Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen...

72
Literatur Kapitel 1 [1] Krätz O (1990) 7000 Jahre Chemie. Georg D. W. Callwey, München (Lizenzausgabe Nikol Verlagsgesellschaft, Hamburg 1999) [2] Alchemie, Wikipedia, Die freie Enzyklopädie 2012 [3] Agricola G (1556) De re metallica. Froben, Basel (entnommen O. Krätz, S. 174) [4] Kant I (1786) Metaphysische Anfangsgründe der Naturwissenschaft. Johann Friedrich Hart- knoch, Riga (Zitat aus: H. Hartmann, Theorie der chemischen Bindung auf quantentheoretischer Grundlage, S. 1, Springer, Berlin-Göttingen-Heidelberg 1954.) [5] Gavroglu K, Simões A (2012) Neither Physics nor Chemistry. A History of Quantum Che- mistry. MIT Press, Cambridge, Massachusetts, London, England Kapitel 2 [6] Stieda L (1890) Scherer, Alexander Nicolaus. Allgemeine Deutsche Biographie 31:99–102 (Onlinefassung) [7] Scherer AN (1800) Archiv für die theoretische Chemie. I. G. Voigt, Jena [8] Stromeyer F (1808) Grundriß der theoretischen Chemie. Röwer, Göttingen (2 Teile in 2 Bän- den) [9] Friedrich Stromeyer, Wikipedia, Die freie Enzyklopädie 2011 [10] Meyer G (2003) Friedrich Stromeyer. CHEMKON 10:47 [11] Glemser O (2001) Friedrich Stromeyer, Göttinger Gelehrte. In: Arndt K, Gottschalk G, Smend R (Hrsg) Die Akademie der Wissenschaften zu Göttingen in Bildnissen und Würdigungen 1751– 2001, Bd. 1. Wallstein, Göttingen, S 88 [12] Grindel DH (1808) Handbuch der theoretischen Chemie. Gauger, Dorpat [13] David Hieronymus Grindel, Wikipedia, Die freie Enzyklopädie 2013 [14] Gmelin L., Handbuch der theoretischen Chemie, 3 Bände, Franz Varrentrapp, Frankfurt 1817– 1819 [15] Gmelin L (1879). In: Allgemeine deutsche Biographie Bd. 9. Duncker & Humblot, Leipzig [16] Pietsch E, Beyer E (1939) Leopold Gmelin – der Mensch, sein Werk und seine Zeit. Berichte der Deutschen Chemischen Gesellschaft, Abteilung A (Vereinsnachrichten) 72:5 [17] Johann Friedrich Gmelin, Wikipedia, Die freie Enzyklopädie 2009 223 © Springer-Verlag Berlin Heidelberg 2015 K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2

Transcript of Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen...

Page 1: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur

Kapitel 1[1] Krätz O (1990) 7000 Jahre Chemie. Georg D. W. Callwey, München (Lizenzausgabe NikolVerlagsgesellschaft, Hamburg 1999)

[2] Alchemie, Wikipedia, Die freie Enzyklopädie 2012

[3] Agricola G (1556) De re metallica. Froben, Basel (entnommen O. Krätz, S. 174)

[4] Kant I (1786) Metaphysische Anfangsgründe der Naturwissenschaft. Johann Friedrich Hart-knoch, Riga (Zitat aus: H. Hartmann, Theorie der chemischen Bindung auf quantentheoretischerGrundlage, S. 1, Springer, Berlin-Göttingen-Heidelberg 1954.)

[5] Gavroglu K, Simões A (2012) Neither Physics nor Chemistry. A History of Quantum Che-mistry. MIT Press, Cambridge, Massachusetts, London, England

Kapitel 2[6] Stieda L (1890) Scherer, Alexander Nicolaus. Allgemeine Deutsche Biographie 31:99–102(Onlinefassung)

[7] Scherer AN (1800) Archiv für die theoretische Chemie. I. G. Voigt, Jena

[8] Stromeyer F (1808) Grundriß der theoretischen Chemie. Röwer, Göttingen (2 Teile in 2 Bän-den)

[9] Friedrich Stromeyer, Wikipedia, Die freie Enzyklopädie 2011

[10] Meyer G (2003) Friedrich Stromeyer. CHEMKON 10:47

[11] Glemser O (2001) Friedrich Stromeyer, Göttinger Gelehrte. In: Arndt K, Gottschalk G, SmendR (Hrsg) Die Akademie der Wissenschaften zu Göttingen in Bildnissen und Würdigungen 1751–2001, Bd. 1. Wallstein, Göttingen, S 88

[12] Grindel DH (1808) Handbuch der theoretischen Chemie. Gauger, Dorpat

[13] David Hieronymus Grindel, Wikipedia, Die freie Enzyklopädie 2013

[14] Gmelin L., Handbuch der theoretischen Chemie, 3 Bände, Franz Varrentrapp, Frankfurt 1817–1819

[15] Gmelin L (1879). In: Allgemeine deutsche Biographie Bd. 9. Duncker & Humblot, Leipzig

[16] Pietsch E, Beyer E (1939) Leopold Gmelin – der Mensch, sein Werk und seine Zeit. Berichteder Deutschen Chemischen Gesellschaft, Abteilung A (Vereinsnachrichten) 72:5

[17] Johann Friedrich Gmelin, Wikipedia, Die freie Enzyklopädie 2009

223© Springer-Verlag Berlin Heidelberg 2015K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigenRaum, DOI 10.1007/978-3-662-43365-2

Page 2: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

224 Literatur

[18] Louis-Nicolas Vauquelin, Wikipedia, Die freie Enzyklopädie 2011

[19] Joseph Louis Gay-Lussac, Wikipedia, Die freie Enzyklopädie 2011

[20] Louis Jacques Thenard, Wikipedia, The free Encyclopedia 2011

[21] René Just Haüy, Wikipedia, Die freie Enzyklopädie 2011

[22] Heinrich Klaproth, Wikipedia, Die freie Enzyklopädie 2013

[23] Gmelin L., Handbuch der theoretischen Chemie, 2 Bände, Franz Varrentrapp, Frankfurt amMain 1827–1829

[24] Schubarth EL (1922) Lehrbuch der theoretischen Chemie. August Rücker, Berlin

[25] Schubarth EL (1998). In: Kelly W, Vierhaus R (Hrsg) Deutsche Biographische Enzyklopädie,Bd. 9. K. G. Saur, München

[26] Schubarth EL, Biografie, Hermann von Helmholtz-Zentrum für Kulturtechnik, Humboldt-Universität zu Berlin

[27] Schubarth EL (1829) Lehrbuch der theoretischen Chemie, 4. Aufl. August Rücker, Berlin

[28] Müller L (1850) Lehrbuch der theoretischen Chemie Bd. Erstes Heft. Julius Springer, Berlin

[29] Muspratt S (1860) Chemistry, Theoretical, Practical, and Analytical as Applied and Rela-ting to the Arts and Manufactures, Bd. II. Fuel — Zinc. William Mackenzie, London-Glasgow-Edinburgh

[30] Friedrich Wöhler, Wikipedia, Die freie Enzyklopädie 2011

[31] Jöns Jakob Berzelius, Wikipedia, Die freie Enzyklopädie 2011

[32] Walden P (1930) Berzelius und wir. Zeitschrift für Angewandte Chemie 43:325

[33] Wohl A (1928) Zur Hundertjahrfeier von Wöhlers Harnstoffsynthese. Zeitschrift für Ange-wandte Chemie 41:897

[34] Universität Hannover 1831–1981, Bd. 1, S. 46, W. Kohlhammer, Stuttgart 1981

[35] Karmarsch K (1981) In: Catalogus Professorum 1831–1981, Universität Hannover Bd. 2. W.Kohlhammer, Stuttgart

[36] Glubrecht H und H (1999). In: Wünsch G (Hrsg.) Die Geschichte der Chemie an der Techni-schen Hochschule und Universität Hannover, S 16, Fachbereich Chemie, Universität Hannover

[37] Heeren F (1981) Catalogus Professorum 1831–1981, Universität Hannover Bd. 2. W. Kohl-hammer, Stuttgart

[38] Seidel R (1999) In: Wünsch G (Hrsg) Die Geschichte der Chemie an der Technischen Hoch-schule und Universität Hannover, S 30, Fachbereich Chemie, Universität Hannover

[39] Heeren F (1826) Untersuchungen über die Unterschwefelsäure. Annalen der Physik und Che-mie 7:55

[40] Alexander von Humboldt, Wikipedia, Die freie Enzyklopädie 2011

[41] Justus Liebig, Wikipedia, Die freie Enzyklopädie 2011

[42] Hermann Kopp, Wikipedia, Die freie Enzyklopädie 2010

[43] Hermann Kopp, Wikisource 2011

[44] H. Kopp, Geschichte der Chemie, 4 Bände, 1843–1847

[45] Lepsius B (1903) Heinrich Buff. Allgemeine Deutsche Biographie 44:677

[46] Eitner R (1898) Friedrich Zamminer. Allgemeine Deutsche Biographie 47:774

[47] Buff H, Kopp H, Zamminer F (1857) Physikalische und Theoretische Chemie, 3. Aufl. Gra-ham-Otto’s Lehrbuch der Chemie, Bd. 1. Friedrich Vieweg und Sohn, Braunschweig

[48] Dmitri Iwanowitsch Mendelejew, Wikipedia, Die freie Enzyklopädie 2013

[49] Lothar Meyer, Wikipedia, Die freie Enzyklopädie 2013

Page 3: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 225

[50] Walther Nernst, Wikipedia, Die freie Enzyklopädie 2009

[51] Nernst W (1893) Theoretische Chemie vom Standpunkte der Avogadro’schen Regel und derThermodynamik. F. Enke, Stuttgart

[52] Friedrich Kohlrausch, Wikipedia, Die freie Enzyklopädie 2009

[53] Wilhelm Ostwald, Wikipedia, Die freie Enzyklopädie 2009

[54] Die Geschichte der physikalischen Chemie in Göttingen, http://www.uni-goettingen.de/de/43846.html.

[55] Vaubel W (1998), In: Deutsche Biographische Enzyklopädie, Bd. 10, K. G. Saur, München

[56] Vaubel W (1903) Lehrbuch der theoretischen Chemie. Julius Springer, Berlin (2 Bände)

[57] Ludwig Boltzmann, Wikipedia, Die freie Enzyklopädie 2013

Kapitel 3[58] Schwarzer Körper, Wikipedia, Die freie Enzyklopädie 2010

[59] Strutt JW, Lord Rayleigh (2000). In: Harenberg Lexikon der Nobelpreisträger, 2. Aufl., S 39,Harenberg Lexikon Verlag, Dortmund

[60] Wien WC (2000). In: Harenberg Lexikon der Nobelpreisträger, 2. Aufl., S 75, HarenbergLexikon Verlag, Dortmund

[61] Max Planck, Wikipedia, Die freie Enzyklopädie 2011

[62] Plancksches Strahlungsgesetz, Wikipedia, Die freie Enzyklopädie 2010

[63] Hermann von Helmholtz, Wikipedia, Die freie Enzyklopädie 2011

[64] Gustav Kirchhoff, Wikipedia, Die freie Enzyklopädie 2011

[65] Planck M (1901) Ueber das Gesetz der Energieverteilung im Normalspectrum. Ann Phys309:553

[66] Plancksches Wirkungsquantum, Wikipedia, Die freie Enzyklopädie 2010

[67] Planck M (2000). In: Harenberg Lexikon der Nobelpreisträger, 2. Aufl., S 97, HarenbergLexikon Verlag, Dortmund

[68] Photoelektrischer Effekt, Wikipedia, Die freie Enzyklopädie 2010

[69] Einstein A (1905) Über einen die Erzeugung und Verwandlung des Lichts betreffenden heu-ristischen Gesichtspunkt. Ann Phys 322:132

[70] Albert Einstein, Wikipedia, Die freie Enzyklopädie 2010

[71] Einstein A (1996). In: Killy W, Vierhaus R (Hrsg) Deutsche Biographische Enzyklopädie,Bd. 3. K.G. Saur, München

[72] Niels Bohr, Wikipedia, Die freie Enzyklopädie 2010

[73] John Joseph Thomson, Wikipedia, The free encyclopedia 2013

[74] Ernest Rutherford, Wikipedia, Die freie Enzyklopädie 2013

[75] Thomsonsches Atommodell, Wikipedia, Die freie Enzyklopädie 2010

[76] Rutherfordsches Atommodell, Wikipedia, Die freie Enzyklopädie 2010

[77] Rutherford E (1911) The Scattering of ’ and “ Particles by Matter and the Structure of theAtom. PhilMag 21:669

[78] Bohrsches Atommodell, Wikipedia, Die freie Enzyklopädie 2010

[79] Bohr N (1913) On the Constitution of Atoms and Molecules. Phil Mag 26:1

[80] Bohr N (1913) On the Constitution of Atoms and Molecules. Phil Mag 26:476

[81] Arnold Sommerfeld, Wikipedia, Die freie Enzyklopädie 2010

[82] Sommerfeld A (1916) Zur Quantentheorie der Spektrallinien, Ann Phys 356:1

Page 4: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

226 Literatur

[83] Wirkung, Wikipedia, Die freie Enzyklopädie 2010

[84] Wirkungsquantum, Wikipedia, Die freie Enzyklopädie 2010

[85] Louis de Broglie, Wikipedia, Die freie Enzyklopädie 2010

[86] de Broglie L (1923) Ondes et Quanta. Comptes Rendus 177:507

[87] Prince Louis de Broglie, http://www.davis-inc.com/physics/

[88] de Broglie L (1924) Recherches sur la théorie des Quanta. Sorbonne, Paris

[89] Werner Heisenberg, Wikipedia, Die freie Enzyklopädie 2010

[90] Werner Heisenberg, http://nobelprize.org/nobel-prizes

[91] Heisenberg W (1925) Über quantentheoretische Umdeutung kinematischer und mechanischerBeziehungen. Z Phys 33:879

[92] Heisenberg W (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik undMechanik. Z Phys 43:172

[93] Heisenbergsche Unschärferelation, Wikipedia, Die freie Enzyklopädie 2010

[94] Max Born, Wikipedia, Wikipedia, Die freie Enzyklopädie 2010

[95] HeisenbergW (2000). In: Harenberg Lexikon der Nobelpreisträger, 2. Aufl., S 166, HarenbergVerlag, Dortmund

[96] Max von Laue, Wikipedia, Die freie Enzyklopädie 2010

[97] Peter Debye, Wikipedia, Die freie Enzyklopädie 2010

[98] Max Born, http://www.uni-frankfurt.de/fb/fb13/Dateien/paf/paf53.html

[99] Pascual Jordan, Wikipedia, Die freie Enzyklopädie 2010

[100] Born M, Jordan P (1925) Zur Quantenmechanik. Z Phys 34:858

[101] Born M, Heisenberg W, Jordan P (1926) Zur Quantenmechanik. II. Z Phys 35:557

[102] Born M, Wiener N (1926) Eine neue Formulierung der Quantengesetze für periodische undnicht periodische Vorgänge. Z Phys 36:174

[103] Robert Oppenheimer, Wikipedia, Die freie Enzyklopädie 2010

[104] Born M, Oppenheimer R (1927) Zur Theorie der Molekeln. Ann Phys 389:457

[105] Born-Oppenheimer-Näherung, Wikipedia, Die freie Enzyklopädie 2010

[106] Born M, Huang K (1954) Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford

[107] Erwin Schrödinger, Wikipedia, Die freie Enzyklopädie 2010

[108] Schrödinger E (1926) Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann Phys384:361

[109] Schrödinger E (1926) Quantisierung als Eigenwertproblem (Zweite Mitteilung). Ann Phys384:489

[110] Schrödinger E (1926) Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenme-chanik zu der meinen. Ann Phys 384:734

[111] Schrödinger E (1926) Quantisierung als Eigenwertproblem (Dritte Mitteilung). Ann Phys385:437

[112] Schrödinger E (1926) Quantisierung als Eigenwertproblem (Vierte Mitteilung). Ann Phys386:109

[113] Walter Heitler, Wikipedia, Die freie Enzyklopädie 2009

[114] Fritz London, Wikipedia, Die freie Enzyklopädie 2011

[115] Heitler W, London F (1927) Wechselwirkung neutraler Atome und homöopolare Bindungnach der Quantenmechanik. Z Phys 44:455

[116] Born M (1926) Zur Quantenmechanik der Stoßvorgänge. Z Phys 37:863

Page 5: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 227

[117] Born M (1926) Zur Quantenmechanik der Stoßvorgänge. Z Phys 38:803

[118] M. Born, The statistical interpretation of quantum mechanics, Nobel Lecture 1954

[119] Jordan P (1954) Praemia. Experientia 10:518

[120] Friedrich Hund, Wikipedia, Die freie Enzyklopädie 2010

[121] Hund F (1925) Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandiumbis Nickel. Z Phys 33:345

[122] Hundsche Regeln, Wikipedia, Die freie Enzyklopädie 2010

[123] Hund F (1927) Deutung der Molekülspektren. II. Z Phys 42:93

[124] Hund F (1927) Deutung der Molekülspektren. III. Bemerkungen über das Schwingungs- undRotationsspektrum bei Molekeln mit mehr als zwei Kernen. Z Phys 43:805

[125] Hund F (1977) Frühgeschichte der quantenmechanischen Behandlung der chemischen Bin-dung. Angew Chem 89:89

[126] Hückel E (1975) Ein Gelehrtenleben. Verlag Chemie, Weinheim

[127] Neidlein R, Hanack M (1980) Walter Hückel. Chem Ber 113:I–XXVIII

[128] Erich Hückel, Zerstreuung von Röntgenstrahlen durch anisotrope Flüssigkeiten, Dissertati-on, Universität Göttingen 1921

[129] Debye P (2000). In: Harenberg Lexikon der Nobelpreisträger, 2. Aufl., S 186, HarenbergVerlag, Dortmund

[130] D. Hilbert, Wikipedia, Die freie Enzyklopädie 2011

[131] Born M, Hückel E (1923) Zur Quantentheorie mehratomiger Moleküle. Physik Z 24:1

[132] Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung undverwandte Erscheinungen. Physik Z 24:185

[133] Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. II. Das Grenzgesetz für die elektri-sche Leitfähigkeit. Physik Z 24:305

[134] Hückel E (1925) Zur Theorie konzentrierter wässeriger Lösungen starker Elektrolyte. PhysikZ 26:93

[135] L. Onsager, Wikipedia, Die freie Enzyklopädie 2011

[136] Onsager L (2000). In: Harenberg Lexikon der Nobelpreisträger, 2. Aufl., S 382, HarenbergVerlag, Dortmund

[137] Lars Onsager, http://nobelprize.org/nobel_prizes/

[138] F. G. Donnan, Wikipedia, The free encyclopedia 2011

[139] Hückel E (1930) Zur Quantentheorie der Doppelbindung. Z Physik 60:423

[140] Hückel E (1930) Zur Quantentheorie der Doppelbindung und ihres stereochemischen Ver-haltens. Z Elektrochem angew physik Chem 36:641

[141] Hückel E (1931) Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkon-figuration des Benzols und verwandter Verbindungen. Z Physik 70:204

[142] Frenking G (2000) Perspective on „Quantentheoretische Beiträge zum Benzolproblem.I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen“. Theor Chem Acc103:187

[143] Hückel E (1931) Quantentheoretische Beiträge zum Benzolproblem. II. Quantentheorie derinduzierten Polaritäten. Z Physik 72:310

[144] Hückel E (1932) Quantentheoretische Beiträge zum Benzolproblem. III. Z Physik 76:628

[145] Hückel E (1933) Die freien Radikale der organischen Chemie. Quantentheoretische Beiträgezum Benzolproblem. IV. Z Physik 83:632

[146] Linus Pauling, Wikipedia, Die freie Enzyklopädie 2009

Page 6: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

228 Literatur

[147] Pauling L (1939) The nature of the chemical bond and the structure of molecules and cry-stals. Cornell University Press, Ithaca

[148] Pauling L (2000). In: Harenberg Lexikon der Nobelpreisträger, 2. Aufl., S 278, HarenbergLexikon Verlag, Dortmund

[149] Hans Hellmann, Wikipedia, Die freie Enzyklopädie 2011

[150] Schwarz WHE, Andrae D, Arnold SR, Heidberg J, Hellmann H Jr, Hinze J, Karachalios A,Kovner MA, Schmidt PC, Zülicke L (1999) Hans G. A. Hellmann (1903–1938). I. Ein Pionier derQuantenchemie. Bunsen-Magazin 1:10

[151] Schwarz WHE, Karachalios A, Arnold SR, Zülicke L, Schmidt PC, Kovner MA, Hinze J,Hellmann H Jr, Heidberg J, Andrae D (1999) Hans G. A. Hellmann (1903–1938). II. Ein deutscherPionier der Quantenchemie in Moskau. Bunsen-Magazin 1:60

[152] Jug K, Ertmer W, Heidberg J, Heinemann M, Schwarz WHE (2004) Hans Hellmann. Pionierder modernen Quantenchemie. Chemie in unserer Zeit 37:412

[153] Otto Hahn, Wikipedia, Die freie Enzyklopädie 2011

[154] Lise Meitner, Wikipedia, Die freie Enzyklopädie 2011

[155] Hans Hellmann, Über das Auftreten von Ionen bei Zerfall von Ozon und die Ionisation derStratosphäre, Dissertation, TH Stuttgart 1929

[156] Erich Regener, Wikipedia, Die freie Enzyklopädie 2010

[157] Erwin Fues, Wikipedia, Die freie Enzyklopädie 2010

[158] Wilhelm Jost, Theoretical Chemistry Genealogy Project

[159] Fues E, Hellmann H (1930) Über polarisierte Elektronenwellen. Phys Z 31:465

[160] Dirac-Gleichung, Wikipedia, Die freie Enzyklopädie 2011

[161] Hellmann H (1933) Zur Quantenmechanik der chemischen Valenz. Z Phys 82:192

[162] Wilhelm Klemm, Wikipedia, Die freie Enzyklopädie 2011

[163] Hellmann H (1933) Zur Rolle der kinetischen Elektronenenergie für die zwischenatomarenKräfte. Z Phys 85:180

[164] Virialsatz, Wikipedia, Die freie Enzyklopädie 2011

[165] Hellmann H, Jost W (1934) Zum Verständnis der „chemischen Kräfte“ nach der Quanten-mechanik. Ztschr Elektrochem 40:806

[166] Pauli-Prinzip, Wikipedia, Die freie Enzyklopädie 2011

[167] Jost W (1935) Zum Verständnis der „chemischen Kräfte“ nach der Quantenmechanik. II.Ztschr Elektrochem 41:667

[168] Hellmann H (1934) Über ein kombiniertes Störungsverfahren im Vielelektronenproblem. CR Acad Sci URSS N S 4:444

[169] Hellmann H, Syrkin JK (1935) Zur Frage der anomal kleinen sterischen Faktoren in derchemischen Kinetik. Acta Physicochim USSR 2:433

[170] Hellmann H (1937) Einführung in die Quantenchemie. Franz Deuticke, Leipzig und Wien

[171] Musher JI (1966) Comments on Some Theorems of Quantum Chemistry. Am J Phys 34:267

[172] Feynman RP (1939) Forces in Molecules. Phys Rev 56:340

[173] Pauli W (1933). In: Handbuch der Physik, Bd. 24, S 83, Springer, Berlin

[174] Müller H (2009) Friedrich Wolf (1888–1953). Hentrich&Hentrich, Berlin, S 45

[175] Karachalios A (2000) On the Making of Quantum Chemistry in Germany. Stud Hist PhilMod Phys 31:493

Page 7: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 229

Kapitel 4[176] Hecht O (1943) Otto Schmidt. Berichte der Deutschen Chemischen Gesellschaft, AbteilungA 76:121

[177] Schmidt O (1938) Die Beziehungen zwischen Dichteverteilung bestimmter Valenzelektro-nen (B-Elektronen) und Reaktivität bei aromatischen Kohlenwasserstoffen. Z physik Chem B39:59

[178] Eugen Bamberger, Theoretical Chemistry Genealogy Project

[179] Friedrich Seel, Wikipedia, Die freie Enzyklopädie 2011

[180] Seel F (1942) Quantentheoretische Rechnungen zum Problem des chinoiden Zustands. Zphysik Chem B 51:229

[181] Seel F (1943) Beiträge zur Quantenmechanik der chemischen Bindung. II. Bindungssytemund Stereochemie der Kumulene. Z physik Chem B 53:103

[182] Seel F (1953) Theoretische organische Chemie. Verlag Chemie, Weinheim

[183] Seel F (1960) Atombau und Chemische Bindung. F. Enke, Stuttgart

[184] Theodor Förster, Wikipedia, Die freie Enzyklopädie 2011

[185] Weller A (1974) Theodor Förster. Ber Bunsenges Phys Chem 78:969

[186] Schröder UE (1989) Erwin Madelung. In: Physiker und Astronomen in Frankfurt. AlfredMetzner Verlag, Frankfurt/Neuwied

[187] Karl Friedrich Bonhoeffer, Wikipedia, Die freie Enzyklopädie 2009

[188] Förster T (1937) Der Einfluss einer Doppelbindung auf die Festigkeit in der Nähe befindli-cher Einfachbindungen. Ztschr Elektrochem 43:667

[189] Schmidt O (1936) Beiträge zur Theorie der homoiopolaren Valenz: Die Deutung der Spal-tungsregel für Olefine und Radikale. Ztschr Elektrochem 42:175

[190] Förster T (1938) Die Lichtabsorption aromatischer Kohlenwasserstoffe. Z physikal Chem B41:287

[191] Förster T (1939) Die gegenseitige Beeinflussung der Valenzen im Kohlenstoffatom. Z phy-sikal Chem B 43(43):58

[192] Förster T (1939) Farbe und Konstitution organischer Verbindungen vom Standpunkt dermodernen physikalischen Theorie. Ztschr Elektrochem 45:548

[193] Förster T (1940) Quantenmechanische Rechnungen zur Theorie organischer Farbstoffe. I. Zphysikal Chem B 47:245

[194] Förster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33:146

[195] Förster-Resonanzenergietransfer, Wikipedia, Die freie Enzyklopädie 2011

[196] Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2:55(6. Folge)

[197] Förster T (1949) Quantentheorie und chemische Bindung. Angew Chem 61:144

[198] Förster T (1951) Fluoreszenz organischer Verbindungen. Vandenhoeck und Ruprecht, Göt-tingen

[199] Förster T (1968) Die neuere Entwicklung der Photochemie. Ber Bunsenges Phys Chem73:737

[200] Förster T (1970) Diabatic and Adiabatic Processes in Photochemistry. Pure Appl Chem24:443

[201] Hermann Hartmann, Wikipedia, Die freie Enzyklopädie 2011

[202] Klaus Clusius, Wikipedia, Die freie Enzyklopädie 2011

[203] H. Hartmann, Curriculum vitae, Leopoldina, Mitteilungen, Reihe 3, Jahrgang 13, 1967

Page 8: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

230 Literatur

[204] Hermann Hartmann, Zu Untersuchungen über die anomale Beweglichkeit des Wasserstoffi-ons, Dissertation, Universität Frankfurt 1941

[205] Sommerfeld A, Hartmann H (1940) Künstliche Grenzbedingungen in der Wellenmechanik.Der beschränkte Rotator. Ann Phys 37(5):333

[206] Hartmann H (1943) Angeregte Zustände des Äthylenmoleküls. Z physik Chem B 53:96

[207] Kristallfeld- und Ligandenfeldtheorie, Wikipedia, Die freie Enzyklopädie 2011

[208] Ilse FE, Hartmann H (1951) Termsysteme elektrostatischer Komplexionen der Übergangs-metalle mit einem d-Elektron. Z physik Chem 197:239

[209] Ilse FE, Hartmann H (1951) Farbe und Konstitution von Komplexverbindungen. III. DasTermsystem eines Ions mit zwei d-Außenelektronen in einem Feld oktaedrischer Symmetrie. ZNaturforsch 6a:751

[210] Hartmann H (1947) Ein einfaches Näherungsverfahren zur quantenmechanischen Behand-lung der  -Elektronensysteme aromatischer Kohlenwasserstoffe. I. Z Naturforsch 2:259

[211] Hartmann H (1947) Über ein quantenmechanisches Näherungsverfahren zur Behandlungder  -Elektronensysteme aromatischer Kohlenwasserstoffe. II. Z Naturforsch 2:263

[212] Hartmann H (1947) Eine neue quantenmechanische Behandlung von CH4 und NH4+. Z

Naturforsch A 2:489

[213] Hartmann H (1954) Theorie der chemischen Bindung auf quantentheoretischer Grundlage.Springer, Berlin Göttingen Heidelberg

[214] Immanuel Kant, Wikipedia, Die freie Enzyklopädie 2011

[215] Paul Dirac, Wikipedia, Die freie Enzyklopädie 2011

[216] Dirac P (1929) Proc Roy Soc A 1234:714

[217] Hans Ludwig Schläfer, Über die Lichtabsorption komplexer Ionen des dreiwertigen Titans,Dissertation, Universität Frankfurt 1950

[218] Hartmann H, Schläfer HL (1951) Über die Lichtabsorption komplexer Ionen des dreiwerti-gen Titans. Z physik Chem 197:117

[219] Hartmann H, Schläfer HL (1954) Über die Farbe und Konstitution von Komplexverbindun-gen der Übergangsmetalle. Angew Chem 66:768

[220] Hartmann H, Schläfer HL, Hansen KH (1956) Farbe und Konstitution von Komplexverbin-dungen. VIII. Zur Lichtabsorption komplexer Ionen des dreiwertigen Titans. Z Anorg Allg Chem284:153

[221] Hartmann H, Schläfer HL, Hansen KH (1957) Über die Lichtabsorption von Dipolkomple-xen des III-wertigen Titans vom Typ [TiA6]3+ mit A = H2O, CH3OH, C2H5OH und (NH2)2CO. ZAnorg Allg Chem 289:40

[222] Scheibe G, Brück D, Dörr F (1952) Über die Ähnlichkeit des Absorptionsspektrums ein-facher organischer Moleküle und Farbstoffe mit dem Spektrum des Wasserstoffatoms. Chem Ber85:867

[223] Günter Scheibe, Theoretical Chemistry Genealogy Project

[224] Hartmann H (1960) Zur Theorie der  -Elektronensysteme. Z Naturforsch A 15:993

[225] Hohlneicher G, Scheibe G (1963) Die erweiterte Hückelsche  -Elektronentheorie und ihreAnwendung auf einfache Konjugationssysteme. Tetrahedron 19(Suppl. 2):189

[226] Kutzelnigg W (1964) Zur Scheibeschen Regel und zur Theorie der Rydberg-Serien vonAtomen und Molekülen. Ber Bunsenges Phys Chem 68:902

[227] Jug K, Parr RG (1972) On the rules of Scheibe. Theor Chim Acta 24:147

[228] Ernst Ruch, Theoretical Chemistry Genealogy Project

[229] Brickmann J (1984) Ernst Ruch zum 65. Geburtstag. Ber Bunsenges Phys Chem 88:691

Page 9: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 231

[230] Ernst Otto Fischer, Wikipedia, Die freie Enzyklopädie 2010

[231] Ruch E, Fischer EO (1952) Zur Bindung im Cyclopentadienyl-Eisen. Z Naturforsch B 7:676

[232] Ruch E (1957) Symmetrieverhältnisse und Bindungserscheinungen. Z Elektrochemie 61:913

[233] Ruch E (1961) Zur Theorie der  -Elektronensysteme. Z Naturforsch A 16:808

[234] Ivar Ugi, Wikipedia, Die freie Enzyklopädie 2011

[235] Ruch E, Ugi I (1966) Das stereochemische Strukturmodell, ein mathematisches Modell zurgruppentheoretischen Behandlung der dynamischen Stereochemie. Theor Chim Acta 4:287

[236] Ruch E, Schönhofer A (1968) Näherungsformeln für spiegelungsantisymmetrische Molekü-leigenschaften. Theor Chim Acta 10:91

[237] Ruch E, Schönhofer A (1970) Theorie der Chiralitätsfunktionen. Theor Chim Acta 19:225

[238] Ruch E (1972) Algebraic aspects of chirality phenomenon in chemistry. Acc Chem Res 5:49

[239] Ruch E (1975) The Diagram Lattice as Structural Principle. A. New Aspects for Repre-sentions and Group Algebra of the Symmetric Group. B. Definition of Classification Character,Mixing Character, Statistical Order, Statistical Disorder; a General Principle for Time Evolutionof Irreversible Processes. Theor Chim Acta 38:167

[240] Werner Bingel, Theoretical Chemistry Genealogy Project

[241] Hückel E, Bingel W (1951) Ein quantenmechanisches eindimensionales Modell für speziellelineare endliche Molekülketten (als denkbares Modell für Kraftwirkungen zwischen Genmolekü-len im Protoplasma). Ann Phys 8(6):391

[242] Bingel W (1953) Zur Theorie der Lösungen von Alkalimetallen in flüssigem Ammoniak.Ann Phys 12(6):57

[243] Bingel W (1954) Zur Definition der Bindungsordnung in der Quantenchemie. Z NaturforschA 9:436

[244] Bingel W (1956) Bemerkungen zur Berechnung von Molekülintegralen bei kleinem Kern-abstand. Z Naturforsch A 11:186

[245] Hertha Sponer, Theoretical Chemistry Genealogy Project

[246] http://www.dpg-physik.de/dpg/gliederung/ak/akc/sponerpreis/sponervita.html

[247] Bingel W (1959) United Atom Treatment of the Behavior of Potential Energy Curves ofDiatomic Molecules at Small R. J Chem Phys 30:1250

[248] Bingel W (1959) United Atom Treatment of the Behavior of Potential Energy Surfaces ofPolyatomic Molecules at Small Internuclear Distances. J Chem Phys 30:1254

[249] Brown WB, Steiner E (1966) On the Electronic Energy of a One-Electron Diatomic Mole-cule near the United Atom. J Chem Phys 44:3934

