MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure...

36
IN EARTH SYSTEM SCIENCE CHALLENGES T H E S T R A T E G I C P L A N 2 0 0 3 - 2 0 1 0 M A X P L A N C K I N S T I T U T E F O R M E T E O R O L O G Y

Transcript of MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure...

Page 1: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

I N E A R T H S Y S T E M S C I E N C EC H A L L E N G E S

T H E S T R A T E G I C P L A N 2 0 0 3 - 2 0 1 0

M A X P L A N C K I N S T I T U T E F O R M E T E O R O L O G Y

Verwendete Mac Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.4" der IMPRESSED GmbH erstellt. Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen. ALLGEMEIN ---------------------------------------- Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Nein Seiten automatisch drehen: Einzeln Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [ 1200 1200 ] dpi Papierformat: [ 811.208 595.206 ] Punkt KOMPRIMIERUNG ---------------------------------------- Farbbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 72 dpi Downsampling für Bilder über: 108 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original Bit Graustufenbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 72 dpi Downsampling für Bilder über: 108 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original Bit Schwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: Ja SCHRIFTEN ---------------------------------------- Alle Schriften einbetten: Nein Untergruppen aller eingebetteten Schriften: Ja Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiter Einbetten: Immer einbetten: [ ] Nie einbetten: [ /Symbol /ZapfDingbats /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /Times-Italic /Helvetica-Oblique /Courier-Oblique ] FARBE(N) ---------------------------------------- Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: Standard Arbeitsbereiche: Graustufen ICC-Profil: None RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2 Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Nein Unterfarbreduktion und Schwarzaufbau beibehalten: Nein Transferfunktionen: Beibehalten Rastereinstellungen beibehalten: Nein ERWEITERT ---------------------------------------- Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: Nein Document Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: Ja ANDERE ---------------------------------------- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1 ENDE DES REPORTS ---------------------------------------- IMPRESSED GmbH Bahrenfelder Chaussee 49 22761 Hamburg, Germany Tel. +49 40 897189-0 Fax +49 40 897189-71 Email: [email protected] Web: www.impressed.de
Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /LockDistillerParams false /DetectBlends true /DoThumbnails false /AntiAliasMonoImages false /MonoImageDownsampleType /Average /GrayImageDownsampleType /Average /MaxSubsetPct 100 /MonoImageFilter /CCITTFaxEncode /ColorImageDownsampleThreshold 1.5 /GrayImageFilter /DCTEncode /ColorConversionStrategy /sRGB /CalGrayProfile (None) /ColorImageResolution 72 /UsePrologue false /MonoImageResolution 300 /ColorImageDepth -1 /sRGBProfile (sRGB IEC61966-2.1) /PreserveOverprintSettings false /CompatibilityLevel 1.2 /UCRandBGInfo /Remove /EmitDSCWarnings false /CreateJobTicket false /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDict << /K -1 >> /ColorImageDownsampleType /Average /GrayImageDict << /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] /Blend 1 /QFactor 0.9 >> /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /ParseDSCComments true /PreserveEPSInfo false /MonoImageDepth -1 /AutoFilterGrayImages true /SubsetFonts true /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /HSamples [ 2 1 1 2 ] /Blend 1 /QFactor 0.76 /ColorTransform 1 >> /ColorImageFilter /DCTEncode /AutoRotatePages /PageByPage /PreserveCopyPage true /EncodeMonoImages true /ASCII85EncodePages false /PreserveOPIComments false /NeverEmbed [ /Symbol /ZapfDingbats /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /Times-Italic /Helvetica-Oblique /Courier-Oblique ] /ColorImageDict << /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] /Blend 1 /QFactor 0.9 >> /AntiAliasGrayImages false /GrayImageDepth -1 /CannotEmbedFontPolicy /Warning /EndPage -1 /TransferFunctionInfo /Preserve /CalRGBProfile (sRGB IEC61966-2.1) /EncodeColorImages true /EncodeGrayImages true /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /HSamples [ 2 1 1 2 ] /Blend 1 /QFactor 0.76 /ColorTransform 1 >> /Optimize true /ParseDSCCommentsForDocInfo true /GrayImageDownsampleThreshold 1.5 /MonoImageDownsampleThreshold 1.5 /AutoPositionEPSFiles true /GrayImageResolution 72 /AutoFilterColorImages true /AlwaysEmbed [ ] /ImageMemory 524288 /OPM 1 /DefaultRenderingIntent /Default /EmbedAllFonts false /StartPage 1 /DownsampleGrayImages true /AntiAliasColorImages false /ConvertImagesToIndexed true /PreserveHalftoneInfo false /CompressPages true /Binding /Left >> setdistillerparams << /PageSize [ 595.276 841.890 ] /HWResolution [ 1200 1200 ] >> setpagedevice
Page 2: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

The overall mission of the Max Planck Institute for Meteo-rology is to understand howphysical, chemical and biolo-gical processes, as well ashuman behaviour contributeto the dynamics of the Earthsystem, and specifically howthey relate to global andregional climate changes.

Page 3: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

TA B L E O F C O N T E N T

1. FOREWORD

VORWORT

2. MISSION, OBJECTIVES AND VALUES

SELBSTVERSTÄNDNIS, ZIELE UND NUTZEN

3. KEY SCIENTIFIC QUESTIONS

ZENTRALE WISSENSCHAFTLICHE FRAGEN

4. STRATEGY

4.1. Observing and Modelling Atmospheric Processes

4.1.1 Passive Remote Sensing of the Atmosphere

4.1.2 Lidar Observations of Atmospheric Parameters

4.1.3 Ground-Based Remote Sensing with Radar

4.1.4 Cloud Parameterizations

4.2. Investigating the Interactions between the Physical and

Biogeochemical Processes in the Earth System

4.2.1 Middle and Upper Atmosphere Dynamics, Chemistry and Energetics

4.2.2 Atmospheric Aerosols

4.2.3 Tropospheric Chemistry and Climate

4.2.4 Multicompartmental and slowly Degrading Organic Substances

4.2.5 Interactions of the Carbon Cycle and Biologically Relevant Elements

4.3. Simulating Past, Present and Future Climate

4.3.1 Glacial-Interglacial Transitions

4.3.2 Decadal Variability

4.3.3 Anthropogenic Climate Change

4.4. Regional Climate Change

4.5. Integrating Knowledge into a Comprehensive Earth System Model

5. TOOLS AND FACILITIES

5.1 MPI-M Models

5.2 Scientific Computing

5.3 Remote Sensing Instrumentation

5.4 Climate Service Centre

5.5 Information Technology (IT)

6. COOPERATION

7. EDUCATION AND OUTREACH

7.1 International Max Planck Research School (IMPRS)

7.2 Outreach to the Public

8. ORGANIZATION, MANAGEMENT AND FUNDING

ANNEX:

Max Planck Society for the Advancement of Science,

Munich, Germany and its Institutes in Germany

4

8

12

15

26

31

32

33

34

Page 4: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

”Many scientists owe their greatness not to their skill

in solving problems, but to their wisdom in choosing

them.” (E. Bright Wilson Jr., An Introduction to Scientific

Research, Mc Graw Hill, N.Y., 1952)

We are pleased to present the Max Planck Institute for Mete-

orology’s (MPI-M) Strategic Plan, which charts the course

that we will follow in the coming years for improving our

understanding of the functioning of the Earth system und

developing our ability to predict future climate. The MPI-M’s

Strategic Plan describes our goals and objectives, and dis-

cusses our strategies for providing more information needed

to protect societies from risks caused by climate and other

environmental changes.

Climate change has become a central issue on the interna-

tional scene. The threat of rapid “global warming”, and more

generally of “global change” has led the governments of the

world to elaborate strategies to mitigate the effects expect-

ed from fossil fuel combustion and land-use changes. The

problem of climate change has been a concern of the scien-

tific community for many years. In a landmark paper “On the

Influence of Carbonic Acid in the Air upon the Temperature of

the Ground”, published in 1896, the Swedish scientist,

Svante Arrhenius, estimated for the first time the warming

resulting from changes in the atmospheric concentration of

carbon dioxide. The greenhouse effect, which plays a key role

in the heat budget of our planet, had been described in qual-

itative terms by the French mathematician Joseph Fourier as

early as 1824. Although Arrhenius’s studies had been under-

taken to understand the causes of the ice ages, they provid-

ed the foundation for addressing what became in the 20th

century a question of crucial importance for human societies:

to what extent and under which forms will human activities

produce a significant change in the Earth’s climate?

The climate response to industrialization and other anthro-

pogenic activities is not limited to changes in the mean

temperature. It is also characterized by changes in region-

al weather patterns and in the hydrological cycle, in atmos-

pheric modes of variations (such as El Niño or the North

Atlantic Oscillation), in the frequency of occurrence and

intensity of extreme weather events, with consequences on

the biosphere, socio-economic activities, and health.

To address such societal issues, traditional disciplinary

approaches are not adequate. Rather, the Earth must be rec-

ognized as a coupled system in which physical, chemical and

biological processes interact to create the planetary envi-

ronment. Global Change cannot be understood in terms of

simple cause-effect paradigms. Human effects cascade into

a variety of temporal and spatial scales, and feedbacks can

amplify or damp these perturbations. Anthropogenic

changes, however, are clearly identifiable beyond natural

variability. The rate at which such changes will occur in the

future remains poorly known, despite the efforts made by

the community to understand the Earth’s dynamics and to

predict the future evolution of the Earth system. Critical

thresholds (as in desertification or formation of the ozone

hole) as well as abrupt changes (typical in nonlinear sys-

tems) could have substantial consequences for the global

environment. It is therefore crucial to identify the major

dynamical patterns, teleconnections and feedback loops in

the planetary machinery as well as the characteristic

regimes and time-scales of natural planetary variability. If

these issues are better understood, it will be key to respond

by a better mix of adaptation and mitigation measures to

global change.

Today, the question of climate change must be addressed

in a broad perspective that emphasizes the co-evolution

of nature and society. Research around Earth System

Science is being conducted in several institutions located

in Germany (Max Planck Institute for Biogeochemistry in

Jena, Max Planck Institute for Chemistry in Mainz, Pots-

dam Institute for Climate Impact Research), elsewhere in

Europe and in the world. Strong scientific nodes will

cooperate within flexible national/international networks

of excellence. Within such networks, the Max Planck

Institute for Meteorology (MPI-M) in Hamburg will further

develop its expertise in geophysical analysis and simula-

tion, and address fundamental issues including those

raised by international programmes such as the Interna-

tional Geosphere-Biosphere Programme (IGBP), the World

Climate Research Programme (WCRP), and the Interna-

tional Human Dimensions Programme on Global Environ-

mental Change (IHDP):

• What kind of nature do modern societies want?

• What is the carrying capacity of the Earth as deter-

mined by humanitarian standards?

• What are the equity principles that should govern global

environmental management?

1 . F O R E W O R D

4 |

Page 5: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

„Viele Wissenschaftler verdanken ihre Größe nicht

ihrer Fähigkeit, Probleme zu lösen, sondern ihrer

Weisheit, sie auszuwählen.“ (E. Bright Wilson Jr., An

Introduction to Scientific Research, McGraw Hill, N.Y., 1952).

Wir freuen uns, Ihnen den Strategieplan des Max-Planck-

Instituts für Meteorologie (MPI-M) vorstellen zu können.

Er zeigt den Kurs auf, den wir in den kommenden Jahren

einschlagen werden, um unser Verständnis des Erd-

systems zu verbessern und Klimavorhersagen weiter zu

entwickeln. Der Strategieplan des MPI-M beschreibt

unsere Ziele und diskutiert unsere Strategien, Erkenntnis

zu gewinnen, damit die Gesellschaft vor Risiken geschützt

werden kann, die von Klima- und anderen Umweltverän-

derungen ausgehen.

Der Klimawandel ist ein zentrales internationales Thema.

