KR 30-2 JET; KR 60-2 JET - kuka.com · Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1 9 / 85 3...

85
Robots KR 30-2 JET; KR 60-2 JET Spezifikation KUKA Roboter GmbH Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1 KR 30-2 JET; KR 60-2 JET

Transcript of KR 30-2 JET; KR 60-2 JET - kuka.com · Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1 9 / 85 3...

Robots

KR 30-2 JET; KR 60-2 JET

Spezifikation

KUKA Roboter GmbH

Stand: 12.08.2015

Version: Spez KR 30, 60-2 JET V1

KR 30-2 JET;

KR 60-2 JET

KR 30-2 JET; KR 60-2 JET

2 / 85 Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

© Copyright 2015

KUKA Roboter GmbH

Zugspitzstraße 140

D-86165 Augsburg

Deutschland

Diese Dokumentation darf – auch auszugsweise – nur mit ausdrücklicher Genehmigung der KUKA Roboter GmbH vervielfältigt oder Dritten zugänglich gemacht werden.

Es können weitere, in dieser Dokumentation nicht beschriebene Funktionen in der Steuerung lauffä-hig sein. Es besteht jedoch kein Anspruch auf diese Funktionen bei Neulieferung oder im Servicefall.

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Soft-ware geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die voll-ständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden jedoch regelmäßig überprüft und notwendige Korrekturen sind in der nachfolgenden Auflage enthal-ten.

Technische Änderungen ohne Beeinflussung der Funktion vorbehalten.

Original-Dokumentation

KIM-PS5-DOC

Publikation: Pub Spez KR 30, 60-2 JET (PDF) de

Buchstruktur: Spez KR 30, 60-2 JET V1.2

Version: Spez KR 30, 60-2 JET V1

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung ..................................................................................................... 5

1.1 Dokumentation des Industrieroboters ........................................................................ 5

1.2 Darstellung von Hinweisen ........................................................................................ 5

2 Zweckbestimmung ...................................................................................... 7

2.1 Zielgruppe .................................................................................................................. 7

2.2 Bestimmungsgemäße Verwendung ........................................................................... 7

3 Produktbeschreibung ................................................................................. 9

3.1 Übersicht Robotersystem ........................................................................................... 9

3.2 Beschreibung des Roboters ....................................................................................... 9

4 Technische Daten ........................................................................................ 13

4.1 Grunddaten ................................................................................................................ 13

4.2 Grunddaten ................................................................................................................ 14

4.3 Grunddaten ................................................................................................................ 15

4.4 Grunddaten ................................................................................................................ 16

4.5 Achsdaten .................................................................................................................. 17

4.6 Achsdaten .................................................................................................................. 19

4.7 Achsdaten .................................................................................................................. 21

4.8 Achsdaten .................................................................................................................. 23

4.9 Auftragsspezifische Technische Daten ...................................................................... 25

4.10 Traglasten .................................................................................................................. 26

4.11 Traglasten .................................................................................................................. 29

4.12 Traglasten .................................................................................................................. 32

4.13 Traglasten .................................................................................................................. 35

4.14 Fundamentlasten ....................................................................................................... 38

4.15 Schilder ...................................................................................................................... 40

4.16 Anhaltewege und Anhaltezeiten ................................................................................ 41

4.16.1 Allgemeine Hinweise ............................................................................................ 41

4.16.2 Verwendete Begriffe ............................................................................................. 42

4.16.3 Anhaltewege und Anhaltezeiten STOP 0, Achse 1 bis Achse 3 ........................... 43

4.16.4 Anhaltewege und Anhaltezeiten STOP 1, Achse 1 .............................................. 44

4.16.5 Anhaltewege und Anhaltezeiten STOP 1, Achse 2 .............................................. 46

4.16.6 Anhaltewege und Anhaltezeiten STOP 1, Achse 3 .............................................. 48

5 Sicherheit ..................................................................................................... 49

5.1 Allgemein ................................................................................................................... 49

5.1.1 Haftungshinweis ................................................................................................... 49

5.1.2 Bestimmungsgemäße Verwendung des Industrieroboters ................................... 50

5.1.3 EG-Konformitätserklärung und Einbauerklärung .................................................. 50

5.1.4 Verwendete Begriffe ............................................................................................. 51

5.2 Personal ..................................................................................................................... 52

5.3 Arbeits-, Schutz- und Gefahrenbereich ...................................................................... 53

5.4 Übersicht Schutzausstattung ..................................................................................... 53

5.4.1 Mechanische Endanschläge ................................................................................. 53

5.4.2 Mechanische Achsbereichsbegrenzung (Option) ................................................. 53

5.4.3 Achsbereichsüberwachung (Option) ..................................................................... 54

3 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 / 85

KR 30-2 JET; KR 60-2 JET

5.4.4 Möglichkeiten zum Bewegen des Manipulators ohne Antriebsenergie ................ 54

5.4.5 Kennzeichnungen am Industrieroboter ................................................................. 55

5.5 Sicherheitsmaßnahmen ............................................................................................. 55

5.5.1 Allgemeine Sicherheitsmaßnahmen ..................................................................... 55

5.5.2 Transport .............................................................................................................. 56

5.5.3 Inbetriebnahme und Wiederinbetriebnahme ........................................................ 57

5.5.4 Manueller Betrieb ................................................................................................. 58

5.5.5 Automatikbetrieb .................................................................................................. 59

5.5.6 Wartung und Instandsetzung ............................................................................... 59

5.5.7 Außerbetriebnahme, Lagerung und Entsorgung .................................................. 61

5.6 Angewandte Normen und Vorschriften ...................................................................... 61

6 Planung ......................................................................................................... 63

6.1 Planungsinformation .................................................................................................. 63

6.2 Fundamentbefestigung .............................................................................................. 63

6.3 Verbindungsleitungen und Schnittstellen .................................................................. 65

7 Transport ...................................................................................................... 67

7.1 Transport ................................................................................................................... 67

8 Optionen ....................................................................................................... 73

8.1 Freidreh-Vorrichtung (Option) .................................................................................... 73

9 KUKA Service ............................................................................................... 75

9.1 Support-Anfrage ........................................................................................................ 75

9.2 KUKA Customer Support ........................................................................................... 75

Index ............................................................................................................. 83

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

1 Einleitung

1 Einleitung

1.1 Dokumentation des Industrieroboters

Die Dokumentation zum Industrieroboter besteht aus folgenden Teilen:

Dokumentation für die Robotermechanik

Dokumentation für die Robotersteuerung

Bedien- und Programmieranleitung für die System Software

Anleitungen zu Optionen und Zubehör

Teilekatalog auf Datenträger

Jede Anleitung ist ein eigenes Dokument.

1.2 Darstellung von Hinweisen

Sicherheit Diese Hinweise dienen der Sicherheit und müssen beachtet werden.

Dieser Hinweis macht auf Vorgehensweisen aufmerksam, die der Vorbeu-gung oder Behebung von Not- oder Störfällen dienen:

Hinweise Diese Hinweise dienen der Arbeitserleichterung oder enthalten Verweise auf weiterführende Informationen.

t

Diese Hinweise bedeuten, dass Tod oder schwere Ver-letzungen sicher oder sehr wahrscheinlich eintreten

werden, wenn keine Vorsichtsmaßnahmen getroffen werden.

Diese Hinweise bedeuten, dass Tod oder schwere Ver-letzungen eintreten können, wenn keine Vorsichtsmaß-

nahmen getroffen werden.

Diese Hinweise bedeuten, dass leichte Verletzungen eintreten können, wenn keine Vorsichtsmaßnahmen

getroffen werden.

Diese Hinweise bedeuten, dass Sachschäden eintreten können, wenn keine Vorsichtsmaßnahmen getroffen

werden.

Diese Hinweise enthalten Verweise auf sicherheitsrelevante Informa-tionen oder allgemeine Sicherheitsmaßnahmen. Diese Hinweise beziehen sich nicht auf einzelne Gefahren oder ein-

zelne Vorsichtsmaßnahmen.

Mit diesem Hinweis gekennzeichnete Vorgehensweisen müssen genau eingehalten werden.

Hinweis zur Arbeitserleichterung oder Verweis auf weiterführende In-formationen.

5 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

6 / 85

KR 30-2 JET; KR 60-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

2 Zweckbestimmung

2 Zweckbestimmung

2.1 Zielgruppe

Diese Dokumentation richtet sich an Benutzer mit folgenden Kenntnissen:

Fortgeschrittene Kenntnisse im Maschinenbau

Fortgeschrittene Kenntnisse in der Elektrotechnik

Systemkenntnisse der Robotersteuerung

2.2 Bestimmungsgemäße Verwendung

Verwendung Der Industrieroboter dient zur Handhabung von Werkzeugen und Vorrichtun-gen, oder zum Bearbeiten und Transportieren von Bauteilen oder Produkten. Der Einsatz darf nur unter den angegebenen klimatischen Bedingungen erfol-gen.

Fehlgebrauch Alle von der bestimmungsgemäßen Verwendung abweichenden Anwendun-gen gelten als Fehlanwendung und sind unzulässig. Dazu zählen z. B.:

Transport von Personen und Tieren

Benützung als Aufstiegshilfen

Einsatz außerhalb der zulässigen Betriebsgrenzen

Einsatz in explosionsgefährdeter Umgebung

Einsatz im Untertagebau

2

Z

w

s

t

Für den optimalen Einsatz unserer Produkte empfehlen wir unseren Kunden eine Schulung im KUKA College. Informationen zum Schu-lungsprogramm sind unter www.kuka.com oder direkt bei den Nieder-

lassungen zu finden.

Veränderungen der Roboterstruktur, z. B. das Anbrin-gen von Bohrungen o. ä. kann zu Schäden an den Bau-

teilen führen. Dies gilt als nicht bestimmungsgemäße Verwendung und führt zum Verlust von Garantie- und Haftungsansprüchen.

Bei Abweichungen von, den in den Technischen Daten angegebenen, Arbeitsbedingungen oder bei Einsatz

spezieller Funktionen oder Applikationen kann es z. B. zu vorzeitigem Ver-schleiß kommen. Rücksprache mit der KUKA Roboter GmbH ist erforderlich.

Das Robotersystem ist Bestandteil einer kompletten Anlage und darf nur innerhalb einer CE-konformen Anlage betrieben werden.

7 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

8 / 85

KR 30-2 JET; KR 60-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

3 Produktbeschreibung

3 Produktbeschreibung

3.1 Übersicht Robotersystem

Dieses Robotersystem besteht aus einer Linearachse und einer 5achsigen Gelenkarmkinematik (Manipulator = Robotermechanik mit Elektro-Installati-on), Steuerschrank, Verbindungsleitungen, Werkzeug und Ausrüstungsteilen. Der Roboter wird mit der KR C4 betrieben .

Ein Robotersystem besteht aus folgenden Komponenten:

Achsmodul

Roboter JET ROBOT

Robotersteuerung

Verbindungsleitungen

Programmierhandgerät KCP (KUKA smartPAD)

Software

Optionen, Zubehör

3.2 Beschreibung des Roboters

Übersicht Die Robotermechanik dieses Roboters besteht aus den Hauptelementen Ro-botermechanik KR JET ROBOT und dem Achsmodul JET TRACK. Beide Hauptelemente sind modular aufgebaut und können nahezu beliebig, anwen-der- und aufgabenspezifisch zusammengestellt werden.

Achsmodul Das Achsmodul (>>> Abb. 3-2 ) besteht aus folgenden Hauptbaugruppen:

Säulen

Träger

Fahrwagen

Kabelschlepp

t

s

Abb. 3-1: Robotersystem KR 60 L30-2 JET (Beispiel)

1 KR 60 L30-2 JET 3 Robotersteuerung, KR C4

2 Verbindungsleitungen 4 Programmierhandgerät KCP

9 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

10 / 85

KR 30-2 JET; KR 60-2 JET

Säulen Das Achsmodul kann mit folgenden Säulenausführungen aufgebaut werden:

Endsäule, unten

Endsäule, seitlich

Zwischensäule, von hinten, unten

Zwischensäule, unten

Die Säulen stehen in den Stufungen 100 mm bei einer minimalen Säulenhöhe von 2000 mm bis zu einer maximalen Säulenhöhe von 3000 mm zur Verfü-gung. Welche Säulenvariante zur Anwendung kommt, sowie die Gesamtan-zahl der Säulen ist u. a. von Art und Anzahl der Fahrwagen und der Länge des Trägers abhängig.

Die Säulen werden über die Anschweißplatte mit der Bodenplatte ver-schraubt. Die Bodenplatte wiederum ist mit dem Betonfundament verdübelt. Zur Ausrichtung des Trägers sind je Säule 4 Nivellierelemente an der Kopf-platte vorhanden.

Träger Es stehen 2 Varianten von Trägern zur Verfügung. Sie unterscheiden sich in der Anordnung der Führungsschienen und Zahnstangen, seitlich oder unten. Der Träger wird mit den Säulen verschraubt und nimmt auch die Energiezu-führung für die Roboter auf. Je nach Hublänge sind die Träger ein- oder mehr-teilig. Mehrteilige Träger werden bei der Montage miteinander verschraubt. Es sind Hublängen von 1500 mm bis 30 000 mm in Stufen von 500 mm möglich.

Fahrwagen Der Fahrwagen stellt die Achse 1 des Roboters dar. Er wird auf den Führungs-schienen des Trägers montiert und über den Motor und Getriebe angetrieben. Auf dem Fahrwagen wird ein Roboter KR JET ROBOT befestigt. Die Schmie-rung der Führungsschienen und Zahnstange erfolgt automatisch über Schmierstoffgeber. Am Fahrwagen ist auch der Mitnehmer für den Kabel-schleppkette der Energiezuführung angebracht.

Robotermechanik

JET ROBOT

Die Robotermechanik (>>> Abb. 3-3 ) besteht aus folgenden Hauptbaugrup-pen:

Zentralhand

Abb. 3-2: Hauptbaugruppen

1 Träger 3 Fahrwagen

2 Kabelschlepp 4 Säule

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

3 Produktbeschreibung

Arm

Schwinge

Karussell

Elektro-Installation

Zentralhand Der Roboter (>>> Abb. 3-3 ) ist mit einer 3achsigen Zentralhand (1) ausge-stattet. Die Zentralhand enthält die Achsen 4, 5 und 6. Zum Anbau von Werk-zeugen verfügt die Zentralhand über einen Anbauflansch. Der Anbauflansch enspricht mit geringer Abweichung der ISO 9409-1:2004.

Arm Der Arm (2) ist das Bindeglied zwischen Zentralhand und Schwinge. Er nimmt die Motoren der Handachsen A4, A5 und A6 auf. Der Antrieb des Arms erfolgt vom Motor A3 über das Getriebe zwischen Arm und Schwinge. Der maximal zulässige Schwenkwinkel wird durch je einen Anschlag in Plus- und Minus-richtung mechanisch begrenzt. Die zugehörenden Kunststoffpuffer sind am Arm angebracht. Der Arm nimmt auch den Motor der Achse 3 auf.

Schwinge Die Schwinge ist die zwischen Karussell und Arm gelagerte Baugruppe. Sie enthält den Schwingenkörper und die Getriebe mit Lagerung der Achsen 2 und 3.

Karussell Das Karussell ist die Anschlussbaugruppe an den Fahrwagen des Achsmo-duls. Es ist mit dem Fahrwagen verschraubt. Im Karussell ist die Schwinge ge-lagert. An beiden Seiten befinden sich je 4 Bohrungen, an denen die Gabelstaplertaschen oder das Transportgestell angeschraubt werden. Auf dem Karussell sind die Roboter-Anschlusskästen für die Roboterelektrik an-gebracht.