[250] Robert Ghormley Parr, Theoretical Chemistry Genealogy Project

[251] Pariser R, Parr RG (1953) A Semi-Empirical Theory of the Electronic Spectra and the Elec-tronic Structure of Complex Unsaturated Molecules. J Chem Phys 21(466):767

[252] Bingel W (1960) Some Properties of First-Order Density Matrices with Special Applicationto Many-Electron Atoms. J Chem Phys 32:1522

[253] Bingel W, Preuß H, Schmidtke HH (1961) Der Einfluß der Überlappung in der Theorie der -Elektronensysteme von Hückel und Hartmann. Z Naturforsch A 16:1328

[254] Per Olov Löwdin, Theoretical Chemistry Genealogy Project

[255] Bingel W (1967) Theorie der Molekülspektren. Verlag Chemie, Weinheim

[256] Heinzwerner Preuß, Theoretical Chemistry Genealogy Project

[257] Wilhelm Lenz, Wikipedia, Die freie Enzyklopädie 2011

[258] G1, Wikipedia, Die freie Enzyklopädie 2011

Page 10: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

232 Literatur

[259] Preuß H (1956) Bemerkungen zum Self-consistent-field-Verfahren und zur Methode derKonfigurastionswechselwirkung in der Quantenchemie. Z Naturforsch A 11:823

[260] Samuel Francis Boys, Theoretical Chemistry Genealogy Project

[261] Preuß H (1957) Das Göttinger Integralprogramm. Z Elektrochem 61:924

[262] Preuß H (1962) Die Berechnung von adiabatischen Energiehyperflächen nach einer erwei-terten halbtheoretischen Methode der Atomassoziationen. Theor Chim Acta 1:42

[263] Diercksen G, Preuß H (1963) Beiträge zur Theorie der  -Elektronensysteme von Hückelund Hartmann. Theor Chim Acta 1:432

[264] Preuß H (1962) Grundriß der Quantenchemie. Bibliographisches Institut, Mannheim

[265] Preuß H (1963) Quantentheoretische Chemie Bd. 1. Bibliographisches Institut, Mannheim(Bd. 2, 1965, Bd. 3, 1967)

[266] Preuß H (1966) Quantenchemie für Chemiker: Elementare Einführung in ihre mathemati-schen und wellenmechanischen Grundlagen. Verlag Chemie, Weinheim

[267] Preuß H (1966) Quantenchemie für Chemiker: Elementare Einführung in ihre mathemati-schen und wellenmechanischen Grundlagen. Akademische Verlagsgesellschaft, Leipzig

[268] Hans Rudolf Christen, Wikipedia, Die freie Enzyklopädie 2013

[269] Preuß H, Boschke FL (1975) Die chemische Bindung: eine verständliche Einführung. Sprin-ger, Berlin-Heidelberg, New York

[270] Preuß H (1976) Struktur der Materie und chemische Bindung. Enke, Stuttgart

[271] Preuß H (1982) Atome und Moleküle als Bausteine der Materie. Salle, Frankfurt am Main

[272] Preuß H, Reimann A (1990) Atom- und Molekülorbitale – Eine Einführung. Diesterweg,Frankfurt am Main

[273] Preuß H (2009) Das Atom und die Ethik. LIT, Berlin

[274] Ludwig Hofacker, Theoretical Chemistry Genealogy Project

[275] Franz Rellich, Mathematics Genealogy Project

[276] Oskar Glemser, Wikipedia, Die freie Enzyklopädie 2011

[277] Hofacker L, Glemser O (1955) Über den Bindungsmechanismus bei O–H���O Wasserstoff-brücken. Naturwissenschaften 42:369

[278] Hofacker L (1957) Über den Bindungsmechanismus von O–H���O Wasserstoffbrücken. ZElektrochem 61:1048

[279] Hofacker L, Preuß H (1961) Die Behandlung des Vielteilchenproblems in der Quantenche-mie mit Hilfe der Gaußschen Integraltransformation. Z Naturforsch A 16:513

[280] Hofacker L (1963) Quantentheorie chemischer Reaktionen. Z Naturforsch A 18:607

[281] Edward W. Schlag, Theoretical Chemistry Genealogy Project

[282] Arthur A. Frost, Theoretical Chemistry Genealogy Project

[283] Raphael David Levine, Wikipedia, The free encyclopedia 2011

[284] Miller WH (2001) Autobiographical Sketch. J Phys Chem A 105:2487

[285] Hofacker GL, Levine RD (1971) A Non Adiabatic Model for Population Inversion in Mole-cular Collisions. Chem Phys Lett 9:617

[286] Hofacker GL, Levine RD (1972) Diabatic Transition State Theory and the Concept of Tem-perature. Chem Phys Lett 15:165

[287] Coutelle R, Hofacker GL, Levine RD (1979) Evolutionary Changes in Protein Composition– Evidence for an Optimal Strategy. J Mol Evol 13:57

[288] Manfred Eigen, Wikipedia, Die freie Enzyklopädie 2011

Page 11: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 233

[289] Eigen M (1971) Selforganization of Matter and the Evolution of Biological Macromolecules.Naturwissenschaften 58:465

[290] Branko Borštnik, http://www.cmm.ki.si/~branko/cveng.html

[291] Borštnik B, Pumpernik D, Hofacker GL (1987) Point Mutations as an Optimal Search Pro-cess in Biological Evolution. J theor Biol 125:249

[292] G. Wilse Robinson Endowed Lecture Series

[293] Werner Haberditzl, Theoretical Chemistry Genealogy Project

[294] Robert Havemann, Theoretical Chemistry Genealogy Project

[295] Hans Georg Bartel, Persönliche Mitteilung

[296] Haberditzl W (1966) Advances in Molecular Diamagnetism. Angew Chem Int Ed Engl5:288

[297] Haberditzl W (1968) Magnetochemie, Wissenschaftliche Taschenbücher, Bd. 50. Akademie-Verlag, Berlin, Pergamon Press, Oxford, und Friedrich Vieweg& Sohn Verlag, Braunschweig

[298] Haberditzl W (1980) Quantenchemie – Ein Lehrgang, Bd. 4, Komplexverbindungen VEBDeutscher Verlag der Wissenschaften, Dr. Alfred Hüthig Verlag, Berlin, Heidelberg

[299] Gerhard Rasch, Theoretical Chemistry Genealogy Project

[300] Günter Drefahl, Wikipedia, Die freie Enzyklopädie 2011

[301] Rasch G (1969) Zur Berechnung der relativen Charaktere nichtalternierender Systeme. MhChem 100:1364

[302] Bernhard Kockel, Theoretical Chemistry Genealogy Project

[303] Kockel B (1954) Der Grundzustand des Wasserstoffmoleküls. Ann Phys 450:64

[304] Hans Kuhn, Wikipedia, Die freie Enzyklopädie 2011

[305] Kuhn H (1985) Werner Kuhn (1899–1963). Chemie in unserer Zeit 19:86

[306] Hans Kuhn, Helveticat, Schweizerische Nationalbibliothek NV

[307] Kuhn H (1948) The Nature of Bond Orbitals in Quadricovalent Complexes of TransitionMetals. J Chem Phys 16:727

[308] Kuhn H (1948) Elektronengasmodell zur quantitativen Deutung der Lichtabsorption vonorganischen Farbstoffen I. Helv Chim Acta 31:1441

[309] Kuhn H (1972) Selbstorganisation molekularer Systeme und die Evolution des genetischenApparats. Angew Chem 84:838

[310] Försterling HD, Kuhn H, Tewes KH (1972) Computermodell zur Bildung selbstorganisie-render Systeme. Angew Chem 84:862

[311] Kuhn H, Kuhn C (2003) Vielgestaltige Umwelt: Antrieb zur Entstehung des Lebens?! An-gew Chem 115:272

[312] Kuhn H (2008) Origin of life – Symmetry breaking in the universe: Emergence of homochi-rality. Current Opinion in Colloid & Interface Science 13:3

[313] Kuhn H (2010) Is the transition from chemistry to biology a mystery? Systems Chemistry1:3

[314] Wagnière G (1978) Heinrich Labhart. Helv Chim Acta 61:30

[315] Paul Scherrer, Wikipedia, Die freie Enzyklopädie 2011

[316] Labhart H (1946) Über den Mechanismus der elektrischen Leitfähigkeit des Siliciumcarbids.E. Birkheuser & Cie, Basel

[317] Labhart H, Lotmar W, Schmid P (1951) Eine interferometrische Mikro-Methode für Diffu-sionsmessungen. Helv Chim Acta 34:2449

Page 12: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

234 Literatur

[318] Labhart H (1953) Ein mechanisches Modell zur Ermittlung der Absorptionsmaxima organi-scher Farbstoffe auf Grund ihrer chemischen Konstitution. Helv Chim Acta 36:1689

[319] Labhart H (1956) Zur Berücksichtigung der Elektronenwechselwirkung in der Elektronen-gasmethode. Helv Chim Acta 39:1320

[320] Robert S. Mulliken, Wikipedia, The free encyclopedia 2011

[321] John R. Platt, Theoretical Chemistry Genealogy Project

[322] Jug K, Labhart H (1972) Über den Kontinuumseinfluß auf die Polarisierbarbeit von Mole-külzuständen. Theor Chim Acta 24:283

[323] Labhart H (1977) On the behaviour of molecules at „avoided surface crossings“. Chem Phys23:1

[324] Edgar Heilbronner, Theoretical Chemistry Genealogy Project

[325] Hans Heinrich Günthard, Theoretical Chemistry Genealogy Project

[326] Placidus Plattner, Theoretical Chemistry Genealogy Project

[327] Huber H, Wirz J (2006) Ein Pionier der physikalischen Chemie. Zum Tod von Edgar Heil-bronner. Chimia 60:716

[328] Dunitz JD (2006) Edgar Heilbronner (1921–2006). Angew Chem 118:6936

[329] Prelog V, Jeger O (1983) Leopold Ruzicka. Helv Chim Acta 66:1307

[330] Ruzicka L (2000). In: Harenberg Lexikon der Nobelpreisträger, 2. Aufl., S 205, HarenbergLexikon Verlag, Dortmund

[331] Günthard H, Heilbronner E (1948) Thermodynamische Eigenschaften von Äthylenoxyd.Helv Chim Acta 31:2128

[332] Heilbronner E (1953) Das Kompositions-Prinzip: Eine anschauliche Methode zur elektro-nen-theoretischen Behandlung nicht oder niedrig symmetrischer Molekeln im Rahmen der MO-Theorie. Helv Chim Acta 36:170

[333] Heilbronner E (1954) Molecular Orbitals in homologen Reihen mehrkerniger aromati-scher Kohlenwasserstoffe: I. Die Eigenwerte von LCAO-MO’s in homologen Reihen. Helv Chim37:921

[334] Hückel E (1938) Grundzüge der Theorie ungesättigter und aromatischer Verbindungen. Ver-lag Chemie, Berlin

[335] Grinter R, Heilbronner E (1962) Energie und Ladungsverteilung von elektronisch angeregtenZuständen mehrfach substituierter Benzole: eine quantenchemische Deutung der Witt-Dilthey-Wizinger’schen Farbregeln. Helv Chim Acta 45:2496

[336] Heilbronner E (1964) Hückel molecular orbitals of Möbius-type conformations of annule-nes. Tetrahedron Lett 25:1923

[337] Zimmerman HE (1966) On Molecular Orbital Correlation Diagrams, the Occurence ofMöbius Systems in Cyclizations Reactions, and Factors Controlling Ground- and Excited StateReactions. I. J Am Chem Soc 88:1564

[338] Zimmerman HE (1966) On Molecular Orbital Correlation Diagrams, the Occurence ofMöbius Systems in Cyclizations Reactions, and Factors Controlling Ground- and Excited StateReactions. II. J Am Chem Soc 88:1566

[339] Woodward RB, Hoffmann R (1965) Stereochemistry of Electrocyclic Reactions. J AmChemSoc 87:395

[340] Ajami D, Oeckler O, Simon A, Herges R (2003) Synthesis of a Möbius aromatic hydrocar-bon. Nature 426:819

[341] H. Bock, Wikipedia, Die freie Enzyklopädie 2011

Page 13: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 235

[342] Heilbronner E, Bock H (1968) Das HMO-Modell und seine Anwendung, Grundlagen undHandhabung. Verlag Chemie, Weinheim

[343] Heilbronner E, Bock H (1970) Das HMO-Modell und seine Anwendung, Tabellen berech-neter und experimenteller Größen. Verlag Chemie, Weinheim

[344] Heilbronner E, Bock H (1976) Das HMO-Modell und seine Anwendung, Übungsbeispielemit Lösungen. Verlag Chemie, Weinheim

[345] Hoffmann R, Imamura A, Hehre WJ (1968) Benzynes, Dehydroconjugated Molecules, andthe Interaction of Orbitals Separated by a Number of Intervening ¢ Bonds. J Am Chem Soc90:1499

[346] R. Hoffmann, http://nobelprize.org/nobel-prizes

[347] Beez M, Bieri G, Bock H, Heilbronner E (1973) The Ionization Potentials of Butadiene, He-xatriene, and their Methyl Derivatives: Evidence for Through Space Interaction Between DoubleBond  -Orbitals and Non-Bonded Pseudo-  Orbitals of Methyl Groups? Helv Chim Acta 56:1028

[348] Heilbronner E, Schmelzer A (1975) A Quantitative Assessment of „Through-bond“ and„Through-space“ Interactions. Application to Semi-Empirical SCF Models. Helv Chim Acta58:936

[349] Brogli F, Giovannini E, Heilbronner E, Schurter R (1973) Die Photoelektronen-Spektren derBenzocycloalkene. Chem Rev 106:961

[350] Heilbronner E, in Bergmann ED, Pullman B (1971) Aromaticity, Pseudoaromaticity, Anti-Aromaticity. The Israel Academy of Sciences and Humanities, Jerusalem, S 33 (Proceedings of anInternational Symposium held in Jerusalem 31 March–3 April 1970)

[351] Heilbronner E (1982) Some More Difficulties with Topological Resonance Energy. ChemPhys Lett 85:377

[352] Heilbronner E, Miller FA (1993) Chomische Fehler auf chemischen Briefmarken. Chemiein unserer Zeit 27:69

[353] Günthard HH, Heibronner E, Messikommer B (1952) Molekel-Eigenfunktionen bestimmterSymmetrie: Linearkombinationen von S-Funktionen. Helv Chim Acta 35:2149

[354] Günthard HH (1981) Eidgenössische Technische Hochschule Zürich. Zur Entwicklung derphysikalischen Chemie in den letzten 25 Jahren. Swiss Chem 3:37

[355] Günthard HH, Primas H (1956) Zusammenhang von Graphentheorie und MO-Theorie vonMolekeln mit Systemen konjugierter Bindungen. Helv Chim Acta 39:1645

[356] Bauder A, Mathier E, Meyer R, Ribeaud M, Günthard HH (1968) Theory of rotation andtorsion spectra for a semi-rigid model of molecules with an internal rotor of C2v symmetry. MolPhys 15(2):597

[357] Meyer R, Günthard HH (1968) General Internal Motion of Molecules, Classical and Quan-tum-Mechanical Hamiltonian. J Chem Phys 49:1510

[358] Günthard HH, Heilbronner E (1993) Physical Chemistry in Helvetica Chimica Acta from1918 to 1992. Helv Chim Acta 76:931

[359] Wild U, Keller J, Günthard HH (1969) Symmetry Properties of Hückel Matrix. Theor ChimActa 14:383

[360] Oskar E. Polansky, Theoretical Chemistry Genealogy Project

[361] http://www.mpibac.mpg.de/bac/mitarbeiter/Alumni/polansky/polansky.php

[362] Friedrich Wessely, Theoretical Chemistry Genealogy Project

[363] Polansky OE (1957) Über den Einfluß induzierter Ladungen auf den Grundzustand des  -Elektronensystems ungesättigter Carbonylverbindungen. Mh Chem 88:91

[364] Coulson CA (1952) Valence. Oxford University Press, Oxford, New York

Page 14: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

236 Literatur

[365] Zander M, Polanky OE (1987) Oskar E. Polansky’s wissenschaftliches Werk: Entstehung,Inhalt und Bedeutung Schriftenreihe des Max-Planck-Instituts für Strahlenchemie, Bd. 34

[366] Polansky OE (1961) Zur Kenntnis cyclischer Acylale, 3. Mitt.: Zur Elektronenstruktur cy-clischer Acylale. Mh Chem 92:820

[367] Polansky OE, Derflinger G (1961) Über Benzazole, 1. Mitt.: Berechnung der  -Elektronen-struktur der Benzazole und einiger ihrer Derivate mittels der einfachen LCAO-MO-Methode. MhChem 92:1114

[368] Derkosch J, Polansky OE, Rieger E, Derflinger G (1961) Über Benzazole, 2. Mitt.: Die UV-Spektren der Benzazole. Mh Chem 92:1131

[369] Polansky OE, Derflinger G (1963) Über den Zusammenhang von Bindungslängen und Elek-tronegativitäten. Theor Chim Acta 1:308

[370] Derflinger G, Polansky OE (1963) Über den Zusammenhang von Kovalenzradien und Elek-tronegativitäten. Theor Chim Acta 1:316

[371] Schuster P, Polansky OE (1966) Bestimmung der HMO-Parameter von Nitrogruppen ausden UV-Spektren von Nitroaromaten. Mh Chem 97:1365

[372] Bihlmayer GA, Derflinger G, Derkosch J, Polansky OE (1967) Oxy- und Aminomethylen-meldrumsäuren (Zur Kenntnis cyclischer Acylale. 17. Mitt.). Mh Chem 98:564

[373] Polansky OE, Derflinger G (1967) Zur Clar’schen Theorie Lokaler Benzoider Gebiete inKondensierten Aromaten. Int J Quantum Chem 1:379

[374] Erich Clar, Wikipedia, Die freie Enzyklopädie 2013

[375] Franz Mark, Theoretical Chemistry Genealogy Project

[376] Graovac A, Polansky OE, Trinajstic N, Tyutyulkov N (1975) Graph Theory in Chemistry. 2.Graph-Theoretical Description of Hetetroconjugated Molecules. Z Naturforsch A 30:1696

[377] Balaban AT (2005) Recollections about Professor Oskar E. Polansky: a Personal AccountOccasioned by the 30th Anniversary of MATCH, MATCH Commun. Math Comput Chem 53:7

[378] Polansky OE (1982) Topological Effects on MO Energies. J Mol Struct 84:361

[379] Adolf Neckel, Theoretical Chemistry Genealogy Project

[380] Ludwig Ebert, Theoretical Chemistry Genealogy Project

[381] Neckel A, Volk H (1958) Über die thermodynamischen Eigenschaften von Mischungen vonAromaten mit halogenierten Kohlenwasserstoffen. Z Elektrochem 62:1104

[382] Neckel A, Vinek G (1964) Berechnung der Madelungenergie von Gittern komplexer Ionen.Z Physik Chem 42:129

[383] Weiss A (1991) Adolf Neckel zum 65. Geburtstag. Ber Bunsenges Phys Chem 95:743

[384] Hans Nowotny, Theoretical Chemistry Genealogy Project

[385] Neckel A, Rastl P, Eibler R, Weinberger P, Schwarz K (1976) Results of Self-ConsistentBand-Structure Calculations of ScN, ScO, TiC, TiN, TiO, VC, VN and VO. J Phys C – Solid StatePhys 9:579

[386] Neckel A (1983) Recent Investigations on the Electronic Structure of the Fourth and FifthGroup Transition Metal Monocarbides, Mononitrides, and Monoxides. Int J Quantum Chem23:1317

[387] Neckel A, Fabjan C, Selden K (1980) Chancen für das Elektrofahrzeug? Teil I. Batterien fürelektrische Straßenfahrzeuge, Teil II. Elektrizität für den Straßenverkehr. Springer, Heidelberg-Berlin

Kapitel 5[388] Gerhard Fritz, Theoretical Chemistry Genealogy Project

Page 15: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 237

[389] Friedrich Ernst Ilse, Theoretical Chemistry Genealogy Project

[390] Hans Ludwig Schläfer, Theoretical Chemistry Genealogy Project

[391] Karl Heinz Hansen, Theoretical Chemistry Genealogy Project

[392] Hansen KH (1963) Zur gruppentheoretischen Bestimmung der Atomzustände in Liganden-feldern. Theor Chim Acta 1:159

[393] Hansen KH (1963) Zur gruppentheoretischen Bestimmung der Molekülzustände. TheorChim Acta 1:353

[394] Hans Albrecht Bethe, Wikipedia, Die freie Enzyklopädie 2011

[395] Allen LC (1972) The Shape of Molecules. Theor Chim Acta 24:117

[396] Günter Gliemann, Theoretical Chemistry Genealogy Project

[397] Hartmann H, Gliemann G (1958) Absolutberechnung der Normalfrequenzen von CH4, CD4

und NH4+. Z Physik Chem N F 15:108

[398] Gliemann G (1962) Die Termschemata der d1- und d2-Elektronensysteme in achtfach koor-dinierten Komplexverbindungen der Symmetrie D4d. Theor Chim Acta 1:14

[399] Schläfer HL, Gliemann G (1967) Einführung in die Ligandenfeldtheorie. Akademische Ver-lagsgesellschaft, Frankfurt am Main

[400] Gliemann G, Yersin H (1985) Spectroscopic Properties of the Quasi One-Dimensional Te-tracyanoplatinate(II) Compounds. Structure and Bonding 62:87

[401] Hans-Herbert Schmidtke, Theoretical Chemistry Genealogy Project

[402] Jørgensen CK, Pappalardo R, Schmidtke HH (1963) Do the „Ligand Field“ Parameters inLanthanides Represent Weak Covalent Bonding? J Chem Phys 39:1422

[403] Schmidtke HH (1966) LCAO Description of Symmetric Molecules by Unified Theory ofFinite Graphs. J Chem Phys 45:3920

[404] Schmidtke HH (1967) Charge Transfer Spectrum of Thiocyanate and Selenocyanate Com-plexes of Transition Metals. Ber Bunsenges physik Chem 71:1138

[405] Schmidtke HH (1972) Angular Overlap Model of Low Symmetry Complexes. 2. BinuclearComplexes with Linear Oxygen Bridge. Theor Chim Acta 20:92

[406] Wolf A, Schmidtke HH (1980) Nonempirical Calculations on Diatomic Transition Metals.II. RHF Calculations of Lowest Closed-Shell States of Homonuclear Transition-Metal Dimers. IntJ Quantum Chem 18:1187

[407] Schmidtke HH (1987) Quantenchemie. VCH, Weinheim

[408] Edgar König, Theoretical Chemistry Genealogy Project

[409] Edgar König, Berechnung der Normalfrequenzen oktaedrischer Komplexverbindungen aufGrund elektrostatischer Vorstellungen, Dissertation, Johann-Wolfgang-Goethe-Universität, Frank-furt am Main 1959

[410] König E (1962) Interpretation der Absorptionsspektren der Komplexionen [Mo(CN)8]4�,[Mo(CN)8]3�, [W(CN)8]4� und [W(CN)8]3�. Theor Chim Acta 1:23

[411] Madeja K, König E (1963) Zur Frage der Bindungsverhältnisse in Komplexverbindungendes Eisens(II) mit 1,10-Phenanthrolin. J Inorg Nucl Chem 25:377

[412] Carl Johan Ballhausen, Theoretical Chemistry Genealogy Project

[413] Ballhausen CJ (1962) Introduction to Ligand Field Theory. McGraw-Hill, New York

[414] König E, Madeja K, Watson KJ (1968) Reversible Quintet-Singlet Transition inDithiocyanatobis(2,20-dipyridyl)iron(II). J Am Chem Soc 90:1146

[415] König E, Kremer S (1977) Ligand Field Energy Diagrams. Plenum Press, New York, London

[416] König E, Ritter G, Kulshreta SK (1985) The Nature of Spin-State Transitions in Solid Com-plexes of Iron(II) and the Interpretation of Some Associated Phenomena. Chem Rev 85:219

Page 16: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

238 Literatur

[417] König E (1987) Structural Changes Accompanying Continuous and Discontinuous Spin-State Transitions. Prog Inorg Chem 35:527

[418] König E (1991) Nature and Dynamics of the Spin-State Interconversion in Metal-Comple-xes. Structure and Bonding 76:51

[419] Friedrich Grein, Theoretical Chemistry Genealogy Project

[420] Grein F, Chang TC (1971) Multiconfiguration Wavefunctions Obtained by Application ofGeneralized Brillouin Theorem. Chem Phys Lett 12:44

[421] Lushington GH, Bündgen P, Grein F (1995) Ab Initio Study of Molecular g-Tensors. Int JQuantum Chem 55:377

[422] Lushington GH, Grein F (1996) Complete to second-order ab initio level calculations ofelectronic g-tensors. Theor Chim Acta 93:259

[423] Banichevich A, Peyerimhoff SD, Grein F (1993) Potential energy surfaces of ozone in itsground states and in its lowest-lying eight excited states. Chem Phys 178:155

[424] Tae-Kyu Ha, Theoretical Chemistry Genealogy Project

[425] O’Konski CT (1968) Interpretation of Nuclear Quadrupol Coupling in Nitrogen ContainingMolecules with Ab Initio Molecular-Orbital Wavefunctions. J Chem Phys 59:5354

[426] Martin Quack, Theoretical Chemistry Genealogy Project

[427] Bakasov A, Ha TK, Quack M (1998) Ab initio calculations of molecular energies includingparity violations. J Chem Phys 109:7263

[428] Kim KS, Lee JY, Lee SJ, Ha TK, Kim DH (1994) On Binding Forces between AromaticRing and Quaternary Ammonium Compound. J Am Chem Soc 116:7399

[429] Ernst Otto Steinborn, Theoretical Chemistry Genealogy Project

[430] Wilhelm Macke, Theoretical Chemistry Genealogy Project

[431] Gustav Richter, Theoretical Chemistry Genealogy Project

[432] Gustav Hertz, Wikipedia, Die freie Enzyklopädie 2013

[433] Steinborn EO, Gliemann G (1966) Zur Deutung der Ultraviolett-Absorptionsspektren derAlkalihalogenid-Kristalle. Theor Chim Acta 4:185

[434] Klaus Ruedenberg, Theoretical Chemistry Genealogy Project

[435] Steinborn EO, Filter E (1975) Translations of Fields by Spherical-Harmonic Expansions forMolecular Calculations. I. General Concepts and Methods. Theor Chim Acta 38:247

[436] Steinborn EO, Filter E (1975) Translations of Fields by Spherical-Harmonic Expansions forMolecular Calculations. III. Translations of Reduced Bessel Functions, Slater-Type s-Orbitals, andOther Functions. Theor Chim Acta 38:247

[437] Filter E, Steinborn EO (1978) The three-dimensional convolution of reduced Bessel functi-ons and other functions of physical interest. J Math Phys 19:71

[438] Filter E, Steinborn EO (1978) Extremely compact formulas for two-center one-electron in-tegrals and Coulomb integrals over Slater-type atomic orbitals. Phys Rev A 18:1

[439] Trivedi HP, Steinborn EO (1983) Fourier transform of a two-center product of exponenti-al-type orbitals. Application to one-electron and two-electron multicenter integrals. Phys Rev A27:670

[440] Weniger EJ, Steinborn EO (1983) The Fourier transforms of some exponential-type basisfunctions and their relevance to multicenter problems. J Chem Phys 78:6112

[441] Weniger EJ, Grotendorst J, Steinborn EO (1986) Unified analytical treatment of overlap,two-center nuclear attraction, and Coulomb integrals of B functions via the Fourier-transformmethod. Phys Rev A 33:3688

[442] Karl Jug, Theoretical Chemistry Genealogy Project

Page 17: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 239

[443] K. Jug, Quantenchemisches Modell für einen oktaedrischen Titankoplex, Diplomarbeit, Jo-hann Wolfgang Goethe-Universität, Frankfurt am Main 1964

[444] Hartmann H, Jug K (1965) Anwendung einer Einzentrenmethode auf die  -Elektronensys-teme von Fünferheterozyklen. Theor Chim Acta 3:439

[445] Hartmann H (1972) Die Bewegung eines Körpers in einem ringförmigen Potentialfeld. The-or Chim Acta 24:201

[446] Hartmann-Potential, Wikipedia, Die freie Enzyklopädie 2013

[447] Parr RG (1963) Quantum Theory of Molecular Electronic Structure. W. A. Benjamin, NewYork

[448] Lykos PG, Parr RG (1956) On the Pi-Electron Approximation and Its Possible Refinement.J Chem Phys 24:1166 (25, 1301 (1956))

[449] P. G. Lykos, Theoretical Chemistry Genealogy Project

[450] Jug K (1969) On the Development of Semiempirical Methods in the MO Formalism. TheorChim Acta 14:91

[451] Pople JA, Santry DP, Segal GA (1965) Approximate Self-Consistent Molecular OrbitalTheory. I. Invariant Procedures. J Chem Phys 43:129

[452] Jug K (1970) Determination of ’ and “ Parameters in Approximate SCF MO Theories.Theor Chim Acta 16:95

[453] Jug K (1973) Semiempirical Hartree-Fock Theory. Theor Chim Acta 30:231

[454] Jug K (1973) A New Definition of Atomic Charges in Molecules. Theor Chim Acta 31:63

[455] Patrick Coffey, Theoretical Chemistry Genealogy Project

[456] John Anthony Pople, Theoretical Chemistry Genealogy Project

[457] Coffey P, Jug K (1973) Semiempirical Molecular Orbital Calculalations and Molecular Ener-gies. A New Formula for the “ Parameter. J Am Chem Soc 95:7575

[458] Woodward-Hoffmann-Regeln, Wikipedia, Die freie Enzyklopädie 2011

[459] Jug K (1981) Mathematik in der Chemie. Springer, Heidelberg-Berlin

[460] Jug K (1977) A Maximum Bond Order Principle. J Am Chem Soc 99:7800

[461] Nanda DN, Jug K (1980) SINDO1. A Semiempirical SCF MO Method for Molecular Bin-ding Energy and Geometry. I. Approximations and Parametrization. Theore Chim Acta 57:95

[462] Jug K, Iffert R, Schulz J (1987) Development and Parametrization of SINDO1 for Second-row Elements. Int J Quantum Chem 32:265

[463] Gopinathan MS, Jug K (1983) Valency. I. A Quantum Chemical Definition and Properties.Theor Chim Acta 63:497

[464] Gopinathan MS, Jug K (1983) Valency. II. Applications to Molecules with First-RowAtoms.Theor Chim Acta 63:511

[465] Jug K (1984) A Unified Treatment of Valence and Bond Order from Density Operators. JComput Chem 5:555

[466] Jug K (1983) A Bond Order Approach to Ring Current and Aromaticity. J Org Chem 48:1344

[467] Shaik SS, Hiberty PC, Lefour M, Ohanessian G (1987) Is Delocalization a Driving Force inChemistry? Benzene, Allyl Radical, Cyclobutadiene, and Their Isoelectronic Species. J Am ChemSoc 109:363

[468] Jug K, Köster AM (1990) Influence of ¢ and   Electrons on Aromaticity. J Am Chem Soc112:6772

[469] Katritzky AR, Barczynski P, Musumarra G, Pisano D, Szafran M (1989) Aromaticity asa Quantitative Concept. 1. A Statistical Demonstration of the Orthogonality of „Classical“ and„Magnetic“ Aromaticity in Five- and Six-Membered Heterocycles. J Am Chem Soc 111:7

Page 18: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

240 Literatur

[470] Jug K, Köster AM (1991) Aromaticity asMulti-Dimensional Phenomenon. J Phys Org Chem4:163

[471] Katritzky AR, Karelson M, Sild S, Krygowswki TM, Jug K (1998) Aromaticity as a Quan-titative Concept. 7. Aromaticity Reaffirmed as a Multidimensional Charateristic. J Org Chem63:5228

[472] Katritzky AR, Jug K, Oniciu D (2001) Quantitative Measures of Aromaticity for Mono-, Bi-and Tricyclic Penta- and Hexaatomic Heteroaromatic Ring Systems and Their Interrrelatiopnships.Chem Rev 101:1421

[473] Jug K, Hiberty PC, Shaik SS (2001) ¢-  Energy Separation in Modern Electronic Theoryfor Ground States of Conjugated Systems. Chem Rev 101:1477

[474] Joachim Heidberg, Theoretical Chemistry Genealogy Project

[475] Jug K, Homann T, Bredow T (2004) Reaction Mechanism of the Selective Catalytic Reduc-tion of NO with NH3 and O2 to N2 and H2O. J Phys Chem A 108:2966

[476] Ahlwede B, Jug K (1999) Consistent Modifications of SINDO1. I. Approximations andParameters. J Comput Chem 20:563

[477] Bredow T, Geudtner G, Jug K (2001) MSINDO Parameterization of Third-Row TransitionMetals. J Comput Chem 22:861

[478] Michael Binnewies, Theoretical Chemistry Genealogy Project

[479] Nair NN, Bredow T, Jug K (2004) Molecular Dynamics Impementation in MSINDO: Studyof Silicon Clusters. J Comput Chem 25:1255

[480] Köster AM, Bredow T (2005) The 65th birthday of Karl Jug. Theor Chem Acc 114:1

[481] Klaus Helfrich, Theoretical Chemistry Genealogy Project

[482] Helfrich K, Hartmann H (1970) Generalized Quantum Mechanical Two-Centre Problems. I.General Theory and Results for Some Two-Centre Coulomb Problems. Theor Chim Acta 16:263

[483] Helfrich K (1972) Constants of Motion for Separable One-Particle Problems. Theor ChimActa 24:271

[484] Heinrich von Hirschhausen, Theoretical Chemistry Genealogy Project

[485] W. H. Eugen Schwarz, Theoretical Chemistry Genealogy Project

[486] Gombás P (1967) Pseudopotentiale. Springer, Wien – New York

[487] Andrae D, Effective Core Potentials – 70 Years of Development, Hellmann Kolloquium,Bonn 2003. http://www.uni-bielefeld.de/chemie/tc/Andrae/bonn03.pdf

