Russia.

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

56

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Institute of Physical and Theoretical Chemistry

Habilitierte des Institutes und ihre Arbeitsgebiete:

Karl Gatterer, Festkörperspektroskopie und Magnetochemie in Material

Science

Georg Gescheidt, Paramagnetische Systeme

Günter Grampp, EPR und Photochemie

Stephan Landgraf, Spektroskopie und Elektrochemie

Franz A. Mautner, Strukturforschung

Michael Ramek, Quantenchemie