Matthias Hillenbrand, Eric Markweg, Martin Hoffmann, Stefan...Applied Optics 31 No. 25, 5230 (1992)...

2
Matthias Hillenbrand, Eric Markweg, Martin Hoffmann, Stefan Sinzinger: Integrated hybrid GRIN lenses Zuerst erschienen in: DGaO-Proceedings. - Erlangen-Nürnberg: Dt. Gesellschaft für angewandte Optik, ISSN 1614-8436. - Bd. 113.2012, P5, insg. 1 S. URN: urn:nbn:de:0287-2012-P005-2

Transcript of Matthias Hillenbrand, Eric Markweg, Martin Hoffmann, Stefan...Applied Optics 31 No. 25, 5230 (1992)...

  • Matthias Hillenbrand, Eric Markweg, Martin Hoffmann, Stefan Sinzinger:

    Integrated hybrid GRIN lenses

    Zuerst erschienen in: DGaO-Proceedings. - Erlangen-Nürnberg: Dt. Gesellschaft für angewandte Optik, ISSN 1614-8436. - Bd. 113.2012, P5, insg. 1 S. URN: urn:nbn:de:0287-2012-P005-2

  • Design Principle: Independent wavefront in two perpendicular directionscontrol

    Direction 1: Perpendicular to the substrate

    · GRIN element, variation of the refractive index during the layer deposition process

    · Description of the refractive index profile:

    Direction 2: Parallel to the substrate

    · Etching process with perpendicular, optical quality side walls

    · Element shape determined by 2D-profile of the lithographic mask

    www.tu-ilmenau.de

    Technische Universität Ilmenau®IMN MacroNano

    Fachgebiet Technische Optik

    Matthias Hillenbrand

    Telefon: +49 3677 69-1276

    Fax: +49 3677 69-1281

    [email protected]

    www.tu-ilmenau.de/optik

    ReferencesThe authors would like to thank the German Federal Ministry of Education and Research and the Thuringian Ministry for Education, Science, and Culture for the financial support through the projects “Kompetenzdreieck Optische Mikrosysteme-KD OptiMi” (FKZ: 16SV3700) and “Graduate Research School on Optical Microsystems Technology (FZK: PE 104-1-1).

    Acknowledgements

    Macro ®NanoM. Hillenbrand, E. Markweg, M. Hoffmann, S. SinzingerIMN MacroNano , Technische Universität Ilmenau

    ®

    Integrated Hybrid GRIN Lenses

    Advantages· low cost by mass production (semiconductor technologies)· high reliability· high precision in geometric dimensions and positions (defined by lithography mask)· can be combined with integrated photonic elements on the same substrate· high refractive index range

    Exemplary applications· efficient coupling structures between integrated optics and free space· beam shaping for integrated laser diodes

    Challenges · 2D structuring for 3D functionality· High transmittance

    Achievable parameters· Maximum height of the structures dependent on deposition

    time; structures with 30µm GRIN layer height realized· Realized minimum feature size: 2 µm (DOE period)· Possible refractive index range: 1,47-1,85

    [1] J.-i. Shimada, O. Ohguchi, R. Sawada: Gradient-index microlens formed by ion-beam sputtering, Applied Optics 31 No. 25, 5230 (1992)[2] D.R. Beltrami, J.D. Love, A. Durandet et al: Planar graded-index pecvd lens, Electronic Letters 32

    No. 6, 549 (1996)

    Wafer-level optics

    sensor 1

    sensor 2

    single-

    mode fiber

    measure

    beam

    mirror

    thermooptical

    modulator

    GRIN-

    lense

    mirror

    Concept and prototype of a wafer-level interferometer for displacement measurements

    variableGRIN-profile

    Variety of diffractiveand refractive shapes

    depostion of a ICPCVD film(SiO2/SiON)

    electro-patterning of nickelstructured by UV-lithography

    fluorine-based ICPRIE deep etching

    separation and testingof the optical elements

    Technology and experimental results

    Design

    Fabrication using semiconductor technologies

    Design process· Raytracing-based optimisation· Simultaneous variaton of the refractive or

    diffractive shape and the GRIN-profile· Merit function based on the wavefront

    aberration of the output beam

    refractive index

    vert

    ical p

    osi

    tio

    n

    Cylindrical Acylindrical Diffractive

    Experimental setup for laser beam collimation

    Beam profile at 15mm distance from the lens

    collimated uncollimated

    1/e^2 gaussian beam radius behind the GRIN lens

    1/e

    ^2

    beam

    rad

    ius

    in m

    m

    distance from lens in mm

    1,480

    1,490

    1,500

    1,510

    1,520

    1,530

    1,540

    -10 -5 0 5 10

    optimised refractive index profile

    realised refractive index profile

    stepped index profile of the produced elements

    vertical position in µm

    refr

    act

    ive in

    dex

    0

    5

    10

    15

    20

    25

    30

    1,460

    1,510

    1,560

    1,610

    1,660

    1,710

    1,760

    -5 5 15 25 35 45 55 65 75 85 95

    refractive index of silicon oxynitride (500 W; 10 mTorr; SiH4 : 6sccm; 380 °C; gasratio N2O+N2= 100sccm)

    gasratio vs refractive index at 380°C

    deposition rate

    gas ratio N2O

    (N2 + N2O = 100 sccm)

    refr

    act

    ive in

    dex

    dep

    osi

    tio

    n r

    ate

    in

    nm

    /min

    sensor 11

    DGaO-Proceedings 2012 - http://www.dgao-proceedings.de - ISSN: 1614-8436 - urn:nbn:de:0287-2012-P005-2