[488] Schwarz WHE (1967) Recensio, Gombás P, Pseudopotentiale. Theor Chim Acta 9:100

[489] W. H. Eugen Schwarz, Katalog der Deutschen Nationalbibliothek 1969

[490] Schwarz WHE (1968) Das Kombinierte Näherungsverfahren. I. Theoretische Grundlagen.Theor Chim Acta 11:307

[491] Schwarz WHE (1974) X-Ray Absorption Spectroscopy of Free Molecules. Angew ChemInt Ed Engl 13:454

[492] Schwarz WHE (1975) Interpretation of the Core Electron Excitation Spectra of HydrideMolecules and the Properties of Hydride Radicals. Chem Phys 11:217

[493] Schwarz WHE (1975) Continuous Change of Valence to Rydberg Type States. An Exampleof XUV Spectroscopy. Chem Phys 9:157

[494] Hafner P, Schwarz WHE (1978) Pseudo-potential approach including relativistic effects. JPhys B 11:217

[495] Hafner P, Schwarz WHE (1978) Atomic transition probabilities from the relativistic pseu-dopotential approach. J Phys B 11:2975

[496] Schwarz WHE, Wallmeier H (1982) Basis set expansions of relativistic molecular waveequations. Mol Phys 46:1045

Page 19: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 241

[497] Schwerdtfeger P, Dolg M, Bowmaker GA, Schwarz WHE (1989) Relativistic effects in goldchemistry. I. Diatomic gold compounds. J Chem Phys 91:1762

[498] Schwarz WHE, Ruedenberg K, Mensching L (1989) Chemical Deformation Densities. 1.Principles and Formulation of Quantitative Determination. J Am Chem Soc 111:6926

[499] Wang SG, Pan DK, Schwarz WHE (1995) Density calculations of lanthanide oxides. J ChemPhys 102:9296

[500] Schwarz WHE (1998) Density functional study of first row transition metal dihalides. JChem Phys 109:7252

[501] Kutzelnigg W (2002) W. H. E. Schwarz zum 65. Geburtstag. Bunsen-Magazin 4:153

[502] Ernst Albrecht Reinsch, Theoretical Chemistry Genealogy Project

[503] Rolf Huisgen, Theoretical Chemistry Genealogy Project

[504] Reinsch EA (1971) Das Kastenmodell als Grundlage für ein ab initio Verfahren. I. Skizzie-rung. Theor Chim Acta 23:151

[505] Reinsch EA, Meyer W (1976) Finite perturbation calculation for the static dipole polarizabi-lities of the atoms Na through Ca. Phys Rev A 14:915

[506] Reinsch EA, Meyer W (1978) Finite-perturbation calculation of static quadrupole and mixeddipole-octupole polarizabilities for the ground states of the first-row atoms for the static dipolepolarizabilities of the atoms Na through Ca. Phys Rev A 18:1793

[507] Werner HJ, Reinsch EA (1982) The self-consistent electron pairs method for multiconfigu-ration reference state functions. J Chem Phys 76:3144

[508] Werner HJ, Rosmus P, Reinsch EA (1983) Molecular properties from MCSCF-SCEP wavefunctions. I. Accurate dipole moment functions for OH, OH, and OH+. J Chem Phys 79:905

[509] Reinsch EA (2004) Mathematik für Chemiker. Teubner, Stuttgart – Leipzig – Wiesbaden

[510] Karl Hensen, Theoretical Chemistry Genealogy Project

[511] Ulrich Wannagat, Theoretical Chemistry Genealogy Project

[512] Hensen K, Sarholz W (1968) Untersuchung der UV-Absorptionsspektren einiger Pyridin-Additionsverbindungen. Theor Chim Acta 12:206

[513] Hensen K, Stumpf T, BolteM, Näther C, Fleischer H (1998) Experimental Investigations andab Initio Studies on Hexacoordinated Complexes of Dichlorosilanes. J Am Chem Soc 120:10402

[514] Hensen K, Achatz M, Müller R, Tröbs U (1974) Gemischt quantenmechanisch-statistischeModellrechnungen mit der Einzentrenmethode an Wasserstoffverbindungen tetraedrischer Sym-metrie von Elementen der III., IV. und V. Hauptgruppe. Theor Chim Acta 34:327

[515] Gundolf Kohlmaier, Theoretical Chemistry Genealogy Project

[516] Benton Seymour Rabinovitch, Theoretical Chemistry Genealogy Project

[517] Hartmann H, Kohlmaier G (1967) Zur Kristallfeld-Polarisation. I. Multipol-Polarisierbar-keiten für Atome und Ionen mit Edelgaskonfiguration. Theor Chim Acta 7:189

[518] Hartmann H, Kohlmaier G (1967) Zur Kristallfeld-Polarisation. II. Berechnung der Feldstär-kekoeffizienten und der Polarisationsenergie in Ionenkristallen unter besonderer Berücksichtigungder beobachteten Strukturen der Alkali-Halogenide, der Erdalkali-Chalkogenide und der III-V-Verbindungen. Theor Chim Acta 7:196

[519] Erich Zeeck, Theoretical Chemistry Genealogy Project

[520] Georg-Maria Schwab, Theoretical Chemistry Genealogy Project

[521] Zeeck E (1974) (p-d)  -Bonding and Hyperconjugation in Vinylsilane. Theor Chim Acta35:301

[522] Fritz Peter Schäfer, Analogrechner und Registrierautomat zur Ermittlung der stationärenWellenfunktionen und Energieniveaus eines Teilchens in einem zweidimensionalen Potentialfeld,Dissertation, Philipps-Universität Marburg 1960

Page 20: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

242 Literatur

[523] Kuhn H (1961) Analogiebetrachtungen und Analogrechner zur quantenchemischen Behand-lung der Lichtabsorption von Farbstoffen. Chimia 15:53

[524] Friedrich Franz Seelig, Theoretical Chemistry Genealogy Project

[525] Seelig FF, Kuhn H (1963)  -Elektronenzustände durch Direktermittlung der räumlichenWellenfunktion mit einem Analogrechner. Z Naturforsch A 18:1191

[526] Seelig FF (1971) Systems-theoretic Model for the Spontaneous Formation of Optical Anti-podes in Strongly Asymmetric Yield. J Theor Biol 31:355

[527] Seelig FF (1971) Mono- or Bistable Behaviour in a Weakly or Strongly Open ChemicalReaction System. J Theor Biol 32:93

[528] Seelig FF (1974) Quantentheorie der Moleküle. Thieme, Stuttgart

[529] Sporns O, Roth S, Seelig FF (1987) Chaotic Dynamics of Two Coupled Biochemical Oscil-lators. Physica D 26:215

[530] Extended Hückel method, Wikipedia, The free encyclopedia 2011

[531] Koch W, Seelig FF (1987) Extended Hückel Energy Band Structures of Transition-MetalCompounds with 1-Dimensional Crystal Geometries. Basic Equations and Computational Resultsfor Bis(2,5-Dimethyl-N,N0-Dicyanoquinonediimine) Copper (I). Z Naturforsch 42:875

[532] Horst-Dieter Försterling, Theoretical Chemistry Genealogy Project

[533] Czikklely V, Försterling HD, Kuhn H (1970) Extended Dipole Model for Aggregates of DyeMolecules. Chem Phys Lett 6:207

[534] Försterling HD, Kuhn HD (1971) Physikalische Chemie in Experimenten. Ein Praktikum.Verlag Chemie, Weinheim

[535] Försterling HD (1975) Mathematik für Naturwissenschaftler. Vieweg, Braunschweig

[536] Försterling HD (1983) Moleküle und Molekülanhäufungen. Eine Einführung in die Physi-kalische Chemie. Springer, Berlin – Heidelberg – New York

[537] Field RJ, Försterling H-D (1986) On the Oxybromine Chemistry Rate Constants with Ce-rium Ions in the Field-Körös-Noyes Mechanism of the Belousov-Zhabotinskii Reaction: TheEquilibrium HBrO2 + BrO3

� + H+ $ 2BrO2 + H2O. J Phys Chem 90:5400

[538] Lázár A, Noszticzius Z, Farkas H, Försterling H-D (1995) Involutes: the geometry of che-mical waves in annular membranes. Chaos 5:443

[539] Armin Schweig, Theoretical Chemistry Genealogy Project

[540] Karl Dimroth, Theoretical Chemistry Genealogy Project

[541] Schweig A (1967) Calculation of Static Electric Polarizabilities of Closed Shell Organic  -Electron Systems Using a Variation Method. Chem Phys Lett 1:163

[542] Schweig A (1967) Calculation of Static Electric Higher Polarizabilities of Closed ShellOrganic  -Electron Systems Using a Variation Method. Chem Phys Lett 1:195

[543] Kuhn H, Schweig A (1967) Theoretical Treatment of the Solvent Effects on the ElectronicSpectra of Polar Organic Dye Molecules. Chem Phys Lett 1:255

[544] Oehling H, Schweig A (1970) A CNDO/2 Approach to the Electronic Structure of Phospha-benzenes. Tetrahedron Lett 4941

[545] Oehling H, Schäfer W, Schweig A (1971) Sequence of Highest Molecular Orbitals in thePhosphorine System. Angew Chem Int Ed Engl 10:656

[546] Thiel W, Schweig A (1971) Photoionization Cross Sections in the Valence Electron Appro-ximation. I. Linear Molecules. Chem Phys Lett 12:49

[547] Thiel W, Schweig A (1974) Photoionization Cross Sections in Valence Electron Approxi-mation. 3. Nonlinear Molecules (Theory). J Chem Phys 60:951

[548] Weidner, Schweig A (1972) Theory and Application of Photoelectron Spectroscopy. V. The

Page 21: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 243

Nature of Bonding in Vinyl- and Allylsilanes: The Effects of ¢–  (Hyperconjugation) and p –d 

Conjugation in these Compounds. J Organomet Chem 39:261

[549] Schulte KW, Schweig A (1974) CNDO CI Calculations on Second-Row Molecules. 1. Phos-phorin and Thiophen. Theor Chim Acta 33:19

[550] Lauer G, Schulte KW, Schweig A (1978) LNDO-S, A Semiempirical SCF-CI Method forCalculation of Ionization Potentials and Electronic Transition Energies of Valence Electrons. J AmChem Soc 100:4925

[551] Schweig A, Thiel W (1981) MNDOC Study of Excited States. J Am Chem Soc 103:1425

[552] László von Szentpály, Theoretical Chemistry Genealogy Project

[553] Parr RG, von Szentpály L, Liu S (1990) Electrophilicity Index. J AmChem Soc 121:1922

[554] Reinhart Ahlrichs, Theoretical Chemistry Genealogy Project

[555] Ahlrichs R, Kutzenigg W, Bingel WA (1966) On the Solution of the Quantum MechanicalTwo-Electron Problem by Direct Calculation of the Natural Orbitals. III. Refined Treatment ofHelium-Atom and Helium-like Ions. Theor Chim Acta 5:289

[556] Ahlrichs R, Kutzelnigg W (1968) Direct Calculation of Approximate Natural Orbitals andNatural Expansion Coefficients of Atomic and Molecular Electronic Wavefunctions. 2. Decoup-ling of Pair Equations and Calculation of Pair Correlation Energies for Be and LiH Ground States.J Chem Phys 48:1819

[557] Clemens C. J. Roothaan, Wikipedia, The free Encyclopedia 2011

[558] Driessler F, Ahlrichs R, Staemmler V, Kutzelnigg W (1973) Ab-initio Calculations on SmallHydrides Including Correlation. Theor Chim Acta 30:315

[559] Driessler F, Ahlrichs R (1973) Approximation of d-Type and f-Type Orbitals by SphericalGaussian Functions. Chem Phys Lett 23:571

[560] Ahlrichs R (1974) Methods for Efficient Evaluation of Integrals for Gaussian Type BasisSets. Theor Chim Acta 33:157

[561] Ahlrichs R, Lischka H, Staemmler V, Kutzelnigg W (1975) PNO-CI (pair natural orbitalconfiguration interaction) and CEPA-PNO (coupled electron pair approximation with pair naturalorbitals) calculations of molecular systems. I. Outline of the method for closed-shell states. J ChemPhys 62:1225

[562] Heinzmann R, Ahlrichs R (1976) Population Analysis Based on Occupation Numbers ofModified Atomic Orbitals (MAOs). Theor Chim Acta 42:33

[563] Ehrhardt C, Ahlrichs R (1985) Population analysis based on occupation number. II. Rela-tionship between shared electron numbers and bond energies and characterization of hypervalentcontributions. Theor Chim Acta 68:245

[564] Böhm HJ, Ahlrichs R, Scharf P, Schiffer H (1984) Intermolecular potentials for CH4, CH3F,CH3Cl, CH2Cl2, CH3CN and CO2. J Chem Phys 81:1389

[565] Böhm HJ, Meissner C, Ahlrichs R (1984) Molecular dynamics simulation of liquid CH3F,CHF3, CH3Cl, CH3CN, CO2and CS2with new pair potentials. Mol Phys 53:651

[566] Gdanitz RJ, Ahlrichs R (1988) The Averaged Coupled-Pair Functional (ACPF): A Size-Extensive Modification of MR CI(SD). Chem Phys Lett 143:413

[567] Häser M, Ahlrichs R (1989) Improvements on the Direct SCF Method. J Comput Chem10:104

[568] Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic Structure Calculationson Work Station Computers: The Program System TURBOMOLE. Chem Phys Lett 162:165

[569] Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets foratoms Li to Kr. J Chem Phys 97:2571

[570] Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets oftriple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829

Page 22: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

244 Literatur

[571] Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J ChemPhys 102:346

[572] Bauernschmitt R, Ahlrichs R (1996) Stability analysis for solutions of closed shell Kohn-Sham equations. J Chem Phys 104:9049

[573] Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations in the adiabaticapproximation of time dependent density functional theory. Chem Phys Lett 256:454

[574] Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main groupatoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Acc97:119

[575] Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) RI-MP2: optimized auxiliary basis setsand demonstration of efficiency. Chem Phys Lett 294:143

[576] Ahlrichs R, Elliot SD (1999) Clusters of aluminium, a density functional study. Phys ChemChem Phys 1:13

[577] Gilb S, Weis P, Furche F, Ahlrichs R, Kappes MM (2002) Structures of small gold clustercations (Aun+, n<14): Ion mobility measurements versus density functional calculations. J ChemPhys 116(14):4094

[578] Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for exci-ted state properties. J Chem Phys 117:7433

[579] Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence andquadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem ChemPhys 7:3297

[580] Volker Staemmler, Theoretical Chemistry Genealogy Project

[581] Dyczmons V, Staemmler V, Kutzelnigg W (1970) Near Hartee-Fock Energy and EquilibriumGeometry of CH5

+. Chem Phys Lett 5:36

[582] Kutzelnigg W, Staemmler V, Hoheisel C (1973) Computed Potential Hypersurface (Inclu-ding Electron Correlation) of the System Li+/H2. Chem Phys 1:27

[583] Del Re, Giuseppe – interview concerning: Early Ideas in the History of Quantum Chemistry,http://www.quantum-chemistry-history.com/DelR1.htm

[584] Staemmler V (1974) Ab initio Calculation of the Lowest Singlet and Triplet States of CH2,CHF, CF2 and CHCH3. TheorChimActa 35:309

[585] Staemmler V (1975) Ab initio Calculation of the Potential Energy Surface of the SystemN2Li+. Chem Phys 7:17

[586] Herbert Kollmar, Theoretical Chemistry Genealogy Project

[587] Kollmar H, Staemmler V (1977) A Theoretical Study of the Structure of Cyclobutadiene. JAm Chem Soc 99:3583

[588] Kollmar H, Staemmler V (1978) Violation of Hund’s Rule by Spin Polarization inMolecules.Theor Chim Acta 48:23

[589] Staemmler V, Jaquet R (1981) CEPA Calculations on Open-Shell Molecules. I. Outline ofthe Method. Theor Chim Acta 59:487

[590] Staemmler V, Palma A (1985) CEPA Calculations of Potential Energy Surfaces for Open-Shell Systems. IV. Photodissociation of H2O in the A1B1 State. Chem Phys 93:63

[591] Fink R, Staemmler V (1993) A multi-configuration reference CEPA method based on pairnatural orbitals. Theor Chim Acta 87:129

[592] Freitag A, Staemmler V, Cappus D, Ventrice CA Jr., Shamery KA, Kuhlenbeck H, FreundH-J (1993) Electronic surface states of NiO(100). Chem Phys Lett 210:10

[593] Freund H-J, Kuhlenbeck H, Staemmler V (1996) Oxide surfaces. Rep Prog Phys 59:283

[594] Bagus PS, Staemmler V, Wöll C (2002) Exchangelike Effects for Closed-Shell Adsorbates:Interface Dipole and Work Function. Phys Rev Lett 89:096104

Page 23: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 245

[595] Staemmler V, Fink K, Meyer B, Marx D (2003) Stabilization of Polar ZnO Surfaces: Vali-dating Microscopic Models by Using CO as a Probe Molecule. Phys Rev Lett 90:106102

[596] Werner Kutzelnigg, Theoretical Chemistry Genealogy Project

[597] Reinhard Mecke, Theoretical Chemistry Genealogy Project

[598] Bernard Pullman, Wikipedia, The free encyclopedia 2011

[599] Kutzelnigg, Werner – interview concerning: Early Ideas in the History of Quantum Che-mistry; http://www.quantum-chemistry-history.com/Kutz1.htm

[600] Berthier, Gaston – interview concerning: Early Ideas in the History of Quantum Chemistry;http://www.quantum-chemistry-history.com/ Berth1.htm

[601] Kutzelnigg W (1963) Die Lösung des quantenmechanischen Zwei-Elektronenproblemsdurch unmittelbare Bestimmung der natürlichen Einelektronenfunktionen. I. Theorie. Theor ChimActa 1:327

[602] Kutzelnigg W (1964) Direct Determination of Natural Orbitals and Natural ExpansionCoefficients of Many-Electron Wavefunctions. I. Natural Orbitals in the Geminal Product Ap-proximation. J Chem Phys 40:3640

[603] Kutzelnigg W (1973) Physical Mechanism of Chemical Bond. Angew Chem Int Ed Engl12:546

[604] Zurawski B, Ahlrichs R, Kutzelnigg W (1973) Have the Ions C2H3+ and C2H5

+ Classical orNon-Classical Structure? Chem Phys Lett 21:309

[605] Tsapline B, Kutzelnigg W (1973) Interaction Potential for He/H2 Including the Region ofVan der Waals Minimum. Chem Phys Lett 23(2):173

[606] Claus Hoheisel, Theoretical Chemistry Genealogy Project

[607] W. Kutzelnigg, Einführung in die Theoretische Chemie, 2 Bände, Verlag Chemie, Weinheim1975, 1978

[608] W. Kutzelnigg, Einführung in die Theoretische Chemie, 2 Bände, 2. Auflage, Verlag Chemie,Weinheim 1992,1994

[609] Maeder F, Kutzelnigg W (1979) Natural States of Interacting Systems and Their Use for theCalculation of Intermolecular Forces. IV. Calculation of Van der Waals Coefficients between One-and Two-Valence Electron Atoms in Their Ground States, as well as of Polarizabilities, OscillatorStrength Sums and Related Quantities, Including Correlation Effects. Chem Phys 42:95

[610] Wallmeier H, Kutzelnigg W (1979) Nature of the Semipolar XO Bond. Comparative AbInitio Study of H3NO, H2NOH, H3PO, H2POH, H2P(O)F, H3SO, HSOH, HClO, ArO, and RelatedMolecules. J Am Chem Soc 101:2804

[611] Kutzelnigg W (1982) Quantum chemistry in Fock space. I. The universal wave and energyoperators. J Chem Phys 77:3081

[612] Kutzelnigg W (1980) Theory of magnetic susceptibilities and NMR chemical shifts in termsof localized quantities. Israel J Chem 19:193

[613] Schindler M, Kutzelnigg W (1982) Theory of magnetic susceptibilities and NMR chemicalshifts in terms of localized quantities. II. Application to some simple molecules. J Chem Phys76:1919

[614] Schindler M, Kutzelnigg W (1983) Theory of Magnetic Susceptibilities and NMR ChemicalShifts in Terms of Localized Quantities. III. Applications to Hydrocarbons and Other OrganicMolecules. J Am Chem Soc 105:1360

[615] Fleischer U, Kutzelnigg W, Lazzeretti P, Mühlenkamp V (1994) IGLO Study of Benzeneand Some of Its Isomers and Related Molecules. Search for Evidence of the Ring Current Model.J Am Chem Soc 116:5298

[616] Kutzelnigg W (1984) Chemical Bonding in Higher Main Group Elements. Angew Chem IntEd Engl 23:272

Page 24: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

246 Literatur

[617] Kutzelnigg W (1984) Basis Set Expansion of the Dirac Operator without Variational Col-lapse. Int J Quantum Chem 25:107

[618] Kutzelnigg W (1989) Perturbation theory of relativistic corrections. 1. The non-relativisticlimit of the Dirac equation and a direct perturbation expansion. Z Phys D 11:15

[619] Kutzelnigg W (1985) r12-Dependent terms in the wave function as closed sums of partialwave amplitudes for large l. Theor Chim Acta 68:445

[620] Klopper W, Kutzelnigg W (1987) Møller-Plesset Calculations Taking Care of the CorrelationCusp. Chem Phys Lett 134:17

[621] Kutzelnigg W, Klopper W (1991) Wave functions with terms linear in the interelectroniccoordinates to take care of the correlation cusp. I. General Theory. J Chem Phys 84:1985

[622] Morgan III JD, Kutzelnigg W (1992) Rates of Convergence of partial-wave expansion ofatomic correlation energies. J Chem Phys 96:4484

[623] Coupled cluster, Wikipedia, The free encyclopedia 2011

[624] Noga J, Kutzelnigg W (1994) Coupled cluster theory that takes care of the correlation cuspby inclusion of linear terms in the interelectronic coordinates. J Chem Phys 101:7738

[625] Ahlrichs R (1993) Werner Kutzelnigg. A personal view. Theor Chim Acta 87:1

[626] Martin Klessinger, Theoretical Chemistry Genealogy Project

[627] Wolfgang Lüttke, Theoretical Chemistry Genealogy Project

[628] Lüttke W, Klessinger M (1964) Theoretische und spektroskopische Untersuchungen an In-digofarbstoffen. I. Infrarot-und Lichtabsorptionsspektren einfacher Indigofarbstoffe. Chem Ber97:2342

[629] Klessinger M (1966) Theoretische und spektroskopische Untersuchungen an Indigofarbstof-fen. V. PPP-Rechnungen am Indigochromophor. Tetrahedron 22:3355

[630] Klessinger M (1966) Pariser-Parr-Pople-Rechnungen an Molekülen mit Aminogruppen. II.Cyanine, Merocanine und Quadrupol-Merocyanine. Theor Chim Acta 5:251

[631] Roy McWeeny, Theoretical Chemistry Genealogy Project

[632] Klessinger M, McWeeny R (1965) Self-Consistent Group Calculations on Polyatomic Mo-lecules. I. Basic Theory with Application to Methane. J Chem Phys 42:3343

[633] Klessinger M (1969) Gaussian Expansions of Minimal STO Basis for Calculations in Mole-cular Quantum Mechanics. Theor Chim Acta 15:353

[634] Bruckmann P, Klessinger M (1972) Photoelectron Spectra of Unsaturated Systems Contai-ning Cyclopropane and Cyclobutane Rings. Angew Chem Int Ed Engl 11:524

[635] Klessinger M, Rademacher P (1979) Conformational Analysis by Photoelectron Spectro-skopie. Angew Chem Int Ed Engl 18:826

[636] Cho J-H, Klessinger M, Tecklenborg U, Wilhelm K (1985) The Structural Dependence ofGeminal and Vicinal CC Coupling Constants. Magnetic Res Chem 23:95

[637] Klessinger M (1995) Conical Intersections and the Mechanism of Singlet Photoreactions.Angew Chem Int Ed Engl 34:549

[638] Klessinger M, Michl J (1995) Excited States and Photochemistry of Organic Molecules.VCH, New York

[639] Berger R, Fischer C, Klessinger M (1998) Calculation of the Vibronic Fine Structure inElectronic Spectra at Higher Temperature. 1. Benzene and Pyrazine. J Phys Chem A 102:7157

[640] Georg Hohlneicher, Theoretical Chemistry Genealogy Project

[641] Scheibe G, Friedrich HJ, Hohlneicher G (1961) Oszillatorenstärken zur Bestimmung dersterischen Konfiguration von Polymethin-Farbstoffen. Angew Chem 73:383

[642] Friedrich Dörr, Theoretical Chemistry Genealogy Project

Page 25: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 247

[643] Cederbaum LS, Hohlneicher G, Peyerimhoff S (1971) Calculation of the Vertical IonizationPotentials of Formaldehyde by Means of Perturbation Theory. Chem Phys 11:421

[644] Metz F, Friedrich S, Hohlneicher G (1972) What is the Leading Mechanism for the Nonra-diative Decay of the Lowest Triplet State of Aromatic Hydrocarbons? Chem Phys Lett 16:353

[645] Cederbaum LS, Hohlneicher G, von Niessen W (1973) Improved calculations of ionizationpotentials of closed-shell molecules. Mol Phys 26:1405

[646] Cederbaum LS, Hohlneicher G, von NiessenW (1973) On the Breakdown of the Koopmans’Theorem for Nitrogen. Chem Phys Lett 18:503

[647] Freund H-J, Hohlneicher G (1979) Calculation of Transition Metal Compound Using anExtension of the CNDO Formalism I. Method of Calculation and Application to Mono-, Di- andTetranuclear Compounds. Theor Chim Acta 51:145

[648] Dick B, Hohlneicher G (1979) Two-Photon Spectroscopy of Dipole-Forbidden Transitions.Theor Chim Acta 53:221

[649] Dewey HJ, Deger H, Frölich W, Dick B, Klingensmith KA, Hohlneicher G, Vogel E, MichlJ (1980) Excited States of Methano-Bridged [10]-, [14]-, and [18]Annulenes. Evidence for StrongTransannular Interaction, and Relation to Homoaromaticity. J Am Chem Soc 102:6412

[650] Dick B, Hohlneicher G (1982) Importance of initial and final states as intermediate states intwo-photon spectroscopy of polar molecules. J Chem Phys 76:5755

[651] Hohlneicher G, Dick B (1984) Experimental Determination of the Low-Lying Excited Statesof trans-Stilbene. J Photochem 27:215

[652] Waluk J, Müller M, Swiderek P, Köcher M, Vogel E, Hohlneicher G, Michl J (1991) Elec-tronic States of Porphycenes. J Am Chem Soc 113:5511

[653] Cyranski MK, Schleyer PvR, Krygowski TM, Jiao H, Hohlneicher G (2003) Facts and arti-facts about aromatic stability estimation. Tetrahedron 59:1657

[654] Wolfgang von Niessen, Theoretical Chemistry Genealogy Project

[655] Clementi-Booklet, Quantum Theory Project, University of Florida 2004

[656] Clementi E, Mehl J, von Niessen W (1971) Study of the Electronic Structure of Molecules.XII. Hydrogen Bridges in the Guanine-Cytosine Pair and in the Dimeric Form of Formic Acid. JChem Phys 54:508

[657] Cederbaum LS, Domcke W, von Niessen W, Brenig W (1975) On the Interpretation of thePhotoelectron Spectrum of CO Chemisorbed on Ni. Z Physik B 21:381

[658] von Niessen W, Diercksen GHF, Cederbaum LS (1975) The Electronic Structure of Mole-cules by a Many-Body Approach. II. Ionization potentials and one-electron properties of pyridineand phosphoridine. Chem Phys 10:345

[659] von Niessen W, Diercksen GHF, Cederbaum LS (1977) On the accuracy of ionization po-tentials calculated by Green’s functions. J Chem Phys 67:4124

[660] Cederbaum LS, Schirmer J, Domcke W, von Niessen W (1977) Complete Breakdown of thequasiparticle picture for inner valence electrons. J Phys B: Atom Molec Phys 10:L 549

[661] Schirmer J, Domcke W, Cederbaum LS, von Niessen W, Åsbrink L (1979) Strong Correla-tion Effects in the Ionization of CS2. Chem Phys Lett 61:30

[662] von Niessen W, Schirmer J, Cederbaum LS (1984) Computational Methods for the One-Particle Green’s Function. Comput Phys Rep 1:57

[663] Zakrzewski VG, von Niessen W (1993) Vectorizable Algorithm for Green Function andMany-Body Perturbation Methods. J Comput Chem 14:13

[664] Mai J, von Niessen W, Blumen A (1990) The CO + O2 reaction on metal surfaces. Simula-tions and mean-field theory: The influence of diffusion. J Chem Phys 93:3685

Page 26: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

248 Literatur

[665] Kuzokov VN, Kortlüke O, von Niessen W (1998) Kinetic oscillations in the catalytic COoxidation on Pt single crystal surfaces: Theory and Simulation. J Chem Phys 108:5571

[666] Janos Ladik, Theoretical Chemistry Genealogy Project

[667] Ladik J, Szekacs I (1959) A Micromethod for the Polarographic Determination of Serine.Nature 184:188

[668] Hoffmann TA, Ladik J (1961) A Possible Correlation Between the Effects of Some Carci-nogenic Agents and the Electronic Structure of DNA. Cancer Research 21:474

[669] Ladik J (1964) Energy Band Structure of Proteins. Nature 202:1208

[670] Rein R, Ladik J (1964) Semiempirical SCF-LCAO-MO Calculation of the ElectronicStructure of the Guanine-Cytosine Base Pair: Possible Interpretation of the Mutagenic Effect ofRadiation. J Chem Phys 40:2466

[671] Giuseppe Del Re, Templeton Press, Autorenportät (http://templetonpress.org/author/giuseppe-del-re)

[672] Del Re G, Ladik J, Biczo G (1967) Self-Consistent-Field Tight-Binding Treatment of Poly-mers. I. Infinite Three-Dimensional Case. Phys Rev 155:997

[673] Ladik J, Seel M, Otto P, Bakhshi AK (1986) On the Electronic Structure and ConductionProperties of Aperiodic DNA and Proteins. I. Strategies and Methods of Investigation. Chem Phys108:203

[674] Albert Szent-Györgyi, Wikipedia, Die freie Enzyklopädie 2011

[675] Bakhshi AK, Ladik J, Seel M (1987) Comparative study of the electronic structure andconduction properties of polypyrrole, polythiophene, and polyfuran, and their copolymers. PhysRev B 35:704

[676] Ladik J (1973) Quantenchemie. Ferdinand Enke, Stuttgart

[677] Geerd H. F. Diercksen, Theoretical Chemistry Genealogy Project

[678] Rudolf Suhrmann, Theoretical Chemistry Genealogy Project

[679] Diercksen GHF, McWeeny R (1966) Self-Consistent Perturbation Theory. I. General For-mulations and Some Applications. J Chem Phys 44:3554

[680] McWeeny R, Diercksen GHF (1968) Self-Consistent Perturbation Theory. II. Extension toOpen Shells. J Chem Phys 49:4852

[681] Kraemer WP, Diercksen GHF (1970) SCF MO LCGO Studies on Hydrogen Bonding. TheSystem (H2OH2)+. Chem Phys Lett 5:463

[682] Kraemer WP, Diercksen GHF (1970) SCF MO LCGO Studies on Hydrogen Bonding. TheHydrogen Fluoride Dimer. Chem Phys Lett 6:419

[683] Diercksen GHF (1971) SCF MO LCGO Studies on Hydrogen Bonding. The Water Dimer.Theor Chim Acta 21:335

[684] Diercksen GHF (1974) Optimized Transformation of Four Center Integrals. Theor ChimActa 33:1

[685] Diercksen GHF, Kraemer WP, Roos BO (1975) SCF-CI Studies of Correlation Effects onHydrogen Bonding and Ion Hydration. The Systems: H2O, H+ � H2O, Li+ � H2O, F� H2O , andH2O � H2O. Theor Chim Acta 36:249

[686] Diercksen GHF, Roos BO, Sadlej AJ (1981) Legitimate Calculation of First-OrderMolecularProperties in the Case of Limited CI Functions. Dipole Moments. Chem Phys 59:29

[687] Trickey SB, Müller-Plathe F, Diercksen GHF, Boettger JC (1992) Interplanar binding andlattice relaxation in a graphite dilayer. Phys Rev B 45:4460

[688] Duch W, Diercksen GHF (1994) Size-extensivity corrections in configuration interactionmethods. J Chem Phys 101:3018

[689] Dietrich Haase, Theoretical Chemistry Genealogy Project

Page 27: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 249

[690] Haase D, Ruch E (1973) Quantenmechanische Theorie der optischen Aktivität der Methan-derivate im Transparenzgebiet. Theor Chim Acta 29:189

[691] Haase D (1976) Die Diracsche Störungstheorie in Operatorform. Fortschr Phys 24:37

[692] Haase D (1984) On the quantum mechanical theory of natural optical activity. Theor ChimActa 64:421

[693] Haase D, Krumrey C (1996) Estimation of fundamental frequencies of perhalogenated ethy-lenes in terms of molecular fragments. J Chem Phys 104:6435

[694] Alfred Schönhofer, Theoretical Chemistry Genealogy Project

[695] Haug A, Schönhofer A (1957) Energiebandaufspaltungen und Zwischenbandterme bei Ver-schiebung von Gitteratomen im Festkörper. Z Phys 148:513

[696] Albert Haug, Theoretical Chemistry Genealogy Project

[697] Ruch E, Schönhofer A (1965) Ein Beweis des Jahn-Teller-Theorems mit Hilfe eines Satzesüber die Induktion von Darstellungen endlicher Gruppen. Theor Chim Acta 3:291

[698] Kuball HG, Karstens T, Schönhofer A (1976) Optical Activity of Oriented Molecules. II.Theoretical description of the optical activity. Chem Phys 12:1

[699] Schönhofer A, Kuball HG, Puebla C (1983) Optical Activity of Oriented Molecules. IX.Phenomenological Mueller Matrix Description of Thick Samples and of Optical Elements. ChemPhys 76:453