Elektro-

Installation

Die Baugruppe Elektro-Installation beinhaltet die gesamte Verkabelung zur Steuerung und Versorgung der Motoren. Die Beschreibung der Elektro-Instal-lation erfolgt im Kapitel der Betriebsanleitung.

Abb. 3-3: KR 30, 60 JET ROBOT Hauptbaugruppen

1 Zentralhand 4 Karussell

2 Arm 5 Schwinge

3 Elektro-Installation

11 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

12 / 85

KR 30-2 JET; KR 60-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

4 Technische Daten

4.1 Grunddaten

Grunddaten

Umgebungs-

temperatur

Verbindungs-

leitungen

Detaillierte Angaben zu den Verbindungsleitungen siehe.

4

T

s

Typ KR 30-2 JET ROBOT

Anzahl der Achsen Roboter 5, JET ROBOTLinearachse 1

Arbeitsfläche 5,7 m2

Wiederhol-genauigkeit (ISO 9283)

±0,07 mm

Bezugspunkt Arbeits-raum

Schnittpunkt der Achsen 4 und 5

Gewicht ohne Linearachse

ca. 435 kg

Dynamische Haupt-belastungen

siehe Fundamentlasten (>>> 4.14 "Fundam-entlasten" Seite 38)

Schutzart des Roboters

IP64

betriebsbereit, mit angeschlossenen Verbindungs-leitungen (nach EN 60529)

Schutzart der Zentralhand

IP65

Schallpegel < 75 dB (A) außerhalb des Arbeitsbereichs

Einbaulage hängend, seitlich

Oberfäche, Lackie-rung

bewegliche Teile KUKA-Orange 2567

Betrieb 283 K bis 328 K (+10 °C bis +55 °C)

Lagerung und Trans-port

233 K bis 333 K (-40 °C bis +60 °C)

Inbetriebnahme Bei Inbetriebnahme im Bereich von 278 K bis 288 K (+5 °C bis +15 °C) kann ein Warmfahren des Roboters erforderlich sein. Andere Tempera-turgrenzen auf Anfrage.

Umweltbedingungen DIN EN 60721-3-3,Klasse 3K3

Leitungsbezeich-

nung

Steckerbezeichnung Schnittstelle-Roboter

Motorleitung X20 - X30 Beidseitig Harting Ste-cker

Datenleitung X21 - X31 Beidseitig Harting Ste-cker

Schutzleiter Ringkabelschuh, beid-seitig, M8

Leitungslängen

Standard 7 m, 15 m, 25 m, 35 m

mit RoboTeam 7 m, 15 m, 25 m, 35 m

mit SafeRobot 7 m, 15 m, 25 m, 35 m

13 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

14 / 85

KR 30-2 JET; KR 60-2 JET

Bei Betrieb mit KR C4 ist immer ein Schutzleiter erforderlich, der optional be-stellbar ist.

Die Leitungslänge zwischen Robotersteuerung und dem Roboteranschluss-kasten darf die Länge von 50 m nicht übersteigen. Es sind also auch die Ka-bellängen in der Energiezuführungskette zu berücksichtigen.

4.2 Grunddaten

Grunddaten

Umgebungs-

temperatur

Verbindungs-

leitungen

Typ KR 60-2 JET ROBOT

Anzahl der Achsen Roboter 5, JET ROBOTLinearachse 1

Arbeitsfläche 5,7 m2

Wiederhol-genauigkeit (ISO 9283)

±0,07 mm

Bezugspunkt Arbeits-raum

Schnittpunkt der Achsen 4 und 5

Gewicht ohne Linearachse

ca. 435 kg

Dynamische Haupt-belastungen

siehe Fundamentlasten (>>> 4.14 "Fundam-entlasten" Seite 38)

Schutzart des Roboters

IP64

betriebsbereit, mit angeschlossenen Verbindungs-leitungen (nach EN 60529)

Schutzart der Zentralhand

IP65

Schallpegel < 75 dB (A) außerhalb des Arbeitsbereichs

Einbaulage hängend, seitlich

Oberfäche, Lackie-rung

bewegliche Teile KUKA-Orange 2567

Betrieb 283 K bis 328 K (+10 °C bis +55 °C)

Lagerung und Trans-port

233 K bis 333 K (-40 °C bis +60 °C)

Inbetriebnahme Bei Inbetriebnahme im Bereich von 278 K bis 288 K (+5 °C bis +15 °C) kann ein Warmfahren des Roboters erforderlich sein. Andere Tempera-turgrenzen auf Anfrage.

Umweltbedingungen DIN EN 60721-3-3,Klasse 3K3

Leitungsbezeich-

nung

Steckerbezeichnung Schnittstelle-Roboter

Motorleitung X20 - X30 Beidseitig Harting Ste-cker

Datenleitung X21 - X31 Beidseitig Harting Ste-cker

Schutzleiter Ringkabelschuh, beid-seitig, M8

Leitungslängen

Standard 7 m, 15 m, 25 m, 35 m

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

Detaillierte Angaben zu den Verbindungsleitungen siehe.

Bei Betrieb mit KR C4 ist immer ein Schutzleiter erforderlich, der optional be-stellbar ist.

Die Leitungslänge zwischen Robotersteuerung und dem Roboteranschluss-kasten darf die Länge von 50 m nicht übersteigen. Es sind also auch die Ka-bellängen in der Energiezuführungskette zu berücksichtigen.

4.3 Grunddaten

Grunddaten

Umgebungs-

temperatur

Verbindungs-

leitungen

mit RoboTeam 7 m, 15 m, 25 m, 35 m

mit SafeRobot 7 m, 15 m, 25 m, 35 m

Typ KR 60 L30-2 JET ROBOT

Anzahl der Achsen Roboter 5, JET ROBOTLinearachse 1

Arbeitsfläche 9,0 m2

Wiederholgenauigkeit (ISO 9283)

±0,07 mm

Bezugspunkt Arbeits-raum

Schnittpunkt der Achsen 4 und 5

Gewicht ohne Linearachse

ca. 479 kg

Dynamische Hauptbe-lastungen

siehe Fundamentlasten

Schutzart des Roboters

IP64

betriebsbereit, mit angeschlossenen Verbin-dungsleitungen (nach EN 60529)

Schutzart der Zentralhand

IP65

Schallpegel < 75 dB (A) außerhalb des Arbeitsbereichs

Einbaulage hängend, seitlich

Oberfäche, Lackierung bewegliche Teile KUKA-Orange 2567

Betrieb 283 K bis 328 K (+10 °C bis +55 °C)

Lagerung und Trans-port

233 K bis 333 K (-40 °C bis +60 °C)

Inbetriebnahme Bei Inbetriebnahme im Bereich von 278 K bis 288 K (+5 °C bis +15 °C) kann ein Warmfahren des Roboters erforderlich sein. Andere Tempera-turgrenzen auf Anfrage.

Umweltbedingungen DIN EN 60721-3-3,Klasse 3K3

Leitungsbezeich-

nung

Steckerbezeichnung Schnittstelle-Roboter

Motorleitung X20 - X30 Beidseitig Harting Ste-cker

Datenleitung X21 - X31 Beidseitig Harting Ste-cker

Schutzleiter Ringkabelschuh, beid-seitig, M8

15 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

16 / 85

KR 30-2 JET; KR 60-2 JET

Detaillierte Angaben zu den Verbindungsleitungen siehe.

Bei Betrieb mit KR C4 ist immer ein Schutzleiter erforderlich, der optional be-stellbar ist.

Die Leitungslänge zwischen Robotersteuerung und dem Roboteranschluss-kasten darf die Länge von 50 m nicht übersteigen. Es sind also auch die Ka-bellängen in der Energiezuführungskette zu berücksichtigen.

4.4 Grunddaten

Grunddaten

Umgebungs-

temperatur

Verbindungs-

leitungen

Leitungslängen

Standard 7 m, 15 m, 25 m, 35 m

mit RoboTeam 7 m, 15 m, 25 m, 35 m

mit SafeRobot 7 m, 15 m, 25 m, 35 m

Typ KR 60 L45-2 JET ROBOT

Anzahl der Achsen Roboter 5, JET ROBOTLinearachse 1

Arbeitsfläche 7,3 m2

Wiederholgenauigkeit (ISO 9283)

±0,07 mm

Bezugspunkt Arbeits-raum

Schnittpunkt der Achsen 4 und 5

Gewicht ohne Linearachse

ca. 471 kg

Dynamische Hauptbe-lastungen

siehe Fundamentlasten

Schutzart des Roboters

IP64

betriebsbereit, mit angeschlossenen Verbin-dungsleitungen (nach EN 60529)

Schutzart der Zentralhand

IP65

Schallpegel < 75 dB (A) außerhalb des Arbeitsbereichs

Einbaulage hängend, seitlich

Oberfäche, Lackierung bewegliche Teile KUKA-Orange 2567

Betrieb 283 K bis 328 K (+10 °C bis +55 °C)

Lagerung und Trans-port

233 K bis 333 K (-40 °C bis +60 °C)

Inbetriebnahme Bei Inbetriebnahme im Bereich von 278 K bis 288 K (+5 °C bis +15 °C) kann ein Warmfahren des Roboters erforderlich sein. Andere Tempera-turgrenzen auf Anfrage.

Umweltbedingungen DIN EN 60721-3-3,Klasse 3K3

Leitungsbezeich-

nung

Steckerbezeichnung Schnittstelle-Roboter

Motorleitung X20 - X30 Beidseitig Harting Ste-cker

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

Detaillierte Angaben zu den Verbindungsleitungen siehe.

Bei Betrieb mit KR C4 ist immer ein Schutzleiter erforderlich, der optional be-stellbar ist.

Die Leitungslänge zwischen Robotersteuerung und dem Roboteranschluss-kasten darf die Länge von 50 m nicht übersteigen. Es sind also auch die Ka-bellängen in der Energiezuführungskette zu berücksichtigen.

4.5 Achsdaten

Achsdaten

Bewegungsrichtung und Zuordnung der einzelnen Achsen sind der Abbildung zu entnehmen.

Datenleitung X21 - X31 Beidseitig Harting Ste-cker

Schutzleiter Ringkabelschuh, beid-seitig, M8

Leitungslängen

Standard 7 m, 15 m, 25 m, 35 m

mit RoboTeam 7 m, 15 m, 25 m, 35 m

mit SafeRobot 7 m, 15 m, 25 m, 35 m

Leitungsbezeich-

nung

Steckerbezeichnung Schnittstelle-Roboter

AchseBewegungsbereich,

softwarebegrenzt

Geschwindigkeit

bei Nenn-Traglast

1 Siehe Auftragsspezifische Technische Daten

3,2 m/s

2 0° bis -180° 120 °/s

3 +158° bis -120° 166 °/s

4 +/-350° 260 °/s

5 +/-119° 245 °/s

6 +/-350° 322 °/s

Abb. 4-1: Drehrichtung der Roboterachsen

17 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

18 / 85

KR 30-2 JET; KR 60-2 JET

Die Abbildung (>>> Abb. 4-8 ) zeigt Größe und Form des Arbeitsbereichs.

Arbeitsbereich Bezugspunkt für den Arbeitsbereich (>>> Abb. 4-2 ) ist der Schnittpunkt der Achsen 4 und 5.

Bezugsebene Die Bezugsebene für den Arbeitsbereich des Roboters ist die Achse 2. Sie ist bei der seitlichen Montage um 155 mm zur Mitte des Trägers nach unten ver-setzt. Der Versatz bei der hängenden Montage beträgt ebenfalls 155 mm, je-doch nach hinten. Angaben zur Säulenhöhe beziehen sich auf den Boden und die Fahrwagenmitte bei der seitlichen Montage oder auf die Anschraubfläche des Fahrwagens bei der hängenden Montage.

Abb. 4-2: Arbeitsbereich KR 30-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

4.6 Achsdaten

Achsdaten

Bewegungsrichtung und Zuordnung der einzelnen Achsen sind der Abbildung zu entnehmen.

Abb. 4-3: Bezugsebene

1 Anschraubfläche 3 Trägermitte

2 Drehachse A2 4 Säulenhöhe

AchseBewegungsbereich,

softwarebegrenzt

Geschwindigkeit

bei Nenn-Traglast

1 Siehe Auftragsspezifische Technische Daten

3,2 m/s

2 0° bis -180° 120 °/s

3 +158° bis -120° 166 °/s

4 +/-350° 260 °/s

5 +/-119° 245 °/s

6 +/-350° 322 °/s

19 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

20 / 85

KR 30-2 JET; KR 60-2 JET

Die Abbildung (>>> Abb. 4-8 ) zeigt Größe und Form des Arbeitsbereichs.

Arbeitsbereich Bezugspunkt für den Arbeitsbereich (>>> Abb. 4-5 ) ist der Schnittpunkt der Achsen 4 und 5.

Bezugsebene Die Bezugsebene für den Arbeitsbereich des Roboters ist die Achse 2. Sie ist bei der seitlichen Montage um 155 mm zur Mitte des Trägers nach unten ver-setzt. Der Versatz bei der hängenden Montage beträgt ebenfalls 155 mm, je-doch nach hinten. Angaben zur Säulenhöhe beziehen sich auf den Boden und

Abb. 4-4: Drehrichtung der Roboterachsen

Abb. 4-5: Arbeitsbereich KR 60-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

die Fahrwagenmitte bei der seitlichen Montage oder auf die Anschraubfläche des Fahrwagens bei der hängenden Montage.

4.7 Achsdaten

Achsdaten

Bewegungsrichtung und Zuordnung der einzelnen Achsen sind der Abbildung zu entnehmen.

Abb. 4-6: Bezugsebene

1 Anschraubfläche 3 Trägermitte

2 Drehachse A2 4 Säulenhöhe

AchseBewegungsbereich,

softwarebegrenzt

Geschwindigkeit

bei Nenn-Traglast

1 Siehe Auftragsspezifische Technische Daten

3,2 m/s

2 0° bis -180° 120 °/s

3 +158° bis -120° 166 °/s

4 +/-350° 260 °/s

5 +/-119° 245 °/s

6 +/-350° 322 °/s

21 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

22 / 85

KR 30-2 JET; KR 60-2 JET

Die Abbildung (>>> Abb. 4-8 ) zeigt Größe und Form des Arbeitsbereichs.

Arbeitsbereich Bezugspunkt für den Arbeitsbereich ist der Schnittpunkt der Achsen 4 und 5.

Bezugsebene Die Bezugsebene für den Arbeitsbereich des Roboters ist die Achse 2. Sie ist bei der seitlichen Montage um 155 mm zur Mitte des Trägers nach unten ver-setzt. Der Versatz bei der hängenden Montage beträgt ebenfalls 155 mm, je-doch nach hinten. Angaben zur Säulenhöhe beziehen sich auf den Boden und

Abb. 4-7: Drehrichtung der Roboterachsen

Abb. 4-8: Arbeitsbereich KR 60 L30-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

die Fahrwagenmitte bei der seitlichen Montage oder auf die Anschraubfläche des Fahrwagens bei der hängenden Montage.

4.8 Achsdaten

Achsdaten

Bewegungsrichtung und Zuordnung der einzelnen Achsen sind der Abbildung zu entnehmen.