Die Bedrohung durch eine rasche „globale Erwärmung“ und

allgemeiner durch den „globalen Wandel“ führte die

Regierungen der Welt dazu, Strategien auszuarbeiten, um

die Folgen der Verbrennung fossiler Brennstoffe und von

Landnutzungsänderungen zu mindern. Das Problem des Kli-

mawandels ist seit langen Jahren ein Anliegen der wissen-

schaftlichen Gemeinschaft. In einem 1896 veröffentlichten

bahnbrechenden Artikel „Über den Einfluss von Kohlensäure

in der Luft auf die Temperatur des Bodens” schätzte der

schwedische Wissenschaftler Svante Arrhenius zum ersten

Mal, welche Erwärmung aus den Änderungen der atmo-

sphärischen Konzentration von Kohlendioxid resultiert. Der

Treibhauseffekt, der eine Schlüsselrolle in der Wärmebilanz

unseres Planeten spielt, wurde bereits 1824 qualitativ von

dem französischen Mathematiker Joseph Fourier beschrie-

ben. Obwohl Arrhenius’ Studien auf die Erklärung der Eis-

zeiten abzielen, so bereiteten sie die Grundlage dafür, was

im 20. Jahrhundert eine Frage von besonderer Bedeutung für

die menschliche Gesellschaft geworden ist: in welchem

Ausmaß und in welcher Weise führen die Aktivitäten der

Menschheit zu einer signifikanten Änderung des Erdklimas?

Die Antwort des Klimas auf die Industrialisierung und auf

andere menschliche Aktivitäten findet sich nicht nur in

Änderungen der mittleren Temperatur. Sie findet sich auch in

Änderungen regionaler Wettererscheinungen und im

1 . V O RW O R T

| 5

16

14

12

10

8

6

4

2

0

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

Others Flooding

Storm Earthquake

L A R G E N A T U R A L D I S A S T E R S

© M

ünch

ener

Rüc

k, E

&F/

Geo

- Feb

. 200

0

Natural scientists are not in a position to address alone such

complex and broad questions, but they can help defining appro-

priate methodologies for integrating natural-science and social-

science knowledge; they can also contribute to rules for global

stewardship of the Earth system. Ultimately, society will have to

steer the Earth towards desired goals in order to avoid undesired

outcomes of human actions. For this purpose, the scientific com-

munity will have to find the factors that determine the capacity

of the Earth system to allow a sustainable future in face of

strong social and biophysical changes. Decision-makers will

have to learn managing a dynamical system susceptible of large

trends and even abrupt changes.

Page 6: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

6 |

Wasserkreislauf, in atmosphärischen Schwingungszuständen

(wie El Niño oder der Nordatlantischen Oszillation), in der

Häufigkeit und Intensität von extremen Wetterereignissen,

mit Folgen für die Biosphäre, sozio-ökonomische Aktivitäten

und die Gesundheit.

Um diese gesellschaftlichen Themen anzugehen, reicht das

traditionelle fächerspezifische Vorgehen nicht aus. Die Erde

muss als gekoppeltes System erkannt werden, in dem physi-

kalische, chemische und biologische Prozesse wechsel-

wirken, um die planetare Umwelt zu schaffen. Globaler Wan-

del kann nicht mit einfachen Ursache-Wirkung-Paradigmen

verstanden werden. Die Folgen menschlichen Handelns ver-

zweigen sich in verschiedenen zeitlichen und räumlichen

Skalen, und die Rückkopplungen können diese Störungen

verstärken oder dämpfen. Änderungen durch die Menschen

müssen von den natürlichen Schwankungen getrennt wer-

den. Die Intensität, mit der solche Änderungen in der Zukunft

auftreten werden, sind noch immer nur unzulänglich bekannt,

trotz der Anstrengungen, die von der wissenschaftlichen

Gemeinschaft geleistet werden, die Dynamik der Erde zu ver-

stehen und die weitere Entwicklung des Erdsystems vorher-

zusagen. Kritische Schwellen (wie in der Wüstenbildung

oder der Bildung des Ozonlochs) sowie abrupte Änderungen

(typisch in nichtlinearen Systemen) könnten substantielle

Folgen für die globale Umwelt haben. Es ist daher entschei-

dend, die wichtigsten dynamischen Zustände, Telekonnektio-

nen und Rückkopplungsschleifen in der planetaren „Maschi-

nerie“ sowie charakteristische Formen und Zeitskalen der

natürlichen Varibilität zu identifizieren. Wenn diese Themen

besser verstanden werden, dann wird das der Schlüssel, mit

einer besseren Mischung aus Anpassungs- und Vermeidungs-

maßnahmen dem globalen Wandel zu begegnen.

Heute muss die Frage des Klimawandels im Wissen um die

gemeinsame Entwicklung von Natur und Gesellschaft gestellt

werden. Die Erforschung des Erdsystems wird in Deutschland

an mehreren Institutionen (z. B. Max-Planck-Institut für

Biogeochemie in Jena, Max-Planck-Institut für Chemie in

Mainz, Potsdam-Institut für Klimafolgenforschung), in Europa

und in der Welt durchgeführt. Führende wissenschaftliche

Zentren werden in flexiblen nationalen/internationalen

Exzellenz-Netzwerken zusammenarbeiten. Innerhalb dieser

Netzwerke wird das Max-Planck-Institut für Meteorologie

(MPI-M) in Hamburg seine Expertise in geophysikalischer

Analyse und Modellierung weiterentwickeln und fundamentale

Fragen angehen, einschließlich der, die von internationalen

Programmen wie dem International Geosphere-Biosphere

Programme (IGBP), dem World Climate Research Programme

(WCRP) und dem International Human Dimensions Programme

on Global Environmental Change (IHDP) gestellt werden:

• Welche Art von Natur wollen die modernen Gesellschaften?

• Was ist die Tragfähigkeit der Erde, bestimmt nach huma-

nitären Standards?

• Was sind die Gerechtigkeitsprinzipien, die dem globalen

Umweltmanagement zugrunde liegen sollten?

Naturwissenschaftler sind nicht in der Lage, diese

komplexen und umfassenden Fragen allein anzugehen, aber

sie können helfen, angemessene Methoden zu definieren,

um die Erkenntnisse der Natur- und Sozialwissenschaften

zusammenzuführen; sie können auch Regeln für einen

verantwortlichen Umgang mit dem Erdsystem beisteuern.

Schließlich wird jedoch die Gesellschaft insgesamt über die

gewünschten Ziele entscheiden, um unerwünschte Folgen

menschlichen Handelns zu vermeiden. Aus diesem Grunde

muss die Gemeinschaft der Wissenschaftler die Faktoren

finden, die die Kapazität des Erdsystems bestimmen, um eine

nachhaltige Zukunft angesichts starker sozialer und bio-

physikalischer Veränderungen zu erlauben. Entscheidungs-

träger werden lernen müssen, mit einem dynamischen

System umzugehen, das sich langfristig und sogar abrupt

ändern kann.

Clouds

Precipitation

Net solar(short wave radiation)

Wind

Lakes and rivers Land surface

processes

Runoff

Human activities

Snow and ice

Volcanicgases andparticles

Currents

Sea-ice

Net terrestrial(long wave radiation)

Ice-oceaninteractions

Air-iceinteractions

Air-oceaninteractions

OCE

AN

ATM

OSH

ERE

SPA

CE

Page 7: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

The Max Planck Institute for

Meteorology will contribute

to international efforts to

find the predictable portion

of climate.

>> I N H A L T

Page 8: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

Modelling (ENES), which is developing community-oriented

software and common platforms for model integration and

data analysis. In the future, special attention will be given

to the development of advanced numerical algorithms

applied to fluid dynamics equations and system analysis.

New dynamical cores for atmosphere and ocean models on

adapted grids as well as scale-dependent parameterizations

will be developed. Issues related to regional downscaling,

model adaptation to different computer architecture,

advanced data handling, etc. will also be addressed. These

questions call for increased cooperation with applied

mathematicians and software engineers.

High-end Earth system modelling depends on improved

observations as well as on an advanced technical infra-

structure. Although MPI-M is putting a large emphasis on

8 |

The overall mission of the Max Planck Institute for Meteo-

rology is to understand how physical, chemical, and bio-

logical processes, as well as human behaviour contribute

to the dynamics of the Earth system, and specifically how

they relate to global and regional climate changes.

The objectives of the Institute are therefore to undertake

an analysis of the Earth’s composition and dynamics, focus-

ing on the interactive physical, chemical and biological

processes that define Earth system dynamics, and more

specifically to develop and use the appropriate tools to

investigate the complexity of the Earth system, explain its

natural variability, assess how the system is affected by

changes in land-use, industrial development, urbanization,

and other human-induced perturbations. Among these tools

are advanced numerical models that simulate the behav-

iour of the atmosphere, the ocean, the cryosphere and the

biosphere, and the interactions between these different

components of the Earth system. Climate models devel-

oped by the Institute in the last decade will be expanded to

capture biogeochemical and probably human processes and

become comprehensive Earth System Models (ESM). The

MPI-M is committed to develop a comprehensive Earth Sys-

tem Model and make it available to a broad scientific com-

munity in Europe and elsewhere.

In order to reinforce the position of MPI-M in an interna-

tional Earth System Science partnership, a number of intri-

cate issues focusing on scientific computing and software

engineering will have to be tackled. MPI-M already plays

a central role in the European Network for Earth System

8 |

2 . M I S S I O N , O B J E C T I V E S A N D VA L U E S

Atmosheric Physics/Dynamics

Physical Climate System :WCRP

Tropospheric Chemistry

Biogeochemical Systems : IGBP

OceanDynamics

Terrestrial Energy/Moisture

Soil

Water

Climate Change

MarineBiogeochemistry

Global Moisture

TerrestrialEcosystems

Exte

rnal

For

cing

Stra

tosp

heri

cCh

emis

try/

Dyn

amic

s

Pollutants/Greenhouse Gases

HumanActivities :IHDP

Volc

anoe

s

GreenhouseGases

Sun

Land Use

T O W A R D S A N E A R T H S Y T E M M O D E L

Page 9: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

| 9

model development and use, it recognizes the importance

of in-situ observations and remote sensing as a key for

improving model formulation and model evaluation. The

Institute is therefore also developing sensors and its own

observational projects with a focus on atmospheric

processes. It also collaborates with other institutions,

including space agencies, involved in Earth observations.

A major challenge for the climate research community,

including MPI-M, will be to develop systematic methods

to integrate information provided by observers and mod-

ellers. Major areas for interactions include (1) the evalu-

ation of model results against observations following a

validation strategy developed together by observers and

modellers; (2) the development of parameterizations of

physical processes at different scales; and (3) the joint

analysis and interpretation of results towards a better

understanding of Earth system processes.

Climate research programmes often emphasize the need for

better understanding the complex processes that govern the

Earth system (modelling for understanding). With the

progress made in the last years, including the development

of modelling and of observational capabilities, climate

anomaly predictions on timescales ranging from weeks or

a season to even years became possible (modelling for

societal benefit). MPI-M will contribute to international

efforts to find the predictable portion of climate. In this

regard, models could be used to assess the consequences

of geo-engineering actions proposed to mitigate human-

driven perturbations in the Earth system.

The success of the endeavour at MPI-M requires the

implementation of an ambitious and broad programme

involving the long-term support of scientific and technical

staff committed to play a leadership role, the availability

of an advanced research infrastructure including a large

supercomputing facility, the integration of research

efforts into educational/outreach initiatives, and the

achievement of high scientific productivity. It also

requires a further development of the human capital pre-

sent in the Institute, a broadening of the traditional

approaches towards integrative and interdisciplinary

methodologies, an improvement of internal and external

communication, also through the use of the most modern

information technologies. MPI-M is committed to enhance

the diversity of its staff, to increase the proportion of

women, and facilitate the access of parents to infrastruc-

ture for child support.

MPI-M’s role will be to integrate scientific information

originating from different disciplines and to develop new

knowledge of societal relevance through synthesis. To be

successful, this approach will have to recognize the need

for a multitude of intellectual ways of thinking and scientific

methodologies (observations, modelling, data analysis),

the presence of a staff team with different disciplinary

backgrounds, the role of local, national and international

cooperation and partnerships with other academic institutions

and with the private sector, the importance of commu-

nication, the link between research and education, and

the need for information of decision-makers and of the

public.

• Extension of physical climate models towards comprehen-sive Earth system models.

• Development of a new dynamical core for a global non-hydro-static atmospheric and oceanic model component.

• Quantification of energy, water and carbon partitioning at theland surface, jointly with MPI for Biogeochemistry in Jena,Germany.

• Study of the energetics, dynamics and chemistry of themesopause region and influences of upper atmosphere vari-ability on lower atmosphere processes.

• Development of chemical transport model components,analysis of field campaigns, quantification of global chemi-cal budgets using space observations, prediction of chemicalweather and longer-term variability.

• Assessment of the role of dynamical modes in climatechange.

• Investigation of the glacial-interglacial transitions.• Integrated study of the fate of persistent organic pollutants in

the Earth system.• Modelling of scale interactions and vertical layering.