[700] Memmer R, Kuball HG, Schönhofer A (1993) Computer simulation of chiral liquid crystalphases. I. The polymorphism of the chiral Gay-Berne fluid. Liquid Cryst 15:345

[701] Muthana Shanshal, Theoretical Chemistry Genealogy Project

[702] Michael J. S. Dewar, Wikipedia, The free encyclopedia 2012

[703] Dewar MJS, Shanshal M, Worley SD (1969) Calculated and Observed Ionization Potentialsof Nitroalkanes and of Nitrous and Nitric Acid and Esters. Extension of the MINDO Method toNitrogen-Oxygen Compounds. J Am Chem Soc 91:3590

[704] Dewar MJS, Shanshal M (1969) Inversion Barriers by the MINDOMethod. J Am Chem Soc91:3654

[705] Dewar MJS, Haselbach E, Shanshal M (1970) Insertion Reactions of 1S Carbon Atoms inDouble Bonds. J Am Chem Soc 92(1):3505

[706] Shanshal M (1972) Internal Rotations in Carbonium Ions. J Chem Soc Perkin Trans II 335

[707] Khalil SM, Shanshal M (1977) MINDO-Forces Calculation of Molecular Geometries andReaction Paths. Theor Chim Acta 46:23

[708] Wilfried Meyer, Theoretical Chemistry Genealogy Project

[709] Fritz Bopp, Theoretical Chemistry Genealogy Project

[710] Meyer W (1969) Calculation of Fermi Contact Hyperfine Splitting fror Small Atoms andMolecules. J Chem Phys 51:5149

[711] Peter Pulay, Theoretical Chemistry Genealogy Project

[712] Pulay P, Meyer W (1971) Ab Initio Calculation of the Force Field of Ethylene. J Mol Spectry40:59

[713] Josef Goubeau, Theoretical Chemistry Genealogy Project

[714] Pulay P (1969) Ab initio calculation of force constants and equilibrium geometries in poly-atomic molecules. I. Theory. Mol Phys 17:197

[715] Meyer W, Pulay P (1972) Near Hartree-Fock Calculations of the Force Constants and DipoleMoment Derivatives in Methane. J Chem Phys 56:2109

[716] Meyer W (1973) PNO-CI Studies of electron correlation effects. I. Configuration expansion

Page 28: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

250 Literatur

by means of nonorthogonal orbitals, and application to the ground state and ionized states ofmethane. J Chem Phys 58:1017

[717] Meyer W (1971) Ionization Energies of Water from PNO-CI Calculations, Int J QuantumChem S5:341

[718] Pulay P, Meyer W (1974) Comparison of the ab initio force constants of ethane, ethyleneand acetylene. Mol Phys 27:473

[719] Meyer W, Rosmus P (1975) PNO-CI and CEPA studies of electron correlation effects. III.Spectroscopic constants and dipole moment functions for the ground states of the first-row andsecond-row diatomic hydrides. J Chem Phys 63:2356

[720] Meyer W (1976) Theory of self-consistent electron pairs. An iterative method for correlatedmany-electron wavefunctions. J Chem Phys 64:2901

[721] Werner H-J, Meyer W (1976) PNO-CI and CEPA Studies of electron correlation effects. V.Static dipole polarizabilities of small molecules. Mol Phys 31:855

[722] Werner H-J, Meyer W (1976) Finite perturbation calculation for the static dipole polarizabi-lities of the first-row atoms. Phys Rev A 13:13

[723] Pulay P, Meyer W, Boggs JE (1978) Cubic force constants and equilibrium geometry ofmethane from Hartree-Fock and correlated wavefunctions. J Chem Phys 68:5077

[724] Meyer W, Hariharan PC (1980) Refined ab initio calculation of the potential energy surfaceof the He-H2 interaction with special emphasis to the region of the van der Waals minimum. JChem Phys 2(73):1880

[725] Werner H-J, Meyer W (1980) A quadratically convergent multiconfiguration-self-consistentfield method with simultaneous optimization of orbitals and CI coefficients. J Chem Phys 73:2342

[726] Werner H-J, Meyer W (1981) A quadratically convergent MCSCF method with simultaneousoptimization of several states. J Chem Phys 74:5794

[727] Müller W, Flesch J, Meyer W (1984) Treatment of intershell correlation effects in ab initiocalculations by use of core polarization potentials. Method and application to alkali and alkalineearth atoms. J Chem Phys 80:3297

[728] Pulay P, Saebø S, Meyer W (1984) An efficient reformulation of the closed-shell electronpair theory. J Chem Phys 81:1901

[729] Carter S, Meyer W (1990) A variational method for the calculation of vibrational energylevels of triatomic molecules using a Hamiltonian in hyperspherical coordinates. J Chem Phys93:8902

[730] Sigrid Peyerimhoff, Theoretical Chemistry Genealogy Project

[731] Leland Cullen Allen, Theoretical Chemistry Genealogy Project

[732] Peyerimhoff S (1965) Hartree-Fock-Roothaan Wavefunctions, Potential Curves, and ChargeDensity Contours for the HeH+(X 1˙+) and NeH+(X 1˙+) Molecule Ions. J Chem Phys 43:998

[733] Peyerimhoff SD, Buenker RJ, Allen LC (1966) Geometry of Molecules. I. Wavefunctionsfor Some Six- and Eight-Electron Polyhydrides. J Chem Phys 45:734

[734] Buenker RJ, Peyerimhoff SD (1966) Geometry of Molecules. III. F2O, Li2O, FOH, LiOH. JChem Phys 45:3682

[735] Buenker RJ, Peyerimhoff SD (1968) ab initio Study on the Stability and Geometry of Cy-clobutadiene. J Chem Phys 48:354

[736] Peyerimhoff SD, Buenker RJ (1968) Theoretical Study of the Geometry and Spectrum ofNitrous Oxide. J Chem Phys 49:2473

[737] Buenker RJ, Peyerimhoff SD (1970) Combined SCF and CI Method for the Calculation ofElectronically Excited States of Molecules. J Chem Phys 53:1368

[738] Buenker RJ, Peyerimhoff SD, Kammer WE (1971) Combined SCF and CI Calculations forthe Low-Lying Rydberg and Valence Excited States of Ethylene. J Chem Phys 53:1368

Page 29: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 251

[739] Buenker RJ, Peyerimhoff SD, Hsu HL (1971) A New Interpretation for the Structure of theV-N Bands of Ethylene. Chem Phys Lett 11:65

[740] Shih S, Buenker RJ, Peyerimhoff SD (1972) Non-Empirical Calculations on the ElectronicSpectrum of Butadiene. Chem Phys Lett 16:244

[741] Buenker RJ, Peyerimhoff SD (1974) Individualized Configuration Selection in CI Calcula-tions with Subsequent Energy Extrapolation. Theor Chim Acta 35:33

[742] Buenker RJ, Peyerimhoff SD (1974) Calulations of the Electronic Spectrum of Water. ChemPhys Lett 29:253

[743] Buenker RJ, Peyerimhoff SD (1975) Energy Extrapolation in CI Calculations. Theor ChimActa 39:217

[744] Buenker RJ, Peyerimhoff SD (1975) Ab Initio Study of the Mixing of Valence and RydbergStates in O2: CI Potential Curves for the 3˙ u

�, 3�u and 3˘ u States. Chem Phys Lett 34:225

[745] Hirsch G, Bruna PJ, Peyerimhoff SD, Buenker RJ (1977) Ab Initio CI Study of the Stabilityand Electronic Spectrum of the HOCl Molecule. Chem Phys Lett 52:442

[746] Buenker RJ, Peyerimhoff SD, Butscher W (1978) Applicability of the multi-reference dou-ble-excitation CI (MRD-CI) method to the calculation of electronic wavefunctions and comparisonof related techniques. Mol Phys 35:771

[747] Bruna PJ, Peyerimhoff SD (1980) The Ground State of the CN+ Ion: A Multi-Reference CIStudy. Chem Phys Lett 72:278

[748] Klotz R, Marian CM, Peyerimhoff SD (1984) Calculation of Spin-Forbidden Radiative Tran-sitions Using Correlated Wavefunctions: Lifetimes of b1˙+, a1� States in O2, S2 and SO. ChemPhys 89:223

[749] Peyerimhoff SD, Lewerenz M, Quack M (1984) Spectroscopy and Dynamics of the IsolatedCH Chromophore in CD3H: Experiment and Theory. Chem Phys Lett 109:563

[750] Banichevich A, Peyerimhoff SD, Grein F (1993) Potential energy surfaces of ozone in itsground state and in the lowest-lying eight excited states. Chem Phys 178:155

[751] Mo Y, Peyerimhoff SD (1998) Theoretical analysis of electronic delocalization. J Chem Phys109:1687

[752] Peyerimhoff SD (2002) The Development of Computational Chemistry in Germany. Re-views in Computational Chemistry 18:257 (Eds. K. B. Lipkowitz, D. B. Boyd, Wiley-VCH, JohnWiley and Sons)

[753] Robert Buenker, Theoretical Chemistry Genealogy Project

[754] Buenker RJ, Peyerimhoff SD, Whitten JL (1967) Theoretical Analysis of the Effects ofHydrogenation in Hydrocarbons: SCF MO Wavefunctions for C2H2, C2H2, and C2H2. J ChemPhys 46:2029

[755] Buenker RJ, Whitten JL (1968) Ab Initio SCF MO and CI Studies of the Electronic Statesof Butadiene. J Chem Phys 49:5381

[756] Buenker RJ (1968) Theoretical Study of the Rotational Barriers of Allene, Ethylene, andRelated Systems. J Chem Phys 48:1368

[757] Buenker RJ, Peyerimhoff SD (1974) Molecular Geometry and the Mulliken-Walsh Molecu-lar Orbital Model. An Ab Initio Study. Chem Rev 74:127

[758] Buenker RJ, Bonacic-Koutecký V, Pogliani L (1980) Potential energy and dipole momentsurfaces for simultaneous torsion and pyramidalization of ethylene in its lowest-lying singlet ex-cited states: A CI study of the sudden polarization effect. J Chem Phys 73:1836

[759] Chandra P, Buenker RJ (1983) Relativistic integrals over Breit-Pauli operators using usingCartesian Gaussian functions. I. One-electron interactions. J Chem Phys 79:358

Page 30: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

252 Literatur

[760] Buenker RJ (1986) Combining Perturbation Theory Techniques with Variation CI Calcula-tions to Study Molecular Excited States. Int J Quantum Chem 29:435

[761] Krebs S, Buenker RJ (1995) A new table-direct configuration interaction method for the eva-luation of Hamiltonian matrix elements in a basis of linear combinations of spin-adapted functions.J Chem Phys 103:5631

[762] Leonardi E, Petrongolo C, Hirsch G, Buenker RJ (1996) Ab initio study of NO2. V. Nona-diabatic vibronic states and levels of the X 2A1/A 2B2 conical intersection. J Chem Phys 105:9051

[763] Rudolf Janoschek, Theoretical Chemistry Genealogy Project

[764] Janoschek R (1972) Extremely High Polarizability of Hydrogen Bonds. J Am Chem Soc94:2387

[765] Winkelhofer G, Janoschek R, Fratev F, Spitznagel GW, Chandrasekhar J, Schleyer PvR(1985) Nonplanar Structures of the Singlet and Triplet Cyclopropenyl Anions. An Ab Initio Study.J Am Chem Soc 107:332

[766] Sax A, Janoschek R (1986) Si6H6: Is the Aromatic Structure the Most Stable One? AngewChem Int Ed Engl 25:651

[767] Janoschek R (1989) Die P=P-Doppelbindung und die phosphoraromatischen VerbindungenP5�und P6. Ab-initio-Berechnungen von Strukturen und Stabilitäten. Chem Ber 122:2121

[768] Janoschek R (1992) Sind die Lehrbuchanionen O2�, [CO3]2� und [SO4]2� Fiktionen? Z

anorg allg Chem 616:101

[769] Hengge E, Janoschek R (1995) Homocyclic Silanes. Chem Rev 95:1495

[770] Ruscic B et al (2005) IUPAC Critical Evaluation of Thermochemical Properties of SelectedRadicals. Part I. J Phys Chem Ref Data 34:573

[771] Gerhard Derflinger, Theoretical Chemistry Genealogy Project

[772] Polansky OE, Derflinger G (1961) Über Benzazole, 1. Mitt.: Berechnung der  -Elektronen-struktur der Benzazole und einiger ihrer Derivate mittels der einfachen LCAO-MO-Methode. MhChem 92:1114

[773] Bihlmayer GA, Derflinger G, Derkosch J, Polansky OE (1967) Oxy- und Aminomethylen-meldrumsäuren. Mh Chem 98:564

[774] Polansky OE, Derflinger G (1967) Zur Clar’schen Theorie Lokaler Benzoider Gebiete inKondensierten Aromaten. Int J Quatum Chem 1:379

[775] Derflinger G, Lischka H (1968) Zur Analyse von Bandenspektren. Mh Chem 99:1851

[776] Derflinger G, Sofer H (1968) Die HMO-Koeffizienten der linearen Polyacene in geschlos-sener Form. Mh Chem 99:1866

[777] Keller H, Krieger C, Langer E, Lehner H, Derflinger G (1977) Concerning the Theory ofChirality Functions. Part I. Construction and discussion of chirality functions by means of [2.2]me-tacyclophanes. J Mol Struct 40:279

[778] Keller H, Krieger C, Langer E, Lehner H, Derflinger G (1977) Zur Theorie der Chira-litätsfunktionen. II. Übereinstimmung und Diskrepanzen bei der Anwendung der Theorie derChiralitätsfunktionen auf eine Molekülklasse der Gerüstsymmetrie C2h. Liebigs Ann Chem, 1296

[779] Keller H, Langer E, Lehner H, Derflinger G (1978) Zur Theorie der Chiralitätsfunktionen.IV. Über die Problematik quantitativer Aussagen. Theor Chim Acta 49:93

[780] Derflinger G, Keller H (1978) Zur Theorie der Chiralitätsfunktionen. V. Zum Konzept derqualitativen Vollständigkeit – eine Kritik. Theor Chim Acta 49:101

[781] Ruch E (1978) Über die Fehleinschätzung der Theorie. Theor Chim Acta 49:107

[782] Peter Schuster, Theoretical Chemistry Genealogy Project

[783] Jakubetz W (2006) Peter Schuster zum 65. Geburtstag. Bunsen-Magazin 3:73

Page 31: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 253

[784] Schuster P, Funck T (1968) LCAO-MO-Description of the Different Association Types ofFormic Acid. Chem Phys Lett 2:567

[785] Schuster P (1969) LCAO-MO-Calculations on the Enol Form of Acetylacetone and Its MetalComplexes. Chem Phys Lett 3:451

[786] Schuster P (1970) LCAO-MO-SCF-Calculations on the Stability and Stereochemistry ofHydrogen Bonds. Theor Chim Acta 19:212

[787] Jakubetz W, Lischka H, Rosmus P, Schuster P (1971) On the Role of Configuration Interac-tion in Semi-Empirical Methods. Chem Phys Lett 11:38

[788] Schuster P, Zundel G, Sandorfy C (1976) The Hydrogen Bond. North Holland, Amsterdam– NewYork – London (3 Bände)

[789] Eigen M, Schuster P (1977) The Hypercycle. A Principle of Natural Self-Organization.Naturwissenschaften 64:541

[790] Eigen M, Schuster P (1979) The Hypercycle. A Principle of Natural Self-Organization.Springer, Berlin

[791] Swetina J, Schuster P (1982) Self-Replication with Errors. A Model for PolynucleotideReplication. Biophys Chem 16:329

[792] Schuster P, Sigmund K (1983) Replicator Dynamics. J theor Biol 100:533

[793] Eigen M, McCaskill J, Schuster P (1988) Molecular Quasi-Species. J Phys Chem 92:6881

[794] Schuster P, Fontana W, Stadler PF, Hofacker IV (1994) From sequences to shapes and back:a case study in RNA secondary structures. Proc R Soc Lond B 255:279

[795] Fontana W, Schuster P (1998) Continuity in Evolution: On the Nature of Transitions. Science280:1451

[796] Schuster P (2001) Evolution in silico and in vitro: The RNA model. Biolog Chem 382:1301

[797] Hans Lischka, Theoretical Chemistry Genealogy Project

[798] Lischka H, Plesser T, Schuster P (1970) LCAO MO SCF Calculations on the Hydration ofSimple Ions. Chem Phys Lett 6:263

[799] Lischka H (1974) Ab Initio Calculations on Intermolecular Forces. III. Effect of ElectronCorrelation on the Hydrogen Bond in the HF Dimer. J Chem Phys 96:4761

[800] Lischka H (1979) A Note on the Ab Initio Calculation of Intermolecular Potentials: The HFDimer. Chem Phys Lett 66:108

[801] Isaiah Shavitt, Wikipedia, The free Encyclopedia 2013

[802] Lischka H, Shepard R, Brown FB, Shavitt I (1981) New Implementation of the GraphicalUnitary Group Approach for Multireference Direct Configuration Interaction Calculations. Int JQuantum Chem 91:15

[803] Köhler HJ, Lischka H (1982) A Systematic Investigation on the Structure and Stabilty of theLowest Singlet and Triplet States of Si2H4, and SiH3SiH and the Analogous Carbon CompoundsSiH2C2, SiH3CH, CH3SiH, C2H4, and CH3CH. J Am Chem Soc 104:5884

[804] Lischka H, Köhler HJ (1983) Ab Initio Investigation on the Lowest Singlet and Triplet Statesof Si2H2. J Am Chem Soc 105:6646

[805] Kofranek M, Lischka H, Karpfen A (1988) Coupled Pair Functional Study on the HydrogenFluoride Dimer. I. Energy Surface and Characterization of Stationary Points. Chem Phys 121:131

[806] Lischka H, Shepard R, Pitzer RM, Shavitt I, Dallos M, Müller T, Szalay PG, Seth M, Kedzio-ra GS, Yabushita S, Zhang Z (2001) High-level multireference methods in the quantum-chemistryprogram system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin-orbit CI and parallel CI density. Phys Chem Chem Phys 3:664

[807] Lischka H, Dallos M, Szalay PG, Yarkony DR, Shepard R (2004) Analytic evaluation ofnonadiabatic coupling terms at the MR-CI level. I. Formalism. J Chem Phys 120:7322

Page 32: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

254 Literatur

[808] Dallos M, Lischka H, Shepard R, Yarkony DR, Szalay PG (2004) Analytic evaluation ofnonadiabatic coupling terms at the MR-CI level. II. Minima on the crossing seam: Formaldehydeand the photodissociation of ethylene. J Chem Phys 120:7330

[809] Karlheinz Schwarz, Theoretical Chemistry Genealogy Project

[810] Schwarz K, Weinberger P, Neckel A (1969) Berechnung der Bandstruktur von ScC und ScN.Theor Chim Acta 15:149

[811] Schwarz K (1971) Berechnung der Bandstruktur von NbN. Mh Chem 102:1400

[812] Schwarz K (1972) Optimization of the Statistical Exchange Parameter ’ for the Free AtomsH through Nb. Phys Rev B 5:2466

[813] Schwarz K (1974) Optimized Statistical Exchange Parameters ’ for Atoms with Higher Z.Theor Chim Acta 34:225

[814] Schwarz K (1977) The electronic structure of NbC and NbN. J Phys C 10:195

[815] Schwarz K (1984) Electronic and magnetic structure of BCC Fe-O alloys from band theory.J Phys F 14:2659

[816] Moruzzi VL, Marcus PM, Schwarz K, Mohn P (1986) Phys Rev B 34:1784

[817] Blaha P, Schwarz K, Dederichs PH (1988) First-Principles calculation of the electric-fieldgradient in hcp metals. Phys Rev B 37:2792

[818] Blaha P, Schwarz K, Sorantin P, Trickey SB (1990) Full-Potential, Linearized AugmentedPlane Wave Programs for Crystalline Systems. Computer Phys Commun 59:399

[819] Karzel H, Potzel W, Köfferlein M, Schiessl W, Steiner M, Hiller U, Kalvius GM, MitchellDW, Das TP, Blaha P, Schwarz K, Pasternak MP (1996) Lattice dynamics and hyperfine interacti-ons in ZnO and ZnSe at high external pressures. Phys Rev B 53:11425

[820] Schwarz K, Blaha P, Madsen GKH (2002) Electronic structure calculations of solids usingthe WIEN2k package for material sciences. Computer Phys Commun 147:71

[821] Först CJ, Ashman C, Schwarz K, Blaha P (2004) Interfacing silicon with high-k oxides.Nature 427:53

[822] Hans Primas, Theoretical Chemistry Genealogy Project

[823] Primas H, Günthard HH (1953) Die Infrarotspektren von Kettenmolekeln der FormelR0CO(CH2CH2)nCOR00. I. Rocking- und Twisting-Grundtöne. Helv Chim Acta 36:1659

[824] Primas H, Günthard HH (1953) Die Infrarotspektren von Kettenmolekeln der FormelR0CO(CH2CH2)nCOR00. II. Die Normalschwingungen des Symmetrietypus Bu. Helv Chim Ac-ta 36:1791

[825] Vladimr Prelog, Theoretical Chemistry Genealogy Project

[826] Banwell CN, Primas H (1963) On the analysis of high-resolution nuclear resonce spectra. I.Methods of calculating N.M.R. spectra. Mol Phys 6:225

[827] Ernst RR, Primas H (1963) Nuclear Magnetic Resonance with Stochastic High-FrequencyFields. Helv Phys Acta 36:583

[828] Ernst RR (2000) In: Harenberg Lexikon der Nobelpreisträger, 2. Aufl., S 602, HarenbergLexikon Verlag, Dortmund

[829] Primas H (1963) Generalized Perturbation Theory in Operator Form. Rev Mod Phys 35:710

[830] Primas H (1964) Was sind Elektronen? Helv Chim Acta 47:1840

[831] Riess J, Primas H (1968) A Variational Principle for the Phase of the Wave Function ofMolecular Systems. Chem Phys Lett 1:545

[832] Boolesche Algebra, Wikipedia, Die freie Enzyklopädie 2013

[833] Primas H (1975) Pattern Recognition in Molecular Quantum Mechanics. I. BackgroundDependence of Molecular States. Theor Chim Acta 39:127

Page 33: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 255

[834] Primas H (1977) Theory Reduction and Non-Boolean Theories. J Math Biology 4:281

[835] Primas H (1981) Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin –Heidelberg – New York

[836] Ulrich Müller-Herold, Theoretical Chemistry Genealogy Project

[837] Primas H, Müller-Herold U (1984) Elemtare Quantenchemie. Teubner, Stuttgart

[838] Primas H (1985) Kann Chemie auf Physik reduziert werden? Erster Teil: Das molekulareProgramm. Chemie in unserer Zeit 19:109

[839] Primas H (1985) Kann Chemie auf Physik reduziert werden? Zweiter Teil: Die Chemie derMakrowelt. Chemie in unserer Zeit 19:160

[840] Georges Wagnière, Theoretical Chemistry Genealogy Project

[841] William E. Moffitt, Theoretical Chemistry Genealogy Project

[842] Martin Paul Gouterman, Theoretical Chemistry Genealogy Project

[843] Labhart H, Wagnière G (1959) Zur Deutung der UV-Absorptionsspektren von “,”-ungesät-tigten Ketonen. Helv Chim Acta 42:2219

[844] Labhart H, Wagnière G (1963) Experimetelle und theoretische Untersuchung der angeregtenElektronenzustände einiger substituierter Benzole. Helv Chim Acta 46:1313

[845] Hug W, Wagnière G (1972) The Optical Activity of Chromophores of Symmetry C2. Tetra-hedron 28:1241

[846] Blauer G, Wagnière G (1975) Conformation of Bilirubin and Biliverdin in Their Complexeswith Serum Albumin. J Am Chem Soc 97:1949

[847] Wagnière G, Blauer G (1976) Calculations of Optical Properties of Biliverdin in VariousConformations. J Am Chem Soc 98:7806

[848] Sturzenegger V, Buchecker R, Wagnière G (1980) Classification of the CD Spectra of Caro-tinoids. Helv Chim Acta 63:1074

[849] Wagnière G, Meier A (1982) The Influence of a Static Magnetic Field on the AbsorptionCoefficient of a Chiral Molecule. Chem Phys Lett 93:78

[850] Dirk CW, Twieg RW, Wagnière G (1986) The Contribution of   Electrons to Second Har-monic Generation of Organic Molecules. J Am Chem Soc 108:5387

[851] Wagnière GH (1993) Linear and Nonlinear Optical Properties of Molecules. VCH, Wein-heim

[852] Wagnière GH (2007) On Chirality and the Universal Asymmetry. Wiley VCH, Weinheim

[853] Martin Jungen, Theoretical Chemistry Genealogy Project

[854] Jungen M, Labhart H (1968) Zur Wechselwirkung von  - und ¢-Elektronen in der Theorieungesättigter Moleküle. I. Semiempirische LCAO-SCF-Rechnungen für  - und ¢-Orbitale vonAcrolein und Furan. Theor Chim Acta 9:345

[855] Jungen M, Ahlrichs R (1970) Ab initio Calculations on Small Hydrides Including ElectronCorrelation. III. A Study of the Valence Shell Intrapair and Interpair Correlation Energy of SomeFirst Row Hydrides. Theor Chim Acta 17:339

[856] Demoulin D, Jungen M (1974) Theoretical Assignments of the Electronic Spectrum of Ace-tylene. Theor Chim Acta 34:1

[857] Jungen M (1979) Rydberg States of H3. J Chem Phys 71:3540

[858] Kaufmann K, Nager C, Jungen M (1985) Rydberg States and Quantum Defects of the NOMolecule. Chem Phys 95:385

[859] Kaufmann K, Baumeister W, Jungen M (1989) Universal Gaussian basis sets for an optimumrepresentation of Rydberg and continuum wavefunctions. J Phys B 22:2223

[860] Wolfgang Witschel, Theoretical Chemistry Genealogy Project

Page 34: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

256 Literatur

[861] Jürgen Brickmann, Theoretical Chemistry Genealogy Project

[862] Herbert Zimmermann, Theoretical Chemistry Genealogy Project

[863] Brickmann J, Zimmermann H (1966) Über den Tunneleffekt des Protons im Doppelmi-nimumpotential von Wasserstoffbrückenbindungen. I. Modellrechnungen. Ber Bunsenges PhysChem 70:157

[864] Brickmann J, Zimmermann H (1969) Lingering Time of Proton in Wells of Double-Mini-mum Potential of Hydrogen Bonds. J Chem Phys 50:1608

[865] Brickmann J, Kothe G (1973) ESR of the quartet states of randomly oriented molecules:Calculation of the line shape and detection of the zero-field splitting. J Chem Phys 59:3807

[866] Russegger P, Brickmann J (1975) Quantum states of intramolecular nuclear motion withlarge amplitudes: Pseudorotation of trigonal bipyramidal molecules. J Chem Phys 62:1086

[867] Fischer W, Brickmann J (1981) Molecular Dynamics Study of Ion Transport in Transmem-brane Protein Channels. Biophys Chem 13:105

[868] Polymeropoulos EE, Brickmann J (1985) Magic Numbers in Ionized-Gas Clusters. Surf Sci156:563

[869] Schrimpf G, Schlenkrich M, Brickmann J (1992) Molecular Dynamics Simulation of ZeoliteNaY. A Study of Structure, Dynamics, and Thermalization of Sorbates. J Phys Chem 96:7404

[870] Heiden W, Goetze T, Brickmann J (1993) Fast Generation of Molecular Surfaces from 3DData Fields with Enhanced „Marching Cube“ Algorithm. J Comput Chem 14:246

[871] Heiden W, Moeckel G, Brickmann J (1993) A new approach to analysis and display of locallipophilicity/hydrophilicity mapped on molecular surfaces. J Computer-Aided Mol Des 7:503

[872] Böcker J, Brickmann J (1994) Molecular Dynamics Simulation Study of an n-Decyltrime-thylammonium Chloride Micelle in Water. J Phys Chem 98:712

[873] Jörg Fleischhauer, Theoretical Chemistry Genealogy Project

[874] Fleischhauer J, Beckers M, Scharf H-D (1973) Zur Frage der Existenz und Struktur vonC2O2. Tetrahedron Lett 43:4275

[875] Scharf H-D, Plum H, Fleischhauer J, Schleker W (1979) Zur Diels-Alder-Reaktivität s-cis-fixierter 1.2-Diene. Chem Ber 112:862

[876] Scharf H-D, Fleischhauer J, Leismann H, Ressler O, Schleker W (1979) Criteria for the Ef-ficiency, Stability, and Capacity of Abiotic Photochemical Solar Energy Storage Systems. AngewChem Int Ed Engl 18:652

[877] Bronger W, Fleischhauer J, Marz H, Raabe G, Schleker W, Schleker T (1987) Structureand Bonding in [M6X6] Units of Nonmetallic Transition Metal Cluster Compounds. J Solid StateChem 70:29

[878] Raabe G, Gais H-J, Fleischhauer J (1996) Ab initio Study of the Effect of Fluorinationupon the Structure and Configurational Stability of ’-Sulfonyl Carbanions: The Role of NegativeHyperconjugation. J Am Chem Soc 118:4622

[879] Matile S, Berova N, Nakanishi K, Fleischhauer J, Woody RW (1996) Structural Studiesby Exciton Coupled Circular Dichroism over a Large Distance: Porphyrin Derivates of Steroids,Dimeric Steroids, and Brevetoxin B. J Am Chem Soc 118:5198

[880] Pescitelli G, Gabriel S, Wang Y, Fleischhauer J, Woody RW, Berova N (2003) TheoreticalAnalysis of the Porphyrin-Porphyrin Exciton Interaction in Circular Dichroism Spectra of DimericTetraarylporphyrins. J Am Chem Soc 125:7613

[881] Wolf-Dieter Stohrer, Theoretical Chemistry Genealogy Project

[882] Roald Hoffmann, Theoretical Chemistry Genealogy Project

[883] Hoffmann R, Stohrer W-D (1971) The Cope Rearrangement Revisited. J Am Chem Soc93:6941

Page 35: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 257

[884] Stohrer W-D, Hoffmann R (1972) The Electronic Structure and Reactivity of Strained Tri-cyclic Hydrocarbons. J Am Chem Soc 94:779

[885] Stohrer W-D, Hoffmann R (1972) Bond-Stretch Isomerism and Polytopal Rearrangementsin (CH)5+, (CH)5�, and (CH)4CO. J Am Chem Soc 94:1661

[886] Lionel Salem, Theoretical Chemistry Genealogy Project

[887] Salem L, Stohrer W-D (1975) A Double-well Potential for Olefin Isomerization in PolarSolvents. J Chem Soc Chem Comm 140

[888] Stohrer W-D, Schmieder KR (1976) Ein MO-Modell für die SN2-Reaktion mit Retention.Chem Ber 109:285

[889] Stohrer W-D (1983) On the Stereochemistry of the SN20 Reaktion. Angew Chem Int Ed Engl22:613

[890] Effenberger F, Reisinger F, Schönwälder KH, Bäuerle P, Stezowski JJ, Jogun KH, SchöllkopfK, Stohrer W-D (1987) Structure and Reactivity of Aromatic ¢-Complexes (CyclohexadienyliumIons): A Correlated Experimental and Theoretical Study. J Am Chem Soc 109:882

[891] Crespo-Otero R, Montero LA, Stohrer W-D, Garciá de la Vega JM (2005) Basis set super-position error in MP2 and density-functional theory: A case of methane-nitric oxide association. JChem Phys 123:134107

[892] Wolfgang W. Schoeller, Theoretical Chemistry Genealogy Project

[893] Dewar MJS, Schoeller WW (1971) Cope Rearrangements in the Bullvalene Series. J AmChem Soc 93:1481

[894] Effenberger F, Fischer P, Schoeller WW, Stohrer W-D (1978) The Donor Strength of Di-alkylamino Functions – A Systematic Study of •H/HMO  -Electron Density Correlations inAminobenzenes. Tetrahedron 34:2409

[895] Niecke E, Rüger R, Schoeller WW (1981) tert-Butylimino-tert-butylphosphane: An Inorga-nic Carbene Analogue. Angew Chem Int Ed Engl 20:1034

[896] Schoeller WW, Niecke E (1982) Frontier Orbital Crossing and Ambident Reactivity in Phos-phorus(III) Systems with (p-p)  -Bonds. J Chem Soc Chem Comm 569

[897] Schoeller WW (1985) The (4+2) Cycloaddition Properties of Heteroatom Double BondSystems. A Frontier Orbital Approach to Reactivity. J Chem Soc Chem Comm 331

[898] Schoeller WW, Dabisch T, Busch T (1987) Bond Stretch Isomerism in the Silicon Analoguesof Bicyclo[1.1.0]butane and of [1.1.1]Propellane. Consequence of Orbital Nonhybridization. InorgChem 26:4383

[899] Niecke E, Fuchs A, Baumeister F, Nieger M, Schoeller WW (1995) A P2C2 Four-MemberedRing with Unusual Bonding – Synthesis, Structure, and Ring Opening of a 1,3-Diphosphacyclo-butane-2,4-diyl. Angew Chem Int Ed Engl 34:555

[900] Scheschkewitz D, Amii H, Gornitza H, Schoeller WW, Bourissou D, Bertrand G (2002)Singlet Diradicals: from Transition States to Crystalline Compounds. Science 295:1880

[901] Frey GD, Lavallo V, Donnadieu B, Schoeller WW, Bertrand G (2007) Facile Splitting ofHydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center. Science 316:439

[902] Peter Otto, Theoretical Chemistry Genealogy Project

[903] Huisgen R, Feiler LA, Otto P (1969) Cycloadditionen der Ketene. IV. Kinetik der Cyclobu-tan-Bildung aus Diphenylketen und ungesättigten Verbindungen. Chem Ber 102:3444

[904] Salem L, Hoffmann R, Otto P (1973) The Energy of Substituted Ethanes. Asymmetry Orbi-tals. Proc Nat Acad Sci USA 70:531