Abb. 4-9: Bezugsebene

1 Anschraubfläche 3 Trägermitte

2 Drehachse A2 4 Säulenhöhe

AchseBewegungsbereich,

softwarebegrenzt

Geschwindigkeit

bei Nenn-Traglast

1 Siehe Auftragsspezifische Technische Daten

3,2 m/s

2 0° bis -180° 120 °/s

3 +158° bis -120° 166 °/s

4 +/-350° 260 °/s

5 +/-119° 245 °/s

6 +/-350° 322 °/s

23 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

24 / 85

KR 30-2 JET; KR 60-2 JET

Die Abbildung (>>> Abb. 4-8 ) zeigt Größe und Form des Arbeitsbereichs.

Arbeitsbereich Bezugspunkt für den Arbeitsbereich (>>> Abb. 4-11 ) ist der Schnittpunkt der Achsen 4 und 5.

Bezugsebene Die Bezugsebene für den Arbeitsbereich des Roboters ist die Achse 2. Sie ist bei der seitlichen Montage um 155 mm zur Mitte des Trägers nach unten ver-setzt. Der Versatz bei der hängenden Montage beträgt ebenfalls 155 mm, je-doch nach hinten. Angaben zur Säulenhöhe beziehen sich auf den Boden und

Abb. 4-10: Drehrichtung der Roboterachsen

Abb. 4-11: Arbeitsbereich KR 60 L45-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

die Fahrwagenmitte bei der seitlichen Montage oder auf die Anschraubfläche des Fahrwagens bei der hängenden Montage.

4.9 Auftragsspezifische Technische Daten

Gewichte

(Beispiel)

Abb. 4-12: Bezugsebene

1 Anschraubfläche 3 Trägermitte

2 Drehachse A2 4 Säulenhöhe

Bauteil Stück Einzelge-wicht kg

Gewicht kg

Säule 2 410 820

Träger 1 1188

Fundamente 2 230 460

Fahrwagen 1 215

KR 60-2 JET ROBOT 1 435 435

25 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

26 / 85

KR 30-2 JET; KR 60-2 JET

Hauptabmes-

sungen

4.10 Traglasten

Traglasten

Traglast-Schwer-

punkt P

Der Traglast-Schwerpunkt für alle Traglasten bezieht sich auf den Abstand zur Flanschfläche an der Achse 6. Nennabstand siehe Traglast-Diagramm.

Abb. 4-13: Hauptabmessungen (Beispiel)

Roboter KR 30 JET ROBOT

Zentralhand ZH 30, 45, 60

Nenn-Traglast 30 kg

Abstand des Traglast-Schwerpunkts Lz (vertikal) 180 mm

Abstand des Traglast-Schwerpunkts Lxy (hori-zontal)

150 mm

zulässiges Trägheitsmoment 9,0 kgm2

Max. Gesamtlast 65 kg

Zusatzlast Arm 35 kg

Zusatzlast Schwinge keine

Zusatzlast Karussell keine

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

Traglast-

Diagramm

Anbauflansch

Die Darstellung des Anbauflansches (>>> Abb. 4-15 ) entspricht seiner Lage bei Null-Stellung der Achsen 4 und 6. Das Symbol Xm kennzeichnet die Lage des Pass-Elements (Bohrbuchse) in Null-Stellung.

Abb. 4-14: Traglast-Diagramm KR 30 JET ROBOT

Diese Belastungskurve entspricht der äußersten Belast-barkeit. Es müssen immer beide Werte (Traglast und

Massenträgheitsmoment) geprüft werden. Ein Überschreiten geht in die Le-bensdauer des Roboters ein, überlastet Motoren und Getriebe und erfordert auf alle Fälle Rücksprache mit KUKA Roboter GmbH.Die hier ermittelten Werte sind für die Robotereinsatzplanung notwendig. Für die Inbetriebnahme des Roboters sind gemäß der Bedien- und Programmier-anleitung der KUKA System Software zusätzliche Eingabedaten erforderlich.Die Massenträgheiten müssen mit KUKA.Load überprüft werden. Die Einga-be der Lastdaten in die Robotersteuerung ist zwingend notwendig!

Anbauflansch DIN/ISO 9409-1-A100

Schraubenqualität 10.9

Schraubengröße M8

Klemmlänge 1,5 x Nenndurchmesser

Einschraubtiefe min. 12 mm, max. 14 mm

Pass-Element 8 H7

27 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

28 / 85

KR 30-2 JET; KR 60-2 JET

Zusatzlast Der Roboter kann Zusatzlasten auf dem Arm aufnehmen. Bei der Anbringung der Zusatzlasten ist auf die maximal zulässige Gesamtlast zu achten. Maße und Lage der Anbaumöglichkeiten sind der Abbildungen und zu entnehmen.

Abb. 4-15: Anbauflansch

1 Befestigungsschrauben M8, Qualität 10.9Einschraubtiefe:min. 12 mmmax. 14 mm

2 Ø63 H7

nutzbare Passungstiefe 6 mm

Abb. 4-16: Zusatzlast Arm

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

4.11 Traglasten

Traglasten

Traglast-Schwer-

punkt P

Der Traglast-Schwerpunkt für alle Traglasten bezieht sich auf den Abstand zur Flanschfläche an der Achse 6. Nennabstand siehe Traglast-Diagramm.

1 Mitte Befestigung Zusatz-last

4 Bohrung M8, 16 tief

2 Achse 3 5 Störkante Zusatzlast

3 Auflagefläche Zusatzlast

Roboter KR 60 JET ROBOT

Zentralhand ZH 30, 45, 60

Nenn-Traglast 60 kg

Abstand des Traglast-Schwerpunkts Lz (vertikal) 180 mm

Abstand des Traglast-Schwerpunkts Lxy (hori-zontal)

150 mm

zulässiges Trägheitsmoment 18,0 kgm2

Max. Gesamtlast 95 kg

Zusatzlast Arm 35 kg

Zusatzlast Schwinge keine

Zusatzlast Karussell keine

29 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

30 / 85

KR 30-2 JET; KR 60-2 JET

Traglast-

Diagramm

Anbauflansch

Die Darstellung des Anbauflansches (>>> Abb. 4-18 ) entspricht seiner Lage bei Null-Stellung der Achsen 4 und 6. Das Symbol Xm kennzeichnet die Lage des Pass-Elements (Bohrbuchse) in Null-Stellung.

Abb. 4-17: Traglast-Diagramm KR 60 JET ROBOT

Diese Belastungskurve entspricht der äußersten Belast-barkeit. Es müssen immer beide Werte (Traglast und

Massenträgheitsmoment) geprüft werden. Ein Überschreiten geht in die Le-bensdauer des Roboters ein, überlastet Motoren und Getriebe und erfordert auf alle Fälle Rücksprache mit KUKA Roboter GmbH.Die hier ermittelten Werte sind für die Robotereinsatzplanung notwendig. Für die Inbetriebnahme des Roboters sind gemäß der Bedien- und Programmier-anleitung der KUKA System Software zusätzliche Eingabedaten erforderlich.Die Massenträgheiten müssen mit KUKA.Load überprüft werden. Die Einga-be der Lastdaten in die Robotersteuerung ist zwingend notwendig!

Anbauflansch DIN/ISO 9409-1-A100

Schraubenqualität 10.9

Schraubengröße M8

Klemmlänge 1,5 x Nenndurchmesser

Einschraubtiefe min. 12 mm, max. 14 mm

Pass-Element 8 H7

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

Zusatzlast Der Roboter kann Zusatzlasten auf dem Arm aufnehmen. Bei der Anbringung der Zusatzlasten ist auf die maximal zulässige Gesamtlast zu achten. Maße und Lage der Anbaumöglichkeiten sind der Abbildungen und zu entnehmen.

Abb. 4-18: Anbauflansch

1 Befestigungsschrauben M8, Qualität 10.9Einschraubtiefe:min. 12 mmmax. 14 mm

2 Ø63 H7

nutzbare Passungstiefe 6 mm

Abb. 4-19: Zusatzlast Arm

31 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

32 / 85

KR 30-2 JET; KR 60-2 JET

4.12 Traglasten

Traglasten

Traglast-Schwer-

punkt P

Der Traglast-Schwerpunkt für alle Traglasten bezieht sich auf den Abstand zur Flanschfläche an der Achse 6. Nennabstand siehe Traglast-Diagramm.

1 Mitte Befestigung Zusatz-last

4 Bohrung M8, 16 tief

2 Achse 3 5 Störkante Zusatzlast

3 Auflagefläche Zusatzlast

Roboter KR 60 L30 JET ROBOT

Zentralhand ZH 30, 45, 60

Nenn-Traglast 30 kg

Abstand des Traglast-Schwerpunkts Lz (vertikal)

180 mm

Abstand des Traglast-Schwerpunkts Lxy (horizontal)

150 mm

zulässiges Trägheitsmoment 9,0 kgm2

Max. Gesamtlast 65 kg

Zusatzlast Arm 35 kg

Zusatzlast Schwinge keine

Zusatzlast Karussell keine

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

Traglast-

Diagramm

Anbauflansch

Die Darstellung des Anbauflansches (>>> Abb. 4-21 ) entspricht seiner Lage bei Null-Stellung der Achsen 4 und 6. Das Symbol Xm kennzeichnet die Lage des Pass-Elements (Bohrbuchse) in Null-Stellung.

Abb. 4-20: Traglast-Diagramm KR 60 L30 JET ROBOT

Diese Belastungskurve entspricht der äußersten Belast-barkeit. Es müssen immer beide Werte (Traglast und

Massenträgheitsmoment) geprüft werden. Ein Überschreiten geht in die Le-bensdauer des Roboters ein, überlastet Motoren und Getriebe und erfordert auf alle Fälle Rücksprache mit KUKA Roboter GmbH.Die hier ermittelten Werte sind für die Robotereinsatzplanung notwendig. Für die Inbetriebnahme des Roboters sind gemäß der Bedien- und Programmier-anleitung der KUKA System Software zusätzliche Eingabedaten erforderlich.Die Massenträgheiten müssen mit KUKA.Load überprüft werden. Die Einga-be der Lastdaten in die Robotersteuerung ist zwingend notwendig!

Anbauflansch DIN/ISO 9409-1-A100

Schraubenqualität 10.9

Schraubengröße M8

Klemmlänge 1,5 x Nenndurchmesser

Einschraubtiefe min. 12 mm, max. 14 mm

Pass-Element 8 H7

33 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

34 / 85

KR 30-2 JET; KR 60-2 JET

Zusatzlast Der Roboter kann Zusatzlasten auf dem Arm aufnehmen. Bei der Anbringung der Zusatzlasten ist auf die maximal zulässige Gesamtlast zu achten. Maße und Lage der Anbaumöglichkeiten sind der Abbildungen und zu entnehmen.

Abb. 4-21: Anbauflansch

1 Befestigungsschrauben M8, Qualität 10.9Einschraubtiefe:min. 12 mmmax. 14 mm

2 Ø63 H7

nutzbare Passungstiefe 6 mm

Abb. 4-22: Zusatzlast Arm

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

4.13 Traglasten

Traglasten

Traglast-Schwer-

punkt P

Der Traglast-Schwerpunkt für alle Traglasten bezieht sich auf den Abstand zur Flanschfläche an der Achse 6. Nennabstand siehe Traglast-Diagramm.

1 Mitte Befestigung Zusatz-last

4 Bohrung M8, 16 tief

2 Achse 3 5 Störkante Zusatzlast

3 Auflagefläche Zusatzlast

Roboter KR 60 L45 JET ROBOT

Zentralhand ZH 30, 45, 60

Nenn-Traglast 45 kg

Abstand des Traglast-Schwerpunkts Lz (verti-kal)

180 mm

Abstand des Traglast-Schwerpunkts Lxy (hori-zontal)

150 mm

zulässiges Trägheitsmoment 13,5 kgm2

Max. Gesamtlast 80 kg

Zusatzlast Arm 35 kg

Zusatzlast Schwinge keine

Zusatzlast Karussell keine

35 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

36 / 85

KR 30-2 JET; KR 60-2 JET

Traglast-

Diagramm

Anbauflansch

Die Darstellung des Anbauflansches (>>> Abb. 4-24 ) entspricht seiner Lage bei Null-Stellung der Achsen 4 und 6. Das Symbol Xm kennzeichnet die Lage des Pass-Elements (Bohrbuchse) in Null-Stellung.

Abb. 4-23: Traglast-Diagramm KR 60 L45 JET ROBOT

Diese Belastungskurve entspricht der äußersten Belast-barkeit. Es müssen immer beide Werte (Traglast und

Massenträgheitsmoment) geprüft werden. Ein Überschreiten geht in die Le-bensdauer des Roboters ein, überlastet Motoren und Getriebe und erfordert auf alle Fälle Rücksprache mit KUKA Roboter GmbH.Die hier ermittelten Werte sind für die Robotereinsatzplanung notwendig. Für die Inbetriebnahme des Roboters sind gemäß der Bedien- und Programmier-anleitung der KUKA System Software zusätzliche Eingabedaten erforderlich.Die Massenträgheiten müssen mit KUKA.Load überprüft werden. Die Einga-be der Lastdaten in die Robotersteuerung ist zwingend notwendig!

Anbauflansch DIN/ISO 9409-1-A100

Schraubenqualität 10.9

Schraubengröße M8

Klemmlänge 1,5 x Nenndurchmesser

Einschraubtiefe min. 12 mm, max. 14 mm

Pass-Element 8 H7

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

Zusatzlast Der Roboter kann Zusatzlasten auf dem Arm aufnehmen. Bei der Anbringung der Zusatzlasten ist auf die maximal zulässige Gesamtlast zu achten. Maße und Lage der Anbaumöglichkeiten sind der Abbildungen und zu entnehmen.

Abb. 4-24: Anbauflansch

1 Befestigungsschrauben M8, Qualität 10.9Einschraubtiefe:min. 12 mmmax. 14 mm

2 Ø63 H7

nutzbare Passungstiefe 6 mm

Abb. 4-25: Zusatzlast Arm

37 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

38 / 85

KR 30-2 JET; KR 60-2 JET

4.14 Fundamentlasten

Fundamentlasten Die angegebenen Kräfte und Momente enthalten bereits die Traglast und die Massenkraft (Gewicht) des Roboters.

Einbaulage,

hängend

Bei Achsmodul-Längen ab 6 m, müssen Zwischensäulen montiert werden. Die Anzahl der Zwischensäulen hängt von der Länge des Portals ab. Die fol-genden Tabellen zeigen, welchen Abstand die Säulen maximal voneinander haben dürfen.

Säulenabstand bei einem Fahrwagen

Säulenabstand bei zwei Fahrwagen

1 Mitte Befestigung Zusatz-last

4 Bohrung M8, 16 tief

2 Achse 3 5 Störkante Zusatzlast

3 Auflagefläche Zusatzlast

Abb. 4-26: Fundamentlasten

Die in der Tabelle angegebenen Fundamentlasten sind die maximal auftretenden Lasten. Sie müssen zur Be-

rechnung der Fundamente herangezogen werden und sind aus Sicherheits-gründen zwingend einzuhalten. Die Zusatzlasten am Karussell sind in der Fundamentbelastung nicht berück-sichtigt. Diese Zusatzlasten müssen bei Fx noch berücksichtigt werden.

L1 L2 - Ln

2 Säulen 6,5 m ---

3 - n Säulen 6,5 m 6,5 m

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

Einbaulage,

seitlich

Bei Achsmodul-Längen ab 6 m, müssen Zwischensäulen montiert werden. Die Anzahl der Zwischensäulen hängt von der Länge des Trägers ab. Die fol-genden Tabellen zeigen, welchen Abstand die Säulen maximal voneinander haben dürfen.