E X A M P L E S O F N E W T H E M E S A T T H E M P I - M

Page 10: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

Das zentrale Ziel des Max-Planck-Instituts für Meteorolo-

gie ist es, zu verstehen, wie physikalische, chemische

und biologische Prozesse sowie menschliches Ver-

halten zur Dynamik des Erdsystems, und insbesondere

wie sie zu globalen und regionalen Klimaänderungen

beitragen.

Die Teilziele des Instituts sind daher, die Zusammensetzung

der Erde und ihrer Dynamik zu analysieren, mit Schwerpunkt

bei den interaktiven physikalischen, chemischen und biolo-

gischen Prozessen, die die Dynamik des Erdsystems bestim-

men. Insbesondere sollen angemessene Werkzeuge ent-

wickelt und benutzt werden, um die Komplexität des Erd-

systems zu untersuchen, seine natürliche Variabilität zu

erklären, und abzuschätzen, wie das System durch Land-

nutzungsänderungen, industrielle Entwicklung, Verstädte-

rung und andere anthropogene Störungen beeinflusst wird.

Solche Werkzeuge sind insbesondere fortgeschrittene nu-

merische Modelle, die das Verhalten der Atmosphäre, des

Ozeans, der Kryosphäre und der Biosphäre sowie die

Wechselwirkungen zwischen diesen verschiedenen Kompo-

nenten des Erdsystems nachbilden. Die im vergangenen

Jahrzehnt am Institut entwickelten Klimamodelle werden

um die biogeochemischen und wahrscheinlich auch die

sozialen Prozesse zu umfassenden Erdsystemmodellen (ESM)

erweitert. Das MPI-M hat sich verpflichtet, ein umfassendes

Erdsystemmodell zu entwickeln und es der breiten wissen-

schaftlichen Gemeinschaft in Europa und anderswo zur

Verfügung zu stellen.

Um die Position des MPI-M in einer internationalen Part-

nerschaft der Erdsystemwissenschaften zu stärken, sind

einige komplizierte Probleme im Bereich wissenschaftliches

Rechnen und Softwareentwicklung in Angriff zu nehmen. Das

MPI-M spielt schon jetzt eine zentrale Rolle im „European

Network for Earth System Modelling (ENES)“, welches Soft-

ware und gemeinsame Plattformen zur Modelleingliederung

und Datenanalyse entwickelt. In der Zukunft wird besondere

Aufmerksamkeit auf die Entwicklung von fortgeschrittenen

numerischen Algorithmen für die Gleichungen der Strömungs-

dynamik sowie die Systemanalyse gelegt. Neue dynamische

Kerne auf angepassten Gittern für die Modelle der

Atmosphäre und des Ozeans sowie skalenabhängige Parame-

terisierungen werden entwickelt. Auch Fragen zur regionalen

Feinauflösung, zur Modellanpassung an verschiedene Rech-

nerarchitekturen und zum fortschrittlichen Umgang mit Daten

sind dabei zu untersuchen. Diese Fragestellungen bedürfen

einer wachsenden Zusammenarbeit mit angewandten

Mathematikern und Softwareingenieuren.

10 |

2 . S E L B S T V E R S T Ä N D N I S , Z I E L E U N D N U T Z E N

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 [°C]

A V E R A G E D O V E R A L L I P C C M O D E L S : T E M P E R A T U R E C H A N G E F O R 2 0 7 0

I P C C S R E S S C E N A R I O S A 2 ( L E F T ) A N D B 2 ( R I G H T )

Sour

ce: I

PCC

2001

| Gr

afic

:DKR

Z

Page 11: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

| 11

Anspruchsvolle Erdsystemmodellierung ist sowohl von ver-

besserten Beobachtungen als auch von einer fortschritt-

lichen technischen Infrastruktur abhängig. Obwohl das

MPI-M ein großes Gewicht auf die Modellentwicklung und

-nutzung legt, so ist ihm doch die Wichtigkeit von in situ

Beobachtungen und Fernerkundung als einem Schlüssel für

die Verbesserung der Modellierung und der Modellevaluie-

rung bewusst. Das Institut entwickelt daher auch neue

Sensoren und gestaltet eigene Feldexperimente mit

Schwerpunkt bei den atmosphärischen Prozessen. Es

arbeitet auch mit anderen Institutionen zusammen, die in

Erdbeobachtungen involviert sind, einschließlich Raum-

fahrtbehörden. Eine der großen Herausforderungen für die

Klimaforschung, das MPI-M eingeschlossen, wird sein, die

Methoden zur systematischen Kombination von Beobach-

tungen und Modellen zu verbessern. Hauptgebiete für eine

Zusammenarbeit umfassen (1) die Evaluierung von

Modellergebnissen mittels Beobachtungen mit einer

Strategie, die gemeinsam von Beobachtenden und

Modellierenden entwickelt wurde; (2) die Entwicklung von

skalenabhängigen Parameterisierungen physikalischer

Prozesse; und (3) die gemeinsame Analyse und Interpreta-

tion von Ergebnissen für ein besseres Verständnis der

Erdsystemprozesse.

Klimaforschungsprogramme betonen oft die Notwendigkeit

von besserem Verständnis der komplexen Prozesse, die das

Erdsystem steuern (Modellierung für Verständnis). Mit dem

Fortschritt der letzten Jahre, einschließlich desjenigen bei

Modellierung und Beobachtung, sind Vorhersagen von Klima-

anomalien auf Zeitskalen von Wochen oder einer Jahres-

zeit bis sogar zu Jahren möglich geworden (Modellierung

zum Wohl der Gesellschaft). Das MPI-M wird zu den inter-

nationalen Anstrengungen beitragen, das Vorhersagbare

im Klimageschehen zu finden. Daher könnten die Modelle

auch genutzt werden, um die Folgen vorgeschlagener

Ingenieurslösungen zur Milderung unserer Eingriffe in das

Erdsystem abzuschätzen.

Für den Erfolg der Forschungsvision des MPI-M ist ein am-

bitioniertes und breites Programm nötig. Dieses braucht

die kontinuierliche Unterstützung der wissenschaftlichen

und technischen Mitarbeiter, die bereit sind, eine Führungs-

rolle zu spielen. Es wird aber auch eine leistungsfähige

Forschungsinfrastruktur einschließlich eines großen Super-

computers, die Integration der Forschung in Lehre und

Öffentlichkeitsarbeit sowie das Erreichen hoher wissen-

schaftlicher Produktivität gebraucht. Das Programm erfor-

dert außerdem eine Fortentwicklung des Personals, eine

Ausweitung der traditionellen Herangehensweisen hin zu

integrativen und interdisziplinären Methoden und eine

Verbesserung der internen und externen Kommunikation,

auch durch den Gebrauch der modernsten Informations-

technologien. Das MPI-M verpflichtet sich, die Vielseitig-

keit seiner Mitarbeiter weiter zu erhöhen, den Anteil von

Frauen zu vergrößern und Eltern die Möglichkeit von

Kinderbetreuung zu geben.

Die Aufgabe des MPI-M wird sein, wissenschaftliche Infor-

mation aus verschiedenen Disziplinen zu integrieren und

neue Kenntnisse von gesellschaftlicher Relevanz durch

Synthese zu entwickeln. Um dabei erfolgreich zu sein,

braucht es vielfältige intellektuelle Denkweisen und

wissenschaftliche Methoden (Beobachtungen, Modellie-

rung, Datenanalyse), und einen Mitarbeiterstab aus unter-

schiedlichen Wissensgebieten. Weiterhin sind lokale,

nationale und internationale Kooperationen und Partner-

schaften mit anderen akademischen Institutionen und dem

privaten Sektor gefragt ebenso wie ein hoher Stellenwert

der Kommunikation, der Verbindung zwischen Forschung

und Lehre und der Information von Entscheidungsträgern

und Öffentlichkeit.

Page 12: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

12 |

• Will the fraction of anthropogenic carbon removed from

the atmosphere grow or shrink in the 21st century?

• What is the role of biospheric feedbacks for the evolution

of atmospheric carbon dioxide content, and how will this

role evolve in a world with massive land-use changes?

• What physical/chemical/biological mechanism(s) stabi-

lize the greenhouse effect of the atmosphere in the long

term?

• What are the feedbacks between the atmospheric chem-

ical composition and the climate system?

• How can we define objective measures to assess model

performance?

• Is the Earth system manageable at all in terms of long

term “climate steering”?

Concrete actions will be developed by the Institute to

address specific aspects of these overarching questions.

The overarching scientific objectives of the Institute will be

best addressed by answering some specific, yet broad ques-

tions, such as:

• Which physical mechanisms lead to climate variability on

timescales up to decades?

• Does the El Niño/Southern Oscillation (ENSO) vary on

centennial timescales, and is it affected by anthro-

pogenic factors?

• Are we approaching a bifurcation in the climate system?

Could we experience an abrupt climate change?

Die umfassenden wissenschaftlichen Ziele des Instituts

werden am besten durch die Beantwortung einiger speziel-

ler, jedoch breitgefasster Fragen verdeutlicht, wie:

• Welche physikalischen Mechanismen führen zur Klima-

variabilität auf Zeitskalen bis zu Jahrzehnten?

• Variiert das El Niño/Southern Oscillation (ENSO) Phäno-

men auf einer Zeitskala von Jahrhunderten und wird es

durch die Menschheit schon beeinflusst?

• Nähern wir uns einer Verzweigung im Klimasystem mit

einem abrupten Klimawandel?

• Wird der Anteil anthropogenen Kohlenstoffs, der bisher

aus der Atmosphäre entfernt wird, im 21. Jahrhundert

wachsen oder schrumpfen?

• Welche Rolle spielen die biosphärischen Rückkopplungen

für die Entwicklung des atmosphärischen Kohlendioxidge-

halts, und wie werden sie sich in einer Welt mit massiven

Landnutzungsänderungen entwickeln?

• Welche physikalischen/chemischen/biologischen Mecha-

nismen stabilisieren für lange Zeitskalen den Treibhaus-

effekt der Atmosphäre?

• Welche Rückkopplungen gibt es zwischen der chemischen

Zusammensetzung der Atmosphäre und dem Klimasystem?

• Wie können wir objektive Kriterien zur Bewertung von

Modellen definieren?

• Ist das Erdsystem überhaupt im Sinne von langfristiger

„Klimasteuerung“ lenkbar?

Konkrete Aktivitäten des Instituts sind notwendig, um

spezielle Aspekte dieser übergreifenden Fragen zu beant-

worten.

3 . K E Y S C I E N T I F I C Q U E S T I O N S

3 . Z E N T R A L E W I S S E N S C H A F T L I C H E F R A G E N

>> I N H A L T

Page 13: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

MPI-M's role will be to inte-

grate scientific information

originating from different dis-

ciplines and to develop new

knowledge of societal rele-

vance through synthesis.

>> I N H A L T

Page 14: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

The MPI-M is developing its

research strategy around five

major foci: the understanding of

atmospheric processes, the inves-

tigation of key interactions between

biogeochemical and physical

processes at different scales, the

simulation of past, present and

future climate, the assessment of

the impacts of global and region-

al changes, and the integration of

knowledge into comprehensive

Earth system models.

>> I N H A L T

Page 15: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

The Max Planck Institute for Meteorology is developing its

research strategy around 5 major foci: (1) the understanding

of atmospheric processes; (2) the investigation of key inter-

actions between biogeochemical and physical processes at

different scales; (3) the simulation of past, present and

future climate; (4) the assessment of the impacts of global

and regional changes, and (5) the integration of knowledge

into comprehensive Earth system models.

4 . 1 . O B S E R V I N G A N D M O D E L L I N G A T M O S -P H E R I C P R O C E S S E S The quality of climate models depends directly on the quality

of the representation of physical processes, many of which are

not explicitly resolved, but play a key role in the Earth system.

Parameterizations of processes such as convection, boundary

layer physics, cloud formation, precipitation, radiative transfer,

etc. rely on detailed observational as well as high resolution

modelling studies. Existing data sets and observation systems

generally have deficiencies in at least one of the key require-

ments: accuracy, resolution, or 4-dimensional coverage. To

improve this situation new analysis methods and instruments

are necessary. The instrument development at the MPI-M con-

centrates on ground-based profiling of key parameters such as

temperature, water vapour, wind, aerosol, clouds, precipita-

tion and selected trace gases. These instruments are applied

in field measurements and the results are used together with

data from space platforms, research aircraft and Large Eddy

Simulation (LES) modelling to improve the formulation of key

processes in climate models. MPI-M will work with partners in

Germany to secure the acquisition of a High Altitude Long-

Range aircraft (HALO). Such aircraft will be a key facility to

study climate-related processes, especially in the region of the

tropopause. Another great opportunity is provided by new

spaceborne instrumentation, and specifically by the ENVISAT

sensors. MPI-M will collaborate with other groups and partic-

ipate in field campaigns to integrate data provided by different

sensors, using its most advanced models.