[905] Otto P, Ladik J (1975) Investigation of the Interaction between Molecules at Medium Di-stances. I. SCF LCAO MO supermolecule, perturbational and mutually consistent calculations fortwo interacting HF and CH2O molecules. Chem Phys 8:192

Page 36: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

258 Literatur

[906] Silverstone HJ, Adams BG, Cižek J, Otto P (1979) Stark Effect in Hydrogen: Dispersion Re-lation, Asymptotic Formulas, and Calculation of the Ionization Rate via High-Order PerturbationTheory. Phys Rev Lett 43:1498

[907] Otto P, Clementi E, Ladik J (1983) The electronic structure of DNA related periodic poly-mers. J Chem Phys 78:4547

[908] Bakhshi AK, Otto P, Ladik J, Seel M (1986) On the Electronic Structure and ConductionProperties of Aperiodic DNA and Proteins. II. Electronic Structure of Aperiodic DNA. Chem Phys108:215

[909] Bakhshi AK, Otto P, Liegener C-M, Rehm E, Ladik J (1990) Modeling of Real 20-Com-ponent Protein Chains: Determination of the Electronic Density of States of Aperiodic Seven-Component Polypeptide Chains Containing Strongly Different Amino Acid Residues. Int J Quan-tum Chem 38:573

[910] Piris M, Otto P (2003) One-Particle Density Matrix Functional for Correlation in MolecularSystems. Int J Quantum Chem 94:3173

[911] Gerhard Binsch, Theoretical Chemistry Genealogy Project

[912] Huisgen R, König H, Binsch G, Sturm HJ (1961) 1.3-Dipolare Additionen der Ketocarbene.Angew Chem 73:368

[913] Lambert JB, Binsch G, Roberts JD (1964) Nitrogen-15 Magnetic Resonance Spectrocopy. I.Chemical Shifts. Proc Natl Acad Sci 51:753

[914] Binsch G, Lambert JB, Roberts BW, Roberts JD (1964) Nitrogen-15 Magnetic ResonanceSpectroscopy. II. Coupling Constants. J Am Chem Soc 86:5564

[915] Binsch G, Heilbronner E, Murrell JN (1966) The theory of double bond fixation in conjuga-ted hydrocarbons. Mol Phys 11:305

[916] Binsch G (1971) In: Bergmann ED, Pullman B (Hrsg) Aromaticity, Pseudo-Aromaticity,Anti-Aromaticity, S 25. The Israel Academy of Sciences and Humanities, Jerusalem

[917] Binsch G (1969) A Unified Theory of Exchange Effects on Nuclear Magnetic ResonanceLine Shapes. J Am Chem Soc 91:1304

[918] Sustmann R, Binsch G (1971) Self-Consistent perturbation theory for interacting electronsystems. I. General formalism for two closed-shell molecules. Mol Phys 20:9

[919] Binsch G (1973) Aromaticity – An Exercise in Chemical Futility? Naturwissenschaften60:369

[920] Binsch G, Kessler H (1980) The Kinetic and Mechanistic Evaluation of NMR Spectra. An-gew Chem Int Ed Engl 19:411

[921] Jaroslav Koutecký, Theoretical Chemistry Genealogy Project

[922] Koutecký J (1957) Contribution to the Theory of the Surface Electronic States in the One-Electron Approximation. Phys Rev 108:13

[923] Koutecký J (1958) A Contribution to the Molecular Orbital Theory of Chemisorption. TransFaraday Soc 54:1038

[924] Koutecký J, Paldus J, ZahradnÍk R (1962) Calculation of p-Band Positions of AromaticPolycyclic Hydrocarbons by Limited Configuration Interaction Method. J Chem Phys 36:3129

[925] Koutecký J (1967) Some Properties of Semiempirical Hamiltonians. J Chem Phys 47:1501

[926] Koutecký J (1966) Contribution to the Theory of Alternant Systems. J Phys Chem 44:3702

[927] Bonacic-Koutecký V, Koutecký J, Salem L (1977) A Theory of Free Radical Reactions. JAm Chem Soc 99:842

[928] Döhnert D, Koutecký J (1980) Occupation Numbers of Natural Orbitals as a Criterion forBiradical Character. J Am Chem Soc 102:1789

Page 37: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 259

[929] Beckmann H-O, Koutecký J, Bonacic-Koutecký V (1980) Electronic and geometric structureof Li4 and Na4 clusters. J Phys Chem 73:5182

[930] Pacchioni G, Koutecký J (1986) Silicon and germanium clusters. A theoretical study of theirstructures and properties. J Chem Phys 84:3301

[931] Koutecký J, Fantucci P (1986) Theoretical Aspects of Metal Atom Clusters. Chem Rev86:539

[932] Cižek J, Paldus J (1987) Jaroslav Koutecký. Theor Chim Acta 72:335

[933] Jürgen Hinze, Theoretical Chemistry Genealogy Project

[934] Hans H. Jaffé, Theoretical Chemistry Genealogy Project

[935] Hinze J, Jaffé HH (1962) Electronegativity. I. Orbital Electronegativity of Neutral Atoms. JAm Chem Soc 84:540

[936] Hinze J, Jaffé HH (1963) Slater-Condon Parameters from Spectral Data. J Chem Phys38:1834

[937] Hinze J, Roothaan CCJ (1967) Multi-Configuration Self-Consistent-Field Theory. SupplProg Theor Phys 40:37

[938] Sabelli N, Hinze J (1969) Atomic Multiconfiguration Self-Consistent-Field Wavefunctions.J Chem Phys 50:684

[939] Docken KK, Hinze J (1972) LiH Potential Curves and Wavefunctions for X 1˙+, A 1˙+ , B1˘ , 3˙+, 3˘ . J Chem Phys 57:4928

[940] Lie GC, Hinze J, Liu B (1973) Valence Excited States of CH. I. Potential Curves. J ChemPhys 59:1872

[941] Hinze J (1973) MC-SCF. I. The multi-configuration self-consistent-field method. J ChemPhys 59:6424

[942] Kosman WW, Hinze J (1975) Inverse Perturbation Analysis: Improving the Accuracy ofPotential Energy Curves. J Mol Spectrosc 56:93

[943] Golebiewski A, Hinze J, Yurtsever E (1979) The orthogonal gradient method. A simplemethod to solve the closed-shell, open-shell, and multiconfiguration SCF equations. J Chem Phys70:1101

[944] Voegel T, Hinze J, Tobin F (1979) Numerical SCF method for the calculation of static pola-rizabilities and hyperpolarizabilities for atoms, He through Ne. J Chem Phys 70:1107

[945] Hamacher P, Hinze J (1989) The variational R-matrix method: resonances in the photoioni-zation of He for photon energies 58–65 eV. J Phys B 22:3397

[946] Stiehler J, Hinze J (1995) Calculation of static polarizabilities and hyperpolarizabilties forthe atoms He through Kr with a numerical RHF method. J Phys B 28:4055

[947] Bergmann D, Hinze J (1996) Electronegativity and Molecular Properties. Angew Chem IntEd Engl 35:150

[948] Alijah A, Andrae D (2010) Editorial. Theor Chem Acc 127:109

[949] Paul von Ragué Schleyer, Theoretical Chemistry Genealogy Project

[950] Schleyer PvR (1957) A Simple Preparation of Adamantane. J Am Chem Soc 79:3292

[951] Fort RC Jr., Schleyer PvR, Adamantane (1964) Consequences of the Diamond Structure.Chem Rev 64:277

[952] Laszlo P, Schleyer PvR (1964) Analysis of the Nuclear Resonance Spectra of NorboneneDerivatives. J Am Chem Soc 86:1171

[953] Williams JE, Stang PJ, Schleyer PvR (1968) Ann Rev Phys Chem 19:531

[954] Sustmann R, Williams JE, Dewar MJS, Allen LC, Schleyer PvR (1969) Molecular Orbital

Page 38: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

260 Literatur

Calculations on Carbonium Ions. II. The Methyl, Ethyl, and Vinyl Cations. The Series C3H7+. J

Am Chem Soc 91:5350

[955] Radom L, Pople JA, Buss V, Schleyer PvR (1971) Structure and Relative Stabilities of C3H7+ Cations. J Am Chem Soc 93:1813

[956] Schleyer PvR (1972) Insights into Small Ring Carbocations Provided by MO Calculations.Angew Chem Int Ed Engl 11:330

[957] Engler EM, Andose JD, Schleyer PvR (1973) Critical Evaluation of Molecular Mechanics.J Am Chem Soc 95:8005

[958] Collins JB, Dill JD, Jemmis ED, Apeloig Y, Schleyer PvR, Seeger R, Pople JA (1976)Stabilization of Planar Tetracoordinate Carbon. J Am Chem Soc 98:5419

[959] Collins JB, Schleyer PvR, Binkley JS, Pople JA (1976) Self-consistent molecular orbitalmethods. XVII. Geometries and binding energies of second-row molecules. A comparison of threebasis sets. J Chem Phys 64:5142

[960] Chandrasehkar J, Andrade JG, Schleyer PvR (1981) Efficient and Accurate Calculation ofAnion Proton Affinities. J Am Chem Soc 103:5609

[961] Clark T, Chandrasehkar J, Spitznagel G, Schleyer PvR (1983) Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3–21+G Basis Set for First-Row Elements,Li-F. J Comput Chem 4:294

[962] Schleyer PvR (1984) Remarkable Structures of Lithium Compounds. Pure & Appl Chem56:151

[963] Luke BT, Pople JA, Krogh-Jespersen M-B, Apeloig Y, Chandrasehkar J, Schleyer PvR(1986) A Theoretical Survey of Singly Bonded Silicon Compounds. Comparison of the Structuresand Bond Energies of Silyl and Methyl Derivatives. J Am Chem Soc 108:270

[964] Reed AE, Schleyer PvR (1990) Chemical Bonding in Hypervalent Molecules. The Domi-nance of Ionic Bonding and Negative Hyperconjugation over d-Orbital Participation. J Am ChemSoc 112:1434

[965] Schleyer PvR, Freeman PK, Jiao H, Goldfuss B (1995) Aromaticity and Antiaromaticity inFive-Membered Ring-Systems: „Classical“ and „Magnetic“ Concepts May Not Be „Orthogonal“.Angew Chem Int Ed Engl 34:1995

[966] Schleyer PvR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J Am Chem Soc118:1118

[967] Schleyer PvR, Jiao H (1996) What is Aromaticity? Pure & Appl Chem 68:209

[968] Schleyer PvR, Jiao H, van Eikema Hommes NJR, Malkin VG, Malkina OL (1997) AnEvaluation of the Aromaticity of Inorganic Ring: Refined Evidence from Magnetic Properties. JAm Chem Soc 119:12669

[969] Schleyer PvR, Manoharan M, Wang Z-X, Kiran B, Jiao H, Puchta R, van Eikema Hom-mes NJR (2001) Dissected Nucleus-Independent Chemical Shift Analysis of  -Aromaticity andAntiaromaticity. Org Lett 3:2465

[970] Cyranski MK, Krygowski TM, Katritzky AR, Schleyer PvR (2002) To What Extent CanAromaticity Be Defined Uniquely? J Org Chem 67:1333

[971] Lutz Zülicke, Theoretical Chemistry Genealogy Project

[972] Krell J, Zuhrt C, Zülicke L (1969) Bond-Orbital Calculations for CH4, NH3 and H2O,Chem. Chem Phys Lett 4:261

[973] Zülicke L (1973) Quantenchemie – Ein Lehrgang, Bd. 1. Grundlagen und allgemeine Me-thoden, Deutscher Verlag der Wissenschaften, Berlin

[974] Zülicke L (1985) Quantenchemie – Ein Lehrgang, Bd. 2. Atombau, chemische Bindung undmolekulare Wechselwirkungen, Dr. Alfred Hüthig Verlag, Heidelberg

Page 39: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 261

[975] Havemann U, Zülicke L (1974) Model Calculations of Harpooning Elementary Processes inthe System K + Br2. Chem Phys Lett 25:487

[976] Schneider F, Havemann U, Zülicke L, Pacák V, Birkinshaw K, Herman Z (1976) Dyna-mics of the Reaction H2

+(He;H)HeH+. Comparison of Beam Experiments with Quasi-ClassicalTrajectory Studies. Chem Phys Lett 37:323

[977] Schneider F, Zülicke L (1979) Approximate Diatomics-in-Molecules Potential Energy Sur-faces and Non-Adiabatic Coupling for He+ and H2. Chem Phys Lett 67(2):491

[978] Angela Merkel, Theoretical Chemistry Genealogy Project

[979] Merkel A, Zülicke L (1987) Nonemprical parameter estimate for the statistical adiabatictheory of unimolecular fragmentation C-H bond breaking in CH3. Mol Phys 60:1379

[980] Vetter R, Zülicke L (1990) Theoretical Study of Potential Wells and Barriers for SN2 Rear-rangement in the Systems (XCH3X)� with X = F, Cl, and Br. J Am Chem Soc 112:5136

[981] Gianturco FA, Kumar S, Ritschel T, Vetter R, Zülicke L (1997) Interaction aniosotropy andvibrational excitation in proton scattering from N2(1˙ g

+). J Chem Phys 107:6634

[982] Nikitin EE, Zülicke L (1985) Theorie chemischer Elementarreaktionen. Vieweg, Braun-schweig

[983] Hans-Georg Bartel, Theoretical Chemistry Genealogy Project

[984] Bartel H-G (1989) Walther Nernst. Teubner, Leipzig

[985] Beyer L, Reinhold J, Wilde H (2009) Chemie an der Universität Leipzig. Von den Anfängenbis zur Gegenwart. Passage-Verlag, Leipzig

[986] Manfred Scholz, Theoretical Chemistry Genealogy Project

[987] Scholz M, Treibs W (1961) Über bicyclische und polycyclische Azulene XLIV. Mitteilung:Der Einfluß von Substituenten II. Art auf das sichtbare Absorptionsspektrum der Azulene. Z Elek-trochem Ber Bunsenges physik Chem 65:120

[988] Scholz M, Mühlstädt M, Dietz F (1967) Chemie angeregter Zustände. I. Die Richtung derPhotocyclisierung naphthalinsubstituierter Äthylene. Tetrahedron Lett 8:665

[989] Hauptmann S, Weißenfels M, Scholz M, Werner E-M, Köhler H-J, Weisflog J (1967) Eineneue Synthese substituierter Thiophen und Pyrrole. Tetrahedron Lett 9:1317

[990] Borsdorf R, Hofmann H-J, Fabian J (1970) Quantenchemische Berechnungen zur Strukturdes 1,2-Dithiins. Tetrahedron 26:3227

[991] Scholz M, Köhler H-J, Ziegler U (1974) EHT- und CNDO/2-Rechnungen an Thiacyclanen,Thiacyclanonen und entsprechenden Sulfonen. J prakt Chem 316:103

[992] Scholz M (1982) Chemie angeregter Zustände. XII. MO-Berechnungen zum Elektronen-spektrum des Pyridin-N-Oxid – Eine kritische Analyse. J prakt Chem 324:85

[993] Hans-Joachim Köhler, Theoretical Chemistry Genealogy Project

[994] Scholz M, Köhler HJ (1981) Quantenchemie – Ein Lehrgang, Bd. 3. QuantenchemischeNäherungsverfahren, VEBDeutscher Verlag der Wissenschaften, Dr. Alfred Hüthig Verlag, Berlin,Heidelberg

[995] Fritz Dietz, Theoretical Chemistry Genealogy Project

[996] Dietz F, Scholz M (1968) Chemie angeregter Zustände. IV. Die Photocyclisierung der dreiisomeren Distyrylbenzole. Tetrahedron 24:6845

[997] Dietz F, Köhler H-J (1971) Quantenchemische Untersuchungen an Farbstoffaggregaten.I. Allvalenzelektronen-SCF-Berechnungen am Trimethincyanin und Doppelmolekülmodellen. Jprakt Chem 313:1101

[998] Dietz F (1972) Quantenchemische Untersuchungen an Farbstoffaggregaten. II. Die Elektro-nenspektren von Trimethincynain-Polymermodellen. Tetrahedron 28:1403

Page 40: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

262 Literatur

[999] Dietz F, Rentsch SK (1985) On the Mechanism of Photoisomerization and the Structure ofCyanine Dyes. Chem Phys 96:145

[1000] Schöffel K, Dietz F, Krossner T (1990) Model mechanisms for the thermal cis-trans iso-merization of cyanines. Chem Phys Lett 172:187

[1001] Dietmar Heidrich, Theoretical Chemistry Genealogy Project

[1002] Heidrich D, Grimmer M (1975) Quantenchemische Untersuchungen zum Mechanismusder elektrophilen Substitution. I. Zur Potentialfläche des Systems Benzol/H+. Int J Quantum Chem9:923

[1003] Fischer H, Kollmar H (1969) A Reparametrization of the CNDOMethod. I. Hydrocarbons.Theor Chim Acta 13:213

[1004] Quapp W, Heidrich D (1984) Analysis of the concept of minimum energy path on thepotential energy surface of chemically reacting systems. Theor Chim Acta 66:245

[1005] Heidrich D, van Eikema Hommes NJR, Schleyer PvR (1993) Ab Initio Models for Multi-ple-Hydrogen Exchange: Comparison of Cyclic Four-Center and Six-Center Systems. J ComputChem 14:1149

[1006] Heidrich D, Kliesch W, Quapp W (1991) Properties of Chemically Interesting PotentialEnergy Surfaces. Springer, Berlin – Heidelberg

[1007] Heidrich D (Hrsg) (1995) The Reaction Path in Chemistry: Current Approaches and Per-spectives. Kluwer, Dordrecht

[1008] Cornelius Weiss, Theoretical Chemistry Genealogy Project

[1009] Weiss C (1966) Wasserstoff-Isotopenaustauschreaktionen nicht benzoider Aromaten. I.Über den H-D-Austausch zwischen Azulen und Pyrrolidin-[D]*. Tetrahedron 22:145

[1010] Streitwieser A (1961) Molecular Orbital Theory for organic chemists. John Wiley, NewYork

[1011] Birner P, Köhler H-J, Weiss C (1974) C-H Acidity. Comparative CNDO/2 and NDDOCalculations on the Reactivity of Azabenzenes. Chem Phys Lett 27:347

[1012] Heidrich D, Göring U, Förster W, Weiss C (1979) Der elektrophile Angriff auf ungesättigteSysteme. VII. Theoretische Untersuchungen zum Einfluß des Lösungsmittels auf die Stabilität derKationenstrukturen. Tetrahedron 35:651

[1013] Birner P, Hofmann H-J, Weiss C (1979) MO-theoretische Methoden in der organischenChemie. Akademie, Verlag, Berlin

[1014] Krebs C, Hoffmann H-J, Köhler H-J, Weiss C (1980) Problems Concerning the TheoreticalTreatment of Tautomeric Equilibria of Heterocycles. Chem Phys Lett 69:537

[1015] Krebs C, Förster W, Weiss C, Hoffmann H-J (1982) Theoretical Description of SolventEffects. V. The Medium Influence on the Lactim-Lactam Tautomerism of Hydroxiazines. J praktChem 324:369

[1016] Bartzsch C, Weiss C, Hofmann H-J (1984) Theoretical Description of Solvent Effects. X.Theoretical Investigation of the Tautomerism of Nucleic Acid Bases of Biological Importance inthe Gas Phase and in Solution. J prakt Chem 326:407

[1017] Weiss C (2012) Risse in der Zeit. Ein Leben zwischen Ost und West. Rowohlt, Reinbek beiHamburg

[1018] Joachim Reinhold, Theoretical Chemistry Genealogy Project

[1019] Dietzsch W, Reinhold J, Kirmse R, Hoyer E, Marov IN, Belyaeva VK (1977) Ligand Ex-change Reactions between Copper(II)- and Nickel(II)-Chelates of Different Sulfur- and Selenium-Containing Ligands. J inorg nucl Chem 39:1377

[1020] Dietzsch W, Lerchner J, Reinhold J, Stach J, Kirmse R, Steimecke G, Hoyer E (1980)

Page 41: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 263

Ligand Exchange Reactions between Copper(II)- and Nickel(II)-Chelates of Different Sulfur- andSelenium-Containing Ligands. II. J inorg nucl Chem 42:509

[1021] Reinhold J, Benedix R, Birner P, Hennig H (1979) Quantum Chemical Investigations of the -Acceptor Ability of ’-Diimine Ligands. Inorg Chim Acta 33:209

[1022] Kuznetsov A, Reinhold J, Lorenz W (1984) Quantum Chemical Studies of the Chemi-sorption of Water and of Unhydrated and Hydrated Halide Ions on Mercury. J Electroanal Chem164:167

[1023] Olk R-M, Olk B, Rohloff J, Reinhold J, Sieler J, Trübenbach K, Kirmse R, Hoyer E(1992) Zur Koordinationschemie des 1,3-Dithiol-2-selon-4,5-disenelolats (dsise) und des 1,3-Di-thiol-2-selon-4,5-dithiolats (dmise). Kristall- und Molekülstruktur des Tetrabutyammonium-bis-(1,3-dithiol-2-selon-4,5-diselenolato)nickeloelat(II) und -(III), [(n-C4H9)4N]2[Ni(dsise)2] und (n-C4H9)4N[Ni(dsise)2. Z anorg allg Chem 609:103

[1024] Hunstock E, Mealli C, Calhorda MJ, Reinhold J (1999) Molecular Structures ofM2(CO)9and M3(CO)12 (M = Fe, Ru, Os): New Theoretical Insights. Inorg Chem 38:5053

[1025] Glaeske H-J, Reinhold J, Volkmer P (1987) Quantenchemie – Ein Lehrgang, Bd. 5. Aus-gewählte mathematische Methoden der Chemie, VEB Deutscher Verlag der Wissenschaften, Dr.Alfred Hüthig Verlag, Berlin, Heidelberg

[1026] Reinhold J (1994) Quantentheorie der Moleküle. Teubner, Stuttgart

[1027] Jürgen Fabian, Theoretical Chemistry Genealogy Project

[1028] Achim Mehlhorn, Theoretical Chemistry Genealogy Project

[1029] Fabian J, Viola H, Mayer R (1967) Quantitative Beschreibung der UV-S-Absorptioneneinfacher Thiocarbonylverbindungen. Tetrahedron 23:4323

[1030] Rudolf Zahradník, International Academy of Quantum Molecular Science

[1031] Fabian J, Mehlhorn A, Zahradník R (1968) Semiempirical Calculations on Sulfur-Contai-ning Heterocycles. J Phys Chem 72:3975

[1032] Fabian J, Mehlhorn A, Zahradník R (1968) PPP-Berechnungen und der Vergleich derElektronenspektren von iso- -elektronischen Sauerstoff-, Stickstoff-, Schwefel- und Selenhetero-cyclen. Theor Chim Acta 12:247

[1033] Fabian J (1973) LCAO-MO-Berechnungen an schwefelhaltigen  -Systemen. XXX. ZurTautomerie des Monothioacetylacetons. Tetrahedron 29:2499

[1034] Fabian J, Hartmann H (1975) MO-LCAO-Berechnungen an Polymethinen. I. Lösungen fürStreptopolymethine in Einelektronennäherung. Theor Chim Acta 36:251

[1035] Fabian J, Mehlhorn A, Fratev F (1980) Approaches for Interpreting   Electronic States and  Electronic Transitions. Int J Quantum Chem 17:235

[1036] Fabian J, Zahradník R (1989) The Search for Highly Colored Compounds. Angew ChemInt Ed Eng 28:677

[1037] Fabian J, Nakazumi H, Matsuoka M (1992) Near-Infrared Absorbing Dyes. Chem Rev92:1197

[1038] Lauterbach C, Fabian J (1995) Density Functional Derived Structures and Molecular Pro-perties of Nickel Dithiolenes and Related Complexes. Eur J Inorg Chem 1999

[1039] Mehlhorn A, Sauer J, Fabian J, Mayer R (1981) The Electronic Structure and PhysicalProperties of Thionitroso Compounds. A Quantum Chemical Study. Phosphorus and Sulfur 11:325

[1040] Fratev F, Polansky OE, Mehlhorn A, Monet V (1979) Applications of Distance and Simila-rity Measures. The Comparison of Molecular Electronic Structures in Arbitrary Electronic States.J Mol Struct 56:245

[1041] Sperling D, Mehlhorn A, Reißig H-U, Fabian J (1996) Theoretical Study of PericyclicReactions of Nitrosoehtylene and (Thionitroso)ethylene. Liebigs Ann 1615

Page 42: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

264 Literatur

[1042] Hans Müller, Theoretical Chemistry Genealogy Project

[1043] Heinz Dunken, Theoretical Chemistry Genealogy Project

[1044] Müller H, Dunken H (1965) Ein 3-dimensionales FE-Modell der chemischen Bindung.Theor Chim Acta 3:97

[1045] Müller H (1966) Bindungsverhältnisse und Elektronenverteilung im Trijodid-Anion J3�

im Modell der freien Elektronen. Theor Chim Acta 6:445

[1046] Müller H (1971) Bindungsverhältnisse und Elektronenverteilung im Br42�-Ion. TheorChim Acta 21:110

[1047] Dübler F, Müller H, Opitz C (1982) The Bonding of Hydrogen in HNb6I11. A Model forInterstitial Hydrides. Chem Phys Lett 88:467

[1048] Bohl M, Müller H (1983) CNDO Investigations on Chemisorption Phenomena. Surf Sci128:104

[1049] Opitz C, Müller H, Kodlaa A (1990) Quantenchemische Untersuchungen der Elementar-prozesse beim Plasmaätzen im System Fluor/Silizium. Mh Chem 121:331

[1050] Klaus Gustav, Theoretical Chemistry Genealogy Project

[1051] Herzog S, Gustav K (1966) Über elektronenreiche Komplexe des Yttriums mit 2,20-Dipy-ridyl. Z anorg allg Chem 346:150

[1052] Gustav K, Sühnel J, Wild UP (1978) Theoretical Study on Geometry and SpectroscopicProperties of 1,10-Binaphthyl in the Electronic Ground and First Excited Singlet States. ChemPhys 31:59

[1053] Gustav K, Sühnel J, Wild UP (1978) 197. Gleichgewichtsgeometrie und spektroskopischeEigenschaften des Biphenyls im S0- und S1-Zustand. Helv Chim Acta 61:2100

[1054] Gustav K, Colditz R (1982) Vibronic Coupling of Electronic States. II. Mathematical Des-cription of the Model. Int J Quantum Chem 22:31

[1055] Gustav K, Storch M (1990) Non-Radiative Deactivation of Molecules. II. Theoretical Studyof Internal Conversion Rates in Azulene. Int J Quantum Chem 38:1

[1056] Gustav K, Leonhardt M, Port H (1997) Theoretical Investigations on Absorption and Fluo-rescence of Perylene and Its Tetracarboxylic Derivatives. Mh Chem 128:105

[1057] Horst Bögel, Theoretical Chemistry Genealogy Project

[1058] Horst Hartmann, Theoretical Chemistry Genealogy Project

[1059] Oliva MM, Casado J, Raposo MMM, Fonseca AMC, Hartmann H, Harnandez V, NavarreteJTL (2006) Structure-property relationships in push-pull amino/cyanovinyl end-capped oligothio-phenes: Quantum chemical and experimental studies. J Org Chem 71:7509

[1060] Wolfgang Gründler, Theoretical Chemistry Genealogy Project

[1061] Issleib K, Gründler W (1967) Zur Elektronenstruktur des Moleküls PH5. Theor Chim Acta8:70

[1062] Issleib K, Gründler W (1968) Berechnung ketten- und ringförmiger Phosphorwasserstoffenach einem erweiterten MO-LCAO-Verfahren. Theor Chim Acta 1:107

[1063] Gründler W (1970) Störungstheoretische Behandlung des Omega-HMO-Formalismus imRahmen der Dichtematrixmethode. Mh Chem 101:1354

[1064] Gründler W (1970) Eine Omega-HMO-Methode zur Behandlung von ¢- und  -Elektro-nensystemen. Mh Chem 101:1362

[1065] Gründler W (1982) Signifikante Elektronenstrukturen. Mh Chem 101:15

[1066] Rudolf Friedemann, Theoretical Chemistry Genealogy Project

Page 43: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 265

Kapitel 6[1067] Wilhelm Stürmer, Ein elektrisches Analogie-Verfahren zur Lösung quantenmechanischerStörungsprobleme, Dissertation, Frankfurt/Main 1947

[1068] Hartmann H, Stürmer W (1950) Über elektrische Schwingkreismodelle für die  -Elektro-nensysteme ungesättigter und aromatischer Kohlenwasserstoffe. Z Naturforsch 5a:99

[1069] Hartmann H, Neumann A (1965) Ein Analogrechner zur Ermittlung der  -Elektronenzu-stände. Theor Chim Acta 3:127

[1070] Hoffmann R (1963) An Extended Hückel Theory. I. Hydrocarbons. J Chem Phys 39:1397

[1071] Pople JA (1953) Electron Interaction in Unsaturated Hydrocarbons. Trans Faraday Soc49:1375

[1072] Pople JA, Beveridge DL, Dobosh PA (1967) Approximate Self-Consistent Molecular-Or-bital Theory. V. Intermediate Neglect of Differential Overlap. J Chem Phys 47:2026

[1073] Fischer-Hjalmars I (1965) Deduction of the Zero Differential Overlap Approximation froman Orthogonal Atomic Orbital Basis Set. J Chem Phys 42:1166

[1074] Baird NC, Dewar MJS (1969) Ground States of ¢-Bonded Molecules. IV. The MINDOMethod and Its Applications to Hydrocarbons. J Chem Phys 50:1262

[1075] Dewar MJS, Haselbach E (1970) Ground States of ¢-BondedMolecules. IX. The MINDO/2Method. J Am Chem Soc 92:590

[1076] Bingham RC, Dewar MJS, Lo DH (1975) Ground States of Molecules. XXV. MINDO/3.An Improved Version of the MINDO Semiempirical SCF-MO Method. J Am Chem Soc 97:1285

[1077] Pople JA (1975) Some Deficiencies of MINDO/3 Semiempirical Theory. J Am Chem Soc97:5306

[1078] Hehre WJ (1975) MINDO/3. An Evaluation of Its Usefulness as a Structural Theory. J AmChem Soc 97:5308

[1079] Dewar MJS (1975) Concerning Criticisms of MINDO/3 by Pople and Hehre. J Am ChemSoc 97:6591

[1080] Walter Thiel, Theoretical Chemistry Genealogy Project

[1081] Dewar MJS, Thiel W (1977) Ground States of Molecules. 38. The MNDOMethod. Appro-ximation and Parameters. J Am Chem Soc 99:4899

[1082] Dewar MJS, Thiel W (1977) Ground States of Molecules. 39. MNDO Results for Molecu-les Containing Hydrogen, Carbon, Nitrogen, and Oxygen. J Am Chem Soc 99:4907

[1083] Dewar MJS, Thiel W (1977) A Semiempirical Model for the Two-Center Repulsion Inte-grals in the NDDO Approximation. Theor Chim Acta 46:89

[1084] Thiel W (1981) The MNDOC Method, a Correlated Version of the MNDO Model. J AmChem Soc 103:1413

[1085] Thiel W (1981) MNDOC Study of Reactive Intermediates and Transition States. J AmChem Soc 103:1420

[1086] Thiel W (1988) Semiempirical Methods: Current Status and Perspectives. Tetrahedron44:7393

[1087] Bakowies D, Thiel W (1991) MNDO Study of Large Carbon Clusters. J Am Chem Soc113:3704

[1088] Thiel W, Voityuk AA (1992) Extension of the MNDO formalism to d orbitals: Integralapproximations and preliminary numerical results. Theor Chim Acta 81:391

[1089] Thiel W, Voityuk AA (1996) Extension of MNDO to d orbitals: Parameters and Results forthe Second-Row Elements and for the Zinc Group. J Phys Chem 100:616

[1090] Bakowies D, Thiel W (1996) Hybrid Models for Combined Quantum Mechanical andMolecular Mechanics Approaches. J Phys Chem 100:10580

Page 44: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

266 Literatur

[1091] Senn HM, Thiel W (2009) QM/MMMethods for Biomolecular Systems. Angew Chem IntEd Engl 48:1198

[1092] Bühl M, Kumar D (2009) A Tribute to Walter Thiel. J Phys Chem A 113:11455

[1093] Thiel W (2009) Autobiography of Walter Thiel. J Phys Chem A 113:11457

[1094] Bredow T, Jug K (2005) Theory and range of modern semiempirical molecular orbitalmethods. J Comput Chem 113:1

[1095] Hermann Stoll, Theoretical Chemistry Genealogy Project

[1096] Hohenberg P, Kohn W (1964) Inhomogeneous Electron Gas. Phys Rev 136B:864

[1097] Kohn W, Sham L (1965) Self-Consistent Equations Including Exchange and CorrelationEffects. Phys Rev 140A:1133

[1098] Stoll H, Pavlidou CME, Preuß H (1978) On the Calculation of Correlation Energies in theSpin-Density Functional Formalism. Theor Chim Acta 49:143

[1099] Stoll H, Golka E, Preuß H (1980) Calculation of Correlation Energies in the Spin-DensityFunctional Formalism. II. Applications and Empirical Corrections. Theor Chim Acta 55:29

[1100] Fuentealba P, Preuß H, Stoll H, von Szentpály L (1982) A Proper Account of Core-Po-larization with Pseudopotentials: Single Valence-Electron Alkali Compounds. Chem Phys Lett89:418

[1101] Fuentealba P, von Szentpály L, Preuß H, Stoll H (1985) Pseudopotential calculations foralkaline-earth atoms. J Phys B: At Mol Phys 18:1287

[1102] Dolg M, Stoll H, Savin A, Preuss H (1989) Energy-adjusted pseudopotentials for the rareearth elements. Theor Chim Acta 75:173

[1103] Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Energy-adjusted ab initiopseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123

[1104] Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab initio energy-adjusted pseudo-potentials for elements of groups 13–17. Mol Phys 80:1431