Säulenabstand bei einem Fahrwagen

Säulenabstand bei zwei Fahrwagen

L1 L2 - L11

2 Säulen 6,5 m ---

3 - 12 Säulen 6,5 m 6,5 m

Art der BelastungKraft/Moment/Masse

1 Fahrwagen 2 Fahrwagen

Fz = Vertikale Kraft -Fzmax = -36 700 N -Fzmax = -48 500 N

Fx = Horizontale Kraft -Fxmax = -2 900 N

+Fxmax = +2 900 N

-Fxmax = -5 800 N

+Fxmax = +5 800 N

Fy = Horizontale Kraft -Fymax = -13 900 N

+Fymax = +13 900 N

-Fymax = -27 800 N

+Fymax = +27 800 N

Mz = Kippmoment -Mzmax = -1 000 Nm

+Mzmax = +1 000 Nm

-Mzmax = -1 400 Nm

+Mzmax = +1 400 Nm

Mx = Drehmoment -Mxmax = -32 600 Nm

+Mxmax = +32 600 Nm

-Mxmax = -66 700 Nm

+Mxmax = +66 700 Nm

My = Drehmoment -Mymax = -13 400 Nm

+Mymax = +13 400 Nm

-Mymax = -23 600 Nm

+Mymax = +23 600 Nm

Gewicht JET TRACK (>>> 4.9 "Auftragsspezifische Technische Daten" Seite 25)

Gewicht Roboter (>>> 4.9 "Auftragsspezifische Technische Daten" Seite 25)

Gesamtlast für Funda-mentbelastung

(>>> 4.9 "Auftragsspezifische Technische Daten" Seite 25)

L1 L2 - L5

2 Säulen 6,5 m ---

3 - 2 Säulen 6,5 m 6,5 m

L1 L2 - L6

2 Säulen 6,5 m ---

3 - 7 Säulen 6,5 m 6,5 m

Art der BelastungKraft/Moment/Masse

1 Fahrwagen 2 Fahrwagen

Fz = Vertikale Kraft -Fzmax = -48 000 N -Fzmax = -62 900 N

Fx = Horizontale Kraft -Fxmax = -2 900 N

+Fxmax =+ 2 900 N

-Fxmax = -5 800 N

+Fxmax = +5 800 N

39 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

40 / 85

KR 30-2 JET; KR 60-2 JET

4.15 Schilder

Schilder Folgende Schilder sind am Roboter angebracht. Sie dürfen nicht entfernt oder unkenntlich gemacht werden. Unleserliche Schilder müssen ersetzt werden.

Fy = Horizontale Kraft -Fymax = -8 300 N

+Fymax = +8 300 N

-Fymax = -16 600 N

+Fymax = +16 600 N

Mz = Kippmoment -Mzmax = -2 300 Nm

+Mzmax = +2 300 Nm

-Mzmax = -9 200 Nm

+Mzmax = +9 200 Nm

Mx = Drehmoment -Mxmax = -19 800 Nm

+Mxmax = +19 800 Nm

-Mxmax = -39 300 Nm

+Mxmax = +39 300 Nm

My = Drehmoment -Mymax = -26 400 Nm

+Mymax = 26 400 Nm

-Mymax = -48 000 Nm

+Mymax = +48 000 Nm

Gewicht JET TRACK (>>> 4.9 "Auftragsspezifische Technische Daten" Seite 25)

Gewicht Roboter (>>> 4.9 "Auftragsspezifische Technische Daten" Seite 25)

Gesamtlast für Funda-mentbelastung

(>>> 4.9 "Auftragsspezifische Technische Daten" Seite 25)

Art der BelastungKraft/Moment/Masse

1 Fahrwagen 2 Fahrwagen

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

4.16 Anhaltewege und Anhaltezeiten

4.16.1 Allgemeine Hinweise

Angaben zu den Daten:

Der Anhalteweg ist der Winkel, den der Roboter vom Auslösen des Stopp-signals bis zum völligen Stillstand zurücklegt.

Die Anhaltezeit ist die Zeit, die vom Auslösen des Stoppsignals bis zum völligen Stillstand des Roboters verstreicht.

Abb. 4-27: Schilder

41 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

42 / 85

KR 30-2 JET; KR 60-2 JET

Die Daten sind für die Grundachsen A1, A2 und A3 dargestellt. Die Grund-achsen sind die Achsen mit der größten Auslenkung.

Überlagerte Achsbewegungen können zu verlängerten Anhaltewegen führen.

Nachlaufwege und Nachlaufzeiten gemäß DIN EN ISO 10218-1, An-hang B.

Stopp-Kategorien:

Stopp-Kategorie 0 » STOP 0

Stopp-Kategorie 1 » STOP 1

gemäß IEC 60204-1

Die angegebenen Werte für Stopp 0 sind durch Versuch und Simulation ermittelte Richtwerte. Sie sind Mittelwerte und erfüllen die Anforderungen gemäß der DIN EN ISO 10218-1. Die tatsächlichen Anhaltewege und An-haltezeiten können wegen innerer und äußerer Einflüsse auf das Brems-moment abweichen. Es wird deshalb empfohlen, bei Bedarf die Anhaltewege und die Anhaltezeiten unter realen Bedingungen vor Ort beim Robotereinsatz zu ermitteln.

Messverfahren

Die Anhaltewege wurden durch das roboterinterne Messverfahren gemes-sen.

Je nach Betriebsart, Robotereinsatz und Anzahl der ausgelösten STOP 0 kann ein unterschiedlicher Bremsenverschleiß auftreten. Es wird daher empfohlen, den Anhalteweg mindestens jährlich zu überprüfen.

4.16.2 Verwendete Begriffe

Begriff Beschreibung

m Masse von Nennlast und Zusatzlast auf dem Arm.

Phi Drehwinkel (°) um die jeweilige Achse. Dieser Wert kann über das KCP in die Steuerung eingegeben und abgelesen werden.

POV Programm-Override (%) = Verfahrgeschwindigkeit des Roboters. Dieser Wert kann über das KCP in die Steu-erung eingegeben und abgelesen werden.

Ausladung Abstand (l in %) (>>> Abb. 4-28 ) zwischen Achse 1 und dem Schnittpunkt der Achsen 4 und 5. Bei Paralle-logramm-Robotern der Abstand zwischen Achse 1 und dem Schnittpunkt von Achse 6 und Anbauflanschflä-che.

KCP Das Programmierhandgerät KCP hat alle Bedien- und Anzeigemöglichkeiten, die für die Bedienung und Pro-grammierung des Robotersystems benötigt werden.

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

4.16.3 Anhaltewege und Anhaltezeiten STOP 0, Achse 1 bis Achse 3

Die Tabelle stellt die Anhaltewege und Anhaltezeiten beim Auslösen eines STOP 0 der Stopp-Kategorie 0 dar. Die Werte beziehen sich auf folgende Konfiguration:

Ausladung l = 100 %

Programmoverride POV = 100 %

Masse m = Maximallast (Nennlast + Zusatzlast auf dem Arm)

Abb. 4-28: Ausladung

Anhalteweg (°)Anhalteweg

(mm)Anhaltezeit (s)

Achse 1 (linear) 780 0,470

Achse 2 63,22 0,735

Achse 3 38,42 0,369

43 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

44 / 85

KR 30-2 JET; KR 60-2 JET

4.16.4 Anhaltewege und Anhaltezeiten STOP 1, Achse 1

Abb. 4-29: Anhaltewege STOP 1, Achse 1

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

Abb. 4-30: Anhaltezeiten STOP 1, Achse 1

45 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

46 / 85

KR 30-2 JET; KR 60-2 JET

4.16.5 Anhaltewege und Anhaltezeiten STOP 1, Achse 2

Abb. 4-31: Anhaltewege STOP 1, Achse 2

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

4 Technische Daten

Abb. 4-32: Anhaltezeiten STOP 1, Achse 2

47 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

48 / 85

KR 30-2 JET; KR 60-2 JET

4.16.6 Anhaltewege und Anhaltezeiten STOP 1, Achse 3

Abb. 4-33: Anhaltewege STOP 1, Achse 3

Abb. 4-34: Anhaltezeiten STOP 1, Achse 3

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

5 Sicherheit

5 Sicherheit

5.1 Allgemein

5.1.1 Haftungshinweis

Das im vorliegenden Dokument beschriebene Gerät ist entweder ein Indust-rieroboter oder eine Komponente davon.

Komponenten des Industrieroboters:

Manipulator

Robotersteuerung

Programmierhandgerät

Verbindungsleitungen

Zusatzachsen (optional)

z. B. Lineareinheit, Drehkipptisch, Positionierer

Software

Optionen, Zubehör

Der Industrieroboter ist nach dem Stand der Technik und den anerkannten si-cherheitstechnischen Regeln gebaut. Dennoch können bei Fehlanwendung Gefahren für Leib und Leben und Beeinträchtigungen des Industrieroboters und anderer Sachwerte entstehen.

Der Industrieroboter darf nur in technisch einwandfreiem Zustand sowie be-stimmungsgemäß, sicherheits- und gefahrenbewusst benutzt werden. Die Be-nutzung muss unter Beachtung des vorliegenden Dokuments und der dem Industrieroboter bei Lieferung beigefügten Einbauerklärung erfolgen. Störun-gen, die die Sicherheit beeinträchtigen können, müssen umgehend beseitigt werden.

Sicherheitsinfor-

mation

Angaben zur Sicherheit können nicht gegen die KUKA Roboter GmbH ausge-legt werden. Auch wenn alle Sicherheitshinweise befolgt werden, ist nicht ge-währleistet, dass der Industrieroboter keine Verletzungen oder Schäden verursacht.

Ohne Genehmigung der KUKA Roboter GmbH dürfen keine Veränderungen am Industrieroboter durchgeführt werden. Zusätzliche Komponenten (Werk-zeuge, Software etc.), die nicht zum Lieferumfang der KUKA Roboter GmbH gehören, können in den Industrieroboter integriert werden. Wenn durch diese Komponenten Schäden am Industrieroboter oder an anderen Sachwerten ent-stehen, haftet dafür der Betreiber.

t

Das vorliegende Kapitel "Sicherheit" bezieht sich auf eine mechani-sche Komponente eines Industrieroboters.

Wenn die mechanische Komponente zusammen mit einer KUKA-Robotersteuerung eingesetzt wird, dann muss das Kapitel "Sicherheit" der Betriebs- oder Montageanleitung der Robotersteuerung verwendet werden!

Dieses enthält alle Informationen aus dem vorliegenden Kapitel "Sicher-heit". Zusätzlich enthält es Sicherheitsinformationen mit Bezug auf die Robotersteuerung, die unbedingt beachtet werden müssen.

Wenn im vorliegenden Kapitel "Sicherheit" der Begriff "Industrieroboter" verwendet wird, ist damit auch die einzelne mechanische Komponente gemeint, wenn anwendbar.

49 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

50 / 85

KR 30-2 JET; KR 60-2 JET

Ergänzend zum Sicherheitskapitel sind in dieser Dokumentation weitere Si-cherheitshinweise enthalten. Diese müssen ebenfalls beachtet werden.

5.1.2 Bestimmungsgemäße Verwendung des Industrieroboters

Der Industrieroboter ist ausschließlich für die in der Betriebsanleitung oder der Montageanleitung im Kapitel "Zweckbestimmung" genannte Verwendung be-stimmt.

Alle von der bestimmungsgemäßen Verwendung abweichenden Anwendun-gen gelten als Fehlanwendung und sind unzulässig. Für Schäden, die aus ei-ner Fehlanwendung resultieren, haftet der Hersteller nicht. Das Risiko trägt allein der Betreiber.

Zur bestimmungsgemäßen Verwendung des Industrieroboters gehört auch die Beachtung der Betriebs- und Montageanleitungen der einzelnen Kompo-nenten und besonders die Befolgung der Wartungsvorschriften.

Fehlanwendung Alle von der bestimmungsgemäßen Verwendung abweichenden Anwendun-gen gelten als Fehlanwendung und sind unzulässig. Dazu zählen z. B.:

Transport von Menschen und Tieren

Benutzung als Aufstiegshilfen

Einsatz außerhalb der spezifizierten Betriebsgrenzen

Einsatz in explosionsgefährdeter Umgebung

Einsatz ohne zusätzliche Schutzeinrichtungen

Einsatz im Freien

Einsatz unter Tage

5.1.3 EG-Konformitätserklärung und Einbauerklärung

Der Industrieroboter ist eine unvollständige Maschine im Sinne der EG-Ma-schinenrichtlinie. Der Industrieroboter darf nur unter den folgenden Vorausset-zungen in Betrieb genommen werden:

Der Industrieroboter ist in eine Anlage integriert.

Oder: Der Industrieroboter bildet mit anderen Maschinen eine Anlage.

Oder: Am Industrieroboter wurden alle Sicherheitsfunktionen und Schutz-einrichtungen ergänzt, die für eine vollständige Maschine im Sinne der EG-Maschinenrichtlinie notwendig sind.

Die Anlage entspricht der EG-Maschinenrichtlinie. Dies wurde durch ein Konformitäts-Bewertungsverfahren festgestellt.

Konformitätser-

klärung

Der Systemintegrator muss eine Konformitätserklärung gemäß der Maschi-nenrichtlinie für die gesamte Anlage erstellen. Die Konformitätserklärung ist Grundlage für die CE-Kennzeichnung der Anlage. Der Industrieroboter darf nur nach landesspezifischen Gesetzen, Vorschriften und Normen betrieben werden.

Die Robotersteuerung besitzt eine CE-Zertifizierung gemäß der EMV-Richtli-nie und der Niederspannungsrichtlinie.

Einbauerklärung Die unvollständige Maschine wird mit einer Einbauerklärung nach Anhang II B der Maschinenrichtlinie 2006/42/EG ausgeliefert. Bestandteile der Einbauer-klärung sind eine Liste mit den eingehaltenen grundlegenden Anforderungen nach Anhang I und die Montageanleitung.

Mit der Einbauerklärung wird erklärt, dass die Inbetriebnahme der unvollstän-digen Maschine solange unzulässig bleibt, bis die unvollständige Maschine in eine Maschine eingebaut, oder mit anderen Teilen zu einer Maschine zusam-

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

5 Sicherheit

mengebaut wurde, diese den Bestimmungen der EG-Maschinenrichtlinie ent-spricht und die EG-Konformitätserklärung gemäß Anhang II A vorliegt.

5.1.4 Verwendete Begriffe

Begriff Beschreibung

Achsbereich Bereich jeder Achse in Grad oder Millimeter, in dem sie sich bewegen darf. Der Achsbereich muss für jede Achse definiert werden.

Anhalteweg Anhalteweg = Reaktionsweg + Bremsweg

Der Anhalteweg ist Teil des Gefahrenbereichs.

Arbeitsbereich Im Arbeitsbereich darf sich der Manipulator bewegen. Der Arbeitsbe-reich ergibt sich aus den einzelnen Achsbereichen.

Betreiber(Benutzer)

Der Betreiber eines Industrieroboters kann der Unternehmer, Arbeitge-ber oder die delegierte Person sein, die für die Benutzung des Industrie-roboters verantwortlich ist.

Gefahrenbereich Der Gefahrenbereich beinhaltet den Arbeitsbereich und die Anhalte-wege.

Gebrauchsdauer Die Gebrauchsdauer eines sicherheitsrelevanten Bauteils beginnt ab dem Zeitpunkt der Lieferung des Teils an den Kunden.

Die Gebrauchsdauer wird nicht beeinflusst davon, ob das Teil in einer Robotersteuerung oder anderweitig betrieben wird oder nicht, da sicher-heitsrelevante Bauteile auch während der Lagerung altern.