MPI-M recognizes the need for instrumentalists, data ana-

lysts and modellers to work closely together from the begin-

ning of the design of field experiments. In most cases, future

MPI-M projects will therefore be planned as joint initiatives

with staff from several departments.

4.1.1 Passive Remote Sensing of the AtmosphereLong-term observations of the atmosphere using ground-based

or space-borne instrumentation will provide information required

to improve the parameterization of radiative transfer in climate

models. MPI-M will continue to evaluate satellite data, specifi-

cally the “Hamburg Ocean Atmosphere Parameters and Fluxes

from Satellites Data Set (HOAPS)” that provides information on

energy and moisture exchange between the sea surface and the

atmosphere. Surface based work will be centred around the

4 . S T R AT E G Y

| 15

Water vapour is one of the most importantconstituents of the atmosphere playing akey role in most physical and many chem-ical atmospheric processes. It is the mostimportant greenhouse gas, has a strongindirect impact on the radiation balancethrough cloud formation at a broad rangeof altitudes, fuels convective processesbecause of the large latent heat release atcondensation and sublimation, and is thekey component of the atmospheric part ofthe water cycle. Although observations ofthe water vapour distribution are urgentlyneeded, current observation systems do

not meet the requirements with respect toaccuracy, resolution, and coverage. Thisis particularly true for data on the verticalhumidity distribution.Laser remote sensing methods usingeither the differential absorption (DIAL) orthe Raman lidar technique are mostpromising to obtain the necessary infor-mation about the vertical distribution ofwater vapour with good spatial and tem-poral resolution. While Raman lidar pro-vides excellent results during night time, itis the DIAL technique that is adequate fordaytime measurements. The lidar group of

the MPI-M has developed prototypeinstruments and characterized them inseveral intercomparison campaigns. Forboundary layer studies a resolution of 60 min the vertical and 10 s in time has beenachieved with a relative error of less thana few percent. This is very useful for stud-ies of convective processes. In combina-tion with RASS measurements of the verti-cal wind field, the technique has beenapplied for measuring profiles of the latentheat flux. Water vapour measurementshave been performed up to about 5 km alti-tude with an accuracy of better than 10%.

V E R T I C A L D I S T R I B U T I O N O F W A T E R V A P O U R

Snow melt

Humidity

Friction Sensible heatflux

Groundtemperature Snow Ground

humidity

Radiation Cumulusconvection

Adiabaticprocesses

StratiformprecipitationDiffusion

Winds

Groundroughness

Temperature

Evaporation

>> I N H A L T

Page 16: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

16 |

ECHAM, and replace them by better physical formulations. In

the future, chemistry will be included into the LES model to

study how atmospheric boundary layer characteristics and

processes influence chemical reactions. The formulation of

radiative transfer in clouds will also be improved by applying

LES modelling.

Ocean Atmosphere Sounding Interferometer System (OASIS)

that yields well calibrated moderate resolution sky spectra for

the retrieval of various atmospheric components (e.g., temper-

ature and water vapour profiles, trace gases and aerosols).

4.1.2 Lidar Observations of Atmospheric ParametersLidar techniques provide a powerful way to measure the vertical

profiles of key parameters in the atmosphere. MPI-M has devel-

oped unique methodologies and instrumentation to measure

water vapour, ozone, aerosols and winds using laser remote

sensing. This instrumentation is being used in support of field

campaigns and forms the basis for a European Lidar Network

(EARLINET), which will produce for the first time a comprehen-

sive data set describing the vertical distribution of aerosols on a

continental scale. EARLINET operation will continue in the

future to achieve a sufficiently broad statistical basis, to include

new stations, and to optimize network operations. The Lidar

group within MPI-M will also support the establishment of a

water vapour reference station at Lindenberg Observatory of the

German Weather Service (DWD), Offenbach, Germany. Techno-

logical developments will focus on the next generation of water

vapour DIAL and the completion of a Doppler-DIAL. This data set

will be particularly useful to evaluate aerosol models developed

and used at MPI-M and elsewhere.

4.1.3 Ground-based Remote Sensing with RadarRadar technology will be used to study the dynamic processes

of the lower atmosphere, and specifically to measure the

fluxes of energy, momentum and atmospheric constituents

(in combination with Lidar), and to study the structure of

the atmospheric boundary layer. Long-term observations of

vertical wind and turbulence profiles have shown the pres-

ence of dynamic features in the boundary layer, which call

for improved parameterizations in atmospheric models. Clouds

and precipitation will also be investigated with the purpose

of better characterizing cloud microphysics and cloud bound-

aries, and to improve the difficult measurement of precipita-

tion. Progress in the coming years will come from synergetic

observations using combined systems. A cloud-radar will be

adapted and installed on the HALO aircraft and used in

support of field campaigns dealing with the hydrological

cycle and with cloud physics and chemistry.

4.1.4 Cloud ParameterizationsA major difficulty for climate modellers is to accurately

account for the effects of clouds, and specifically of stratocu-

mulus clouds in the Earths boundary layer on radiative fields.

An important objective of MPI-M is therefore to advance our

understanding of the physical processes that determine the

thermal and dynamical state of the cloud topped boundary

layer, and to evaluate and improve methods of representing

shallow cloud systems in global climate models. MPI-M has

developed a Large Eddy Simulation (LES) model, and will per-

form large eddy simulations in order to identify deficiencies

in cloud parameterizations used in global models such as

A E R O S O L L I D A R M E A S U R E M E N T S

S I M U L A T I O N M E A S U R E M E N T S with Micro Rain Radar (MRR) and Weather Radar

Saharan dust event over Hamburg, June 17, 2002 The EARLINET Network

time/minutes

d/dR ln(Pr2), � = 1064 nm, starting time 2002/06/17 12:43 UT, Hamburg City

attit

ude/

m

d/dR

In(P

r2 )

Latti

tude

, deg

Weather radar reflectivity derived fromMRR Doppler spectra versus measuredWeather radar reflectivity.

The actual drop size distribution obtained withthe MRR provides the pertinent Z_R-relationfor the weather radar.Weather radar data, measured aloft, can belinked to the surface using the MRR-profiles.

50

40

30

20

10

0

10

20

20 10 0 10 20 30 40 50

Zingst 20000710, 20000714MRR beam

Weather Radar51.48 km

MRR2 Antenna

Weather radar beams

900m

900m

900m

J. B

ösen

berg

and

co-

wor

kers

G. P

eter

s

70

60

50

40

0

20

5980

5382

4784

4186

3588

2990

2392

1794

1196

598

2.42.22.01.81.61.41.21.00.80.60.40.20.0

-0.2-0.4-0.6-0.8-1.0-1.2-1.4-1.6-1.8-2.0-2.2-2.4

60°

50°

40°

30°

-30 -20 -10 0 10 20 30Longitude, deg0 96 192 288 384 480

350° 0° 10° 20° 30° 40°

Page 17: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

| 17

4 . 2 . I N V E S T I G AT I N G T H E I N T E R A C T I O N SB E T W E E N T H E B I O G E O C H E M I C A L A N D P H Y S I -C A L P R O C E S S E S I N T H E E A R T H S Y S T E MIn the last years, MPI-M has recognized the need to broaden

its research objectives and include (beyond questions focus-

ing on the physical climate system) issues involving biogeo-

chemical cycles and their interactions with other aspects of

the Earth system.

4.2.1 Middle and Upper Atmosphere Dynamics, Chem-istry and EnergeticsA large emphasis will be put on the role of the stratosphere

and the mesosphere in the climate system. Such studies

will use the middle atmosphere version of ECHAM-5, which

includes a representation of chemical and microphysical

processes. This model will be used to investigate the role of

the quasi-biennial oscillation on the mean circulation, on

extratropical interannual variability, on trace gas concentra-

tions, on tropospheric convection, and on mesospheric vari-

ability. Other sources of variability will be considered

including tides and gravity waves. The issue of ozone recovery

in a changing climate with a different underlying chemical

composition and aerosol load will also be addressed.

Another important aspect to be considered is the coupling

between dynamics, chemistry and energetics in the middle and

upper atmosphere. Such studies require the use of a coupled

model that accounts for all these interactions. An extension of

ECHAM-5 to the lower thermosphere (250 km), called HAM-

MONIA, will be used to quantify the energy budget in the

region of the mesopause, to assess the impact of extraterres-

trial and human (CO2 or CH4 emissions) perturbations on the

thermal structure and the dynamics of the upper atmosphere.

One important goal is to determine, which role the middle and

upper atmosphere play in determining the response of the

climate system to external perturbations.

In order to better quantify the role of the stratosphere in the

evolution of the Earths climate, MPI-M will conduct studies to

highlight, how changes in natural modes of variability, such as

the Northern Annular Mode (NAM), affect tropospheric climate.

4.2.2 Atmospheric AerosolsAerosol particles also affect the climate system: they modify

the atmospheric fields of solar radiation, influence the forma-

tion of cloud droplets and ice crystals, change the optical and

physical properties of clouds, and hence modify the hydrolog-

ical cycle. Aerosols also fertilize the marine and terrestrial

biosphere, and carry toxic substances such as the persistent

organic pollutants. Their presence in polluted areas may

cause health problems. MPI-M, in cooperation with the Euro-

pean Commission's Joint Research Centre, Ispra, Italy, will

include in ECHAM-5 a detailed size-resolving aerosol model

(describing external, insoluble and internal, soluble aerosol

modes) that accounts for microphysical processes including

nucleation, condensation, and coagulation. The impact of

anthropogenic aerosols on climate (specifically on the surface

temperature, evaporation and precipitation) and on atmos-

pheric chemistry will be assessed.

In addition interactions between aerosols, trace gases, the

water and energy cycle will be addressed at the regional

scale. Examples of regional studies are the impact of Arctic

pollution and biomass burning in tropical areas on the dynamics

and radiative forcing. This will include sensitivity studies of

these effects on the global circulation. MPI-M will also continue

to use data from existing and future satellites to investigate

aerosol-climate interactions (indirect aerosol effects).

Furthermore the sources and sinks of sulfate aerosol in the

upper troposphere and lower stratosphere will be studied

and a chemistry-microphysics-climate model will be used to

assess the impacts of aerosols on stratospheric dynamics

and chemistry (ozone), on polar stratospheric clouds, on cirrus,

as well as on tropospheric climate. The response of the

atmosphere including changes in synoptic and large-scale

patterns due to past volcanic eruptions will also be

assessed. To quantify the impacts and specifically the

Aerosol pollution over Northern India and Bangladesh

©N

ASA,

Vis

ible

Ear

th, 2

001

Page 18: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

18 |

fraction of volcanic material that penetrates into the

stratosphere, a high-resolution model (e.g., ATHAM) will

be used, which describes the behaviour of gas and par-

ticles in high-energy plumes. The relative importance of

dynamics, cloud microphysics, particle aggregation and

gas scavenging in convective regions is accounted for by

this type of model.

4.2.3 Tropospheric Chemistry and ClimateChemical trace species play an important role in climate

change through their radiative properties and through their

ability to affect the “oxidation power” of the atmosphere,

i.e., the ability of the atmosphere to clean itself from pol-

lutants. MPI-M will analyze the trends and short-term to

decadal variability of tropospheric trace gas concentra-

tions, and quantify the factors contributing to this variabil-

ity. The ultimate goal of the studies at MPI-M is to under-

stand and quantify the importance of the feedbacks

between the climate system and the atmospheric chemical

composition.