[1105] Küchle W, Dolg M, Stoll H, Preuß H (1994) Energy-adjusted pseudopotentials for theactinides. Parameter sets and test calculations for thorium und thorium monoxide. J Chem Phys100:7535

[1106] Nicklass A, Dolg M, Stoll H, Preuß H (1995) Ab initio energy-adjusted pseudopotentialsfor the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities. JChem Phys 102:8942

[1107] Metz B, Stoll H, Dolg M (2000) Small-core multiconfiguration-Dirac-Hartree-Fock-adjus-ted pseudopotentials for post-d main group elements: Application to PbH and PbO. J Chem Phys113:2563

[1108] Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basissets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistentbasis sets for the post-d group 16–18 elements. J Chem Phys 119:11113

[1109] Stoll H (1992) Correlation energy of diamond. Phys Rev B 46:6700

[1110] Dolg M, Botschwina P (2005) Hermann Stoll. Theor Chem Acc 114:243

[1111] Hans-Joachim Werner, Theoretical Chemistry Genealogy Project

[1112] Nicholas Charles Handy, Theoretical Chemistry Genealogy Project

[1113] Werner H-J, Knowles PJ (1985) A second order multiconfiguration SCF procedure withoptimum convergence. J Chem Phys 82:5053

[1114] Werner H-J, Knowles PJ (1988) An efficient internally contracted multiconfiguration-refe-rence configuration interaction method. J Chem Phys 89:5803

[1115] Knowles PJ, Werner H-J (1992) Internally contracted multiconfiguration-reference confi-guration calculations for excited states. Theor Chim Acta 84:95

Page 45: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 267

[1116] Hampel C, Werner H-J (1996) Local treatment of electron correlation in coupled clustertheory. J Chem Phys 104:3986

[1117] Werner H-J (1996) Third-order multireference perturbation theory. The CASPT3 method.Mol Phys 89:645

[1118] Schütz M, Hetzer G, Werner H-J (1999) Low-order scaling local electron correlation me-thods. I. Linear scaling local MP2. J Chem Phys 111:5691

[1119] Celani P, Werner H-J (2000) Multireference perturbation theory for large restricted andselected active space reference wave functions. J Chem Phys 112:5546

[1120] Werner H-J, Manby FR, Knowles PJ (2003) Fast linear scaling second-order Møller-Plessetperturbation theory (MP2) using local and density fitting approximations. J Chem Phys 118:8149

[1121] Werner H-J, Adler TB, Manby FR (2007) General orbital invariant MP2-F12 theory. JChem Phys 126:164102

[1122] Bernd Artur Heß, Theoretical Chemistry Genealogy Project

[1123] Hess BA (1985) Applicability of the no-pair equation with free-particle projection operatorsto atomic and molecular structure calculations. Phys Rev A 32:756

[1124] Hess BA (1986) Relativistic electronic-structure calculations employing a two-componentno-pair formalism with external-field projection operators. Phys Rev A 33:3742

[1125] Jansen G, Hess BA (1989) Revision of the Douglas-Kroll transformation. Phys Rev A39:6016

[1126] Heß BA, Marian CM, Wahlgren U, Gropen O (1996) A mean-field spin-orbit method app-licable to correlated wavefunctions. Chem Phys Lett 251:365

[1127] Reiher M, Salomom O, Heß BA (2001) Reparameterization of hybrid functionals based onenergy differences of states of different multiplicity. Theor Chem Acc 107:48

[1128] Salomon O, Reiher M, Hess BA (2002) Assertion and validation of the performance of theB3LYP* functional for the first transition metal row and the G2 test set. J Chem Phys 117:4729

[1129] Neugebauer J, Reiher M, Kind C, Hess BA (2002) Quantum Chemical Calculation of Vi-brational Spectra of Large Molecules – Raman and IR Spectra for Buckminsterfullerene. J ComputChem 23:895

[1130] Hess BA (2003) Relativistic Effects in Heavy Element Chemistry and Physics. Wiley, Chi-cester

[1131] Neese F, Wolf A, Fleig T, Reiher M, Hess BA (2005) Calculation of electric-field gradientsbased on higher-order generalized Douglas-Kroll transformation. J Chem Phys 122:204107

[1132] Dolg M, van Wüllen C (2005) Relativistic Effects in Heavy-Element Chemistry and Phy-sics. In Memoriam Bernd A. Heß (1954–2004). Chem Phys 311:1

[1133] Schwarz WHE (1968) Zur Anwendung von Austauschpotentialen bei SCF-Rechnungen anAtomen. Z Physik 214:149

[1134] Neckel A, Rastl P, Weinberger P, Mechtler R (1972) Berechnung der Bandstruktur vonVanadiumcarbid VC. Theor Chim Acta 24:170

[1135] Schwarz K, Weinberger P (1974) Effects of the Exchange Parameters on the Binding Ener-gy in the SCF X’ Scattered Wave Method. Chem Phys Lett 27:415

[1136] Michele Parrinello, Theoretical Chemistry Genealogy Project

[1137] Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: A new molecu-lar dynamics method. J Appl Phys 52:7182

[1138] Car R, Parrinello M (1985) Unified Approach for Molecular Dynamics and Density-Func-tional Theory, Phys. Chem Lett 55:2471

[1139] Car R, Parrinello M (1988) Structural, Dynamical, and Electronic Properties of AmorphousSilicon: An Ab Initio Molecular-Dynamics Study. Phys Rev Lett 60:204

Page 46: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

268 Literatur

[1140] Buda F, Kohanoff J, Parrinello M (1992) Optical Properties of Porous Silicon: A First-Principles Study. Phys Rev Lett 69:1272

[1141] Galli G, Parrinello M (1992) Large Scale Electronic Struture Calculations. Phys Rev Lett69:1992

[1142] Laasonen K, Sprik M, Parrinello M, Car R (1993) „Ab initio“ liquid water. J Chem Phys99:9080

[1143] Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) The nature of the hydrated excessproton in water. Nature 397:601

[1144] Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Nat Acad Sci USA99:12562

[1145] Vande Vondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005)QUICKSTEP: Fast and accurate density funtional calculations using a mixed Gaussian and planewaves approach. Comput Phys Commun 167:103

[1146] Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling.J Chem Phys 126:014101

[1147] Greensche Funktion, Wikipedia, Die freie Enzyklopädie 2012

[1148] Lorenz Cederbaum, Theoretical Chemistry Genealogy Project

[1149] Cederbaum L (1973) Direct Calculation of Ionization Potentials of Closed-Shell Atomsand Molecules. Theor Chim Acta 31:239

[1150] Wilhelm Brenig, Theoretical Chemistry Genealogy Project

[1151] Cederbaum L (1975) One-body Green’s function for atoms and molecules: theory andapplication. J Phys B 8:290

[1152] Cederbaum L, Domcke W, Schirmer J, von Niessen W, Diercksen GHF, Kraemer WP(1978) Correlation effects in the ionization of hydrocarbons. J Chem Phys 69:1591

[1153] Schirmer J, Cederbaum LS, Walter O (1983) New Approach to the one-particle Green’sfunction for finite Fermi systems. Phys Rev A 28:1237

[1154] Dyson-Gleichung, Wikipedia, Die freie Enzyklopädie 2012

[1155] von Niessen W, Schirmer J, Cederbaum LS (1984) Computational Methods for the One-Particle Green’s Function. Comput Prog Reports 1:57

[1156] Köppel H, Domcke W, Cederbaum LS (1984) Multimode Molecular-Dynamics beyond theBorn-Oppenheimer Approximation. Adv Chem Phys 57:59

[1157] Meyer H-D, Manthe U, Cederbaum LS (1990) The Multi-Configurational Time-DependentHartree Approach. Chem Phys Lett 165:73

[1158] Manthe U, Meyer H-D, Cederbaum LS (1992) Wave-packet dynamics within the multicon-figuration Hartree framework: General aspects and application to NOCl. J Chem Phys 97:3199

[1159] Worth GA, Meyer H-D, Cederbaum LS (1998) Relaxation of a system with a conicalintersection coupled to a bath: A benchmark 24-dimensional wave packet study treating the envi-ronment explicitly, J Chem Phys 109:3518

[1160] Raab A, Worth GA, Meyer H-D, Cederbaum LS (1999) Molecular dynamics of pyrazineafter excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian. J ChemPhys 110:936

[1161] Worth GA, Cederbaum LS (2004) Beyond Born-Oppenheimer: Molecular dynamicsthrough a conical intersection. Ann Rev Phys Chem 55:127

[1162] Wolfgang Domcke, Theoretical Chemistry Genealogy Project

[1163] Cederbaum LS, Domcke W (1974) On the vibrational structure in photoelectron spectra bythe method of Green’s functions. J Chem Phys 60:2878

Page 47: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 269

[1164] Cederbaum LS, Domcke W (1976) A many-body approach to the vibrational structure inmolecular electronic spectra. I. Theory. J Chem Phys 64:603

[1165] Domcke W, Cederbaum LS (1977) Vibronic Coupling and Symmetry Breaking in CoreElectron Ionization. Chem Phys 25:189

[1166] Kaspar F, Domcke W, Cederbaum LS (1979) The Influence of Finite Lifetime of ElectronicStates on the Vibrational Structure of Molecular Electronic Spectra. Chem Phys 44:33

[1167] Domcke W, Köppel H, Cederbaum LS (1981) Spectroscopic effects of conical intersectionsof molecular potential energy surfaces. Mol Phys 4:851

[1168] Köppel H, Cederbaum LS, Domcke W, Shaik S (1983) Symmetry breaking and non-Born-Oppenheimer effects in radical cations. Angew Chem Int Ed Eng 22:2210

[1169] Mündel C, Berman M, Domcke W (1985) Nuclear dynamics in resonant electron-molecu-les scattering beyond the local approximation: Vibrational excitation and dissociative attachmentin H2 and D2. Phys Rev A 32:181

[1170] Köppel H, Domcke W, Cederbaum LS (1988) Interplay of Jahn-Teller and pseudo-Jahn-Teller vibronic dynamics in the benzene cation. J Chem Phys 89:2023

[1171] Seel M (1991) Femtosecond timer-esolved ionization spectroscopy of ultrafast internal-conversion dynamics in polyatomic molecules: Theory and computational studies. J Chem Phys95:7806

[1172] Domcke W (1991) Theory of Resonance and Threshold Effects in Electron-Molecule Col-lisions: The Projection-Operator Approach. Phys Rep 208:97

[1173] Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C (2002) Excited-state hydro-gen detachmnent and hydrogen transfer driven by repulsive 1 ¢* states: A new paradigm fornonradiative decay in aromatic biomolecules. Phys Chem Chem Phys 4:1093

[1174] Willem (Wilfred) F. van Gunsteren, Theoretical Chemistry Genealogy Projekt

[1175] van Gunsteren WF, Berendsen HJC (1977) Algorithms for macromolecular dynamics andconstraint dynamics. Mol Phys 34:1311

[1176] van Gunsteren WF, Berendsen HJC (1982) Algorithms for brownian dynamics. Mol Phys45:637

[1177] Hermans J, Berendsen HJC, van Gunsteren WF, Postma JPM (1984) A Consistent Empiri-cal Potential for Water-Protein Interactions. Biopolymers 23:1513

[1178] van Gunsteren WF, Berendsen HJC (1988) A Leap-Frog Algorithm for Stochastic Dyna-mics. Mol Simul 1:173

[1179] van Gunsteren WF, Berendsen HJC (1990) Computer Simulation of Molecular Dynamics:Methodology, Application, and Perspectives in Chemistry. Angew Chem Int Ed Engl 29:992

[1180] Mark AE, van Gunsteren WF (1994) Decomposition of the Free Energy of a System inTerms of Specific Interactions. Implications for Theoretical and Experimental Studies. J Mol Biol240:167

[1181] van Gunsteren WF, Mark AE (1998) Validation of molecular dynamics simulation. J ChemPhys 108:6109

[1182] Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, HuberT, Krüger P, van Gunsteren WF (1999) The GROMOS Biomolecular Simulation Package. J PhysChem A 103:3596

[1183] Schuler LD, Daura X, van Gunsteren WF (2001) An Improved GROMOS96 Force Fieldfor Aliphatic Hydrocarbons in the Condensed Phase. J Comput Chem 22:1205

[1184] Hansson T, Oostenbrink CO, van Gunsteren WF (2002) Molecular dynamics simulations.Curr Opinion Struct Biol 12:190

[1185] Notker Rösch, Theoretical Chemistry Genealogy Project

Page 48: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

270 Literatur

[1186] Rösch N, Klemperer WG, Johnson KH (1973) On the Use of Overlapping Spheres in theSCF X’ Scattered-Wave Method. Chem Phys Lett 23:149

[1187] Rösch N, Hoffmann R (1974) Geometry of Transion Metal Complexes with Ethylene orAllyl Groups as the Only Ligands. Inorg Chem 13:2656

[1188] Rösch N, Streitwieser A Jr. (1983) Quasirelativistic SCF-X’ Scattered-Wave Study of Ura-nocene, Thorocene, and Cerocene. J Am Chem Soc 105:7237

[1189] Michael C. Zerner, Theoretical Chemistry Genealogy Project

[1190] Culberson JC, Knappe P, Rösch N, Zerner MC (1987) An intermediate neglect of diffe-rential overlap (INDO) technique for lanthanide complexes: studies on lanthanide halides. TheorChim Acta 71:21

[1191] Görling A, Rösch N, Ellis DE, Schmidbaur H (1991) Inorg Chem 30:3986

[1192] Häberlen OD, Rösch N (1992) A scalar-relativistic extension of the linear combination ofGaussian-type orbitals local density functional method: application to AuH, AuCl and Au2. ChemPhys Lett 199:491

[1193] Gianfranco Pacchioni, Theoretical Chemistry Genealogy Project

[1194] Pacchioni G, Rösch N (1996) Supported nickel and copper clusters on MgO(100): A first-principles calculation on the metal/oxide interface. J Chem Phys 104:7329

[1195] Häberlen OD, Chung S-C, Stener M, Rösch N (1997) A relativistic density functionalinvestigation on a series of gold clusters Aun, n = 6, . . . ,147. J Chem Phys 106:5189

[1196] Lopez N, Illas F, Rösch N, Pacchioni G (1999) Adhesion energy of Cu atoms on theMgO(001) surface. J Chem Phys 110:4873

[1197] Voityuk AA, Rösch N, Bixon M, Jortner J (2000) Electronic Coupling for the ChargeTransfer and Transport in DNA. J Phys Chem B 104:9740

[1198] Rösch N (1993) Mathematik für Chemiker. Springer, Berlin – Heidelberg – New-York

[1199] Bernd Michael Rode, Theoretical Chemistry Genealogy Project

[1200] Rode BM (1975) Zur quantenchemischen Behandlung von Kation-Amid-Komplexen. MhChem 106:339

[1201] Probst MM, Bopp P, Heinzinger K, Rode BM (1984) The Effect of Cu2+ and Cl– on theVibrational Frequencies of Water. Chem Phys Lett 106:317

[1202] Probst MM, Radnai T, Heinzinger K, Bopp P, Rode BM (1985) Molecular Dynamics andX-Ray Investigation of an Aqueous CaCl2 Solution. J Phys Chem 89:753

[1203] Anwander EHS, Probst MM, Rode BM (1990) The Influence of Li+, Na+, Mg2+, Ca2+, andZn2+ Ions on the Hydrogen Bonds of the Watson-Crick Base Pairs. Biopolymers 29:757

[1204] Kerdcharoen T, Liedl KR, Rode BM (1996) A QM/MM simulation method applied to thesolution of Li+ in liquid ammonia. Chem Phys Lett 211:313

[1205] Tongraar A, Liedl KR, Rode BM (1998) Born-Oppenheimer ab Initio QM/MM DynamicsSimulations of Na+ and K+ inWater: From Structure Making to Structure Breaking Effects. J PhysChem A 102:10340

[1206] Rode BM (1999) Peptides and the origin of life. Peptides 20:773

[1207] Loeffler HH, Rode BM (2002) The hydration structure of the lithium ion. J Chem Phys117:110

[1208] Gernot Frenking, Theoretical Chemistry Genealogy Project

[1209] Kenichi Fukui, Wikipedia, The free Encyclopedia 2012

[1210] Helmut Schwarz, Theoretical Chemistry Genealogy Project

[1211] Frenking G, Koch W, Gauss J, Cremer D (1988) Stabilities and Nature of the AttractiveInteractions in HeBeO, NeBeO, and ArBeO with Analogues NGLiF, NGBN, and NGLiH (NG =He, Ar). A Theoretical Investigation. J Am Chem Soc 110:8007

Page 49: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 271

[1212] Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, StegmannR, Veldkamp A, Frenking G (1993) A set of f-polarization functions for pseudo-potential basissets of transition metals SC-Cu, Y-Ag and La-Au. Chem Phys Lett 208:111

[1213] Höllwarth A, Böhme M, Dapprich S, Ehlers AW, Gobbi A, Köhler KF, Stegmann R, Veld-kamp A, Frenking G (1993) A set of d-polarization functions for pseudo-potential basis sets ofthe main-group elements Al-Bi and f-type polarization functions for Zn, Cd, Hg. Chem Phys Lett208:237

[1214] Jug K (1991) The Meaning and Distribution of Atomic Charges in Molecules. In: MaksicZB (Hrsg) Theoretical methods of chemical bonding. Springer-Verlag, Berlin, S 235 (Part 3)

[1215] Dapprich S, Frenking G (1995) Investigation of Donor-Acceptor Interactions: A ChargeDecomposition Analysis Using Fragment Molecular Orbitals. J Phys Chem 99:9352

[1216] Piduhn, Boehme C, Frenking G (1996) Theory Rules Out a [2+2] Addition of OsmiumTetroxide to Olefins as Initial Step of the Dihydroxylation Reaction. Angew Chem Int Ed Engl35:2817

[1217] Frenking G, Piduhn U (1997) Ab initio studies of transition metal compounds: the natureof the chemical bond to a transition metal. J Chem Soc Dalton Trans 1653

[1218] Frenking G, Piduhn N (2000) The Nature of the Bonding in Transition Metal Compounds.Chem Rev 100:717

[1219] Diefenbach A, Bickelhaupt FM, Frenking G (2000) The Nature of the Transition Metal-Carbonyl Bond and the Question about the Valence Orbitals of the Transition Metal. A BondEnergy Decomposition Analysis of TM(CO)6 q (TMq = Hf2�, Ta�, W, Re+, Os2+, Ir3+). J AmChem Soc 122:6449

[1220] Frenking G, Wichmann K, Fröhlich N, Loschen C, Lein M, Frunzke J, Rayón VM (2003)Towards a rigorously defined quantum chemical analysis of the chemical bond in donor-acceptorcomplexes, Coord. Chem Rev 238:55

[1221] Nemcsok D, Wichmann K, Frenking G (2004) The Significance of   Interactions in Group11 Complexes with N-Heterocyclic Carbenes. Organometallics 23:3640

[1222] Jörn Manz, Theoretical Chemistry Genealogy Project

[1223] Levine RD, Manz J (1975) The effect of reagant energy on chemical reaction rates: Aninformation theoretic analysis. J Chem Phys 63:4280

[1224] Blumen A, Manz J (1979) On the concentration and time dependence of the energy transferto randomly distributed acceptors. J Chem Phys 71:4694

[1225] Manz J (1980) Rotating Molecules Trapped in Pseudorotating Cages. J Am Chem Soc102:1801

[1226] Joachim Römelt, Theoretical Chemistry Genealogy Project

[1227] Manz J, Römelt J (1981) On the Collinear I + HI and I + MuI Reactions. Chem Phys Lett81:179

[1228] Bondi DK, Connor JNL,Manz J (1983) Exact quantum and vibrationally adiabatic quantumsemiclassical and quasiclassical study of the collinear reactions Cl + MuCl, Cl + HCl, Cl + DCl.Mol Phys 50:467

[1229] Werner Jakubetz, Theoretical Chemistry Genealogy Project

[1230] Jakubetz W, Manz J, Schreier H-J (1990) Theory of Optimal Laser Pulses for SelectiveTransitions between Molecular Eigenstates. Chem Phys Lett 165:100

[1231] Jakubetz W, Kades E, Manz J (1993) State-Selective Excitation of Molecules by Means ofOptized Ultrashort Infrared Laser Pulses. J Phys Chem 97:12609

[1232] de Vivie-Riedle R, Kobe K, Manz J, Meyer W, Reischl B, Rutz S, Schreiber E, WösteL (1996) Femtosecond Study of Multiphoton Ionization Processes in K2: From Pump-Probe toControl. J Phys Chem 100:7789

Page 50: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

272 Literatur

[1233] Fujimura Y, González L, Hoki K, Manz J, Ohtsuki Y (1999) Selective preparation of enan-tiomers by laser pulses: quantum model simulation for H2POSH. Chem Phys Lett 306:1

[1234] Daniel C, Full J, González L, Lupulescu C, Manz J, Merli A, Vajda S, Wöste L (2003)Deciphering the Reaction Dynamics Underlying Optimal Control Laser Fields. Science 299:536

[1235] Manz J (1997) Molecular Wavepacket Dynamics: Theory for Experiments 1926–1996. In:Sundström V (Hrsg) Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at AtomicScale Resolution. Nobel Symposium, Bd. 101. Imperial College Press, London, S 80–318

[1236] González L, Kühn O, Saalfrank P (2012) Tribute to Jörn Manz. J Phys Chem 116:11041

[1237] Manz J (2012) Autobiography of Jörn Manz. J Phys Chem A 116:11043

[1238] Gotthard Seifert, Theoretical Chemistry Genealogy Project

[1239] Heera V, Seifert G, Ziesche P (1984) A semi-relativistic variant of the scattered-wave X’

method. J Phys B 17:519

[1240] Seifert G, Eschrig H, Bieger W (1986) An Approximation Variant of LCAO-X’ methods.Z Phys Chem Leipzig 267:529

[1241] Seifert G, Jones RO (1991) Geometric and electronic structure of clusters. Z Phys D 20:77

[1242] Thomas Frauenheim, Theoretical Chemistry Genealogy Project

[1243] Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Construction of tight-binding-like potentials on the basis of the density-functional theory: Application to carbon. PhysRev B 51:12947

[1244] Seifert G, Porezag D, Frauenheim T (1996) Calculations of Molecules, Clusters, and Solidswith a Simplified LCAO-DFT-LDA Scheme. Int J Quantum Chem 58:185

[1245] Seifert G, Fowler PW, Mitchell D, Porezag D, Frauenheim T (1997) Boron-nitrogen ana-logues of the fullerenes: electronic and structural properties. Chem Phys Lett 268:352

[1246] Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G(1998) Self-consistent-charge density-functional tight-binding method for simulations of complexmaterials properties. Phys Rev B 58:7260

[1247] Frauenheim T, Seifert G, Elstner M, Hajnal Z, Jungnickel G, Haugk M, Porezag D, SuhaiS, Scholz R (2000) A Self-Consistent Charge Density-Functional Based Tight-Binding Methodfor Predictive Materials Simulations in Physics. Chemistry and Biology, phys stat sol (b) 217:41

[1248] Seifert G, Terrones H, Terrones M, Jungnickel G (2000) Structure and Electronic Propertiesof MoS2 Nanotubes. Phys Rev Lett 85:146

[1249] Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M,Hajnal Z, Di Carlo A, Suhai S (2002) Atomistic simulations of complex materials: ground-stateand excited-state properties. J Phys Condens Matter 14:3015

[1250] Patchkovskii S, Tse JS, Yurchenko SN, Zhechkov L, Heine T, Seifert G (2005) Graphenenanostructures as tunable storage media for molecular hydrogen. Proc Nat Acad Sci 102:10439

[1251] Vlasta Bonacic-Koutecký, Theoretical Chemistry Genealogy Project

[1252] Bonacic V, Koutecký J (1972) Some Consequences of the Nonlinearity of the Hartree-FockApproach, Demonstrated on the Example of the PPP Model for Closed Shell Alternant Hydrocar-bons. J Chem Phys 56:4563

[1253] Bonacic-Koutecký V, Koutecký J (1975) General Properties of the Hartree-Fock ProblemDemonstrated on the Frontier Orbital Model. Theor Chim Acta 36:149

[1254] Bonacic-Koutecký V, Bruckmann P, Hiberty P, Koutecký J, Leforestier C, Salem L (1975)Sudden Polarization in the Zwitterionic Z1 Excited States of Organic Intermediates. PhotochemicalImplication. Angew Chem Int Ed Engl 14:575

[1255] Bonacic-Koutecký V, Michl J (1985) Charge-Tranfer-Biradical Excited States: Relation toAnomalous Fluorescence. „Negative“ S1-T1 Splitting in Twisted Aminoborane. J Am Chem Soc107:1765

Page 51: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 273

[1256] Bonacic-Koutecký V, Koutecký J, Michl J (1987) Neutral and Charged Biradicals, Zwitte-rions, Funnels in S1, and Proton Translocation: Their Role in Photochemistry, Photophysics andVision. Angew Chem Int Ed Engl 26:170

[1257] Michl J, Bonacic-Koutecký V (1991) Electronic Aspects of Organic Photochemistry. JohnWiley &amp; Sons, New York

[1258] Bonacic-Koutecký V, Fantucci P, Koutecký J (1988) Systematic ab initio configuration-interaction study of alkali-metal clusters. II. Relation between electronic structure and geometryof small sodium clusters. Phys Rev B 37:4369

[1259] Bonacic-Koutecký V, Fantucci P, Koutecký J (1991) Quantum Chemistry of Small Clustersof Elements of Groups Ia, Ib, and IIa: Fundamental Concepts, Predictions, and Interpretation ofExperiments. Chem Rev 91:1035

[1260] Bonacic-Koutecký V, Cešpiva L, Fantucci P, Koutecký J (1993) Effective core potential-configuration interaction study of electronic structure and geometry of small neutral and cationicAgn clusters: Predictions and interpreation of measured properties. J Chem Phys 98:7981

[1261] Bonacic-Koutecký V, Fantucci P (1999) An accurate relativistic effective core potential forexcited states of Ag atom: An application for studying the absorption spectra of Agn and Agn+

clusters. J Chem Phys 110:3876

[1262] Peter Botschwina, Theoretical Chemistry Genealogy Project

[1263] Botschwina P, Meyer W, Hertel IV, Reiland W (1981) Collisions of excited Na atoms withH2 molecules. I. Ab initio potential energy surfaces and qualitative discussion of the quenchingprocess. J Chem Phys 75:5438

[1264] Botschwina P (1982) Vibrational Frequencies from Anharmonic Ab Initio/Empirical Po-tential Energy Functions. III. Stretching Vibrations of Hydrogen Cyanide and Acetylenes. ChemPhys 68:41

[1265] Botschwina P (1983) Infrared Intensities of Polyatomic Molecules Calculated from SCEPDipole-Moment Functions and Anharmonic Vibrational Wavefunctions. I. Stretching Vibrationsof the Linear Molecules HCN, HCP and C2N2. Chem Phys 81:73

[1266] Meyer W, Botschwina P, Burton P (1986) Ab initio calculation of near-equilibrium potentialand multipole moment surfaces and vibrational frequencies of H3

+ and its isotopomers. J ChemPhys 84:891

[1267] Botschwina P (1988) Anharmonic Potential-energy Surfaces, Vibrational Frequencies andInfrared Intensities calculated from Highly Correlated Wavefunctions. J Chem Soc Faraday Trans2 84:1263

[1268] Botschwina P, Flügge J (1991) Ab initio-rotation coupling constants and the equlibriumgeometries of NCCN and CNCN. Chem Phys Lett 180:589

[1269] Botschwina P, Oswald M, Flügge J, Heil Ä, Oswald R (1993) Ab initio spectroscopicconstants and the equilibrium geometry of HCCF. Chem Phys Lett 209:117

[1270] Höper U, Botschwina P, Köppel H (2000) Theoretical Study of the Jahn-Teller effect inX2E CH3O. J Chem Phys 112:4132

[1271] Botschwina P (2003) Spectroscopic properties of interstellar molecules: Theory and expe-riment. Phys Chem Chem Phys 5:3337

[1272] Klaus Hermann, Theoretical Chemistry Genealogy Project

[1273] Lothar Fritsche, Theoretical Chemistry Genealogy Project

[1274] Hermann K, Bagus PS (1977) Binding energy and energy-level shifts of carbon monoxideadsorbed on nickel: Model studies. Phys Rev B 16:4195

[1275] Hermann K, Bagus PS, Brundle CR, Menzel D (1981) Adsorption of molecular nitrogenon nickel. I. Cluster-model theoretical studies. Phys Rev B 24:7025

Page 52: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

274 Literatur

[1276] Bagus PS, Hermann K, Bauschlicher CW (1984) A new analysis of charge transfer andpolarization for ligand-metal bonding: Model studies of Al4CO and Al4NH3. J Chem Phys 80:4378

[1277] Bagus PS, Hermann K, Bauschlicher CW (1984) On the nature of bonding of lone pairligands to a transition metal. J Chem Phys 81:1966

[1278] Hermann K, Bagus PS, Nelin CJ (1987) Size dependence of surface cluster models: COadsorbed on Cu(100). Phys Rev B 35:9467

[1279] Witko M, Hermann K, Tokarz R (1994) Ab-Initio and Semiempirical Cluster Studies onthe Reactivity of the Vanadium Pentoxide (010)-Surface. J Electron Spectry Rel Phenomena 69:89

[1280] Michalak A, Hermann K, Witko M (1996) Reactive oxygen sites at MoO3 surfaces: abinitio cluster model studies. Surf Sci 366:323

[1281] Chakrabarti A, Hermann K, Druzinic R, Witko M,Wagner F, Petersen M (1999) Geometricand electronic structure of vanadium pentoxide: A density functional bulk and surface study. PhysRev B 59:10583

[1282] Tokarz-Sobieraj R, Hermann K, Witko M, Blume A, Mestl G, Schlögl R (2001) Propertiesof oxygen sites at the MoO3(010) surface: density functional theory cluster studies and photoe-mission experiments. Surf Sci 489:107

[1283] Joachim Sauer, Theoretical Chemistry Genealogy Project

[1284] Gey E, Jung C, Sauer J (1974) Restricted Hartree-Fock-Berechnungen von Open-Shell-Systemen mittels halbempirischer MO-LCAO-Verfahren, Collection Czechoslov. Chem Commun39:1235

[1285] Sauer J, Hobza P, Zahradník R (1980) Quantum Chemical Investigation of the InteractionSites in Zeolites and Silica. J Phys Chem 84:3318

[1286] Sauer J, Zahradník R (1984) Quantum Chemical Studies on Zeolites and Silica. Int J Quan-tum Chem 26:793

[1287] Sauer J (1989) Molecular Models in ab Initio Studies of Solids and Surfaces: From IonicCrystals and Semiconductors to Catalysis. Chem Rev 89:199

[1288] Hill J-R, Sauer J (1994) Molecular and Mechanics Potential for Silica and Zeolite CatalystsBased on ab Initio Calculations. 1. Dense and Microporous Silica. J Phys Chem 98:1238

[1289] Sauer J, Ugliengo P, Garrone E, Saunders VR (1994) Theoretical Study of van der WaalsComplexes at Surface Sites in Comparison with the Experiment. Chem Rev 94:2095

[1290] Haase F, Sauer J (1995) Interaction of Methanol with Brønsted Acid Sites of Zeolite Cata-lysts: An ab Initio Study. J Am Chem Soc 117:3780

[1291] Brändle M, Sauer J (1998) Acidity Differences between Inorganic Solids Induced by TheirFramework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study ofZeolites. J Am Chem Soc 120:1556

[1292] Sauer J, Sierka M (2000) Combining Quantum Mechanics and Interatomic Potential Func-tions in Ab Initio Studies of Extended Systems. J Comput Chem 21:1470

[1293] Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metaland rare earth oxides: Current state of understanding and remaining challenges. Surf Sci 62:219

[1294] Michael Schreiber, Theoretical Chemistry Genealogy Project

[1295] Schreiber M, Toyozawa Y (1982) Numerical Experiments on the Absorption Lineshape ofthe Exciton under Lattice Vibrations. I. The Overall Lineshape. J Phys Soc Japan 51:1528

[1296] Schreiber M (1985) Fractal character of eigenstates in weakly disordered three-dimensionalsystems. Phys Rev B 31:6146

[1297] Bulka B, Schreiber M, Kramer B (1987) Localization, Quantum Interference, and the Me-tal-Insulator Transition. Z Phys B 66:21

[1298] Schreiber M, Grussbach H (1991) Multifractal Wave Functions at the Anderson Transition.Phys Rev Lett 67:607

Page 53: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 275

[1299] Abe S, Schreiber M, Su WP, Yu J (1992) Excitons and nonlinear optical spectra in conju-gated polymers. Phys Rev B 45:9432

[1300] Hofstetter E, Schreiber M (1993) Statistical properties of the eigenvalue spectrum of thethree-dimensional Anderson Hamiltonian. Phys Rev B 48:16979

[1301] Kühn O, May V, Schreiber M (1994) Dissipative vibrational dynamics in a curve-crossingsystem. J Chem Phys 101:10404

[1302] Cain P, Römer RA, Schreiber M, Raikh ME (2001) Integer quantum Hall transition in thepresence of a long-range-correlated quenched disorder. Phys Rev B 64:235326

[1303] Welack S, Schreiber M, Kleinekathöfer U (2006) The influence of ultrafast laser pulses onelectron transfer in molecular wires studied by non-Markovian density-matrix approach. J ChemPhys 124:044712

Kapitel 7[1304] Christel M. Marian, Theoretical Chemistry Genealogy Project

[1305] Bernd Engels, Theoretical Chemistry Genealogy Project

[1306] Stefan Grimme, Theoretical Chemistry Genealogy Project

[1307] Marian CM (2005) A new pathway for the rapid decay of electronically excited adenine. JChem Phys 122:104314

[1308] Marian CM (2007) The guanine tautomer puzzle: Quantum chemical investigation ofground and excited states. J Phys Chem A 111:1545