KCP KUKA Control Panel

Programmierhandgerät für die KR C2/KR C2 edition2005

Das KCP hat alle Bedien- und Anzeigemöglichkeiten, die für die Bedie-nung und Programmierung des Industrieroboters benötigt werden.

KUKA smartPAD siehe "smartPAD"

Manipulator Die Robotermechanik und die zugehörige Elektroinstallation

Schutzbereich Der Schutzbereich befindet sich außerhalb des Gefahrenbereichs.

smartPAD Programmierhandgerät für die KR C4

Das smartPAD hat alle Bedien- und Anzeigemöglichkeiten, die für die Bedienung und Programmierung des Industrieroboters benötigt werden.

Stopp-Kategorie 0 Die Antriebe werden sofort abgeschaltet und die Bremsen fallen ein. Der Manipulator und die Zusatzachsen (optional) bremsen bahnnah.

Hinweis: Diese Stopp-Kategorie wird im Dokument als STOP 0 bezeichnet.

Stopp-Kategorie 1 Der Manipulator und die Zusatzachsen (optional) bremsen bahntreu. Nach 1 s werden die Antriebe abgeschaltet und die Bremsen fallen ein.

Hinweis: Diese Stopp-Kategorie wird im Dokument als STOP 1 bezeichnet.

Stopp-Kategorie 2 Die Antriebe werden nicht abgeschaltet und die Bremsen fallen nicht ein. Der Manipulator und die Zusatzachsen (optional) bremsen mit einer normalen Bremsrampe.

Hinweis: Diese Stopp-Kategorie wird im Dokument als STOP 2 bezeichnet.

Systemintegrator(Anlagenintegrator)

Systemintegratoren sind Personen, die den Industrieroboter sicherheits-gerecht in eine Anlage integrieren und in Betrieb nehmen.

T1 Test-Betriebsart Manuell Reduzierte Geschwindigkeit (<= 250 mm/s)

51 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

52 / 85

KR 30-2 JET; KR 60-2 JET

5.2 Personal

Folgende Personen oder Personengruppen werden für den Industrieroboter definiert:

Betreiber

Personal

Betreiber Der Betreiber muss die arbeitsschutzrechtlichen Vorschriften beachten. Dazu gehört z. B.:

Der Betreiber muss seinen Überwachungspflichten nachkommen.

Der Betreiber muss in festgelegten Abständen Unterweisungen durchfüh-ren.

Personal Das Personal muss vor Arbeitsbeginn über Art und Umfang der Arbeiten so-wie über mögliche Gefahren belehrt werden. Die Belehrungen sind regelmä-ßig durchzuführen. Die Belehrungen sind außerdem jedes Mal nach besonderen Vorfällen oder nach technischen Änderungen durchzuführen.

Zum Personal zählen:

der Systemintegrator

die Anwender, unterteilt in:

Inbetriebnahme-, Wartungs- und Servicepersonal

Bediener

Reinigungspersonal

Systemintegrator Der Industrieroboter ist durch den Systemintegrator sicherheitsgerecht in eine Anlage zu integrieren.

Der Systemintegrator ist für folgende Aufgaben verantwortlich:

Aufstellen des Industrieroboters

Anschluss des Industrieroboters

Durchführen der Risikobeurteilung

Einsatz der notwendigen Sicherheitsfunktionen und Schutzeinrichtungen

Ausstellen der Konformitätserklärung

Anbringen des CE-Zeichens

Erstellung der Betriebsanleitung für die Anlage

Anwender Der Anwender muss folgende Voraussetzungen erfüllen:

Der Anwender muss für die auszuführenden Arbeiten geschult sein.

T2 Test-Betriebsart Manuell Hohe Geschwindigkeit (> 250 mm/s zulässig)

Zusatzachse Bewegungsachse, die nicht zum Manipulator gehört, aber mit der Robo-tersteuerung angesteuert wird. Z. B. KUKA Lineareinheit, Drehkipptisch, Posiflex

Begriff Beschreibung

Alle Personen, die am Industrieroboter arbeiten, müssen die Doku-mentation mit dem Sicherheitskapitel des Industrieroboters gelesen und verstanden haben.

Aufstellung, Austausch, Einstellung, Bedienung, Wartung und In-standsetzung dürfen nur nach Vorschrift der Betriebs- oder Monta-geanleitung der jeweiligen Komponente des Industrieroboters und

von hierfür speziell ausgebildetem Personal durchgeführt werden.

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

5 Sicherheit

Tätigkeiten am Industrieroboter darf nur qualifiziertes Personal durchfüh-ren. Dies sind Personen, die aufgrund ihrer fachlichen Ausbildung, Kennt-nisse und Erfahrungen sowie aufgrund ihrer Kenntnis der einschlägigen Normen die auszuführenden Arbeiten beurteilen und mögliche Gefahren erkennen können.

5.3 Arbeits-, Schutz- und Gefahrenbereich

Arbeitsbereiche müssen auf das erforderliche Mindestmaß beschränkt wer-den. Ein Arbeitsbereich ist mit Schutzeinrichtungen abzusichern.

Die Schutzeinrichtungen (z. B. Schutztüre) müssen sich im Schutzbereich be-finden. Bei einem Stopp bremsen Manipulator und Zusatzachsen (optional) und kommen im Gefahrenbereich zu stehen.

Der Gefahrenbereich beinhaltet den Arbeitsbereich und die Anhaltewege des Manipulators und der Zusatzachsen (optional). Sie sind durch trennende Schutzeinrichtungen zu sichern, um eine Gefährdung von Personen oder Sa-chen auszuschließen.

5.4 Übersicht Schutzausstattung

Die Schutzausstattung der mechanischen Komponente kann umfassen:

Mechanische Endanschläge

Mechanische Achsbereichsbegrenzung (Option)

Achsbereichsüberwachung (Option)

Freidreh-Vorrichtung (Option)

Kennzeichnungen von Gefahrenstellen

Nicht jede Ausstattung ist auf jede mechanische Komponente anwendbar.

5.4.1 Mechanische Endanschläge

Die Achsbereiche der Grund- und Handachsen des Manipulators sind je nach Robotervariante teilweise durch mechanische Endanschläge begrenzt.

An den Zusatzachsen können weitere mechanische Endanschläge montiert sein.

5.4.2 Mechanische Achsbereichsbegrenzung (Option)

Einige Manipulatoren können in den Achsen A1 bis A3 mit mechanischen Achsbereichsbegrenzungen ausgerüstet werden. Die verstellbaren Achsbe-reichsbegrenzungen beschränken den Arbeitsbereich auf das erforderliche Minimum. Damit wird der Personen- und Anlagenschutz erhöht.

Bei Manipulatoren, die nicht für die Ausrüstung mit mechanischen Achsbe-reichsbegrenzungen vorgesehen sind, ist der Arbeitsraum so zu gestalten,

Arbeiten an der Elektrik und Mechanik des Industrieroboters dürfen nur von Fachkräften vorgenommen werden.

Wenn der Manipulator oder eine Zusatzachse gegen ein Hindernis oder einen mechanischen Endanschlag oder

die Achsbereichsbegrenzung fährt, kann der Manipulator nicht mehr sicher betrieben werden. Der Manipulator muss außer Betrieb gesetzt werden und vor der Wiederinbetriebnahme ist Rücksprache mit der KUKA Roboter GmbH erforderlich (>>> 9 "KUKA Service" Seite 75).

53 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

54 / 85

KR 30-2 JET; KR 60-2 JET

dass auch ohne mechanische Arbeitsbereichsbegrenzungen keine Gefähr-dung von Personen oder Sachen eintreten kann.

Wenn dies nicht möglich ist, muss der Arbeitsbereich durch anlagenseitige Lichtschranken, Lichtvorhänge oder Hindernisse begrenzt werden. An Einle-ge- und Übergabebereichen dürfen keine Scher- und Quetschstellen entste-hen.

5.4.3 Achsbereichsüberwachung (Option)

Einige Manipulatoren können in den Grundachsen A1 bis A3 mit 2-kanaligen Achsbereichsüberwachungen ausgerüstet werden. Die Positioniererachsen können mit weiteren Achsbereichsüberwachungen ausgerüstet sein. Mit einer Achsbereichsüberwachung kann für eine Achse der Schutzbereich eingestellt und überwacht werden. Damit wird der Personen- und Anlagenschutz erhöht.

5.4.4 Möglichkeiten zum Bewegen des Manipulators ohne Antriebsenergie

Beschreibung Um den Manipulator nach einem Unfall oder Störfall ohne Antriebsenergie zu bewegen, stehen folgende Möglichkeiten zur Verfügung:

Freidreh-Vorrichtung (Option)

Die Freidreh-Vorrichtung kann für die Grundachs-Antriebsmotoren und je nach Robotervariante auch für die Handachs-Antriebsmotoren verwendet werden.

Bremsenöffnungs-Gerät (Option)

Das Bremsenöffnungs-Gerät ist für Robotervarianten bestimmt, deren Motoren nicht frei zugänglich sind.

Handachsen direkt mit der Hand bewegen

Bei Varianten der niedrigen Traglastklasse steht für die Handachsen keine Freidreh-Vorrichtung zur Verfügung. Diese ist nicht notwendig, da die Handachsen direkt mit der Hand bewegt werden können.

Diese Option ist nicht für alle Robotermodelle verfügbar. Informatio-nen zu bestimmten Robotermodellen können bei der KUKA Roboter GmbH erfragt werden.

Diese Option ist für die KR C4 nicht verfügbar. Diese Option ist nicht für alle Robotermodelle verfügbar. Informationen zu bestimmten Ro-botermodellen können bei der KUKA Roboter GmbH erfragt werden.

Der Betreiber der Anlage muss dafür Sorge tragen, dass die Ausbil-dung des Personals hinsichtlich des Verhaltens in Notfällen oder au-ßergewöhnlichen Situationen auch umfasst, wie der Manipulator

ohne Antriebsenergie bewegt werden kann.

Informationen dazu, welche Möglichkeiten für welche Robotermodel-le verfügbar sind und wie sie anzuwenden sind, sind in der Montage- oder Betriebsanleitung für den Roboter zu finden oder können bei der

KUKA Roboter GmbH erfragt werden.

Wenn der Manipulator ohne Antriebsenergie bewegt wird, kann dies die Motorbremsen der betroffenen Ach-

sen beschädigen. Wenn die Bremse beschädigt wurde, muss der Motor ge-tauscht werden. Der Manipulator darf deshalb nur in Notfällen ohne Antriebsenergie bewegt werden, z. B. zur Befreiung von Personen.

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

5 Sicherheit

5.4.5 Kennzeichnungen am Industrieroboter

Alle Schilder, Hinweise, Symbole und Markierungen sind sicherheitsrelevante Teile des Industrieroboters. Sie dürfen nicht verändert oder entfernt werden.

Kennzeichnungen am Industrieroboter sind:

Leistungsschilder

Warnhinweise

Sicherheitssymbole

Bezeichnungsschilder

Leitungsmarkierungen

Typenschilder

5.5 Sicherheitsmaßnahmen

5.5.1 Allgemeine Sicherheitsmaßnahmen

Der Industrieroboter darf nur in technisch einwandfreiem Zustand sowie be-stimmungsgemäß und sicherheitsbewusst benutzt werden. Bei Fehlhandlun-gen können Personen- und Sachschäden entstehen.

Auch bei ausgeschalteter und gesicherter Robotersteuerung ist mit möglichen Bewegungen des Industrieroboters zu rechnen. Durch falsche Montage (z. B. Überlast) oder mechanische Defekte (z. B. Bremsdefekt) können Manipulator oder Zusatzachsen absacken. Wenn am ausgeschalteten Industrieroboter ge-arbeitet wird, sind Manipulator und Zusatzachsen vorher so in Stellung zu brin-gen, dass sie sich mit und ohne Traglast nicht selbständig bewegen können. Wenn das nicht möglich ist, müssen Manipulator und Zusatzachsen entspre-chend abgesichert werden.

KCP/smartPAD Der Betreiber hat sicherzustellen, dass der Industrieroboter mit dem KCP/smartPAD nur von autorisierten Personen bedient wird.

Wenn mehrere KCPs/smartPADs an einer Anlage verwendet werden, muss darauf geachtet werden, dass jedes Gerät dem zugehörigen Industrieroboter eindeutig zugeordnet ist. Es darf keine Verwechslung stattfinden.

Weitere Informationen sind in den Technischen Daten der Betriebs-anleitungen oder Montageanleitungen der Komponenten des Indust-rieroboters zu finden.

Der Industrieroboter kann ohne funktionsfähige Sicher-heitsfunktionen und Schutzeinrichtungen Personen-

oder Sachschaden verursachen. Wenn Sicherheitsfunktionen oder Schutz-einrichtungen deaktiviert oder demontiert sind, darf der Industrieroboter nicht betrieben werden.

Der Aufenthalt unter der Robotermechanik kann zum Tod oder zu Verletzungen führen. Aus diesem Grund ist

der Aufenthalt unter der Robotermechanik verboten!

Die Motoren erreichen während des Betriebs Tempera-turen, die zu Hautverbrennungen führen können. Berüh-

rungen sind zu vermeiden. Es sind geeignete Schutzmaßnahmen zu ergreifen, z. B. Schutzhandschuhe tragen.

55 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

56 / 85

KR 30-2 JET; KR 60-2 JET

Externe Tastatur,

externe Maus

Eine externe Tastatur und/oder eine externe Maus darf nur unter folgenden Voraussetzungen verwendet werden:

Inbetriebnahme- oder Wartungsarbeiten werden durchgeführt.

Die Antriebe sind abgeschaltet.

Im Gefahrenbereich halten sich keine Personen auf.

Das KCP/smartPAD darf nicht benutzt werden, solange eine externe Tastatur und/oder eine externe Maus am Steuerschrank angeschlossen sind.

Die externe Tastatur und/oder die externe Maus sind vom Steuerschrank zu entfernen, sobald die Inbetriebnahme- oder Wartungsarbeiten abgeschlossen sind oder das KCP/smartPAD angeschlossen wird.

Änderungen Nach Änderungen am Industrieroboter muss geprüft werden, ob das erforder-liche Sicherheitsniveau gewährleistet ist. Für diese Prüfung sind die geltenden staatlichen oder regionalen Arbeitsschutzvorschriften zu beachten. Zusätzlich sind alle Sicherheitsfunktionen auf ihre sichere Funktion zu testen.

Neue oder geänderte Programme müssen immer zuerst in der Betriebsart Ma-nuell Reduzierte Geschwindigkeit (T1) getestet werden.

Nach Änderungen am Industrieroboter müssen bestehende Programme im-mer zuerst in der Betriebsart Manuell Reduzierte Geschwindigkeit (T1) getes-tet werden. Dies gilt für sämtliche Komponenten des Industrieroboters und schließt damit auch Änderungen an Software und Konfigurationseinstellungen ein.

Störungen Bei Störungen am Industrieroboter ist wie folgt vorzugehen:

Robotersteuerung ausschalten und gegen unbefugtes Wiedereinschalten (z. B. mit einem Vorhängeschloss) sichern.

Störung durch ein Schild mit entsprechendem Hinweis kennzeichnen.

Aufzeichnungen über Störungen führen.

Störung beheben und Funktionsprüfung durchführen.

5.5.2 Transport

Manipulator Die vorgeschriebene Transportstellung für den Manipulator muss beachtet werden. Der Transport muss gemäß der Betriebsanleitung oder Montagean-leitung für den Manipulator erfolgen.

Erschütterungen oder Stöße während des Transports vermeiden, damit keine Schäden an der Robotermechanik entstehen.