Activities at MPI-M will focus on the development and

application of complex 3-dimensional models (e.g.,

MOZART and ECHAM-5 with coupled chemistry) to better

understand the formation and fate of chemical con-

stituents, and to better quantify their global and regional

budgets. The dominant factors controlling the chemical

composition of the troposphere are the transport process-

es (long-range horizontal and vertical advection, boundary

layer diffusion, convection, etc.), emission and deposition

processes, and photochemical transformations. With the

increasing capabilities of the global Earth observing sys-

tem, detailed and high-quality meteorological fields for

driving these models will become available. We will take

advantage of these developments by designing new and

improved parameterizations of physical and chemical

processes. For the quantification of surface emission and

deposition fluxes, the models require the inclusion of

feedbacks between the atmosphere and the terrestrial

and oceanic biosphere, and they need to consider socio-

economic changes. Emission and deposition models will

AlertPt. BarrowNiwot RidgeCape KumukahiMauna LoaAm. SamoaCape GrimSouth Pole

Aerosols play an important role in the Earthsystem because they affect human health,ecosystems, the composition of the atmos-phere including the ozone layer, weather,and climate. The impact of aerosols on cli-mate has been identified as one of the mostuncertain contributions to the climatechange issue. In spite of their importance,reliable and comprehensive data on thedistribution of aerosols, in particular in thevertical, are virtually nonexistent.In order to fill this gap a project has beenimplemented to perform systematic, coor-dinated, and quality controlled measure-

ments of the vertical distribution ofaerosols over Europe, using a network ofpresently 22 lidar stations. The sites havebeen selected for good coverage of differ-ent environments in Europe, for existenceof experienced lidar groups, and foravailability of advanced lidar instrumen-tation providing quantitative measure-ments of aerosol optical parameters.By routine operation as well as dedicatedspecial studies, a data set is collectedthat begins to form, for the first time, acomprehensive climatology of the aerosoldistribution on a continental scale. These

data will be used to quantify radiativeproperties of the aerosol on a statisticalbase, including their impact on UV radia-tion. The data will provide the basis forvalidating and improving numerical mod-els describing the evolution of aerosolproperties and their impact on climate.They will also provide ground truth andauxiliary data for several satellite mis-sions, including future lidar missions inspace. The data will also be used to iden-tify main sources and sinks for aerosols,as well as transport paths including long-range transport.

Changes in Trace Gas Concentrations –The Chlorofluorocarbons (CFC’s)

The ”Ozone Hole“ over Antarctica –The vertical structure of the ”Ozone Hole“

E S T A B L I S H I N G A E U R O P E A N A E R O S O L R E S E A R C H L I D A R N E T W O R K ( E A R L I N E T )

CFC-12

PPT

PPT

Alti

tude

(km

)

CFC-11

CH3CCl3

CCl4

CFC-113

500

400

300

200

160

140

120

100

80

35

30

25

20

15

10

5

0

1978 1982 1986 1990 1994 1998

0 5 10 15 20Ozone Partial Pressure (mPa)

29 July 1998: 254 DU8 October 1997: 112 DU3 October 1998: 98 DU

October Average 1967–1971: 282 DU

Page 19: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

| 19

be developed and included in the Earth system model, with

special attention to biomass burning and natural biogenic

emissions.

Evaluation of these models will be performed primarily

through comparisons with observations from ground sta-

tions, aircraft measurements, and satellite data. Observa-

tions from different sources will be integrated to constrain

emissions and derive the global distribution and budgets of

key tropospheric compounds. Chemical transport models

will contribute significantly to the interpretation of mea-

surements made from space (e. g., ENVISAT) and during

large field campaigns by simulating as realistically as pos-

sible the evolution of the atmospheric composition during

specific episodes. A system aimed at predicting the global

“chemical weather” over a few days will be developed in

collaboration with meteorological services (including the

European Centre for Medium Range Weather Forecasts

(ECMWF), Reading, UK). The Institute will play a pivotal role

in defining the observations and assimilation techniques to

be used in the forecast system.

4.2.4 Multicompartmental and Slowly DegradingOrganic SubstancesSubstances that are slowly degrading and that are bio-accu-

mulative constitute a major threat for human health and for

the ecosystems. Many of these migrate between different

compartments of the Earth system. In addition, there is also a

fundamental science motivation to study the environmental

fate of substances that cycle between the different media.

Detailed environmental exposure models of multi-compart-

mental organic substances will be developed, based on

global circulation models (atmosphere and ocean) existing at

MPI-M. These models are suitable to essentially contribute to

risk assessments. MPI-M aims for integrated studies, i.e., those

including exposure and ecotoxic and human health effects, in

cooperation with other institutions of the Centre for Marine

and Atmospheric Sciences (ZMAW), Hamburg, Germany.

4.2.5 Interactions of the Carbon Cycle and Biologi-cally Relevant Elements (e.g. Nitrogen and Sulphur)Physical processes in the Earth system are often affected by

biology. MPI-M will focus on several questions related to the

direct and indirect interactions of the climate-biosphere sys-

tem with specific attention on the cycling of carbon, nitrogen

and other elements that are strongly interdependent. Direct

effects include for example albedo (e.g. the solar penetration

into the ocean or solar absorption by vegetation), surface-

atmosphere coupling (via sensible and latent heat fluxes and

the hydrological budget over terrestrial vegetation). Indirect

effects are provided by modifications of the size of the carbon

pools, which are mirrored by the atmospheric CO2 content.

The determination of the geographical and temporal patterns

of carbon sources and sinks requires essentially the simul-

taneous treatment of the three subsystems (land, ocean,

atmosphere), and of the human modifications.

The release in the atmosphere of industri-ally manufactured halocarbons has led tothe formation of the springtime ozonehole over in the Antarctic. Since theatmospheric lifetime of these chlorine-containing organic compounds is of theorder of several decades to more than acentury, it is expected that the ozone holewill remain present in September-November until at least 2040 – 2050. At

that time, the level of reactive chlorineshould have decreased below the “pre-ozone hole” values. One major uncertaintyremains, however, in this prediction:what will be the effect of the expectedstratospheric cooling that should occurin response to increasing concentrationsof CO2 and other greenhouse gases?Lower temperatures in the lower strato-sphere may enhance the probability of

formation of polar stratospheric cloudsespecially in the northern hemisphere,and hence lead to more intense activa-tion of ozone-depleting anthropogenicchlorine. The development of coupledmodels accounting for stratosphericchemistry, microphysics, radiative trans-fer and atmospheric dynamics is a majorchallenge that will be addressed byMPI-M.

S T R A T O S P H E R I C O Z O N E R E C O V E R Y

MOZART 2 simulation of the forest fires in Sydney December 2001+(T85L47, ECMWF meteorology)

MOZART near surface CO enhancement 09 Jan 2002

Fires and smoke 01 Jan 2002 AVHRR image 09 Jan 2002

Page 20: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

20 |

The approach will involve primarily the development of elab-

orated models; these models will be used to identify key

atmosphere-biosphere processes in the ocean and on land

and to predict the future evolution of the system. Emphasis

will also be given to the interpretation of observational evi-

dence, specifically of satellite data. This will also require

the set-up of a small group to apply dynamic vegetation

models in close collaboration with the groups developing

these models (e.g. MPI for Biogeochemistry, Jena, Germany).

The final objective is to perform climate and Earth system

predictions through a model that includes a fully coupled

representation of biogeochemical cycles.

4.3. SIMULATING PAST, PRESENT AND FUTURE CLIMATE The Earth’s climate is currently operating in a non-analogue

state, and will probably continue to do so for many decades.

Thus, predictions of the future evolution of the climate

system cannot entirely rely on information from the past, but

must involve modelling. Creating virtual copies of the

climate system and exposing it to all kinds of imaginable

perturbations is an extremely challenging task since it must

be established that these virtual copies are realistic. Current

climate models capture a large number of physical features,

but still require a lot of improvements in their formulation,

specifically in the representation of unresolved processes.

Areas of uncertainties include the persistent errors in cloud

simulations, sea surface temperatures, in the formulation of

convective and boundary layer processes, in the formulation

of aerosol/cloud interactions, in the difficulties of initializ-

ing coupled models, etc. Better methodologies will have to

be defined to quantify uncertainties in climate predictions

and scenarios, probably through the exploration of ensem-

bles of climate simulations, and the identification of climate

regimes including fast non-linear transitions between them.

MPI-M will directly contribute to the scientific objectives of

the WCRP/CLIVAR Study, which attempts to understand how

the Earth’s climate system works, to document its variability,

to detect and attribute human influences and eventually to

determine to what extent climate is predictable.

4.3.1 Glacial-Interglacial TransitionsThe models, to be credible, should be able to reproduce

natural climate changes over geological timescales. These

changes are believed to have been triggered by changes in

The solar forcing is an external forcing tothe climate system. It has two sources ofvariability: one is associated with thechanges in Earth’s orbit and inclination ofthe Earth’s rotation axis. There is evidencethat this change together with non-linearfeedbacks within the climate system hasbeen triggering the transitions betweenglacials and interglacials.The second source of variability is linkedto the radiative emission by the sun,which shows a number of periodicities,

including the 11-year Schwalbe cycleand the 80-year Gleissberg cycle. Thesefluctuations can be found in historicalrecords, as they relate to sunspots, or canbe derived from proxy data like 10Be or14C isotopes. They influence directly theclimate system by additional heating/cooling. Furthermore they also alter thespectrum of the solar radiation. Duringperiods of high solar intensity, the UVincreases more than the average. Thesolar variability heats the higher level of

the atmosphere directly, because moreUV is absorbed by ozone and other com-pounds. The additional UV radiation fur-thermore generates more ozone by photo-chemical reactions. This increased ozoneconcentration leads to an even moreenhanced absorption of UV. As a conse-quence, the whole vertical stratificationof the atmosphere is modified, whichpotentially has a large impact on the gen-eral circulation, the climate system andthe predictability of weather.

S O L A R I M P A C T O N C L I M A T E

Estimates of the various components of theglobal carbon cycle. Units are Gt/y (1 Gt coversthe state of Hamburg with 0.5 m of coal). In thiscontext ocean-atmosphere interactions andocean processes are of crucial importance.

400 350 300 250 200 150 100 50 0Age (kyr BP)

280260240220200

ppm

v CO

2pp

bv C

H4

420

-2-4-6-8

infe

rred

tem

pera

ture

°C

700600500400

4 GLACIAL CYCLES RECORDED IN THE VOSTOK ICE CORE

J. R

. Pet

it et

al.,

Nat

ure,

399

, 429

-36,

199

9

Page 21: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

the solar energy input, but internal feedback processes have

probably played a major role in establishing the Earth’s

response. We therefore need to understand the dynamics of

the observed 100,000-year climate cycle, and assess to what

extent it is externally forced or based on internal dynamics.

As we address this issue, we will specifically investigate the

role of the interactions between the physical climate system

and the biogeochemical cycles, and we will try to establish

the causes of the observed changes in the atmospheric CO2

between glacial and inter-glacial periods. The factors that

control the variations in the Atlantic thermohaline circulation,

and the relevant feedback mechanisms have to be identified.

Long-term integrations to address this issue have to account

for the effect of melt-water input and insolation changes, as

well as the long-term changes in atmospheric CO2 levels.

Another objective will be to determine the role of the

ocean circulation in the observed rapid (decadal to

millennia) climate variations, and to determine why the

climate has been so comparatively stable in the last

10,000 years.

| 21

4.3.2 Decadal VariabilityOn shorter time scales the dynamics and predictability of phe-

nomena such as the observed multi-decadal variability in the

North Atlantic climate system need to be addressed. Success-

ful predictions of these variations will not only be of large

scientific interest. It is also of enormous interest to the public,

since the multi-decadal variations have large economical

impacts (e.g. on fishery, tourism, energy consumption).

Observational and modelling studies indicate that the ocean

plays a prominent role in driving these variations. In order

to successfully predict the multi-decadal variation it is of

crucial importance to estimate the ocean state, which

requires the combination of model and data through

advanced data assimilation techniques. We will use the

results of these ocean state estimation efforts to initialize

our coupled climate models.

4.3.3 Anthropogenic Climate ChangeThe evolution of future climate depends not only on internal

processes, but also on anthropogenic perturbations. Further

attempts to reproduce the climate of the 20th century will be

made, and predictions of the climate for the 21st century

will be performed on the basis of emission scenarios.

Sea surface temperature observationsin the tropical Pacific of the last 150years show a strengthening of the inter-annual variability. The record El Niñoevent of 1982/1983, for instance, wastopped by the most recent event in1997/1998. Furthermore, an increase ofthe El Niño frequency has been observed

during the most recent decades. Thisraises the question as to whether globalwarming affects the El Niño phenome-non. In order to study this question, a coupled ocean-atmosphere generalcirculation model was forced byincreasing concentrations of green-house gases. The results indicate that El

Niño-like conditions will become morefrequent in response to global warming.The level of interannual variability willalso increase. These changes in the El Niño statistics would have seriousconsequences for the climates andeconomies of many countries.

W I L L E L N I Ñ O B E C H A N G E D B Y G L O B A L W A R M I N G ?

30°N

15°N

0

15°S

30°S

30°N

15°N

0

15°S

30°S

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

90°E 120 150 180 150 120 90 60°W

July 1997 observed

I S E L N I Ñ O P R E D I C T A B L E ?