[1309] DNA, Wikipedia, Die freie Enzyklopädie 2012

[1310] Hanrath M, Engels B (1997) New algorithms for an individually selecting MR-CI program.Chem Phys 225:197

[1311] Kocher N, Henn J, Gostevkii B, Kost D, Kalikhman I, Engels B, Stalke D (2004) Si-E (E= N, O, F) Bonding in a Hexacoordinated Silicon Complex: New Facts From Experimental andTheoretical Charge Density Studies. J Am Chem Soc 126:5563

[1312] Grimme S (2003) Improved second-order Møller-Plesset perturbation theory by separatescaling of parallel- and antiparallel-spin pair correlation energies. J Chem Phys 118:9095

[1313] Grimme S (2004) Accurate description of van der Waals complexes by density functionaltheory including empirical corrections. J Comput Chem 25:1463

[1314] Grimme S (2006) Semiempirical GGA-type density functional constructed with long-rangedispersion correction. J Comput Chem 27:1787

[1315] Grimme S (2006) Semiempirical hybrid density functional with perturbative second-ordercorrelation. J Chem Phys 124:034108

[1316] Schwabe T, Grimme S (2007) Double-hybrid density functional with long-range dispersioncorrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397

[1317] Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio pa-rametrization of density functional dispersion correction (DFT-D) for 94 elements H-Pu. J ChemPhys 132:154104

[1318] Barabara Kirchner, Theoretical Chemistry Genealogy Project

[1319] Kirchner B (2009) Ionic Liquids from Theoretical Investigations. Topics in Current Che-mistry 290:213

[1320] Willem Klopper, Theoretical Chemistry Genealogy Project

[1321] Hans Peter Lüthi, Theoretical Chemistry Genealogy Project

[1322] Klopper W (1997) Simple Recipe for Implementing Computation of First-Order Relativi-stic Corrections to Electronic Correlation Energies in Framework of Direct Perturbation Theory. JComput Chem 18:20

Page 54: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

276 Literatur

[1323] Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calcu-lations on water. J Chem Phys 106:9639

[1324] Klopper W, van Duijneveldt-van de Rijdt JGCM, van Duijneveldt FB (2000) Computationaldetermination of equilibrium geometry and dissociation energy of the water dimer. Phys ChemChem Phys 2:2227

[1325] Klopper W, Manby FR, Ten No S, Valeev EF (2006) R12 methods in explicitly correlatedmolecular electronic structure theory. Int Rev Phys Chem 25:427

[1326] Christoph van Wüllen, Theoretical Chemistry Genealogy Project

[1327] van Wüllen C (1998) Molecular density functional calculations in the regular relativisticapproximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides,and comparison with first-order relativistic calculations. J Chem Phys 109:392

[1328] van Wüllen C (2004) Relation between different variants of the generalized Douglas-Krolltransformation through six order. J Chem Phys 120:7307

[1329] Reinhold Fink, Theoretical Chemistry Genealogy Project

[1330] Fink RF, Seibt J, Engel V, Renz M, Kaupp M, Lochbrunner S, Zhao H-M, Pfister J, Würth-ner F, Engels B (2008) Exciton Trapping in  -Conjugted Materials: A Quantum-Chemistry-BasedProtocol Applied to Perylene Bisimide Dye Aggregates. J Am Chem Soc 130:12858

[1331] Jürgen Gauß, Theoretical Chemistry Genealogy Project

[1332] Gauss J (1992) Calculation of NMR chemical shifts at second-order many-body perturba-tion theory using gauge including atomic orbitals. Chem Phys Lett 191:614

[1333] Gauss J (1993) Effects of electron correlation in the calculation of nuclear magnetic reso-nance chemical shifts. J Chem Phys 99:3629

[1334] (1996) Perturbative treatment of triple excitations in coupled-cluster calculations of nuclearmagnetic shielding constants. J Chem Phys 104:2574

[1335] Gauss J, Stanton JF, Gauss J (2000) Analytic second derivatives in high-order many-bodyperturbation and coupled-cluster theories: computational considerations and applications. Int RevPhys Chem 19:61

[1336] Bak KL, Gauss J, Jørgensen P, Olsen J, Helgaker T, Stanton JF (2001) The accurate deter-mination of molecular equilibrium structures. J Chem Phys 114:6548

[1337] Boese AD, Oren M, Atasoylu O, Martin JML, Kállay M, Gauss J (2004) W3 theory: Robustcomputational thermochemistry in the kJ/mol accuracy range. J Chem Phys 120:4129

[1338] Christian Ochsenfeld, Theoretical Chemistry Genealogy Project

[1339] Ochsenfeld C, White CA, Head-Gordon M (1998) Linear and sublinear scaling formationof Hartree-Fock-type exchange matrices. J Chem Phys 109:1663

[1340] Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C et al (2006) Advances in methodsand algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 8:3172

[1341] Jochen Schirmer, Theoretical Chemistry Genealogy Project

[1342] Horst Köppel, Theoretical Chemistry Genealogy Project

[1343] Schirmer J (1982) Beyond the Random-Phase Approximation – A New ApproximationScheme for the Polarization Propagator. Phys Rev A 26:2395

[1344] Schirmer J, Trofimov AB, Randall KJ, Feldhau J, Bradshaw AM, Ma Y, Chen CT, SetteF (1993) K-shell excitation of the water, ammonia, and methane molecules using high-resolutionphotoabsorption spectroscopy. Phys Rev A 47:1136

[1345] Trofimov AB, Schirmer J, Kobychev VB, Potts AW, Holland DMP, Karlsson L (2006)Photoelectron spectra of the nucleobases cytosine, thymine and adenenine. J Phys B 39:305

[1346] Kempgens B, Köppel H, Kivimäki A, Neeb M, Cederbaum LS, Bradshaw AM (1997) CoreLevel Energy Splitting in the C 1s Photoelectron Spectrum of C2H2. Phys Rev Lett 79:3617

Page 55: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 277

[1347] Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) Theoretical investigations on chalco-gen-chalcogen interactions: What makes these nonbonded interactions bonding? J Am Chem Soc128:2666

[1348] Köppel H, Yarkony DR, Barentzen H (Hrsg) (2009) The Jahn-Teller Effect: Fundamentalsand Implications for Physics and Chemistry. Springer, Berlin – Heidelberg

[1349] Peter Schmelcher, Theoretical Chemistry Genealogy Project

[1350] Schmelcher P, Diakonos FK (1997) Detecting unstable periodic orbits of chaotic dynamicalsystems. Phys Rev Lett 78:4733

[1351] Theocharis G, Schmelcher P, Kevrekides PG, Frantzeskakis DJ (2005) Matter-wave soli-tons of collisionally inhomogeneous condensates. Phys Rev A 72:033614

[1352] Uwe Manthe, Theoretical Chemistry Genealogy Project

[1353] Huarte-Larranaga F, Manthe U (2000) Full dimensional quantum calculations of the CH4

+ H ! CH3 + H2 reaction rate. J Chem Phys 113:5115

[1354] Wu T, Werner HJ, Manthe U (2004) First-principles theory for the H + CH4 ! H2 + CH3

reaction. Science 306:5705

[1355] Gerhard Stock, Theoretical Chemistry Genealogy Project

[1356] Domcke W, Stock G (1997) Theory of Ultrafast Nonadiabatic Excited-State Processes andTheir Spectroscopic Detection in Real Time. Adv Chem Phys 100:1

[1357] Mu YG, Kosov DS, Stock G (2003) Conformational dynamics of trialanine in water. 2.Comparison of AMBER, CHARMM, GROMOS, and OPLS forcefield to NMR and infrared ex-periments. J Phys Chem B 107:5064

[1358] Andreas Savin, Theoretical Chemistry Genealogy Project

[1359] Savin A, Becke AD, Flad J, Nesper R, Preuß H, von Schnering HG (1991) A New Look atElectron Delocalization. Angew Chem Int Ed Engl 30:409

[1360] Savin A, Silvi B, Colonna F (1996) Topological analysis of the electron delocalizationfunction applied to delocalized bonds. Canad J Chem 74:1088

[1361] Peter Schwerdtfeger, Theoretical Chemistry Genealogy Project

[1362] Schwerdtfeger P, Boyd PDW, Burrell AK, Robinson WT, Taylor MJ (2003) RelativisticEffects in Gold. 3. Gold(I) Compexes. Inorg Chem 29:3593

[1363] Schwerdtfeger P (2003) Gold goes nano – From small clusters to low-dimensional assem-blies. Angew Chem Int Ed Engl 42:1892

[1364] Michael Dolg, Theoretical Chemistry Genealogy Project

[1365] Peter Fulde, Theoretical Chemistry Genealogy Project

[1366] Metz B, Stoll H, Dolg M (2000) Small-core multiconfiguration-Dirac-Hartree-Fock-ad-justed pseudopotentials for post-d group elements: Application to PbH and PbO. J Chem Phys113:2563

[1367] Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basissets for the post-d group 16–18 elements. J Chem Phys 119:11113

[1368] Martin Kaupp, Theoretical Chemistry Genealogy Project

[1369] Dennis Russell Salahub, ACS Directory of Graduate Research 2001

[1370] Munzarova M, Kaupp M (1999) A critical validation of density functional and coupled-cluster approaches for the calculation of EPR hyperfine coupling constants in transition metalcomplexes. J Phys Chem A 103:9966

[1371] Remenyi C, Kaupp M (2005) Where is the spin? Understanding electronic structure and g-tensors for ruthenium complexes with redox-active quinoid ligands. J Am Chem Soc 127:11399

[1372] Bernd Hartke, Theoretical Chemistry Genealogy Project

Page 56: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

278 Literatur

[1373] Hartke B (1993) Global Geometry Optimization of Clusters Using Genetic Algorithms. JPhys Chem 97:9973

[1374] Hartke B (1999) Global cluster geometry optimization by a phenotypealgorithm with ni-ches: Localization of elusive minima, and low-order scaling with cluster size. J Comput Chem20:1752

[1375] Martin Schütz, Theoretical Chemistry Genealogy Project

[1376] Schütz M, Hetzer G, Werner HJ (1999) Low-order scaling local electron correlation me-thods. I. Linear scaling local MP2. J Chem Phys 111:5691

[1377] Schütz M, Werner HJ, Lindh R, Manby FR (2004) Analytical energy gradients for local se-cond-order Møller-Plesset perturbation theory using density fitting approximations. J Chem Phys121:737

[1378] U. Röthlisberger, Theoretical Chemistry Genealogy Project

[1379] Röthlisberger U, Andreoni W, Parrinello M (1994) Structure of Nanoscale Silicon Clusters.Phys Rev Lett 72:665

[1380] Carloni P, Röthlisberger U, Parrinello M (2002) The role and perspective of ab initio mo-lecular dynamics in the study of biological systems. Acc Chem Res 35:455

[1381] Dominik Marx, Theoretical Chemistry Genealogy Project

[1382] Marx D, Parrinello M (1996) Ab initio path integral molecular dynamics: Basic ideas. JChem Phys 104:4077

[1383] Meyer B, Marx D (2003) Density-functional study of the structure and stability of ZnOsurfaces. Phys Rev B 67:035403

[1384] Jürgen Hutter, Theoretical Chemistry Genealogy Project

[1385] Sprik M, Hutter J, Parrinello M (1996) Ab initio molecular dynamics simulation of liquidwater: Comparison of three gradient-corrected functionals. J Chem Phys 105:1142

[1386] Vande Vondele J, Hutter J (2007) Gaussian basis sets for accurate calculations on moleclarsystems in gas and condensed phases. J Chem Phys 127:114105

[1387] Daniel Sebastiani, Theoretical Chemistry Genealogy Project

[1388] Sebastiani D, Parrinello M (2001) A new ab-initio approach for NMR chemical shifts inperiodic systems. J Phys Chem A 105:1951

[1389] Hans Wolfgang Spiess, Theoretical Chemistry Genealogy Project

[1390] Peter Saalfrank, Theoretical Chemistry Genealogy Project

[1391] Saalfrank P, Kosloff R (1996) Quantum dynamics of bond breaking in a dissipative envi-ronment: Indirect and direct photodesorption of neutrals from metals. J Phys Chem 105:2442

[1392] Nest M, Klamroth T, Saalfrank P (2005) The multiconfiguration time-dependent Hartree-Fock method for quantum chemical calculations. J Chem Phys 122:124102

[1393] Regina de Vivie-Riedle, Theoretical Chemistry Genealogy Project

[1394] Sundermann K, de Vivie-Riedle R (1999) Extensions to quantum optimal control algo-rithms and applications to special problems in state selective molecular dynamics. J Chem Phys110:1896

[1395] Quantencomputer, Wikipedia, Die freie Enzyklopädie 2013

[1396] Tesch CM, de Vivie-Riedle R (2002) Quantum computation with vibrationally excied mo-lecules. Phys Rev Lett 89:157901

[1397] Leticia González, Theoretical Chemistry Genealogy Project

[1398] Timothy Clark, Theoretical Chemistry Genealogy Project

[1399] Clark T (1983) Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations.III. The 3–21+GBasis Set for First-Row Elements, Li-F. J Comput Chem 4:294

[1400] Clark T (1985) A Handbook of Computational Chemistry. Wiley, Chicester

Page 57: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 279

[1401] Clark T (1988) Odd-Electron ¢-Bonds. J Am Chem Soc 110:1672

[1402] Hartmann M, Clark T, van Eldik R (1997) Hydration and water exchange of zinc(II) ions.Application of density functional theory. J Am Chem Soc 119:7843

[1403] Erras-Hanauer H, Clark T, van Eldik R (2003) Molecular Orbital and DFT studies on waterexchange mechanisms of metal ions. Coord Chem Rev 238:233

[1404] Michael Bühl, Theoretical Chemistry Genealogy Project

[1405] Bühl M, Hirsch G (2001) Spherical aromaticity of fullerenes. Chem Rev 101:1153

[1406] Bühl M, Kabrede H (2006) Geometries of transition-metal complexes from density-func-tional theory. J Chem Theor Comput 2:1282

[1407] Florian Müller-Plathe, Theoretical Chemistry Genealogy Project

[1408] Müller-Plathe F (2002) Coarse-graining in polymer simulation: From the atomistic to themesoscopic scale and back. ChemPhysChem 3:754

[1409] Milano G, Müller-Plathe F (2005) Mapping atomistic simulations to mesoscopic models:A systematic coarse-graining procedure for vinyl polymer chains. J Phys Chem B 109:18609

[1410] Peter Blöchl, Theoretical Chemistry Genealogy Project

[1411] Blöchl P (1994) Projector-Augmented-Wave Method. Phys Rev B 50:17953

[1412] Blöchl P (2000) First-principles calculations of defects in oxygen-deficient silica exposedto hydrogen. Phys Rev B 62:6158

[1413] Peter Blaha, Theoretical Chemistry Genealogy Project

[1414] Blaha P, Schwarz K, Herzig P (1985) First-Principles Calculation of the Electric FieldGradient of Li3N. Phys Rev Lett 54:1192

[1415] Andreas Görling Theoretical Chemistry Genealogy Project

[1416] Seidl A, Görling A, Vogt P, Majewski JA, Levy M (1996) Generalized Kohn-Sham schemesand the band-gap problem. Phys Rev B 53:3764

[1417] Görling A (2005) Orbital- and state-dependent functionals in density-functional theory. JChem Phys 123:062203

[1418] Andreas Köster, Theoretical Chemistry Genealogy Project

[1419] Krack M, Köster AM (1998) An adaptive numerical integrator for molecular integrals. JChem Phys 116:4497

[1420] Köster AM, Flores-Moreno R, Reveles JU (2004) Efficient and reliable numerical integra-tion of exchange-correlation energies and potentials. J Chem Phys 121:681

[1421] Thomas Bredow, Theoretical Chemistry Genealogy Project

[1422] Bredow T, Gerson AR (2000) Effect of exchange and correlation on bulk properties ofMgO, NiO, and CoO. Phys Rev B 61:5194

[1423] Bredow T, Gerson AR (2000) Effect of exchange and correlation on bulk properties ofMgO, NiO, and CoO. Phys Rev B 61:5194

[1424] Rohlfing M, Bredow T (2008) Binding Energy of Adsorbates on a Noble-Metal Surface:Exchange and Correlation Effects. Phys Rev Lett 101:266106

[1425] Frank Neese, Theoretical Chemistry Genealogy Project

[1426] Neese F (2001) Prediction of electron paramagnetic resonance g values using coupledperturbed Hartree-Fock and Kohn-Sham theory. J Chem Phys 115:11080

[1427] Neese F (2006) A critical evaluation of DFT, including time-dependent DFT, applied tobioinorganic chemistry. J Biol Inorg Chem 11:702

[1428] Marcus Elstner, Theoretical Chemistry Genealogy Project

Page 58: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

280 Literatur

[1429] Elstner M, Frauenheim T, Suhai S (2003) An approximate DFT method for QM/MM si-mulations of biological structures and processes. J Mol Struct Theochem 632:29

[1430] Elstner M (2006) The SCC-DFTB method and its application to biological systems. TheorChem Acc 116:316

[1431] Markus Reiher, Theoretical Chemistry Genealogy Project

[1432] Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. I. General Theory. JChem Phys 121:2037

[1433] Reiher M, Liegeois V, Ruud K (2005) Basis set and density functional dependence ofvibrational Raman optical activity calculations. J Phys Chem A 109:7567

[1434] Wolfram Koch, Theoretical Chemistry Genealogy Project

[1435] Koch W, Frenking G, Gauss J, Cremer D, Collins JR (1987) Helium Chemistry: TheoreticalPredictions and Experimental Challenge. J Am Chem Soc 109:5917

[1436] Holthausen M, Mohr M, Koch W (1995) The performance of density functional/Hartree-Fock hybrid methods: the bonding in cationic first-row transion metal methylene complexes. ChemPhys Lett 240:245

[1437] Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional.What is Becke-3-LYP? Chem Phys Lett 268:345

[1438] Max C. Holthausen, Theoretical Chemistry Genealogy Project

[1439] Koch W, Holthausen MC (2000) A Chemist’s Guide to Density Functional Theory. Wiley-VCH, Weinheim (2. Auflage 2001)

Kapitel 8[1440] Lim TK, Whitehead MA (1967) Modus Computandi Eigenvectores et Eigenaestimastionese Matrice Densitatis. Theor Chim Acta 7:1

[1441] Suard M, Berthier G, Del Re G (1967) Nova Methodus Adhibendi Approximationem Mo-lecularium Orbitalium ad Plures Iuxtapositas Unitates. Theor Chim Acta 7:236

[1442] Dieter Schuch, Theoretical Chemistry Genealogy Project

Kapitel 9[1443] Herbert Staude, Theoretical Chemistry Genealogy Project

[1444] Zeidler M (2008) Überblick über die geschichtliche Entwicklung der Physikalischen Che-mie in Deutschland. Bunsen-Magazin 10:83

[1445] Parr RG (1964) Quantum Theory of Molecular Electronic Structure. W. A. Benjamin, NewYork

[1446] Roothaan CCJ (1951) New Developments in Molecular Orbital Theory. Rev Mod Phys23:69

Kapitel 10[1447] Vortragsprogramm, 1. Symposium für Theoretische Chemie, Frankfurt 1965

[1448] Teilnehmerliste, 1. Symposium für Theoretische Chemie, Frankfurt 1965

[1449] Vortragsprogramm, 2. Symposium für Theoretische Chemie, Zürich 1966

[1450] Teilnehmerliste, 2. Symposium für Theoretische Chemie, Zürich 1966

[1451] Teilnehmerliste, 3. Symposium für Theoretische Chemie, Wien 1967

[1452] Vorläufiges Vortragsprogramm, 3. Symposium für Theoretische Chemie, Wien 1967

[1453] Revidiertes Vortragsprogramm, 3. Symposium für Theoretische Chemie, Wien 1967

[1454] Vortragsprogramm, 8. Symposium für Theoretische Chemie, Genf 1972

[1455] Teilnehmerliste, 8. Symposium für Theoretische Chemie, Genf 1972

Page 59: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Literatur 281

[1456] Teilnehmerliste, 17. Symposium für Theoretische Chemie, Bonn 1981

[1457] Dunken H (2005) In: Hallpap P (Hrsg) Geschichte der Chemie in Jena im 20. Jh.. Materia-lien, Bd. II., S 58

[1458] Helga Dunken, Theoretical Chemical Genealogy Project

[1459] Müller H, Dunken H (1967) Arbeitstagung über Probleme der Quantenchemie vom 26.9.–1.10.1966 in Mönchenfrei (Brand-Erbisdorf). Z Chem 7:38

[1460] Weiss C (1967) Arbeitstagung über Probleme der Quantenchemie. Z Chem 10:160

[1461] Dietz F, Leonhardt G (1971) Arbeitstagung über Probleme der Quantenchemie vom 23.–26.2.1971 in Kühlungsborn. Z Chem 11:190

Kapitel 11[1462] Ahlrichs R, Hohlneicher G, Kutzelnigg W, Meyer W, Peyerimhoff S (1988) Memorandumzur Rechnersituation in der Theoretischen Chemie

[1463] G. Hohlneicher, Rundschreiben an Kollegen aus der Theoretischen Chemie, 12.10.1988

[1464] G. Hohlneicher, Rundschreiben zur Organisationsstruktur der Theoretischen Chemie anKollegen, 23.10.1990

[1465] W. Fritsche, Schreiben an Prof. H. Preuß, 21.03.1990

[1466] H. Preuß, Schreiben an Dr. W. Fritsche, 19.04.1990

[1467] H. Preuß, Protokollauszug über die Sitzung der Studienkommission Chemie, UniversitätStuttgart, 15.11.1989

[1468] H. Preuß, Schreiben an Dr. W. Fritsche, 17.05.1990

[1469] H. Preuß, Schreiben an Dr. W. Fritsche, 05.06.1990

[1470] K. Jug, Schreiben an Dr. W. Fritsche, 18.06.1990

[1471] U. Hofacker, Schreiben an Prof. K. Jug, 24.07.1990

[1472] G. Hohlneicher, Info Theoretische Chemie, Januar 1992

Kapitel 12[1473] G. Hohlneicher, Info Theoretische Chemie, 15.04.1992, S. 11, H. Dreeskamp, ibid., S. 12

[1474] Herbert Dreeskamp, Theoretical Chemistry Genealogy Project

[1475] W. Kutzelnigg, Info Theoretische Chemie, 07.04.1993, S. 5

Page 60: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Sachverzeichnis

Aab initio-Methoden, 45, 48, 51, 104, 105, 125,

130, 132, 141, 142, 154, 166, 168ab initio-Theorie, 137Absorptionsspektren, 34, 52, 55, 57, 61, 188adaptives Gitter, 174adiabatische Potentialflächen, 149adiabatische und diabatische Zustände, 28Adsorbatschicht, 117Adsorption, 22, 55, 67, 79, 86–88, 117, 127,

152, 160–162AllChem, 174AM1, 140amorphe Halbleiter, 146analytische Ableitungen, 93Antiaromatizität, 115APW-Methode, 106Aromatizität, 23, 50, 66, 67, 81, 87, 115, 116,

122, 172, 173Atomladungen, 52, 65Atommodell, 15Atomorbitale, 40, 66, 76, 119, 136, 183Auger-Spektren, 167Augmented-Plane-Wave(APW)-Methode, 105Austausch-Korrelations-Energie, 174

BB3LYP, 144, 176Bandlücke, 67, 146Basissatzabhängigkeit, 105Benzol, 23, 24, 31, 46, 50, 61, 81, 82, 101,

102, 109, 126, 136, 148Bessel-Funktion, 62, 63, 130Bildungsenthalpie, 68, 93, 121, 138–140Bindungsalternierung, 115Bindungsbildung, 66, 95, 153Bindungsbrechung, 66, 153

Bindungsenergie, 26–28, 66, 77, 103, 121,127, 130, 137, 152

Bindungskräfte, 61Bindungslänge, 52, 102, 115, 121, 138, 141,

149, 150Bindungsorbitale, 46Bindungsordnung, 39, 52, 66, 173Bindungsparameter, 120Bindungsvalenz, 66Bindungsverhältnisse, 32, 57, 59, 130Bindungswinkel, 96, 138, 150Biosphärenmodell, 72Bohr‘sches Atommodell, 16Born-Oppenheimer-Molekulardynamik, 146,

153Born-Oppenheimer-Näherung, 18Born-Oppenheimer-Potentialflächen, 48, 67,

146Breit-Pauli-Operatoren, 100Brillouin-Theorem, 60Brillouin-Wigner-Störungsrechnung, 76Brillouin-Wigner-Störungstheorie, 139Brown‘sche Dynamik, 150

CCarboniumionen, 93, 120Car-Parrinello-Molekulardynamik, 146CASPT2, 143CASPT3, 143CCSD(T), 83, 167, 168CD-Spektren, 109CEPA, 76, 83, 94, 104, 160CEPA-PNO-Methode, 80CEPA-PNO-Programm, 76, 78, 79chemische Bindung, 24, 26, 27, 32, 33, 42, 60,

82, 123, 155chemische Kräfte, 26

283

Page 61: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

284 Sachverzeichnis

chemische Verschiebung, 78, 81, 82, 115, 122,171

Chemisorption, 117, 130, 161Chiralität, 38, 91, 103, 109Chiralitätsfunktion, 38, 39, 92, 103Chiralitätstheorie, 92CI, 68, 76, 141Circulardichroismus, 109, 112CI-Entwicklung, 97CI-Koeffizient, 95CI-Methode, 144CI-Rechnung, 90, 96, 100CI-SD, 83Clar’sche Sextett-Methode, 52Cluster, 42, 111, 139, 152, 157–159, 161, 170,

172, 194, 198Clustermodell, 130, 161CNDO, 103, 120CNDO/2, 127CNDO/2-Methode, 74, 103, 126, 154CNDO/S-CI-Methode, 86, 87CNDO/S-Methode, 75, 85, 86CNDO-Approximation, 104CNDO-Methode, 45, 65, 75, 86, 103, 127, 131COLUMBUS, 105Cope-Umlagerung, 112, 113Coulomb-Integral, 49, 52, 62, 132, 136Coupled-Cluster-Methode, 83, 143, 167Cyclobutadien, 23, 79, 96

DDebye-Hückel-Theorie, 22Deformationsdichte, 70Delokalisierung, 66, 98deMon, 174diabatische Potentiale, 100, 149diabatische Prozesse, 33Dichtefunktionaltheorie, 41, 70, 77, 78, 113,

141, 145–147, 152, 157, 167, 170–175Dichtematrix, 39, 78, 183Dichteverteilung, 70diffuse Orbitale, 121Dipol, 140Dipolmoment, 65, 66, 74, 90, 93, 100, 123,

129, 139, 140, 154, 157, 158Dipolmomentfunktionen, 71, 94dipol-erlaubte Übergänge, 98Dirac-Gleichung, 26, 69, 83Dirac-Operator, 82Dirac-Störungstheorie, 91Dispersionsenergie, 166DNA, 88, 89, 115, 127, 152, 166Doppelbindungsfixierung, 115, 116

DOS, 89, 164Douglas-Kroll-Transformation, 144, 152, 167Dyson-Gleichung, 148

EEHT-Methode, 125EHT-Rechnungen, 125Einzentrenmethode, 63, 72, 179Einzentrenmodell, 57Einzentrenproblem, 56, 68Elektronegativität, 52, 75, 102, 119, 120Elektronengasmodell, 46, 47, 73, 130, 136,

145, 183Elektronenkorrelation, 73, 76, 79, 81, 83, 143,

168Elektronenkorrelationsmethode, 170Elektronenspinresonanz, 111Elektronenstruktur, 49, 64, 74, 85, 88, 89, 106,

113–115, 123, 125, 129, 131, 132, 146,161, 163, 194

Elektronenwechselwirkung, 48, 63, 136, 137,183

Elektronenzustände, 60, 81, 92, 99, 109, 129,131, 149, 150

Elektrophilizität, 75Elementarprozesse, 55, 72, 123, 124, 130, 156,

169, 184ELF, 42, 169Energiebandstruktur, 88Energiespektrum, 91erweiterte Hückel-Theorie, 183ESCA, 69, 190Evolutionstheorie, 43, 104Extended-Hückel-Methode, 113, 136Extended-Hückel-Rechnungen, 112, 127, 131

FFaltungsintegrale, 62Farbstoffe, 33, 46, 48, 73, 74, 85, 128, 129,

131Festkörperoberflächen, 79, 86, 161, 174Förster-Resonanzenergietransfer, 33Fourier-Transformation, 62Franck-Condon-Zone, 149freie Valenz, 52, 125, 183Fulleren, 139, 158, 172F-LAPW-Methode, 106, 173

GGauß-Funktionen, 40, 41, 43, 60, 62, 76, 77,

84, 94, 96, 98, 100, 110, 114, 147, 152Geminale, 80genetische Algorithmen, 170GGA-Funktional, 166

Page 62: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Sachverzeichnis 285

GIAO, 168Graphentheorie, 51, 53, 58, 107Green-Funktion, 87, 88, 148, 149, 168Grenzorbitale, 154, 158Grenzorbitalkreuzung, 114GROMOS-Kraftfeld, 151Gruppentheorie, 50, 54, 56, 66, 103, 182GUGA-Methode, 105g-Tensor, 60

HHamilton-Operator, 63, 69, 107, 137, 144,

149, 164Handbuch der theoretischen Chemie, 3Hartree-Fock-Ebene, 70Hartree-Fock-Gleichungen, 118Hartree-Fock-Methode, 95, 137, 158, 171Hartree-Fock-Näherung, 145Hartree-Fock-Rechnungen, 78, 161Hartree-Fock-Theorie, 83, 138, 174Hartree-Fock-Verfahren, 62, 141Hartree-Fock-Wellenfunktion, 83Hartree-Methode, 28, 148Heisenberg‘sche Unschärferelation, 27Hellmann-Feynman-Theorem, 28Hellmann-Preis, 70, 167, 169, 171, 173, 174,

196, 198, 218heterogene Katalyse, 67, 117, 160, 162Hill-Funktionen, 63HMO-Koeffizienten, 102HMO-Methode, 53, 112, 129Hohenberg-Kohn-Theoreme, 176HOMO, 121, 147Homoaromatizität, 86Hückel-Methode, 45, 52, 58, 64, 65, 71, 73,

84, 89, 102, 112, 113, 126, 128, 132,137, 175, 182, 183

Hückel-Theorie, 34, 36, 39, 49, 182, 183Hund‘sche Regel, 21, 79Hybridfunktional, 144, 166Hybridisierung, 33, 82, 87, 101, 115, 119, 122,

155Hyperkonjugation, 73, 98, 112, 122hypervalente Atome, 66hypervalente Moleküle, 121hypervalente Verbindungen, 77, 81, 140Hypervalenz, 166

IIEPA, 79, 104IGLO, 81, 122, 168INDO, 120, 137, 138, 153INDO/S CI, 152

INDO/S-CIS, 174INDO-Methode, 125, 162INDO-Verfahren, 152Infrarotspektren, 107, 144innere Umwandlung, 131intermolekulare Kräfte, 150intermolekulare Wechselwirkungen, 90, 92,

104, 114, 169, 189intermolekulares Potential, 77International Journal of Quantum Chemistry,

52, 179inverse Störungstheorie, 119Ionenkristalle, 54, 57, 72, 162Ionisierungsenergie, 31, 36, 66, 70, 74, 75,

86–88, 93, 139, 140, 144, 147, 148,152, 159, 168, 183

Isomerisierung, 113, 125

JJahn-Teller-Effekt, 150, 169Jahn-Teller-Theorem, 57, 92, 189Journal of Chemical Theory and Computation,

180Journal of Computational Chemistry, 180Journal of Molecular Structure (Theochem),

102, 180

KKastenmodell, 31, 46, 71, 128Kastenpotential, 39, 63, 136Katalyse, 160, 162, 184klassische Molekulardynamik, 111, 150, 151,

184Kohlenstoffcluster, 139Kohn-Sham-Methode, 77, 145, 147, 173, 174,

176Kommutator, 18Komplexverbindungen, 34–36, 44, 55, 57–59,

124Konfiguration, 26, 98, 132, 143, 166Konfigurationswechselwirkung, 75, 76, 83, 86,

97, 98, 100, 103, 117, 141Konfigurationswechselwirkungsentwicklung,

94Konfigurationswechselwirkungsmethode, 60,

143, 169konische Durchdringung, 85, 100, 148, 149Konjugation, 98, 115Kontrolltheorie, 172Konturdiagramme, 96Koopmans-Theorem, 86, 148, 168Kopplungskonstanten, 85, 115, 120, 160, 168Korrelation, 57, 77, 94, 104, 105, 144, 148,

189

Page 63: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

286 Sachverzeichnis

Korrelationsdiagramme, 49, 67, 68, 85Korrelationseffekte, 65, 78, 79, 88, 90, 94, 95,

115, 139, 142, 167, 168, 170Korrelationsenergie, 83, 110, 141, 142, 166,

167Korrelationsfunktional, 176Korrelationsfunktionen, 143Korrelations-Cusp, 83kovalente Bindung, 26Kräfte, 10, 26–29, 77, 81, 150Kraftfeld, 93, 140, 150, 151, 153, 163, 169Kraftfeldmethode, 121Kraftkonstante, 26, 93–95Kristallorbitalmethode, 114

LLadungsanalyse, 154Ladungsverteilung, 62, 69, 84, 95, 102, 109,

115, 154, 190LAPW-Methode, 106LCAO-DFT-LDA-Schema, 158LCAO-MO-Methode, 52LCGTO-DF, 152Ligandenfeldtheorie, 34, 36, 55–59, 62, 63, 71,

181, 198lineare Rückwirkung, 107lineare Skalierung, 143, 168, 170Lithiumverbindungen, 121LSD, 141LUMO, 127

MMAOs, 76MATCH, 53Materiewellen, 17Mathieu-Funktionen, 63Matrizenmechanik, 18–20MCSCF, 64, 119MCSCF-Gleichung, 119MCSCF-Methode, 60, 95MCSCF-Verfahren, 119, 142, 143Mehrzentrenbindung, 121Metadynamik, 147MINDO, 93, 113, 138, 139MINDO/2, 93, 138MINDO/3, 138, 139MINDO/3-Methode, 154MINDO-Forces, 93Mischungslücken, 67MM3-Kraftfeld, 140MNDO, 127, 138–141MNDO/d, 140, 141MNDOC, 75, 139