Robotersteu-

erung

Die vorgeschriebene Transportstellung für die Robotersteuerung muss beach-tet werden. Der Transport muss gemäß der Betriebsanleitung oder Monta-geanleitung für die Robotersteuerung erfolgen.

Erschütterungen oder Stöße während des Transports vermeiden, damit keine Schäden in der Robotersteuerung entstehen.

Zusatzachse

(optional)

Die vorgeschriebene Transportstellung für die Zusatzachse (z. B. KUKA Line-areinheit, Drehkipptisch, Positionierer) muss beachtet werden. Der Transport

Der Betreiber hat dafür Sorge zu tragen, dass abgekop-pelte KCPs/smartPADs sofort aus der Anlage entfernt

werden und außer Sicht- und Reichweite des am Industrieroboter arbeiten-den Personals verwahrt werden. Dies dient dazu, Verwechslungen zwischen wirksamen und nicht wirksamen NOT-HALT-Einrichtungen zu vermeiden.Wenn dies nicht beachtet wird, können Tod, schwere Verletzungen oder er-heblicher Sachschaden die Folge sein.

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

5 Sicherheit

muss gemäß der Betriebsanleitung oder Montageanleitung für die Zusatzach-se erfolgen.

5.5.3 Inbetriebnahme und Wiederinbetriebnahme

Vor der ersten Inbetriebnahme von Anlagen und Geräten muss eine Prüfung durchgeführt werden, die sicherstellt, dass Anlagen und Geräte vollständig und funktionsfähig sind, dass diese sicher betrieben werden können und dass Schäden erkannt werden.

Für diese Prüfung sind die geltenden staatlichen oder regionalen Arbeits-schutzvorschriften zu beachten. Zusätzlich sind alle Sicherheitsstromkreise auf ihre sichere Funktion zu testen.

Funktions-

prüfung

Vor der Inbetriebnahme und Wiederinbetriebnahme sind folgende Prüfungen durchzuführen:

Sicherzustellen ist:

Der Industrieroboter ist gemäß den Angaben in der Dokumentation korrekt aufgestellt und befestigt.

Es sind keine Beschädigungen am Roboter vorhanden, die darauf schlie-ßen lassen, dass sie durch äußere Krafteinwirkung entstanden sind. Bei-spiel: Dellen oder Farbabriebe, die durch einen Schlag oder eine Kollision entstanden sein könnten.

Die Passwörter für die Anmeldung als Experte und Administrator in der KUKA System Software müssen vor der Inbetriebnahme geän-dert werden und dürfen nur autorisiertem Personal mitgeteilt werden.

Die Robotersteuerung ist für den jeweiligen Industriero-boter vorkonfiguriert. Der Manipulator und die Zusatz-

achsen (optional) können bei vertauschten Kabeln falsche Daten erhalten und dadurch Personen- oder Sachschaden verursachen. Wenn eine Anlage aus mehreren Manipulatoren besteht, die Verbindungsleitungen immer an Manipulator und zugehöriger Robotersteuerung anschließen.

Wenn zusätzliche Komponenten (z. B. Leitungen), die nicht zum Lie-ferumfang der KUKA Roboter GmbH gehören, in den Industrieroboter integriert werden, ist der Betreiber dafür verantwortlich, dass diese

Komponenten keine Sicherheitsfunktionen beeinträchtigen oder außer Funk-tion setzen.

Wenn die Schrankinnentemperatur der Robotersteue-rung stark von der Umgebungstemperatur abweicht,

kann sich Kondenswasser bilden, das zu Schäden an der Elektrik führt. Ro-botersteuerung erst in Betrieb nehmen, wenn sich die Schrankinnentempe-ratur der Umgebungstemperatur angepasst hat.

Wenn eine solche Beschädigung vorhanden ist, müs-sen die betroffenen Komponenten ausgetauscht wer-

den. Motor und Gewichtsausgleich müssen besonders aufmerksam geprüft werden.Durch äußere Krafteinwirkung können nicht sichtbare Schäden entstehen. Beim Motor kann es z. B. zu einem schleichenden Verlust der Kraftübertra-gung kommen. Dies kann zu unbeabsichtigten Bewegungen des Manipula-tors führen. Tod, Verletzungen oder erheblicher Sachschaden können sonst die Folge sein.

57 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

58 / 85

KR 30-2 JET; KR 60-2 JET

Es sind keine Fremdkörper oder defekte, lockere oder lose Teile am In-dustrieroboter.

Alle erforderlichen Schutzeinrichtungen sind korrekt installiert und funkti-onsfähig.

Die Anschlusswerte des Industrieroboters stimmen mit der örtlichen Netz-spannung und Netzform überein.

Der Schutzleiter und die Potenzialausgleichs-Leitung sind ausreichend ausgelegt und korrekt angeschlossen.

Die Verbindungskabel sind korrekt angeschlossen und die Stecker verrie-gelt.

Maschinendaten Es ist sicherzustellen, dass das Typenschild an der Robotersteuerung die glei-chen Maschinendaten besitzt, die in der Einbauerklärung eingetragen sind. Die Maschinendaten auf dem Typenschild des Manipulators und der Zusatz-achsen (optional) müssen bei der Inbetriebnahme eingetragen werden.

5.5.4 Manueller Betrieb

Der manuelle Betrieb ist der Betrieb für Einrichtarbeiten. Einrichtarbeiten sind alle Arbeiten, die am Industrieroboter durchgeführt werden müssen, um den Automatikbetrieb aufnehmen zu können. Zu den Einrichtarbeiten gehören:

Tippbetrieb

Teachen

Programmieren

Programmverifikation

Beim manuellen Betrieb ist Folgendes zu beachten:

Wenn die Antriebe nicht benötigt werden, müssen sie abgeschaltet wer-den, damit der Manipulator oder die Zusatzachsen (optional) nicht verse-hentlich verfahren wird.

Neue oder geänderte Programme müssen immer zuerst in der Betriebsart Manuell Reduzierte Geschwindigkeit (T1) getestet werden.

Werkzeuge, Manipulator oder Zusatzachsen (optional) dürfen niemals den Absperrzaun berühren oder über den Absperrzaun hinausragen.

Werkstücke, Werkzeuge und andere Gegenstände dürfen durch das Ver-fahren des Industrieroboters weder eingeklemmt werden, noch zu Kurz-schlüssen führen oder herabfallen.

Alle Einrichtarbeiten müssen so weit wie möglich von außerhalb des durch Schutzeinrichtungen abgegrenzten Raumes durchgeführt werden.

Wenn die Einrichtarbeiten von innerhalb des durch Schutzeinrichtungen abge-grenzten Raumes durchgeführt werden müssen, muss Folgendes beachtet werden.

In der Betriebsart Manuell Reduzierte Geschwindigkeit (T1):

Wenn vermeidbar, dürfen sich keine weiteren Personen im durch Schutz-einrichtungen abgegrenzten Raum aufhalten.

Wenn es notwendig ist, dass sich mehrere Personen im durch Schutzein-richtungen abgegrenzten Raum aufhalten, muss Folgendes beachtet wer-den:

Jede Person muss eine Zustimmeinrichtung zur Verfügung haben.

Wenn die falschen Maschinendaten geladen sind, darf der Industrieroboter nicht verfahren werden! Tod,

schwere Verletzungen oder erhebliche Sachschäden können sonst die Folge sein. Die richtigen Maschinendaten müssen geladen werden.

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

5 Sicherheit

Alle Personen müssen ungehinderte Sicht auf den Industrieroboter haben.

Zwischen allen Personen muss immer Möglichkeit zum Blickkontakt bestehen.

Der Bediener muss eine Position einnehmen, aus der er den Gefahrenbe-reich einsehen kann und einer Gefahr ausweichen kann.

In der Betriebsart Manuell Hohe Geschwindigkeit (T2):

Diese Betriebsart darf nur verwendet werden, wenn die Anwendung einen Test mit einer Geschwindigkeit erfordert, die höher ist als in der Betriebs-art T1 möglich.

Teachen und Programmieren sind in dieser Betriebsart nicht erlaubt.

Der Bediener muss vor Beginn des Tests sicherstellen, dass die Zustimm-einrichtungen funktionsfähig sind.

Der Bediener muss eine Position außerhalb des Gefahrenbereichs ein-nehmen.

Es dürfen sich keine weiteren Personen im durch Schutzeinrichtungen ab-gegrenzten Raum aufhalten. Der Bediener muss hierfür Sorge tragen.

5.5.5 Automatikbetrieb

Der Automatikbetrieb ist nur zulässig, wenn folgende Sicherheitsmaßnahmen eingehalten werden:

Alle Sicherheits- und Schutzeinrichtungen sind vorhanden und funktions-fähig.

Es befinden sich keine Personen in der Anlage.

Die festgelegten Arbeitsverfahren werden befolgt.

Wenn der Manipulator oder eine Zusatzachse (optional) ohne ersichtlichen Grund stehen bleibt, darf der Gefahrenbereich erst betreten werden, wenn ein NOT-HALT ausgelöst wurde.

5.5.6 Wartung und Instandsetzung

Nach Wartungs- und Instandsetzungsarbeiten muss geprüft werden, ob das erforderliche Sicherheitsniveau gewährleistet ist. Für diese Prüfung sind die geltenden staatlichen oder regionalen Arbeitsschutzvorschriften zu beachten. Zusätzlich sind alle Sicherheitsfunktionen auf ihre sichere Funktion zu testen.

Die Wartung und Instandsetzung soll sicherstellen, dass der funktionsfähige Zustand erhalten bleibt oder bei Ausfall wieder hergestellt wird. Die Instand-setzung umfasst die Störungssuche und die Reparatur.

Sicherheitsmaßnahmen bei Tätigkeiten am Industrieroboter sind:

Tätigkeiten außerhalb des Gefahrenbereichs durchführen. Wenn Tätigkei-ten innerhalb des Gefahrenbereichs durchzuführen sind, muss der Betrei-ber zusätzliche Schutzmaßnahmen festlegen, um einen sicheren Personenschutz zu gewährleisten.

Industrieroboter ausschalten und gegen Wiedereinschalten (z. B. mit ei-nem Vorhängeschloss) sichern. Wenn die Tätigkeiten bei eingeschalteter Robotersteuerung durchzuführen sind, muss der Betreiber zusätzliche Schutzmaßnahmen festlegen, um einen sicheren Personenschutz zu ge-währleisten.

Wenn die Tätigkeiten bei eingeschalteter Robotersteuerung durchzufüh-ren sind, dürfen diese nur in der Betriebsart T1 durchgeführt werden.

Tätigkeiten mit einem Schild an der Anlage kennzeichnen. Dieses Schild muss auch bei zeitweiser Unterbrechung der Tätigkeiten vorhanden sein.

59 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

60 / 85

KR 30-2 JET; KR 60-2 JET

Die NOT-HALT-Einrichtungen müssen aktiv bleiben. Wenn Sicherheits-funktionen oder Schutzeinrichtungen aufgrund Wartungs- oder Instand-setzungsarbeiten deaktiviert werden, muss die Schutzwirkung anschließend sofort wiederhergestellt werden.

Fehlerhafte Komponenten müssen durch neue Komponenten, mit derselben Artikelnummer oder durch Komponenten, die von der KUKA Roboter GmbH als gleichwertig ausgewiesen sind, ersetzt werden.

Reinigungs- und Pflegearbeiten sind gemäß der Betriebsanleitung durchzu-führen.

Robotersteu-

erung

Auch wenn die Robotersteuerung ausgeschaltet ist, können Teile unter Span-nungen stehen, die mit Peripheriegeräten verbunden sind. Die externen Quel-len müssen deshalb ausgeschaltet werden, wenn an der Robotersteuerung gearbeitet wird.

Bei Tätigkeiten an Komponenten in der Robotersteuerung müssen die EGB-Vorschriften eingehalten werden.

Nach Ausschalten der Robotersteuerung kann an verschiedenen Komponen-ten mehrere Minuten eine Spannung von über 50 V (bis zu 600 V) anliegen. Um lebensgefährliche Verletzungen zu verhindern, dürfen in diesem Zeitraum keine Tätigkeiten am Industrieroboter durchgeführt werden.

Das Eindringen von Wasser und Staub in die Robotersteuerung muss verhin-dert werden.

Gewichtsaus-

gleich

Einige Robotervarianten sind mit einem hydropneumatischen, Feder- oder Gaszylinder-Gewichtsausgleich ausgestattet.

Die hydropneumatischen und Gaszylinder-Gewichtsausgleiche sind Druckge-räte. Sie gehören zu den überwachungspflichtigen Anlagen und unterliegen der Druckgeräte-Richtlinie.

Der Betreiber muss die landesspezifischen Gesetze, Vorschriften und Nor-men für Druckgeräte beachten.

Prüffristen in Deutschland nach Betriebssicherheitsverordnung §14 und §15. Prüfung vor Inbetriebnahme am Aufstellort durch den Betreiber.

Sicherheitsmaßnahmen bei Tätigkeiten an Gewichtsausgleichsystemen sind:

Die von den Gewichtsausgleichsystemen unterstützten Baugruppen des Manipulators müssen gesichert werden.

Tätigkeiten an den Gewichtsausgleichsystemen darf nur qualifiziertes Personal durchführen.

Gefahrstoffe Sicherheitsmaßnahmen beim Umgang mit Gefahrstoffen sind:

Längeren und wiederholten intensiven Hautkontakt vermeiden.

Einatmen von Ölnebeln und -dämpfen vermeiden.

Für Hautreinigung und Hautpflege sorgen.

Vor Arbeiten an spannungsführenden Teilen des Robo-tersystems muss der Hauptschalter ausgeschaltet und

gegen Wiedereinschalten gesichert werden. Anschließend muss die Span-nungsfreiheit festgestellt werden.Es genügt nicht, vor Arbeiten an spannungsführenden Teilen einen NOT-HALT oder einen Sicherheitshalt auszulösen oder die Antriebe auszuschal-ten, weil dabei das Robotersystem nicht vom Netz getrennt wird. Es stehen weiterhin Teile unter Spannung. Tod oder schwere Verletzungen können die Folge sein.

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

5 Sicherheit

5.5.7 Außerbetriebnahme, Lagerung und Entsorgung

Die Außerbetriebnahme, Lagerung und Entsorgung des Industrieroboters darf nur nach landesspezifischen Gesetzen, Vorschriften und Normen erfolgen.

5.6 Angewandte Normen und Vorschriften

Für den sicheren Einsatz unserer Produkte empfehlen wir unseren Kunden regelmäßig die aktuellen Sicherheitsdatenblätter von den Herstellern der Gefahrstoffe anzufordern.

Name Definition Ausgabe

2006/42/EG Maschinenrichtlinie:

Richtlinie 2006/42/EG des Europäischen Parlaments und des Rates vom 17. Mai 2006 über Maschinen und zur Änderung der Richtlinie 95/16/EG (Neufassung)

2006

2004/108/EG EMV-Richtlinie:

Richtlinie 2004/108/EG des Europäischen Parlaments und des Rates vom 15. Dezember 2004 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromag-netische Verträglichkeit und zur Aufhebung der Richtlinie 89/336/EWG

2004

97/23/EG Druckgeräte-Richtlinie:

Richtlinie 97/23/EG des Europäischen Parlaments und des Rates vom 29. Mai 1997 zur Angleichung der Rechtsvor-schriften der Mitgliedstaaten über Druckgeräte

(Findet nur Anwendung für Roboter mit hydropneumatischem Gewichtsausgleich.)