Tem

pera

ture

ano

mal

y [°

C]

Cour

tesy

: M.L

atif

July 1997predictedJanuary 1997

Page 22: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

22 |

Special attention will be given to the evolution of natural

modes of variability, e.g. El Niño and the North Atlantic

oscillation. As in the case of glacial – interglacial transi-

tions, the issue of anthropogenic climate change requires

the joint consideration of the physical and biogeochemical

components of the Earths system and their interactions.

4 . 4 . R E G I O N A L C L I M A T EChanges in the hydrological cycle generated by climate

and land-use changes and by population and economic

changes have a direct impact on people. It is therefore

important to predict the potential magnitude of these

changes, using integrated approaches applied at the

regional scales. In particular, it is crucial to identify the

main mechanisms by which human activities are affecting

the global cycling of water and constituent transports by

the hydrological cycle.

Global climate models suggest that the hydrological cycle

will intensify as the surface becomes warmer. These models

predict an increase of mean precipitation, which may be

extremely different in different regions. Changes in the fre-

quency and intensity of extreme events, such as droughts

and floods, are expected. Up to now, it has not been possi-

ble to predict these changes with confidence. To a large

extent, this is related to the coarse resolution of the global

climate models. Hence, high-resolution regional models are

required to provide regional and local information. The MPI-M

fully coupled regional climate model system with a very high

horizontal resolution will be used to investigate the hydro-

logical cycles within drainage basins (e.g., Baltic Sea and

Mediterranean Sea) and provide climate change information

for regional impact assessment. In the coming years, inten-

sive efforts will be made within MPI-M towards the devel-

opment of a fully coupled climate/biogeochemical regional

model.

Future climate evolutions for Europe will be predicted for

specific emission scenarios, with the purpose of studying

the occurrence of extreme dry and wet periods, storms,

changes in vegetation periods, hot spells, flooding and many

questions related to changes in water availability, water

quality and water management for several river basins. To

address the impact of climate change on regional climate,

the complex feedback mechanisms between the biogeo-

chemical and physical systems will have to be considered.

4 . 5 . I N T E G R A T I N G K N O W L E D G E I N T O AC O M P R E H E N S I V E E A R T H S Y S T E M M O D E LOne of the challenges for the Max Planck Institute for Meteo-

rology for the coming years will be to integrate different

component models into a comprehensive Earth System Model.

This requires the involvement of interdisciplinary teams

including atmospheric physicists and chemists, oceanogra-

phers, ecosystem specialists, social scientists, economists,

mathematicians, and computer scientists. The role and

C O 2 A N D C H 4 C O N C E N T R A T I O N S –P A S T , P R E S E N T A N D F U T U R E

1100

3700

Vostok Ice Core

ppbv

CH

4

400 350 300 250 200 150 100 50 0kyr BP

Today

IPCC 2000Scenarios

for 2100 AD

1600

1200

800

400

* *

450

360

300240180

The Global Energy and Water Cycle Exper-iment (GEWEX), a major project of theWorld Climate Research Programme(WCRP), conducts so-called ContinentalScale Experiments (CSEs) in which boththe variability of the water and energycycle of major river basins should bedetermined as well as the contribution ofsoil moisture to improved forecasting ofcirculation anomalies going beyond thetimescale of deterministic weather fore-casting. One of these CSEs is BALTEX, the

Baltic Sea Experiment, embracing theentire Baltic Sea (sea, atmosphere, land,rivers) catchment. Regional coupled mod-elling with REMO at the Max Planck Insti-tute has led to the first consistent waterbudgets for this area (2.1 Million km 2) andpotential changes due to climate changes. In today’s climate, the influx via the atmosphere amounts to 612 km 3 and isnearly balanced – as it should be in thelong-term – by the export through the Kattegat. This export exceeds by roughly

100 km 3 the river run-off; in other wordsthe Baltic Sea has a positive net fresh-water flux (higher precipitation than evapo-ration). The main difference between anIPCC-SRES B2 scenario and present climateis an increase in precipitation and evapo-ration over land. For certain sub-basins,the changes are often strongly different,showing the potentially massive nearfuture impact of climate change on thewater budget of sub-basins of the BalticSea catchment.

T H E B A L T I C S E A E X P E R I M E N T B A L T E X

ppm

v CO

2

Page 23: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

importance of software engineers has been increasing in the

last years since the coding of the models is becoming

considerably more complex and must be adapted to the new

architectures of the most recent computers. MPI-M will

reinforce the presence of software engineers and algorithm

specialists. Cooperation with “Deutsches Klimarechenzen-

trum” (DKRZ), Hamburg, Germany and the Group on Model

and Data (M&D), and university groups will be essential.

MPI-M will adapt its current models and develop its future

codes to be compatible with the specifications adopted by

the European PRISM project. Interfaces will be included in

MPI-M models so that these can be easily linked to the Euro-

pean drivers or couplers, and hence potentially interact with

model components developed in other European institutions.

| 23

The strategy of MPI-M is to develop its future Earth system

models in cooperation with German, and more generally

with European partners and, when completed, to share the

models and model components with the scientific communi-

ty. A large effort is already in place with the Max Planck

Institute for Biogeochemistry in Jena, Germany, to include a

detailed land surface model in the integrated model. A sim-

ilar effort has been initiated with the Max Planck Institute

for Chemistry in Mainz to include atmospheric chemical

processes in the ECHAM-5 model. More generally, MPI-M

will coordinate the efforts of the national and international

research community towards the development of a compre-

hensive Earth System Model with global and regional capa-

bilities. The integration of the model system will be accom-

plished in Hamburg.

A specific effort will also be conducted to redesign the

dynamical core of the future atmospheric and oceanic com-

T H E D E V E L O P M E N T O F C L I M A T E M O D E L S – P A S T , P R E S E N T A N D F U T U R E

The development of climatemodels over the last 25 yearsshowing how the differentcomponents are firstdeveloped separately andlater coupled intocomprehensive climate models(IPCC WG1, 2001)

Atmosphere

Mid-1970s Mid-1980s Early 1990s Late 1990s Present day Early 2000s?

Ocean & Sea Icemodel

Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere

Land surface

Sulphate aerosolmodel

Land carbon cycle model

Ocean carbon cycle model

Atmosphericchemistry

Land surface Land surface Land surface Land surface

Ocean & Sea Ice

Non-sulphateaerosol

Carbon cycle model

Dynamicvegetation

Atmosphericchemistry

Ocean & Sea Ice Ocean & Sea Ice Ocean & Sea Ice

Sulphate aerosol

Dynamicvegetation

Atmosphericchemistry

Sulphate aerosol Sulphate aerosol

Non-sulphateaerosol

Non-sulphateaerosol

Carbon cycle Carbon cycle

Dynamicvegetation

Atmosphericchemistry

The climate in northern and westernEurope is strongly influenced by theAtlantic Ocean. The North Atlantic cur-rent transports warm and salty waterfrom the subtropical Atlantic to the westcoast of Europe and thus – together withthe prevailing westerly winds – is respon-sible for the relative mild winters ofEurope. This northward ocean heat trans-port is connected with the Atlantic over-turning circulation, which is driven bythe formation and subsequent southwardspreading of dense North Atlantic deepwater in the Greenland and the LabradorSeas. There are many indications thatthis so-called thermohaline circulationhas undergone strong changes in thepast.

The response of the Atlantic thermo-haline circulation is one of the majoruncertainties in anthropogenic climatechange. Various models simulate quitedifferent responses ranging from nochange at all to a strong reduction withinthe next 100 years. Due to the potentiallylarge effects of changes in ocean heattransport this is a key issue in predictinganthropogenic climate change for Europe.MPI-M collaborates closely with a groupat the Southampton Oceanography Centre(SOC) that is mounting an effort to monitorthe Atlantic thermohaline circulation at26°N.Current global climate models cannotresolve the small-scale processes respon-sible for the formation of North Atlantic

deep water. Only regional coupled atmos-phere-ocean-sea ice models are able toresolve these processes and thus simulatechanges in deep water formation reliably. Expected regional changes for means andextremes can only be simulated withmodels using very high horizontal resolu-tion. Currently a fully coupled regionalmodel system with about 18 km horizontalresolution for the Baltic Sea drainagebasin is under development at MPI-M.This system will be transferable to otherregions of the globe and can be used tosimulate ensembles of possible regionalclimate changes. Together with sophisti-cated estimates of the uncertainty range,a large set of reliable input for impactstudies can be delivered.

F U T U R E C L I M A T E O F E U R O P E

Page 24: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

24 |

ponent model with the involvement of the German Weather

Service (DWD, Offenbach, Germany) and perhaps other

groups. The purpose is to develop a global non-hydrostatic

model, using conservative forms of governing equations per-

haps solved on an icosahedral grid. The Earth system model

will have regional capabilities.

Although the ultimate Earth System Model will not be com-

pletely assembled within the next few years, the Institute

will start considering some integrative issues through some

pilot projects. These are summarized as follows:

Reconstruction of Past Evolutions

• Reconstruction of the past 100 years, using the coupled

MA/ECHAM-5/OM with coupled chemistry (stratospheric/

tropospheric ozone) and biogeochemistry (carbon/sulphur

cycles).

• Reconstruction of the last 100,000 years using ECHAM

(T21) coupled to LSG (ocean), LPJ (vegetation), an ice

sheet model and including a representation of the carbon

cycle. Simulation of a glacial cycle with zoom (in time) on

some episodes.

• Reconstruction of the European regional climate with

REMO, using results from Project no 1 and existing data

(North Atlantic and Arctic), and performance of ensemble

integrations over the last 100 years.

• Reconstruction of the global tropospheric chemical com-

position over the past 40 years, using existing data

together with a chemistry transport model, in order to

quantify and understand trends and variability for important

pollutants and greenhouse gases.

Integrative Questions

• What is the impact of climate change (greenhouse

warming) and variability (such as El Niño) including

related variability in biomass burning on the chemical

composition of the atmosphere?

• Will stratospheric cooling (resulting from greenhouse gas

emissions) delay stratospheric ozone recovery?

• What are the causes of the substantial cooling observed

in the mesosphere ?

• Could the terrestrial biosphere (currently a sink for CO2)

become a source of CO2 under a future (warmer) climate?

• Can we assess the indirect effect(s) of aerosols on climate

from satellite observations?

• What is the climate sensitivity to volcanic eruptions and

how did volcanic eruptions change climate?

• Will anthropogenic CO2 emissions force the Earth’s climate

across a bifurcation point?

The planned Integrated MPI-M Atmos-phere Study over Europe (IMASE) willdocument the detailed behaviour of theatmosphere over northern central Europefor a time period of about three monthswith all tools available. The goal of thisactivity is to integrate observation andmodelling capacities at the MPI-M inorder to:· Observe, model and understand the

spatial and temporal development ofthe atmospheric state on all scales dur-

ing such a time period, especially withrespect to atmospheric water and tracegases;

· Observe, model and understand individ-ual atmospheric events and climateprocesses that occur during this interval;

· Observe, model and understand the“chemical weather” during the select-ed period;

· Exploit available satellite data, espe-cially those of ENVISAT, as far as possi-ble for this intensive observation period;

· Demonstrate the complementarity ofthe available tools and resources at the MPI-M for the study of climateprocesses;

· Find and remove the inconsistenciesand deficits in our present ability to do closely co-ordinated research.

The IMASE Project will concentrate onan area of 1000x1000 km2 around Ham-burg, and will extend from the surface tothe stratopause.

I N T E G R A T E D M P I - M A T M O S P H E R E S T U D Y O V E R E U R O P E ( I M A S E ) :

Sydney Fire, 1 Jan 2002:CO Anomaly, coloured by Ozone Anomaly

Page 25: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

MPI-M has recognized the need

to broaden its research objec-

tives and include issues involv-

ing biogeochemical cycles and

their interactions with other

aspects of the Earth system.

>> I N H A L T

Page 26: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

26 |

The land surface model to be coupled to ECHAM to describe

the biophysical interactions between land and atmosphere

is the JSBACH model, which is currently being developed

by the Max Planck Institute for Biogeochemistry in Jena,

Germany. This model includes sub-modules, which describe

different aspects of land processes including soil moisture,

dynamic vegetation and the terrestrial carbon cycle.