MNDO-Methode, 139MNDO-Rechnungen, 126Möbius-Annulen, 49Molekulardynamik, 67, 111, 145–148, 150,

151, 153, 170, 171, 176, 184, 194Molekularmechanik, 121, 163Molekularmechanikrechnungen, 154Molekülorbitale, 36, 52, 53, 63, 74, 81, 96, 99,

108, 112, 113, 121, 136, 145, 161Molekülorbitalenergien, 85, 89Molekülorbitalmethode, 23, 46Molekülphysik, 62, 68, 92, 95, 123, 144, 194MOLPRO, 143Møller-Plesset-Störungstheorie, 83, 143, 166,

167, 175Monte-Carlo-Rechnungen, 92Monte-Carlo-Simulationen, 88MO-Methode, 93, 120MO-Methoden, 23MP2, 143, 167, 170MP2-Rechungen, 78MP2-Störungstheorie, 113MP3, 83MRCI, 143MRD-CI, 98MRD-CI-Methode, 98, 100, 144MRPT2, 143MR-CI, 166MSINDO, 67, 140, 141, 174Multipole, 140Multireferenzmethoden, 143Multireferenzstörungstheorie, 143Multireferenz-CEPA-Methode, 79Multireferenz-Konfigurationswechsel-

wirkungsmethode, 105, 159

Nnatürliche Orbitale, 66, 76, 122natürliche Paarorbitale, 76natürliche Spinorbitale, 67, 68NDDO, 120, 137, 138NDDO-Methode, 126, 127, 162NDDO-Rechnungen, 127nichtadiabatische Effekte, 101, 149nichtadiabatische Photoprozesse, 169nichtlineare optische Eigenschaften, 109Nicht-Boolesche Algebra, 108NICS, 122NMR-Kopplungskonstanten, 168NMR-Spektren, 52, 107NMR-Verschiebungen, 168Nukleinbasen, 127, 166, 169Nullpunktenergie, 27, 31, 66, 138

Page 64: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Sachverzeichnis 287

OOberflächenreaktionen, 117Oktettregel, 82OM1, 140OM2, 140optische Aktivität, 91, 92, 109, 175, 189Orbitalelektronegativität, 119ORCA, 174orthogonale Atomorbitale, 137, 141Ozon, 60, 98

PPars-Methode, 52Pauli-Prinzip, 27, 31PAW-Methode, 173pericyclische Reaktionen, 130Perimeterkoordinaten, 178photoelektrischer Effekt, 14, 15Photoelektronenspektrum, 87, 88, 169Photoisomerisierung, 125Photoreaktionen, 85 -Elektronen, 31, 34, 46, 47, 67, 82, 102, 109,

136, 137 -Elektronenenergie, 115 -Elektronenmethoden, 41 -Elektronennäherung, 51, 52, 136 -Elektronenspektren, 74 -Elektronenstruktur, 102, 131 -Elektronensysteme, 34, 46, 52, 63, 73, 74,

82, 84, 98, 108, 115, 117, 128, 132,137, 155, 179, 181, 183, 189

 -Elektronentheorie, 37, 49, 85Planck‘sches Wirkungsquantum, 16PM3, 140, 141PM5, 140, 141PMO-Methode, 75PNO, 76PNO-CI, 94, 104, 141Polarisationspropagator, 168Polarisierbarkeit, 48, 61, 74, 94, 101, 119, 120Polymermodelle, 173Populationsanalyse, 76, 77Potentialflächen, 60, 98, 126, 156Potentialhyperflächen, 79, 147Potentialkasten, 46, 136PPP-Hamiltonoperator, 118PPP-Methode, 84, 99, 109, 117, 125, 129, 137,

183PPP-Verfahren, 109, 125, 137Projektionsoperatoren, 144Protonaffinitäten, 121Pseudoaromatizität, 115pseudonatürliche Orbitale, 76

Pseudopotential, 66, 69, 72, 81, 141, 142, 146,170

Pseudopotentialmethode, 27, 40, 41, 45, 69Pseudorotation, 111Pseudo-Jahn-Teller-Effekt, 150Pseudo-Neon-Modell, 35, 56, 59, 136Punktladungsmodell, 140

QQM/MM, 175QM/MM-Verfahren, 140, 153Quadrupol, 61, 140Quadrupolpolarisierbarkeiten, 142Quantenchemie, 2, 19, 28, 29, 31, 35, 38,

40–45, 47, 50, 54, 58, 66, 68, 70, 73,80–83, 89–92, 106, 108, 118, 123–130,132, 133, 135, 144, 153, 159, 162, 165,174–176, 181, 182, 185, 190, 191, 194

Quantencomputer, 172Quantenmechanik, 2, 16–21, 25, 26, 28, 29,

31, 34, 35, 45, 50, 100, 193Quantensimulationen, 172Quantentheorie, 2, 11, 15–17, 22, 23, 26, 33,

43, 73, 128, 181QUICKSTEP, 147

RRayleigh-Schrödinger-Störungstheorie, 91Reaktionsdiagramme, 113Reaktionsdynamik, 156, 169, 171, 172, 198Reaktionsenergien, 138Reaktionskoordinaten, 126Reaktionsmechanismen, 57Reaktionsraten, 156, 157Reaktionssysteme, 73Reaktionswege, 93, 126Reaktivität, 93, 102, 103, 112, 113relativistische Effekte, 69, 144relativistische Korrekturen, 106, 144, 159, 167relativistische Pseudopotentiale, 170Resonanz, 28, 32Resonanzenergien, 87Resonanzintegral, 49, 52, 136, 137Resonanztheorie, 32RHF-Methode, 78, 120, 162Ringspannung, 87, 101Ringstrom, 66, 81, 82RRKM-Theorie, 184R-Matrix-Methode, 119Rydberg-Zustände, 69, 97, 110

SSCC-DFTB, 175SCF-Formalismus, 89

Page 65: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

288 Sachverzeichnis

SCF-Methode, 90, 94, 128, 183SCF-MO-LCGO-Methode, 90SCF-Rechnungen, 84, 95, 96, 101, 138SCF-Verfahren, 84, 119, 137, 142Scheibesche Regel, 36, 183Schrödinger-Gleichung, 19, 26, 35, 46, 48, 55,

73, 82, 135, 136, 187schwarzer Körper, 13, 14schwarzer Strahler, 13Schwingungsdynamik, 98, 150, 164, 169Schwingungsstruktur, 149Self-Consistent-Field-Methode, 183Self-Consistent-Field-Verfahren, 119, 137semiempirische Methode, 48, 50, 58, 64–66,

104, 105, 112, 125, 126, 138, 139semipolare Bindungen, 82¢-Elektronen, 64, 66, 82, 102, 109, 136, 137¢-Elektronenenergie, 115Simulationsmethoden, 150SINDO, 66, 138, 139, 173, 174SINDO1, 66Slater-Determinante, 83, 100Slater-Funktionen, 62, 63Slater-Orbitale, 84Solitonen, 169Spin, 21, 25, 28Spindichte, 162Spindichtefunktional, 141Spinorbital, 67, 68Spinpolarisation, 79spin-adaptierten Funktionen, 100Spin-Bahn-Kopplung, 21, 57, 166spin-erlaubte Übergänge, 98spin-verbotene Übergänge, 98Spinvalenz, 26, 56Spinzustände, 162statische Polarisierbarkeiten, 94, 142Störungsrechnung, 28, 68, 83, 107, 182Stoßprozesse, 20, 43, 68, 156, 160, 184Strahlungsgesetz, 13, 14sudden polarization, 100, 158supramolekulare Systeme, 171Suszeptibilitäten, 59, 78, 81Symmetriebrechung, 68, 149symmetrische Orthogonalisierung, 66

TTEMO, 53Theoretica Chimica Acta, 36, 38, 52, 56, 59,

64, 65, 68–71, 84, 102, 109, 118, 132,177, 179, 180

Theoretical Chemistry Accounts, 67, 179, 180thermodynamische Relaxationstheorie, 185

Tight Binding, 157Tight-Binding-Methode, 89, 175TURBOMOLE, 77, 78

UÜbergangsmetallkomplexe, 46, 57, 58, 68, 79,

127, 131, 152, 155, 170, 172UHF-Methode, 78, 162ultraschnelle Relaxation, 148Unbestimmtheitsrelation, 17Unschärferelation, 17UV-VIS-Spektren, 129

VValenz, 25, 26, 28, 31, 32, 52, 66, 117, 173,

183Valenzbindungsmethode, 23Valenzbindungstheorie, 46Valenzzustände, 32, 69, 97, 110, 117, 119Van der Waals-Komplex, 166Van der Waals-Kräfte, 28Van der Waals-Minimum, 95Van der Waals-Wechselwirkung, 80, 163Variationsmethode, 74, 95, 182VB-Methoden, 23Vertauschungsrelationen, 18vibronische Anregung, 149vibronische Kopplung, 85, 86, 98, 131, 149vibronische Wechselwirkung, 150Virialsatz, 26

WWalsh-Regeln, 58, 95, 99, 100Wasserdimer, 167Wasserstoffbrücken, 87, 111, 146, 153, 190Wasserstoffbrückenbindungen, 42, 87, 90, 101,

103, 125, 126, 153, 176Wechselwirkungsdiagramme, 112Wellenfunktion, 18–20, 31, 47, 68, 78, 83, 98,

108, 145, 164, 174, 190WIEN, 106, 173WIEN2k, 106, 173Woodward-Hoffmann-Regeln, 49, 65, 198

XX’-Methode, 106, 130, 145, 152, 157

ZZDO-Methoden, 157ZDO-Näherung, 137Zeolith, 111, 162, 163Zeolithoberfläche, 162Zwei-Photonen-Prozesse, 86

Page 66: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Personenverzeichnis

AAgricola, Georgius, 1Ahlrichs, Reinhart, 76–78, 80, 84, 109, 162,

166, 168, 189, 191, 193, 195, 206,216–218

Allen, Leland C., 56, 60, 95, 99, 103, 120Allinger, Norman, 180Anderson, Ole, 173Andrae, Dirk, 200, 201Arrhenius, Svante, 12Auer, Alexander A., 202Avoird, Adrianus van der, 188, 189, 191

BBaer, S., 190Baeyer, Adolf von, 12Bagus, Paul, 161Ballhausen, Carl J., 59, 62, 177, 181Bamberger, Eugen, 31Bartel, Hans-Georg, 124, 200, 221Bartlett, Rodney, 83Basolo, Fred, 57Becker, Friedrich, 185Becker, Klaus Dieter, 221Behler, Jörg, 219Berendsen, H. J. C., 150Berger, Robert, 202, 219Bersuker, Isaak, 191Berthier, Gaston, 80, 177Berzelius, Jöns Jakob, 5, 8Bethe, Hans, 56Bingel, Werner, 39, 76, 182, 184, 187–191,

194, 205, 216Binnewies, Michael, 67Binsch, Gerhard, 115, 188, 209Birkenheuer, Uwe, 208Blaha, Peter, 106, 173, 211

Blöchl, Peter, 173, 202, 211Blumen, Alexander, 199, 204, 208Bock, Hans, 49, 182, 188, 189Bögel, Horst, 131, 205, 207Böhm, Michael, 202Bohr, Aage, 61Bohr, Niels, 15, 22, 46Boltzmann, Ludwig, 11, 12Bonacic-Koutecký, Vlasta, 158, 191, 200, 218Bonhoeffer, Karl-Friedrich, 32, 35Bopp, Fritz, 93Born, Max, 17Borštnik, Branko, 44Borsdorf, Rolf, 207Botschwina, Peter, 159, 191, 205, 206, 218Boys, Frank, 41Brdicka, Rudolf, 116Bredow, Thomas, 174, 180, 201, 205, 218Brenig, Wilhelm, 148, 149Brickmann, Jürgen, 110, 189, 202, 204, 207Broglie, Louis de, 16, 19Bruna, Pablo, 191Buenker, Robert J., 95, 97, 99, 144, 158, 191,

201, 210Buff, Heinrich, 9Bühl, Michael, 172, 210, 213Bunker, Don Louis, 184Burghardt, Irene, 204Buß, Volker, 190, 203, 208

CCar, Roberto, 146Cederbaum, Lorenz, 87, 147, 204, 205, 208,

216, 218Christen, Hans Rudolf, 42Cižek, Jiri, 83, 114Clar, Erich, 52

289

Page 67: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

290 Personenverzeichnis

Clark, Timothy, 172, 203, 217, 221Clausius, Rudolf, 12Clementi, Enrico, 87, 90, 114, 191Clusius, Klaus, 33, 48, 109Coester, Fritz, 83Coffey, Patrick, 65Coulson, Charles, 52, 66, 125Cramer, Christopher, 179Cremer, Dieter, 206

DDavidson, Ernest, 95Debye, Peter, 18, 21, 22Degen, Joachim, 203Del Re, Giuseppe, 78, 89, 177Derflinger, Gerhard, 102, 189, 212, 216, 221Dewar, Michael, 92, 96, 113, 120, 138, 139Diercksen, Geerd, 87, 90, 181, 188, 208Dietz, Fritz, 125, 192, 207, 221Dimroth, Karl, 74Dirac, Paul, 35Dishoek, Erwine van, 191Dohmann, Helmut, 191Dolg, Michael, 170, 191, 201, 206, 210, 216Doltsinis, Nikos L., 201, 209Domcke, Wolfgang, 148, 149, 191, 203–205,

208, 217Donnan, Frederick G., 22Dörr, Friedrich, 86, 87, 183Dreeskamp, Herbert, 197Drehfahl, Günter, 45Dreuw, Andreas, 204, 205, 217–219Dreyer, Jens, 200Dronskowski, Richard, 199Dunken, Heinz, 130, 189Dunken, Helga, 191, 206

EEbert, Ludwig, 53Egorova, Dassia, 206Eigen, Manfred, 47, 103, 184, 185Einstein, Albert, 14Elstner, Marcus, 175, 202, 206, 209Emmerich, Heike, 202Engel, Volker, 210, 218Engels, Bernd, 166, 201, 210, 218Engler, Cornelia, 207Ernst, Richard R., 107Ertl, Gerhard, 184Exner, Thomas, 207

FFabian, Jürgen, 128, 189, 195, 203, 217Fabian, Walter, 211

Fantucci, Piercarlo, 159Feynman, Richard, 28Fink, Karin, 201, 206, 217Fink, Reinhold, 167, 201, 210Fischer, Ernst Otto, 38Fischer, R. D., 188Fischer-Hjalmars, Inga, 137Flad, Jürgen, 191Fleig, Timo, 203Fleischhauer, Jörg, 112, 190, 199Flock, Michaela, 211, 217Förster, Theodor, 32, 119Försterling, Horst-Dieter, 74, 182, 187–189,

208Fowler, Peter, 158Frank, Irmgard, 205, 209Franke, Robert, 201Frauenheim, Thomas, 157, 209Frenking, Gernot, 153, 191, 208, 216, 217Freund, Hans Joachim, 199Fricke, Burkhard, 206Friedemann, Rudolf, 132, 205Friedrich, Joachim, 202Fritsche, Hans-Gerhard, 206Fritsche, Lothar, 161Fritsche, Wolfgang, 194, 195Fritz, Gerhard, 55Fritzer, Harald Paulson, 211Frost, Arthur, 43, 178Fues, Erwin, 25Fukui, Kenichi, 154, 183Fulde, Peter, 170Furche, Filipp, 206

GGauß, Jürgen, 168, 206, 207, 217Gay-Lussac, Joseph Louis, 4Gdanitz, Robert, 206Gemming (Köstlmeier), Sibylle, 202Gey, Erhard, 199Gibbs, Josiah Willard, 12Glemser, Oskar, 42Gliemann, Günter, 56, 68, 181, 188, 200, 204,

209Gmelin, Johann Friedrich, 4Gmelin, Leopold, 3, 7Goetz, Horst, 154Gombás, Pál, 69González, Leticia, 172, 200, 206, 212, 217Gopinathan, M. S., 66Görling, Andreas, 173, 201, 203, 217, 218Goubeau, Josef, 93Gouterman, Martin, 108

Page 68: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Personenverzeichnis 291

Gräfe, Stefanie, 206Grein, Friedrich, 59Grimm, Uwe, 202Grimme, Stefan, 166, 201, 209, 217Grindel, David Hieronymus, 3Groß, Axel, 210Gründler, Wolfgang, 124, 132, 189, 200, 205Gunsteren, Willem F. van, 150, 151, 170, 172,

213Günthard, Hans, 48, 50, 51, 60, 107, 213Gustav, Klaus, 130, 206

HHa, Tae Kyu, 60, 181, 191, 213Haase, Dietrich, 91, 191, 200, 216Haberditzl, Werner, 44, 124, 188, 200Hahn, Otto, 25Handy, Nicholas, 142Hanrath, Michael, 206Hansen, Karl Heinz, 36, 55, 69, 179, 181,

187–189, 201, 204Hantzsch, Arthur, 12Hartke, Bernd, 170, 206, 210Hartmann, Hermann, 2, 33, 38, 39, 41, 72,

135, 136, 182, 183, 187, 188, 204, 216Hartmann, Horst, 131, 203, 207, 208Häser, Marco, 206Hättig, Christoph, 201, 206, 218Haug, Albert, 92Haüy, René Just, 4Havemann, Robert, 44Hay, Jeffrey, 142Head-Gordon, Martin, 168Hedberg, Kenneth, 49Heeren, Friedrich, 7, 8Hehre, Warren J., 138Heidberg, Joachim, 67, 72, 180, 184Heidrich, Dietmar, 126, 207Heilbronner, Edgar, 48, 115, 116, 177, 182,

212, 213Heine, Thomas, 202, 203Heinemann, Manfred, 221Heisenberg, Werner, 16, 23, 39, 40, 45, 156Heitler, Walter, 19Helfrich, Klaus, 67, 181, 187, 188, 191, 200,

204Hellmann, Hans, 2, 25, 40, 70, 205Helmholtz, Hermann von, 12, 13Hensen, Karl, 71, 177, 181, 204, 221Hermann, Klaus, 161, 199, 200Herrmann, Carmen, 205Herschbach, Dudley, 184Hertz, Gustav, 61

Herzberg, Gerhard, 110Herzig, Peter, 212Heß, Bernd Artur, 144, 175, 201, 203, 217,

218Heßelmann, Andreas, 203Heydtmann, Horst, 72, 185Heyrovský, Jaroslav, 116Hilbert, David, 22Hinze, Jürgen, 119, 180, 201, 216Hirschhausen, Heinrich von, 64, 68, 70, 177,

200Hofacker, G. Ludwig, 42–44, 58, 87, 88, 114,

151, 185, 188, 208, 221Hofacker, Ursula, 195Hofer, Thomas, 211Hoffmann, Roald, 50, 112, 136, 152, 154Hoffmann-Ostenhof, Thomas, 212Hofmann, Hans-Jörg, 207Hoheisel, Claus, 80, 201Hohlneicher, Georg, 85, 147, 187, 193,

195–197, 206, 216, 217Holthausen, Max, 176, 204, 208, 216Homeier, Herbert, 209Hoyer, Eberhard, 127Huber, Hanspeter, 212, 216Hückel, Erich, 2, 21–29, 31, 32, 35, 39, 208,

210Hückel, Walter, 21, 24, 41Huisgen, Rolf, 70, 114Humboldt, Alexander von, 7Hund, Friedrich, 20, 23, 42, 45, 156Hünenberger, Philippe H., 213Hutter, Jürgen, 171, 213

IIlse, Friedrich Ernst, 34, 55Issleib, Kurt, 132

JJacob, Timo, 200, 210Jaffé, Hans, 119Jakubetz, Werner, 156, 212, 216Janoschek, Rudolf, 101, 190, 210, 211, 216Jansen, Georg, 203, 204Jansen, Laurens, 187, 188, 190, 216Jaquet, Ralph, 209Jensen, Per, 204, 210John, Peter, 205Johnson, Keith, 152Jørgensen, C. Klixbüll, 58, 181, 212Jordan, Pascual, 18Jortner, Joshua, 152Jost, Wilhelm, 25, 28, 184

Page 69: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

292 Personenverzeichnis

Jug, Karl, 62, 140, 182, 191, 205, 216, 218Jungen, Martin, 76, 109, 212, 216

KKadura, Peter, 206Kaiser, Roland, 60Kalcher, Josef, 211, 216Kant, Immanuel, 1, 35Karmarsch, Karl, 6, 8Karpfen, Alfred, 212Kast, Stefan Michael, 202Kästner, Johannes, 210, 219Katritzky, Alan, 66, 122Kaupp, Martin, 170, 200, 210Kelterer, Anne-Marie, 217Kirchhoff, Gustav, 12, 13Kirchner, Barbara, 166, 201, 207Klahn, Bruno, 205Klamroth, Tillman, 171, 209Klaproth, Heinrich, 4Kleindienst, Heinz, 203Kleinekathöfer, Ulrich, 202Klemm, Wilhelm, 26Klessinger, Martin, 84, 187, 189, 191, 204,

205, 209, 216Klopper, Willem, 167, 206, 213, 217, 218Klüner, Thorsten, 209Knapp, Ernst-Walter, 200, 208Knappwost, Adolf, 69Knowles, Peter, 142Koch, Wolfram, 175, 176, 200Kockel, Bernhard, 45, 93, 101, 189, 204, 207Köhler, Hans-Joachim, 125, 207Kohlmaier, Gundolf, 72, 182, 184, 188, 190,

204Kohlrausch, Friedrich, 11, 12Köhn, Andreas, 207, 219Kohn, Walter, 141, 145Kollmar, Herbert, 79, 80, 201König, Edgar, 58, 203Kopp, Hermann, 9Köppel, Horst, 149, 160, 168, 191, 205, 216Korth, Martin, 210Koslowski, Thorsten, 204, 206Köster, Andreas, 66, 174, 180, 205Koutecký, Jaroslav, 116, 158, 180, 191, 200Kresse, Georg, 212, 218Krüger, Thomas, 191, 211Kuhn, Hans, 46, 47, 73, 135, 136, 183, 208Kühn, Oliver, 200, 209Kuhn, Werner, 46Kühne, Thomas D., 207Kümmel, Hermann, 83

Künne, Lutz Dieter, 206Kupka, Johannes, 203Kutzelnigg, Werner, 70, 76, 80, 122, 187–189,

191–193, 195, 196, 198, 201, 205, 206,216–218

LLabhart, Heinrich, 47, 65, 109, 187, 188, 212,

213, 216Ladik, Janos, 59, 88, 114, 203, 208Landolt, E., 12Laue, Max von, 17Lendi, Karl, 213, 216Lenz, Wilhelm, 40Levine, Raphael D., 43, 156Liebig, Justus, 8, 9Liedl, Klaus Roman, 211, 218Liptay, Wolfgang, 142, 188, 191Lischka, Hans, 76, 102, 104, 191, 196, 212,

216Loew, Gilda, 154London, Fritz, 19Lorenz, Wolfgang, 207Lörting, Thomas, 211Löwdin, Per Olov, 40, 41, 80, 127, 179Lüchow, Arne, 199, 203Luck, Werner, 182Lucken, E., 190Lüthi, Hans Peter, 167, 213Lüttke, Wolfgang, 84Lykos, Peter, 64, 137, 179

MMacke, Wilhelm, 61Madelung, Erwin, 32Maeyer, L. C. de, 185Maksic, Zvonimir, 154, 191Manthe, Uwe, 169, 201, 204, 218Manz, Jörn, 155, 200, 208, 210, 218, 221March, Norman, 145Marcus, Rudolf, 184Marian, Christel M., 166, 191, 201, 203, 217Mark, Franz, 53, 188, 192, 216, 221Marx, Dominik, 171, 201, 217Mayer, Roland, 128, 131McKoy, Vincent, 149McLean, A. D., 79McWeeny, Roy, 84, 90, 178, 183Mecke, Reinhard, 80Mehlhorn, Achim, 128, 189, 203, 221Mehlig, Bernd, 202Meitner, Lise, 25Mendelejew, Dmitri Iwanowitsch, 10

Page 70: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Personenverzeichnis 293

Merkel, Angela, 124Metz, Fritz, 207, 208Meyer, Bernd, 201, 203, 217Meyer, Hans-Dieter, 205Meyer, Lothar, 10Meyer, Wilfried, 76, 83, 93, 159, 190, 191,

193, 195, 206, 207, 210, 216, 217Michl, Josef, 159Miller, William H., 43Mitric, Roland, 210Möbius, Arnulf, 202Moffitt, William, 108Müller, Hans, 130, 191, 206Müller, Klaus, 213, 216Müller, Ludwig, 5Müller-Herold, Ulrich, 108, 213, 216, 222Müller-Plathe, Florian, 172, 202Mulliken, Robert, 48, 95Murrell, John, 115Musher, Jeremy, 158Muspratt, Sheridan, 8

NNeckel, Adolf, 53, 105, 189, 211, 212, 222Neese, Frank, 174, 201, 207, 208, 218Nernst, Walther, 10, 12Nest, Mathias, 171, 208, 209Nestmann, Bernd, 191Neugebauer, Johannes, 202, 209Nicolaides, A. Cleanthes, 191Niessen, Wolfgang von, 87, 148, 175, 190,

191, 194, 202, 208Nikitin, Evgeny E., 123, 124, 184Nowotny, Hans, 54

OOchsenfeld, Christian, 168, 207, 209, 210, 217O’Konski, Chester T., 60Onsager, Lars, 22Oppenheimer, Robert, 18Ostwald, Wilhelm, 11, 12, 22Otto, Peter, 114, 203

PPacchioni, Gianfranco, 152, 191Paldus, Josef, 83Pariser, Rudolf, 137, 183Parr, Robert, 39, 64, 65, 75, 118, 120, 137,

158, 183, 187Parrinello, Michele, 145, 157, 209, 213Pauli, Wolfgang, 29, 50, 157Pauling, Linus, 24, 46, 49Paulus, Beate, 200, 209, 217Pearson, Ralph, 57

Pernpointner, Markus, 205Peter, Christine, 207Petrongolo, Carlo, 191Peyerimhoff, Sigrid, 60, 69, 94–96, 99, 135,

136, 144, 191, 193, 195, 197, 201, 204,207, 216–218, 222

Pitzer, Kenneth, 119Planck, Max, 2, 12, 13Plath, Peter Jörg, 202Platt, John, 48Plattner, Placidus, 48Podloucky, Raimund, 212Polansky, Oskar E., 51, 102, 185, 187, 188,

190, 208, 212, 216Pople, John, 65, 103, 137, 183Popper, Karl, 108Prelog, Vladimir, 107Preuß, Heinzwerner, 39–43, 65, 87, 90, 92–94,

101, 136, 159, 182, 184, 188, 190, 191,194, 208, 210, 216

Primas, Hans, 51, 107, 213Probst, Michael, 211, 216Pulay, Peter, 93Pullman, Bernard, 80, 177

QQuack, Martin, 61, 216

RRaabe, Gerhard Paul, 199Rabinovitch, Benton Seymour, 72Rahman, Aneesur, 145Ramek, Michael, 211Rami, Thomas, 177Rasch, Gerhard, 45, 206, 207Rauhut, Guntram, 210Regener, Erich, 25Reiher, Markus, 175, 201, 203, 206, 213, 217,

218Reineker, Peter, 217Reinhold, Joachim, 127, 192, 207, 216Reinsch, Ernst Albrecht, 64, 70, 177, 182, 204Rellich, Franz, 42Reuter, Karsten, 200, 208Rhodes, William, 65Richter, Gustav, 61Roberts, John D., 115Robinson, G. Wilse, 44Rode, Bernd Michael, 153, 191, 211, 216, 217Römelt, Joachim, 156, 201Römer, Rudolf, 202Roothaan, Clemens, 76, 95, 119Rösch, Notker, 151, 173, 190, 208

Page 71: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

294 Personenverzeichnis

Rosmus, Pavel, 204Röthlisberger, Ursula, 170, 212, 213Ruch, Ernst, 37, 85, 91, 103, 183, 184,

187–189, 200, 208, 216Ruedenberg, Klaus, 61, 70, 179Ruiz, María Belén, 203Rutherford, Ernest, 15Ruzicka, Leopold, 49

SSaalfrank, Peter, 171, 200, 209, 218Salahub, Dennis, 170, 174Salem, Lionel, 113, 114, 158Sandorfy, Camille, 68Santry, D. P., 191Sauer, Joachim, 162, 199, 200, 217Savin, Andreas, 169, 191, 210Sax, Alexander, 211, 216, 222Schaefer, H. Frederic, 191Scheibe, Günter, 36, 85, 183Scherer, Alexander Nicolaus, 3Scherrer, Paul, 47Schilder, Helmut, 191Schindler, Michael, 81, 201Schinke, Reinhard, 208Schirmer, Jochen, 148, 168, 205Schläfer, Hans Ludwig, 36, 55Schlag, Edward W., 43, 44Schleyer, Paul von Ragué, 120, 180, 203Schmatz, Stefan, 205Schmelcher, Peter, 169, 205Schmickler, Wolfgang, 210Schmidt, Burkhard, 200Schmidt, Otto, 31, 46Schmidtke, Hans-Herbert, 57, 181, 187, 191,

203, 204Schoeller, Wolfgang, 113, 201Schoen, Martin, 200Scholz, Manfred, 124, 207Scholz, Reinhard, 202Schomaker, Verner, 49Schönhofer, Alfred, 91, 182, 184, 187, 189,

200Schrader, Bernhard, 204Schreiber, Michael, 164, 202, 207, 216, 217Schrödinger, Erwin, 18, 156Schubarth, Ernst Ludwig, 5Schuch, Dieter, 179, 204, 222Schuler, K. E., 185Schumacher, Hans Joachim, 34Schürmann, Britta, 191Schuster, Peter, 103, 189, 212, 216, 222Schütz, Martin, 170, 209, 210

Schwab, Georg-Maria, 73, 184Schwabe, Kurt, 56Schwabe, Tobias, 205Schwarz, Helmut, 154Schwarz, Karlheinz, 105, 145, 164, 189, 190,

211, 216, 222Schwarz, W. H. Eugen, 69, 141, 145, 177, 194,

201, 209Schweig, Armin, 74, 182, 187, 189, 208Schwerdtfeger, Peter, 169, 208Sebastiani, Daniel, 171, 205, 207, 219Seel, Friedrich, 32Seelig, Friedrich F., 73, 182, 187–189, 208,

210Seifert, Gotthard, 157, 203, 217Shaik, Sason, 66Shanshal, Muthana, 92, 210Shavitt, Isaiah, 105Sierka, Marek, 200, 206Simonetta, Massimo, 183Slater, John, 105, 145Sommerfeld, Arnold, 16, 34, 185Sotriffer, Christoph, 208, 210Spiess, Hans-Wolfgang, 171Spohr, Eckhard, 203, 210Sponer, Hertha, 39Springborg, Michael, 209, 217Staemmler, Volker, 76, 78, 189, 201, 217, 218,

222Stark, Johannes, 12Staude, Herbert, 182Stefan, Josef, 12Steinborn, Ernst Otto, 61, 171, 182, 188, 200,

209Steinhauser, Othmar, 207, 212Stepanow, N. F., 127Stock, Gerhard, 169, 204, 218Stohner, Jürgen, 216Stohrer, Wolf-Dieter, 112, 202Stoll, Hermann, 141, 210Streitwieser, Andrew, 126, 152Stromeyer, Friedrich, 3, 7Strutt, John William (Lord Rayleigh), 13Sühnel, Jürgen, 206Suhrmann, Rudolf, 90Syrkin, J. K., 28Szentpály, László von, 75, 191, 208, 210Szent-Györgyi, Albert, 89

TTatchen, Jörg, 203Taubmann, Gerhard, 210Thénard, Louis Jacques, 4, 7

Page 72: Literatur - link.springer.com3A978-3... · K. Jug, Zweihundert Jahre Entwicklung der Theoretischen Chemie im deutschsprachigen Raum, DOI 10.1007/978-3-662-43365-2. 224 Literatur [18]

Personenverzeichnis 295

Thiel, Walter, 75, 138, 208, 210, 213, 216, 217Thomson, Joseph John, 12, 15Thoss, Michael, 203, 208, 218Thrush, B. A., 185Trkal, Viktor, 116Truhlar, Donald, 179Tulub, Alexander V., 132Tyutyulkov, Nikolay, 129

UUgi, Ivar, 38, 188

VVan der Waals, Johannes Diderik, 12Van’t Hoff, Henricus, 12Vaubel, Wilhelm, 11Vauquelin, Nicolas, 4Vivie-Riedle, Regina de, 172, 200, 209Voijta, Thomas, 202

WWagner, Heinz Georg, 184Wagnière, Georges, 108, 187–189, 213, 216,

222Wannagat, Ulrich, 71Weber, Jacques, 212Weigend, Florian, 206, 217Weinberger, Peter, 211

Weiss, Cornelius, 126, 192, 207Weller, Albert, 142Weniger, Ernst Joachim, 209Wentzel, Gregor, 20Werner, Hans Joachim, 75, 95, 142, 201, 204,

210, 216–218Wessely, Friedrich, 51, 103Whitehead, Anthony, 177Whitten, Jerry, 99Wien, Wilhelm, 12, 13Wigner, Eugene P., 50, 68Will, Heinrich, 9Wimmer, Erich, 212Witschel, Wolfgang, 110, 202, 210Wöhler, Friedrich, 5Wulff, Peter, 34Wüllen, Christoph van, 167, 200, 201, 206

ZZahn, Dirk, 203, 217Zahradník, Rudolf, 128, 162Zamminer, Friedrich, 9Zeeck, Erich, 73, 177, 182, 200, 209Zeil, Werner, 187Zerner, Michael, 140, 152Ziesche, Paul, 157Zimmermann, Herbert, 111Zülicke, Lutz, 123, 199, 200, 209