1997

EN ISO 13850 Sicherheit von Maschinen:

NOT-HALT-Gestaltungsleitsätze

2008

EN ISO 13849-1 Sicherheit von Maschinen:

Sicherheitsbezogene Teile von Steuerungen; Teil 1: Allge-meine Gestaltungsleitsätze

2008

EN ISO 13849-2 Sicherheit von Maschinen:

Sicherheitsbezogene Teile von Steuerungen; Teil 2: Validie-rung

2012

EN ISO 12100 Sicherheit von Maschinen:

Allgemeine Gestaltungsleitsätze, Risikobeurteilung und Risi-kominderung

2010

EN ISO 10218-1 Industrieroboter - Sicherheitsanforderungen:

Teil 1: Roboter

Hinweis: Inhalt entspricht ANSI/RIA R.15.06-2012, Teil 1

2011

61 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

62 / 85

KR 30-2 JET; KR 60-2 JET

EN 614-1 + A1 Sicherheit von Maschinen:

Ergonomische Gestaltungsgrundsätze; Teil 1: Begriffe und all-gemeine Leitsätze

2009

EN 61000-6-2 Elektromagnetische Verträglichkeit (EMV):

Teil 6-2: Fachgrundnormen; Störfestigkeit für Industriebereich

2005

EN 61000-6-4 + A1 Elektromagnetische Verträglichkeit (EMV):

Teil 6-4: Fachgrundnormen; Störaussendung für Industriebe-reich

2011

EN 60204-1 + A1 Sicherheit von Maschinen:

Elektrische Ausrüstung von Maschinen; Teil 1: Allgemeine Anforderungen

2009

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

6 Planung

6 Planung

6.1 Planungsinformation

Bei der Planung und Auslegung muss darauf geachtet werden, welche Funk-tionen oder Applikationen die Kinematik ausführen soll. Folgende Bedingun-gen können zu vorzeitigem Verschleiß führen. Sie erfordern verkürzte Wartungsintervalle und/oder vorgezogenen Komponententausch. Zusätzlich müssen bei der Planung die, in den Technischen Daten angegebenen, zuläs-sigen Betriebsgrenzen beachtet und eingehalten werden.

Dauerhafter Betrieb nahe der Temperaturgrenzen oder in abrasiver Um-gebung

Dauerhafter Betrieb nahe der Leistungsgrenzen, z. B. hohes Drehzahlni-veau einer Achse

Hohe Einschaltdauer einzelner Achsen

Monotone Bewegungsprofile, z. B. kurze, zyklisch häufig wiederkehrende Achsbewegungen

Statische Achslage, z. B. dauerhafte senkrechte Lage einer Handachse

Äussere Kräfte (Prozesskräfte) die auf den Roboter einwirken

Werden beim Betrieb der Kinematik ein oder mehrere Bedingungen erfüllt, muss Rücksprache mit KUKA Roboter GmbH gehalten werden.

Sollte der Roboter entsprechende Betriebsgrenzen erreichen oder über einen gewissen Zeitraum in der Nähe einer Grenze betrieben werden, treten die ein-gebauten Überwachungsfunktionen in Kraft und der Roboter wird automatisch abgeschaltet.

Durch diese Selbstschutzfunktion kann es zu einer Einschränkung der Verfüg-barkeit des Robotersystems kommen.

6.2 Fundamentbefestigung

Beschreibung Die Fundamentbefestigung dient zur Befestigung des Roboters auf einem Be-tonfundament. Zur Ausrichtung des Trägers auf den Säulen dienen verstellba-re Nivellierelemente die an der Kopfplatte der Säulen angebracht sind.

Fundament-

befestigung

Die Fundamentbefestigung mit Bodenplatten (>>> Abb. 6-1 ) besteht aus:

Nivellierschrauben

Bodenplatte

Anschweißplatte

Klebedübel

Befestigungsteile

Die Grundplatte der Säulen ist mit der Anschweißplatte verschraubt (>>> Abb. 6-1 ) Zur Montage wird die Säule mit angeschraubter Anschweiß-platte mittels 4 Gabelspanneisen (M24x130-8.8) auf der Bodenplatte festge-klemmt, diese wiederum ist mit dem Betonfundament verdübelt.

Zum Ausrichten der Säulen können auf der Bodenplatte zusätzliche an-schweißbare Montagehilfen angebracht werden. Hiermit können die Säulen in gewissen Maßen auf der Bodenplatte verschoben und/oder gedreht werden. Zudem kann über 4 zusätzliche Nivellierschrauben eine senkrechte Lage der Säulen eingestellt werden. Nach erfolgter Ausrichtung des Trägers wird die Anschweißplatte mit der Bodenplatte verschweißt und die Bauteile miteinan-der verschraubt.

63 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

64 / 85

KR 30-2 JET; KR 60-2 JET

Diese Fundamentbefestigung setzt eine ebene und glatte Oberfläche auf ei-nem tragfähigen Betonfundament voraus. Die Mindestabmessungen müssen eingehalten werden.

Es dürfen nur die vom Hersteller gelieferten Befestigungsteile eingebaut wer-den.

Maßzeichnung In der folgenden Abbildung (>>> Abb. 6-2 ) sind alle Informationen zur Fun-damentbefestigung mit Bodenplatte sowie die erforderlichen Fundamentdaten dargestellt. Zur sicheren Einleitung der Dübelkräfte sind die angegebenen Maße im Betonfundament einzuhalten. Die Lage der Einzelfundamente ist auftragsspezifisch, die erforderlichen Maße können dem Abschnitt "Auftrags-spezifische Technische Daten" entnommen werden.

Abb. 6-1: Fundamentbefestigung, Aufbau

1 Säule, Grundplatte 4 Bodenplatte

2 Befestigungsteile 5 Klebedübel

3 Anschweißplatte 6 Nivellierschraube

Abb. 6-2: Fundamentbefestigung, Maßzeichnung

1 Betonfundament

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

6 Planung

Betongüte für

Fundamente

Bei der Herstellung von Fundamenten aus Beton auf die Tragfähigkeit des Un-tergrunds und auf landesspezifische Bauvorschriften achten. Zwischen den Fundamentplatten und dem Betonfundament dürfen sich keine Isolier- oder Estrichschichten befinden. Der Beton muss die Qualität folgender Norm erfül-len:

C20/25 nach DIN EN 206-1:2001/DIN 1045-2:2008

6.3 Verbindungsleitungen und Schnittstellen

Beschreibung Die Verbindungsleitungen beinhalten alle Leitungen für die Energie- und Sig-nalübertragung zwischen Robotersteuerung und dem Roboter. Der Anschluss erfolgt über Stecker an der Robotersteuerung und der Steckerplatte am Ka-belschlepp des Achsmoduls. Die Kabel zwischen der Steckerplatte und der Robotermechanik (Anschlusskästen) sind Bestandteil des Kabelschlepp. Die Befüllung des Kabelschlepps kann anwendungsspezifisch weitere Kabel und Schlauchleitungen beinhalten.

Der Verbindungsleitungs-Satz beinhaltet:

Motorleitung, X20 - X30

Datenleitung, X21 - X31

Schutzleiter (Option)

Je nach Ausstattung des Roboters kommen verschiedene Verbindungsleitun-gen zur Anwendung. Es stehen Leitungslängen von 7 m, 15 m, 25 m und 35 m zur Verfügung. Die maximale Länge der Verbindungsleitungen zwischen Steuerung und Anschlusskästen darf 50 m nicht übersteigen. Die Leitungslän-gen im Kabelschlepp müssen also mit berücksichtigt werden.

Bei den Verbindungsleitungen ist immer ein zusätzlicher Schutzleiter erforder-lich, um eine niederohmige Verbindung entsprechend DIN EN 60204 zwi-schen Roboter und Steuerschrank herzustellen. Der Anschluss erfolgt mit Ringkabelschuhen. Die Gewindebolzen zum Anschluss des Schutzleiters be-finden sich an der Steuerung und an der Steckerplatte des Kabelsschlepps der Energiezuführung des Roboters (Achsmodul).

Detaillierte Angaben zu den Verdrahtungsplänen, Steckerbelegung und Ste-ckerbezeichnungen sind im Abschnitt zu finden.

Bei der Planung und Verlegung der Verbindungsleitungen sind folgende Punkte zu beachten:

Der Biegeradius für feste Verlegung bei Motorleitung von 150 mm und bei Datenleitung von 60 mm darf nicht unterschritten werden.

Leitungen vor mechanischen Einwirkungen schützen

Leitungen belastungsfrei verlegen, keine Zugkräfte auf die Stecker

Leitungen nur im Innenbereich verlegen

Temperaturbereich (fest verlegt) 263 K (-10 °C) bis 343 K (+70 °C) be-achten

Leitungen getrennt nach Motor- und Datenleitungen in Blechkanälen ver-legen, bei Bedarf zusätzliche EMV-Maßnahmen ergreifen.

Schnittstelle

Energiezu-

führung

Der Roboter KR 30, 60 JET ROBOT kann mit einer Energiezuführung Achse 1 bis Achse 3 ausgestattet werden. Die hierzu erforderliche Schnittstelle, die Schnittstelle A3 auf dem Arm, befindet sich links am Roboter. Die Schnittstelle ist je nach Anwendungsfall mit Anschlüssen für Schlauch- und Elektroleitun-gen belegt. Detaillierte Informationen zu Steckerbelegung, Anschlussgewinde u. ä. sind in eigenen Dokumentationen zu finden.

2 Fundamentmitte

3 Bodenplatte

65 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

66 / 85

KR 30-2 JET; KR 60-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

7 Transport

7 Transport

7.1 Transport

Vor jedem Transport den Roboter in Transportstellung bringen. Beim Trans-port des Roboters ist auf die Standsicherheit zu achten. So lange der Roboter nicht befestigt ist, muss er in Transportstellung gehalten werden. Bevor der Roboter abgehoben wird, ist sicherzustellen, dass er frei ist. Transportsiche-rungen, wie Nägel und Schrauben, vorher vollständig entfernen. Rost- oder Klebekontakt vorher lösen.

Transportstellung Der Roboter befindet sich in Transportstellung, wenn sich die Achse in folgen-den Stellungen befinden:

Transportmaße Die Transportmaße für den Roboter sind der folgenden Abbildung zu entneh-men. Die Lage des Schwerpunkts und das Gewicht variieren je nach Ausstat-tung. Die angegebenen Maße beziehen sich auf den Roboter ohne Ausrüstung und Transportgestell.

T

s

t

Achse A1 A2 A3 A4 A5 A6

Winkel -110º +158º 0º +90º 0º

Abb. 7-1: Transportstellung

67 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

68 / 85

KR 30-2 JET; KR 60-2 JET

Für den Transport müssen die Staplertaschen angebaut sein.

Transport Der Roboter kann mit einem Gabelstapler oder einem Transportgeschirr transportiert werden. Die Staplertaschen müssen richtig und vollständig ange-baut werden.

Transport mit

Gabelstapler

Zum Transport mit dem Gabelstapler (>>> Abb. 7-3 ) müssen die Staplerta-schen angebaut sein.

Abb. 7-2: Transportmaße

1 Roboter

2 Staplertaschen

3 Schwerpunkt

Durch ungeeignete Transportmittel können der Roboter beschädigt oder Personen verletzt werden. Nur zulässi-

ge Transportmittel mit ausreichender Tragkraft verwenden. Den Roboter nur in der dargestellten Art und Weise transportieren.

Eine übermäßige Belastung der Staplertaschen durch Zusammen- oder Auseinanderfahren hydraulisch ver-

stellbarer Gabeln des Gabelstaplers vermeiden. Bei Nichtbeachtung können Sachschäden entstehen.

Abb. 7-3: Gabelstaplertransport

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

7 Transport

Transport mit

Transportge-

schirr

Der Roboter (>>> Abb. 7-4 ) kann mit einem Transportgeschirr transportiert werden. Er muss sich dazu in Transportstellung befinden. Das Transportge-schirr wird mit Haken an den Gabelstaplertaschen, die am Karussell ange-schraubt sind, eingehängt. Alle Seile müssen so lang sein und so geführt werden, dass der Roboter nicht beschädigt wird. Zusätzliche Sicherungsmaß-nahmen können den Roboter beim Transport gegen Kippen sichern. Durch angebaute Werkzeuge und Ausrüstungsteile kann es zu ungünstigen Schwer-punktverlagerungen kommen, die beim Transport beachtete werden müssen.

Transport mit

Transportgestell

Für den Einbau an Wand oder Decke wird der Roboter in einem entsprechen-den Transportgestell (>>> Abb. 7-5 ) transportiert. Hierzu muss der Roboter, vor dem Einbau in das Transportgestell, in die Tansportsportstellung gebracht werden. Das Transportgestell kann mit dem Gabelstapler oder mit einem Transportgeschirr (4 Gurte) aufgenommen werden. Beim Transport ist der Schwerpunkt zu beachten.

Der Roboter kann beim Transport kippen. Gefahr von Personen- und Sachschaden.

Wird der Roboter mit dem Transportgeschirr transportiert, ist besonders auf die Kippsicherheit zu achten. Zusätzliche Sicherungsmaßnahmen ergreifen. Jede andere Aufnahme des Roboters mit einem Kran ist verboten!

Abb. 7-4: Transportgeschirr

1 Transportgeschirr 3 Ringschraube

2 Roboter 4 Gabelstaplertaschen

69 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

70 / 85

KR 30-2 JET; KR 60-2 JET

Trägertransport Der Transport des Trägers (>>> Abb. 7-6 ) kann mit dem Gabelstapler oder mit dem Transportgeschirr und einem Kran erfolgen. Beim Transport mit ei-nem Transportgeschirr muss der Träger gemäß nachstehender Abbildung aufgenommen werden. Als Transporthilfen sind Lastböcke (4x je Träger) mit entsprechender Tragkraft zu verwenden werden. Am Träger sind bereits die entsprechenden Transportgewinde M20 vorhanden.

Ist der Träger bereits mit dem Fahrwagen ausgerüstet, muss dieser sich in der Nähe des Schwerpunktes befinden und gegen mögliche Bewegungen ge-sichert werden. Wird der Träger mit einem Gabelstapler transportiert, ist auf die Lage des Schwerpunktes zu achten. Beim Absetzen auf dem Boden muss der Unterbau sicherstellen, dass keine Bauteile beschädigt werden können.

Die Transportmittel müssen über ausreichende Tragkraft verfügen. Das Ge-wicht der Bauteile ist den "Auftragsspezifischen Technischen Daten" zu ent-nehmen.

Abb. 7-5: Transportgestell

1 Transportgestell hängender Roboter

2 Transportgestell seitlicher Roboter

3 Schwerpunkt

Abb. 7-6: Trägertransport

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

7 Transport

1 Transportgeschirr

2 Transporthilfe, Lastböcke, M20

3 Träger

71 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

72 / 85

KR 30-2 JET; KR 60-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

8 Optionen

8 Optionen

8.1 Freidreh-Vorrichtung (Option)

Beschreibung Mit der Freidreh-Vorrichtung kann der Manipulator nach einem Unfall oder Störfall manuell bewegt werden. Die Freidreh-Vorrichtung kann für Motoren der Achsen 1 bis 5 eingesetzt werden. Für die Achse 6 ist sie nicht einsetzbar, da dieser Motor nicht zugänglich ist. Sie darf nur in Ausnahmesituationen und Notfällen, z. B. für die Befreiung von Personen, eingesetzt werden.

Die Freidreh-Vorrichtung ist am Manipulator auf dem Grundgestell ange-bracht. Zu dieser Baugruppe gehört eine Ratsche und ein Schildersatz mit je einem Schild für jeden Motor. Auf dem Schild ist die Angabe der Drehrichtung für die Ratsche und die entsprechende Verfahrrichtung des Manipulators dar-gestellt.

t

73 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

74 / 85

KR 30-2 JET; KR 60-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

9 KUKA Service

9 KUKA Service

9.1 Support-Anfrage

Einleitung Diese Dokumentation bietet Informationen zu Betrieb und Bedienung und un-terstützt Sie bei der Behebung von Störungen. Für weitere Anfragen steht Ih-nen die lokale Niederlassung zur Verfügung.