Chemical transformations and transport of a variety of chem-

ical species in the atmosphere can be simulated, using a

global chemical model called MOZART. This model, first

developed at the National Center for Atmospheric Research

versions of ECHAM that are specifically designed to study

middle atmosphere processes up to 80 km altitude and

upper atmosphere processes up to 250 km. In each case,

additional physical processes have been included to

represent the specific mechanisms of these regions of the

atmosphere. With the availability of more efficient super-

computing capability, atmospheric models will evolve

dramatically in the next 10 years: The next generation

atmospheric model at MPI-M will be based on a global

high-resolution, non-hydrostatic model with a new dynamical

core, new formulations of physical and chemical processes,

and a regional capability.

Progress in weather forecast has been closely linked to the

development of computing technology. The first successful

numerical prediction in the early 1950’s resulted from the

collaboration between two exceptional figures: John von

Neumann, a world-class mathematician who designed one of

the first electronic computers, and Jule Charney, a brilliant

theoretical meteorologist. By making the dream of the pioneers

in numerical weather prediction become reality, these two

personalities opened a new era for operational meteorology.

And, although few realized it at the time, they also opened

the way to a revolution in the study of climate change.

5 . 1 M P I - M M O D E L SMPI-M has developed a suite of tools to address different

questions related to the Earth system. The coupled

ECHAM-5/OM atmosphere-ocean model is the most

recent version of the Hamburg global climate modelling

system. This model simulates the unperturbed climate over

hundreds of years with no long-term drift and without

having to artificially specify a flux correction between the

ocean and the atmosphere. MPI-M is developing particular

5 . T O O L S A N D F A C I L I T I E S

Model T21horizontal resolution: ca. 500 km

Model T42horizontal resolution: ca. 250 km

Model T63horizontal resolution: ca. 180 km

Model T106horizontal resolution: ca. 110 km

The Model and Data (M&D) Group, cur-rently supported by Bundesministerium forResearch and Technology (BMBF), admin-istered by MPI-M, develops and maintainsan infrastructure that allows carrying outefficient modelling for climate research.For this purpose suitable numerical mod-els are made available, are maintained

and are applied. These community modelsare selected by a national steering com-mittee (Wissenschaftlicher Lenkungsaus-schuss), which includes representativesof the German scientific community.Relevant initial, boundary and diagnosticdatasets are provided. Scientists aretrained in the application of the models,

the extraction of data and in the interpre-tation of the results. Numerical experi-ments, which are of general interest forthe climate research community, andmodel runs for international assessments,are carried out. Their data are archivedon a long-term basis, and are distributedto interested research organizations.

T H E M O D E L A N D D A T A G R O U P – A N A T I O N A L F A C I L I T Y

Page 27: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

| 27

(Boulder, Colorado, USA), accounts for surface emissions,

advective and convective transport, photochemistry, as well

as surface dry deposition and wet scavenging. Biogeochem-

istry in the ocean is treated by the HAMOCC model, which

includes a representation of the oceanic carbon and sulphur

cycles. One of the tasks to be performed is to couple these

biogeochemical models with the physical climate models.

The Hamburg Aerosol Model (HAM) is fully coupled to the

ECHAM Global Circulation Model and can simulate size

resolved aerosol distributions. It consists of a range of sub-

modules for aerosol sources and sinks, chemistry and the

aerosol microphysical model M7. M7 was developed at the

Joint Research Centre of the European Commission in Ispra

(Italy). The aerosol model is coupled to the radiation and

cloud schemes of ECHAM. This makes it possible to scruti-

nize the effects of aerosols on the global radiation balance.

The regional atmospheric model used at MPI-M is the REMO

model. This model will be used to investigate regional

climate change signals on horizontal resolutions of typically

10 –15 km. It is coupled to several hydrological modules,

regional ocean models, and is imbedded in the Hamburg

global climate modelling system. REMO is designed to

calculate atmospheric composition on-line, and is the main

MPI-M tool to contribute to regional impact studies.

5 . 2 S C I E N T I F I C C O M P U T I N G Most of the computing needed to integrate MPI-M models

will be performed on the “Deutsches Klimarechenzentrum”

(DKRZ), Hamburg, Germany, facility. In March 2002 DKRZ

acquired a NEC SX-6 supercomputer, which was upgraded

several times to reach a peak performance of 1.5 Tflops, and

more importantly of about 0.5 Tflops sustained for well pro-

grammed applications. This machine together with the mass

storage system is one of the most powerful computing facil-

ities in the world, and one of the largest resources dedicated

to Earth system research. About 25 percent of the DKRZ

supercomputer is available to the institutes of the German

Max Planck Society for the Advancement of Science. 25 addi-

tional percent are provided to other shareholders of DKRZ,

and the remaining 50 percent are reserved in support of exter-

nal scientific projects, including those supported by BMBF.

As climate models became more complex in the last

decades, requiring high spatial and temporal resolution, and

accounting for an increasing number of processes, it soon

became evident that progress in climate modelling would be

limited by progress in computing technology and by the

availability of powerful supercomputers. This is today even

more obvious as the community understands the need for

longer integrations using ensembles of model conditions and

configurations, the use of enhanced spatial and temporal

resolution, and the desire to include more detailed processes.

For example, it has been estimated that to run an ensemble

of 10 coupled climate models for a period of 100 years with

the technology of the late 1990s, the time required would

reach typically 60 years (20 years without chemistry) under

the following desirable conditions: Atmosphere: 50 km reso-

lution, 70 levels, 50 chemical species, timestep = 5 min;

Ocean: 0.1 degrees resolution, 50 levels, timestep = 20 min.

A factor 100 increase in computing capability is therefore

urgently needed if current scientific needs have to be ful-

filled. Such increase is key for maintaining the influence of

NEC SX-6 supercomputer at Deutsches Klimarechenzentrum (DKRZ)

E A R T H S Y S T E M M O D E L

Atmospheric Chemistry

Aerosols

TroposphericAerosols

StratosphericAerosols

Atmospheric Physics

TerrestrialBiosphere

Land Surface

Photosynthesis

VegetationDynamics

Ocean/Sea IcePhysics

Marine Biogeochemistry

Page 28: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

European efforts in future international climate assessments

(e.g., IPCC). It is unlikely, however, that such request will be

met by national governments; such a project will have to be

carried out at the European level with national participation,

and a European networking of climate centres around a large

European facility will have to be simultaneously developed.

As a first step into this direction and under the sponsorship

of the European Commission, the Max Planck Institute will

play a leadership role in the development of an infrastruc-

ture for coordinating and executing a long-term programme

of European-wide multi-institutional climate and Earth system

simulations, and specifically in the development of a system

of portable, efficient and user-friendly climate models with

associated diagnostic and visualization software under

standardized coding conventions, that can be accessed by

the entire scientific community. MPI will also play a leading

28 |

role in the European Network for Earth System Modelling

(ENES), which regroups major partners involved in climate

and Earth system modelling (academics, meteorological

services, research centres and industry from approximately

20 countries).

5 . 3 . R E M O T E S E N S I N G I N S T R U M E N T A T I O NIn order to understand and model the climate system ade-

quately and to validate the models and model predictions,

reliable and relevant observational data are extremely

important. Therefore advanced remote sensing instruments

are used in addition to the well-established in situ sensors.

These satellite or surface-based techniques use spectra of

solar and/or thermal radiation as well as backscattered

radiation from Radar or Lidar sources to retrieve properties

of climatologically relevant quantities. Most of these mea-

surement systems and principles contain still considerable

potential (and in parts necessity) for further improvement.

The development of advanced remote sensing instruments

requires close cooperation between scientists having a

detailed knowledge of the methodology, scientists working

in the area of application of the measurement results, engi-

neers who design instruments that are suited for the tasks,

and technicians who can operate the instruments under

field experimental conditions.

To support the production of parts and the integration of

measurement systems in house, a fairly well equipped

mechanical workshop is available. This workshop allows for

advanced work on various materials, especially on metal,

wood and plastics to produce, replace or repair original parts

for our remote sensing instrumentation. The workshop also

integrates these instruments into complete measurement

systems and into containers for local or mobile operation.

OASIS: Ocean Atmosphere Sounding Interferometer Systemthat yields well calibrated moderate resolution sky spectrafor the retrieval of various atmospheric components (profiles,column content).

LIDAR: The reflected signal of the radiation source in activeremote sensing provides good range resolution for parameterretrieval (ozone, water vapour, aerosols, etc.).

RADAR/RASS: The combined application with LIDAR resultsin the estimation of flux profiles for ozone and watervapour.

SODAR: A new multi-frequency mini-sodar system thatallows simultaneous observations of various important quan-tities in the lowest few hundred meters of the atmosphere.This system can be applied to the estimation of vertical windand turbulence profiles, and it will separate snow, graupeland hail from normal rain and estimate precipitation particlesize distributions (under development).

O B S E R V I N G S Y S T E M S A T M P I - M

Shareholders MPI-M

DKRZ

Working Groups on Earth System Modelling

M & D

Consultance

WLAService Service

Cooperation

Requirements

Page 29: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

| 29

5 . 4 C L I M A T E S E R V I C E C E N T R EThe World Climate Research Programme (WCRP) is developing

a large project focusing on climate prediction and climate pre-

dictability over seasonal to decadal time scales. The direction

in the next years will undoubtedly go towards the development

of a semi-operational Climate Service Centre. Such a compe-

tence Centre is proposed to be constituted in Hamburg to take

advantage of the high-level infrastructure and research insti-

tutions concentrated in the region. It will regroup the current

DKRZ as well as the Model and Data Group, currently support-

ed by BMBF and administered by MPI-M.

The Climate Service Centre will focus on the more applied

aspects of climate research, provide user-driven and user-

evaluated products, and help the research centres to com-

municate with socio-economic partners, and with the

scientific community. The Centre, which will be product-

oriented, will be designed to achieve societal goals (pro-

tecting life and property, sustaining economic growth, etc.)

and to provide service to the scientific community. It will

probably be developed in the European context, operate in

close partnership with national and European weather ser-

vices (e.g., DWD, ECMWF) and be managed by a consor-

tium of public and private institutions (research centres,

government, industry). It will include several functions:

• A Climate Prediction Service: The Centre will provide

multi-model ensemble operational climate forecasts on

different time-scales (e.g., seasonal to decadal), or make

long-term estimates of vulnerability and risks regarding

climate changes in specific regions. Jointly with existing

research centres it would also perform specific studies

in response to requests from industry or from the feder-

al, regional and local governments.

This information should help society to make appropriate

management and policy decisions. Research strategies

will be developed to test and improve these predictions.

• A Data Service: The Centre will maintain a database

including observational data (space-based, ground-

based, in situ from the world-wide climate observing

system) and model results of interest for societal appli-

cations, including those provided by the Climate Predic-

tion Service. Data stewardship will receive high priority.

Data will be used through an assimilation procedure to

initialize the regular climate predictions.

• A Modelling Service: The Centre will maintain, docu-

ment, and evaluate state-of-the-art Earth system and cli-

mate models as well as diagnostic and visualization tools,

and make those available to the scientific community.

• A Supercomputing Service: The Centre will provide

high-level hardware to execute complex Earth system

models and analyze the model results. It will also pro-

vide easy access to a European supercomputing facility,

if this facility is made available, and will provide assis-

tance to the users of the facility in order to help them

optimize their codes.

5 . 5 I N F O R M A T I O N T E C H N O L O G Y ( I T )As the scientific computing facility with its supercomputer

and data storage system develops outside MPI-M, the Insti-

tute will develop its internal IT facility in cooperation with

the University of Hamburg (ZMAW), with appropriate servers

and workstations, desktops and laptops, storage media,

email system as well as a rapid digital network. It will be the

responsibility of the IT group within ZMAW to provide staff

and visitors with the most efficient computing environment.

A modern and user-friendly website (internet and intranet)

will also be maintained and frequently updated.

Volcano eruption timesteps

(Source: Grafic DKRZ)

Page 30: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

One of the challenges for

the Max Planck Institute for

Meteorology for the coming

years will be to integrate dif-

ferent component models into

a comprehensive Earth System

Model.

>> I N H A L T

Page 31: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

| 31

Interdisciplinary research cannot be done in isolation. Team

work is fundamental to develop complex models of the Earth

system, and to evaluate these models with reference to

observations. The different MPI-M divisions therefore work

together towards the general goals of the Institute. Further-

more, close external collaborations are being developed to

put the MPI-M activities into a broader European framework.

The MPI-Ms strategy recognizes the need for different

research institutions involved in global environmental prob-

lems to develop joint projects. This is the case with the Max

Planck Institutes for Meteorology (Hamburg), Biogeochem-

istry (Jena) and Chemistry (Mainz) in Germany. Close coop-

eration has also been established with the Potsdam Institute

for Climate Impact Research (PIK), Potsdam, Germany; the

Director of this Institute is an external Member of the Max

Planck Institute in Hamburg. Another promising endeavour is

the joint project with IPSL in France to develop the next

generation of Earth System Model. Other groups including

the National Institute for Geophysics in Bologna, Italy, the

University of Reading, UK, and the German Meteorological

Service (DWD) in Offenbach are expected to join this enter-

prise. Strong links also exist to ECMWF and will be further

enhanced in the future, especially regarding the develop-

ment of a planned environmental monitoring and prediction

system.

Many other collaborative projects already exist involving

MPI-M and other German or foreign laboratories, and will be

further developed in the future. These will not be listed

here, but include joint activities sponsored by the German

BMBF and by the European Commission. Prominent among

our collaborations is the project carried out jointly by DWD

and MPI-M to develop a new dynamical core for the next

generation global atmospheric model.

MPI-M will further work within the research frameworks

defined by the European Commission, and contribute to

EC-sponsored projects. Specifically, it will propose to partici-

pate in Networks of Excellence and Integrated Projects,

established by the EC within the Sixth Framework Programme.

The Max Planck Institute has developed many modelling

tools that are made available to the scientific community

through the Model and Data Group. The philosophy of MPI-M

is to contribute to enhance the community spirit in Germany

and, when possible, in Europe.

6 . C O O P E R AT I O N

Progress in geosciences stems mainlyfrom new observations that lead to betterunderstanding of processes, thus to newparameterizations for subgrid scaleprocesses in models, but also model val-idation data sets and better startingfields for models through data assimila-tion. The co-operation between all threeMPI-M departments for all four data usesis at present far from being fully devel-oped. Our definite goal is to achieve sucha strengthened co-operation going wellbeyond the existing joint activities.

The rather small experimental group candeliver the following in the near future:1. HOAPS II (improved global Hamburg

Ocean and Atmosphere Parameters fromSatellite climatology of surface ener-gy and net freshwater fluxes startingin 1987).

2. European-wide vertical aerosol profilesfrom EUs Lidar profiler network sup-ported in the 5th Framework ResearchProgramme and co-ordinated by us.

3. Cloud microphysics in a vertical col-umn from a new 35 GHz Doppler radar.

4. Temperature and humidity profiles inthe lower troposphere as well asrough ozone profiles, trace gas columncontents and thermal emission byaerosols.

5. Global cloud albedo changes due toaerosol changes derived from the AVHRRpathfinder data set over continents.

6. Parameterizations for a cloud toppedboundary layer including cloud chem-istry that originate from a large eddysimulation model tested by data frominternational measurement campaigns.

7. Areal precipitation over land and seafrom a combination of Doppler rainradars, weather radars, Doppler-sodar,ship rain gauges, disdrometers andconventional precipitation measure-ments.

While a recent version of data mentionedunder (1) is already used for validation ofglobal circulation models (AGCMs,

OGCMs and AOGCMs) in several coun-tries and could also be useful for region-al models with an ocean part, those frompoint (2) are an ideal first aerosol profiledata set for global, regional and LESmodel testing. Data from point (3) can beused to improve the LES model in order toderive new (cloud) parameterizations forglobal and regional AGCMs.

With the parameters derived from inter-ferograms (point (4)) the boundary layerschemes of mesoscale atmospheric cir-culation models or LES models will bevalidated, while recent cloud albedochanges over all continents (point (5))constitute a data set for aerosol-cloudinteraction schemes in global (AGCMs)or regional circulations models. Parame-terization development by the LES modelfor ECHAM5 is already pursued. An arealprecipitation data set for Northern Ger-many and the Western Baltic Sea will beavailable for model testing and precipita-tion assimilation attempts.

C O - O P E R A T I O N A M O N G M O D E L L E R S A N D E X P E R I M E N T A L G R O U P S W I T H I N M P I - M

Page 32: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

32 |

The Max Planck Institute for Meteorology works closely

with the University of Hamburg through the joint Centre

for Marine and Atmospheric Sciences (ZMAW). It hosts

typically 20 PhD and Master students each year, who par-

ticipate directly in MPI-Ms research. Since 2002, support

has been provided by the ZEIT Foundation in Hamburg and

the Max Planck Society for an International Max Planck

Research School (IMPRS) on Earth System Modelling.

7.1. INTERNATIONAL MAX PLANCK RESEARCHSCHOOL (IMPRS)The IMPRS on Earth System Modelling provides an inte-

grative, interdisciplinary framework of PhD education.

Within the IMPRS students from all over the world (at

least 50% from outside Germany) and from various disci-

plines will complete their PhD theses in the field of Earth

System Science – focusing on numerical modelling, but

not exclusively so. It has been established through MPI-M

and the German participating institutes (University of

Hamburg, Centre of Marine and Atmospheric Sciences

(ZMAW, Hamburg), Institute of Coastal Research in

Geesthacht, Hamburg Institute of International Economics

(HWWA), Potsdam Institute for Climate Impact Research

(PIK), University of Kassel and is jointly funded by the Max

Planck Society and the ZEIT Foundation in Hamburg. The

strength and the exclusiveness of the IMPRS consists of

(1) its interdisciplinarity, (2) its combination of research

with topical lectures and seminars (in English), and (3) its

international orientation.

The students will be based both at different faculties of

university institutes and the MPI-M. Within the IMPRS PhD

research will be combined with courses (lectures, seminars

and summer schools) on fundamental and specific aspects

of the Earth system: The students will have to collect a cer-

tain number of credit points before submitting their theses.

The lectures will specifically account for the multidiscipli-

nary background of the students. Possibilities for exchanges

of students with partner research institutes outside Ger-

many will be offered. Ties will be particularly strengthened

with institutes in the developing world by inviting students

and young scientists to Hamburg.

Ideally the School will contribute to the education and the

establishment of a generation of experts whose awareness

of Global Change extends beyond the traditional boundaries

of university education, contributing to state-of-the-art

research and policy making in Germany and abroad.

7.2. OUTREACH TO THE PUBLICMPI-M will continue to strengthen its effort to inform deci-

sion-makers and the public on questions related to Climate

Change and Global Change. These issues have received

much attention in the recent past in relation to the negotia-

tion of international protocols for the protection of the

global environment. Many scientific aspects underlying the

current discussions are still poorly known by the public, and

MPI-M will clarify some of the scientific questions through

an informative web-site, the organization of exhibitions, the

production of brochures and films. A small group focusing

on public relation issues has been established, and will

develop new education and outreach activities.

7 . E D U C AT I O N A N D O U T R E A C H

Page 33: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

| 33

The Max Planck Institute for Meteorology is organized around

3 Departments focusing on (1) Climate Processes (2) The

Atmosphere in the Earth System, and (3) The Ocean in the

Earth System. Other groups supporting MPI-M’s research

activities are: (1) the Central Integration and Coupling Group,

that also serves the national and European Scientific Commu-

nity, (2) the Service Group, which supports the activities re-

lated to information technology, public relations, library and

workshop, (3) the Administration, and (4) the Model and Data

Group. This latter group is administered by MPI-M, but pro-

vides climate-related data and models to the German Scien-

tific Community. The Institutes management is under the

responsibility of the MPI-M Directors, and specifically the

Managing Director (which rotates among the Directors every

2 years). The Directors are advised by a Management Com-

mittee, and a Planning and Strategy Office. They interact

closely with the Staff Association, regularly elected by the

MPI-M staff.

The successful implementation of our long-term plans depends

strongly on the quality, professionalism and dedication of

the people conducting MPI-Ms research. With approximately

150 members (scientists, software engineers, technicians,

administrators, post-docs, Ph.D. students, etc.), MPI-M is in

an excellent position to develop a broad research programme.

An important commitment of MPI-M is to diversify its staff, to

mentor junior collaborators, and specifically students, and

to increase the representation of women at all levels. The

participation in the research activities of staff members who

are raising children will be facilitated by providing, when

possible, flexible working conditions, and improving access

to child care and other social services. The Institute intends to

play an international role, and hence to facilitate the presence

of staff and visitors from abroad.

Funding of the fundamental research programmes conducted

at MPI-M is mainly provided by the German Max Planck

Society for the Advancement of Science. This support is

augmented by funding from national and international

sources (e.g., BMBF and the European Commission, respec-

tively). In order to maintain the coherence of the MPI-M

programme, project money is sought only if it reinforces

established research objectives. At the present time,

approximately three quarters of the scientific staff is sup-

ported on “soft money”. The nature of the research and

development conducted at MPI-M requires, however, that

long-term commitments be made to staff, and a stabiliza-

tion of certain positions (e.g., software engineers who are

responsible for model development and maintenance) is a

key challenge for the institute. As the importance of

algorithm design and, more generally, the role of software

engineering are becoming more prominent in model

development, MPI-M will have to reinforce the presence of

computer scientists and engineers among its staff. Struc-

tural changes in the models requires time and effort that

must be fully recognized, and some free room must be

preserved for scientific programmers/scientists for working

on pure software design issues without the pressure of

time-limited projects.

As a new building will be made available to MPI-M in

2004, the research infrastructure of the Institute will have

to be upgraded. As the roles of DKRZ and M&D have

recently been revised, MPI-M will have to reinforce its own

infrastructure for model development, and unify tools and

approaches regarding model evaluation and data analysis/

visualization.

Finally, an optimal balance between goal-oriented and

more innovative/risky activities will have to be maintained.

Partnership between public research and the private sector

is desirable for issues of societal importance such as climate

change. MPI-M will work towards such partnership, for

example through the Global Change Forum, and try to

establish projects involving the participation of industry

and other socio-economic actors.

8 . O R G A N I Z AT I O N , M A N A G E M E N T A N D F U N D I N G

Page 34: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

>> I N H A L T

34 |

Max Planck Society for the Advancement of Science,Munich, Germany and its Institutes in Germany

The MPI-M is one of 80 institutes of the Max Planck Society

for the Advancement of Science (MPG), Munich, Germany.

The MPG is an independent, non-profit research organisa-

tion that primarily promotes and supports research at its

own institutes. The research institutes of the Max Planck

Society perform fundamental research in the interest of the

general public in the natural sciences, life sciences, social

sciences, and the humanities. In particular, the Max Planck

Society takes up new and innovative research areas that

German universities are not in a position to accommodate or

deal with adequately. For more information visit the web site

at www.mpg.de.

A N N E X

Magdeburg

Halle Leipzig

Golm

Garching

Munich

MartinsriedAndechs

Radolfzell

Tübingen

Rostock

Münster

Dortmund

Schlitz

Göttingen

JenaMarburg

FrankfurtBad Nauheim

Ladenburg

Heidelberg

Stuttgart

Freiburg

Saar-brücken

Mainz

Bonn

CologneDüsseldorf

Mülheim

Bad Münstereifel

Plön

Greifswald

Katlenburg-Lindau

Hanover

Saxony-Anhalt

Saxony

ThuringiaHesse

Bavaria

Baden-Württemberg

Saarland

Rhineland-Palatinate

North Rhine-WestphaliaBrandenburg

Lower Saxony

BremenHamburg

Berlin

Schleswig-Holstein

Mecklenburg-Western Pommerania

Dresden

Page 35: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

The strategy of Max Planck

Institute for Meteorology is to

develop its future Earth system

models in cooperation with

German, and more generally

with European partners and,

when completed, to share the

models and model components

with the scientific community.

>> I N H A L T

Page 36: MPI Hamburg 12.01 - mpimet.mpg.de · bahnbrechenden Artikel „Über den Einfluss von Kohlensäure in der Luft auf die Temperatur des Bodens” schätzte der schwedische Wissenschaftler

A d d r e s s M a x P l a n c k I n s t i t u t e f o r M e t e o r o l o g y

B u n d e s s t r. 5 5

D - 2 0 14 6 H a m b u r g

G e r m a n y

P h o n e + 4 9 ( 0 ) 4 0 / 4 117 3 - 0

F a x + 4 9 ( 0 ) 4 0 / 4 117 3 - 2 9 8

w w w. m p i m e t . m p g . d e

E d i t o r s P r o f . D r. G u y B r a s s e u r

P r o f . D r. H a r t m u t G r a ß l

P r o f . D r. J o c h e m M a r o t z k e

D e s i g n H A A K & N A K AT, M u n i c h

[ w w w. h a a k - n a k a t . d e ]

D e c e m b e r 2 0 0 3

>> I N H A L T