Informationen Zur Abwicklung einer Anfrage werden folgende Informationen benötigt:

Problembeschreibung inkl. Angaben zu Dauer und Häufigkeit der Störung

Möglichst umfassende Informationen zu den Hardware- und Software-Komponenten des Gesamtsystems

Die folgende Liste gibt Anhaltspunkte, welche Informationen häufig rele-vant sind:

Typ und Seriennummer der Kinematik, z. B. des Manipulators

Typ und Seriennummer der Steuerung

Typ und Seriennummer der Energiezuführung

Bezeichnung und Version der System Software

Bezeichnungen und Versionen weiterer/anderer Software-Komponen-ten oder Modifikationen

Diagnosepaket KrcDiag

Für KUKA Sunrise zusätzlich: Vorhandene Projekte inklusive Applika-tionen

Für Versionen der KUKA System Software älter als V8: Archiv der Software (KrcDiag steht hier noch nicht zur Verfügung.)

Vorhandene Applikation

Vorhandene Zusatzachsen

9.2 KUKA Customer Support

Verfügbarkeit Der KUKA Customer Support ist in vielen Ländern verfügbar. Bei Fragen ste-hen wir gerne zur Verfügung.

Argentinien Ruben Costantini S.A. (Agentur)

Luis Angel Huergo 13 20

Parque Industrial

2400 San Francisco (CBA)

Argentinien

Tel. +54 3564 421033

Fax +54 3564 428877

[email protected]

Australien KUKA Robotics Australia Pty Ltd

45 Fennell Street

Port Melbourne VIC 3207

Australien

Tel. +61 3 9939 9656

[email protected]

www.kuka-robotics.com.au

A

v

75 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

76 / 85

KR 30-2 JET; KR 60-2 JET

Belgien KUKA Automatisering + Robots N.V.

Centrum Zuid 1031

3530 Houthalen

Belgien

Tel. +32 11 516160

Fax +32 11 526794

[email protected]

www.kuka.be

Brasilien KUKA Roboter do Brasil Ltda.

Travessa Claudio Armando, nº 171

Bloco 5 - Galpões 51/52

Bairro Assunção

CEP 09861-7630 São Bernardo do Campo - SP

Brasilien

Tel. +55 11 4942-8299

Fax +55 11 2201-7883

[email protected]

www.kuka-roboter.com.br

Chile Robotec S.A. (Agency)

Santiago de Chile

Chile

Tel. +56 2 331-5951

Fax +56 2 331-5952

[email protected]

www.robotec.cl

China KUKA Robotics China Co., Ltd.

No. 889 Kungang Road

Xiaokunshan Town

Songjiang District

201614 Shanghai

P. R. China

Tel. +86 21 5707 2688

Fax +86 21 5707 2603

[email protected]

www.kuka-robotics.com

Deutschland KUKA Roboter GmbH

Zugspitzstr. 140

86165 Augsburg

Deutschland

Tel. +49 821 797-4000

Fax +49 821 797-1616

[email protected]

www.kuka-roboter.de

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

9 KUKA Service

Frankreich KUKA Automatisme + Robotique SAS

Techvallée

6, Avenue du Parc

91140 Villebon S/Yvette

Frankreich

Tel. +33 1 6931660-0

Fax +33 1 6931660-1

[email protected]

www.kuka.fr

Indien KUKA Robotics India Pvt. Ltd.

Office Number-7, German Centre,

Level 12, Building No. - 9B

DLF Cyber City Phase III

122 002 Gurgaon

Haryana

Indien

Tel. +91 124 4635774

Fax +91 124 4635773

[email protected]

www.kuka.in

Italien KUKA Roboter Italia S.p.A.

Via Pavia 9/a - int.6

10098 Rivoli (TO)

Italien

Tel. +39 011 959-5013

Fax +39 011 959-5141

[email protected]

www.kuka.it

Japan KUKA Robotics Japan K.K.

YBP Technical Center

134 Godo-cho, Hodogaya-ku

Yokohama, Kanagawa

240 0005

Japan

Tel. +81 45 744 7691

Fax +81 45 744 7696

[email protected]

Kanada KUKA Robotics Canada Ltd.

6710 Maritz Drive - Unit 4

Mississauga

L5W 0A1

Ontario

Kanada

Tel. +1 905 670-8600

Fax +1 905 670-8604

[email protected]

www.kuka-robotics.com/canada

77 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

78 / 85

KR 30-2 JET; KR 60-2 JET

Korea KUKA Robotics Korea Co. Ltd.

RIT Center 306, Gyeonggi Technopark

1271-11 Sa 3-dong, Sangnok-gu

Ansan City, Gyeonggi Do

426-901

Korea

Tel. +82 31 501-1451

Fax +82 31 501-1461

[email protected]

Malaysia KUKA Robot Automation (M) Sdn Bhd

South East Asia Regional Office

No. 7, Jalan TPP 6/6

Taman Perindustrian Puchong

47100 Puchong

Selangor

Malaysia

Tel. +60 (03) 8063-1792

Fax +60 (03) 8060-7386

[email protected]

Mexiko KUKA de México S. de R.L. de C.V.

Progreso #8

Col. Centro Industrial Puente de Vigas

Tlalnepantla de Baz

54020 Estado de México

Mexiko

Tel. +52 55 5203-8407

Fax +52 55 5203-8148

[email protected]

www.kuka-robotics.com/mexico

Norwegen KUKA Sveiseanlegg + Roboter

Sentrumsvegen 5

2867 Hov

Norwegen

Tel. +47 61 18 91 30

Fax +47 61 18 62 00

[email protected]

Österreich KUKA Roboter CEE GmbH

Gruberstraße 2-4

4020 Linz

Österreich

Tel. +43 7 32 78 47 52

Fax +43 7 32 79 38 80

[email protected]

www.kuka.at

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

9 KUKA Service

Polen KUKA Roboter Austria GmbH

Spółka z ograniczoną odpowiedzialnością

Oddział w Polsce

Ul. Porcelanowa 10

40-246 Katowice

Polen

Tel. +48 327 30 32 13 or -14

Fax +48 327 30 32 26

[email protected]

Portugal KUKA Robots IBÉRICA, S.A.

Rua do Alto da Guerra n° 50

Armazém 04

2910 011 Setúbal

Portugal

Tel. +351 265 729 780

Fax +351 265 729 782

[email protected]

www.kuka.com

Russland KUKA Robotics RUS

Werbnaja ul. 8A

107143 Moskau

Russland

Tel. +7 495 781-31-20

Fax +7 495 781-31-19

[email protected]

www.kuka-robotics.ru

Schweden KUKA Svetsanläggningar + Robotar AB

A. Odhners gata 15

421 30 Västra Frölunda

Schweden

Tel. +46 31 7266-200

Fax +46 31 7266-201

[email protected]

Schweiz KUKA Roboter Schweiz AG

Industriestr. 9

5432 Neuenhof

Schweiz

Tel. +41 44 74490-90

Fax +41 44 74490-91

[email protected]

www.kuka-roboter.ch

79 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

80 / 85

KR 30-2 JET; KR 60-2 JET

Spanien KUKA Robots IBÉRICA, S.A.

Pol. Industrial

Torrent de la Pastera

Carrer del Bages s/n

08800 Vilanova i la Geltrú (Barcelona)

Spanien

Tel. +34 93 8142-353

Fax +34 93 8142-950

[email protected]

www.kuka.es

Südafrika Jendamark Automation LTD (Agentur)

76a York Road

North End

6000 Port Elizabeth

Südafrika

Tel. +27 41 391 4700

Fax +27 41 373 3869

www.jendamark.co.za

Taiwan KUKA Robot Automation Taiwan Co., Ltd.

No. 249 Pujong Road

Jungli City, Taoyuan County 320

Taiwan, R. O. C.

Tel. +886 3 4331988

Fax +886 3 4331948

[email protected]

www.kuka.com.tw

Thailand KUKA Robot Automation (M)SdnBhd

Thailand Office

c/o Maccall System Co. Ltd.

49/9-10 Soi Kingkaew 30 Kingkaew Road

Tt. Rachatheva, A. Bangpli

Samutprakarn

10540 Thailand

Tel. +66 2 7502737

Fax +66 2 6612355

[email protected]

www.kuka-roboter.de

Tschechien KUKA Roboter Austria GmbH

Organisation Tschechien und Slowakei

Sezemická 2757/2

193 00 Praha

Horní Počernice

Tschechische Republik

Tel. +420 22 62 12 27 2

Fax +420 22 62 12 27 0

[email protected]

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

9 KUKA Service

Ungarn KUKA Robotics Hungaria Kft.

Fö út 140

2335 Taksony

Ungarn

Tel. +36 24 501609

Fax +36 24 477031

[email protected]

USA KUKA Robotics Corporation

51870 Shelby Parkway

Shelby Township

48315-1787

Michigan

USA

Tel. +1 866 873-5852

Fax +1 866 329-5852

[email protected]

www.kukarobotics.com

Vereinigtes König-

reich

KUKA Robotics UK Ltd

Great Western Street

Wednesbury West Midlands

WS10 7LL

Vereinigtes Königreich

Tel. +44 121 505 9970

Fax +44 121 505 6589

[email protected]

www.kuka-robotics.co.uk

81 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

82 / 85

KR 30-2 JET; KR 60-2 JET

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

Index

Index

Zahlen2004/108/EG 612006/42/EG 6189/336/EWG 6195/16/EG 6197/23/EG 61

AAchsbereich 51Achsbereichsbegrenzung 53Achsbereichsüberwachung 54Achsdaten 17, 19, 21, 23Achsen, Anzahl 13, 14, 15, 16Achsmodul 9Allgemeine Hinweise 41Allgemeine Sicherheitsmaßnahmen 55Anbauflansch 11, 27, 30, 33, 36Angewandte Normen und Vorschriften 61Anhalteweg 41, 51Anhaltewege 41Anhaltezeit 41Anhaltezeiten 41Anlagenintegrator 51ANSI/RIA R.15.06-2012 61Anwender 52Arbeitsbereich 18, 20, 22, 24, 51, 53Arbeitsbereichsbegrenzung 53Arbeitsfläche 13, 14, 15, 16Arm 11Ausladung 42Automatikbetrieb 59Außerbetriebnahme 61

BBegriffe, Sicherheit 51Benutzer 7, 51Bestimmungsgemäße Verwendung 50Betreiber 51, 52Bezugsebene 18, 20, 22, 24Bezugspunkt 13, 14, 15, 16Bremsdefekt 55Bremsenöffnungs-Gerät 54Bremsweg 51

CCE-Kennzeichnung 50

DDokumentation, Industrieroboter 5Drehkipptisch 49Drehwinkel 42Druckgeräte-Richtlinie 60, 61

EEG-Konformitätserklärung 50Einbauerklärung 49, 50Einbaulage 13, 14, 15, 16Einleitung 5

Elektro-Installation 11Elektromagnetische Verträglichkeit (EMV) 62EMV-Richtlinie 50, 61EN 60204-1 + A1 62EN 61000-6-2 62EN 61000-6-4 + A1 62EN 614-1 + A1 62EN ISO 10218-1 61EN ISO 12100 61EN ISO 13849-1 61EN ISO 13849-2 61EN ISO 13850 61Entsorgung 61

FFahrwagen 10Freidreh-Vorrichtung 54Freidreh-Vorrichtung, (Option) 73Fundamentbefestigung 63Fundamentlasten 38Funktionsprüfung 57

GGabelstapler 68Gabelstaplertaschen 11Gebrauchsdauer 51Gefahrenbereich 51Gefahrstoffe 60Gewicht 13, 14, 15, 16Gewichtsausgleich 60Grundachsen 42Grunddaten 13, 14, 15, 16

HHaftungshinweis 49Hauptabmessungen 26Hauptbaugruppen 9, 10Hauptbelastungen, dynamisch 13, 14, 15, 16Hinweise 5

IInbetriebnahme 57Industrieroboter 49Instandsetzung 59ISO 9283, Wiederholgenauigkeit 13, 14, 15, 16

KKarussell 11KCP 51, 55KCP, KUKA Control Panel 42Kennzeichnungen 55Konformitätserklärung 50KUKA Customer Support 75KUKA smartPAD 51

LLagerung 61Lineareinheit 49

83 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

84 / 85

KR 30-2 JET; KR 60-2 JET

MManipulator 49, 51Manueller Betrieb 58Maschinendaten 58Maschinenrichtlinie 50, 61Maus, extern 56Maßangaben, Transport 67Maßzeichnung 64Mechanische Achsbereichsbegrenzung 53Mechanische Endanschläge 53

NNiederspannungsrichtlinie 50

OOberfäche, Lackierung 13, 14, 15, 16Optionen 9, 49, 73

PPersonal 52Pflegearbeiten 60Planung 63Positionierer 49Produktbeschreibung 9Programmierhandgerät 49Programmoverride, Verfahrgeschwindigkeit 42

RReaktionsweg 51Reinigungsarbeiten 60Relative Luftfeuchtigkeit 13, 14, 15, 16Roboter 9Robotermechanik 10Robotersteuerung 9, 49

SSäulen 10Schallpegel 13, 14, 15, 16Schilder 40Schnittstellen 65Schulungen 7Schutzart, Roboter 13, 14, 15, 16Schutzart, Zentralhand 13, 14, 15, 16Schutzausstattung, Übersicht 53Schutzbereich 51, 53Schutzleiter 13, 14, 15, 16Schwerpunkt 67Schwinge 11Service, KUKA Roboter 75Sicherheit 49Sicherheit von Maschinen 61, 62Sicherheit, Allgemein 49Sicherheitshinweise 5smartPAD 51, 55Software 9, 49STOP 0 42, 51STOP 1 42, 51STOP 2 51Stopp-Kategorie 0 51Stopp-Kategorie 1 51Stopp-Kategorie 2 51

Stoppsignal 41Störungen 56Support-Anfrage 75Systemintegrator 50, 51, 52

TT1 51T2 52Tastatur, extern 56Technische Daten 13Technische Daten, auftragsspezifisch 25Traglast-Diagramm 27, 30Traglastdiagramm 33, 36Transport 56, 67Transportgeschirr 68, 69Transportgestell 11, 69Transportmittel 68Träger 10Trägertransport 70

UUmgebungstemperatur, Betrieb 13, 14, 15, 16Umgebungstemperatur, Inbetriebnahme 13, 14, 15, 16Umgebungstemperatur, Lagerung 13, 14, 15, 16Umgebungstemperatur, Transport 13, 14, 15, 16Umweltbedingungen 13, 14, 15, 16

ÜÜberlast 55Übersicht Robotersystem 9

VVerbindungsleitungen 9, 13, 14, 15, 16, 49, 65Verwendete Begriffe 42Verwendung, bestimmungsgemäße 7Verwendung, nicht bestimmungsgemäß 49Verwendung, unsachgemäß 49

WWartung 59Wiederholgenauigkeit 13, 14, 15, 16Wiederinbetriebnahme 57

ZZentralhand 10, 11Zubehör 9, 49Zusatzachsen 49, 52Zusatzlast 28, 31, 34, 37Zweckbestimmung 7

Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

85 / 85Stand: 12.08.2015 Version: Spez KR 30, 60-2 JET V1

KR 30-2 JET; KR 60-2 JET