R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver...

79
R.Schmidt - TU Darmstad t Januar 2008 1 Der LHC Beschleuniger am CERN: Der LHC Beschleuniger am CERN: Kollisionen intensiver Kollisionen intensiver Teilchenstrahlen bei hoher Teilchenstrahlen bei hoher Strahlenergie Strahlenergie Rüdiger Schmidt - CERN TU Darmstadt Januar 2008 Der LHC: “Just another collider?” Kollision intensiver Teilchenstrahlen Injectorkomplex und LHC Operation und Betriebssicherheit Status und Ausblick

Transcript of R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver...

Page 1: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008

1

Der LHC Beschleuniger am CERN: Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei Kollisionen intensiver Teilchenstrahlen bei

hoher Strahlenergiehoher Strahlenergie

Rüdiger Schmidt - CERN

TU Darmstadt

Januar 2008

Der LHC: “Just another collider?”

Kollision intensiver Teilchenstrahlen

Injectorkomplex und LHC

Operation und Betriebssicherheit

Status und Ausblick

Page 2: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008

2

Vortrag GradKolleg 2004

Page 3: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 3

Installation of cryogenic distribution Installation of cryogenic distribution line in the LHC tunnel – started line in the LHC tunnel – started during summer 2003during summer 2003

Status 2007

Page 4: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 4

Energy and Luminosity Energy and Luminosity Particle physics requires an accelerator colliding beams with a centre-of-mass energy substantially exceeding 1TeV

In order to observe rare events, the luminosity should be in the order of 1034 [cm-2s-1] (challenge for the LHC

accelerator)

Event rate:

Assuming a total cross section of about 100 mbarn for pp collisions, the event rate for this luminosity is in the order

of 109 events/second (challenge for the LHC experiments)

Nuclear and particle physics require heavy ion collisions in the LHC (quark-gluon plasma .... )

][][ 212 cmscmLtN

Page 5: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 5

The CERN Beschleuniger The CERN Beschleuniger KomplexKomplex

LEP e+e-

(1989-2000)

104 GeV/c

LHC pp und Ionen

7 TeV/c

26.8 km Umfang

8.3 Tesla supraleitende Magnete

CERN Hauptgelände

SchweizGenfer See

Frankreich

LHC Beschleuniger (etwa 100m unter der Erde)

SPS Beschleuniger

CERN-Prevessin

CMS

ALICE

LHCb

ATLAS

Page 6: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 6

The LHC: just another collider ?The LHC: just another collider ?Name Start Particles Max proton

energy [GeV]

Length [m]

B Field [Tesla]

Stored beam energy [MJoule]

TEVATRONFermilab Illinois USA

1983 p-pbar 980 6300 4.5 1.6 for protons

HERA DESY HamburgGermany

1992 p – e+p – e-

920 6300 5.5 2.7 for protons

RHICBrookhavenLong Island USA

2000 Ion-Ionp-p

250 3834 4.3 0.9 per proton beam

LHCCERNGeneva Switzerland

2008 Ion-Ionp-p

7000 26800 8.3 362 per proton beam

Page 7: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 7

Challenges for LHCChallenges for LHC

High-field (8.3 Tesla) superconducting magnets operating at a temperature of 1.9 K with an energy stored in the magnets of 10 GJ

Beam-parameters pushed to the extreme• Energy stored in the beam two orders of magnitude above others

• Transverse energy density three orders of magnitude compared to other accelerators

• Consequences for several systems (machine protection, collimation, vacuum system, cryogenics, …)

GJoule beams running through superconducting magnets that quench with mJoule

Complexity of the accelerator (most complex scientific instrument ever constructed) with 10000 magnets powered in 1712 electrical circuits

Page 8: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 8

New approaches and novel technologies New approaches and novel technologies

Two-In-One superconducing magnets inside helium 1.9 K system Compressors operating at cold to provide helium at 1.9 K Beam screen inside vacuum chamber at higher temperature High Temperature Superconductors at an industrial scale, for current

leads High current power convertors and control of the current with an

unprecedented accuracy of 1 ppm New devices and materials for absorbing the particles Radiation studies for the accelerator at an unprecedented scale Development of radiation tolerant electronics and highly radiation

resistant optical fibres Overall consideration for machine protection: an accidental release of

the energy can lead to massive damage Approach for machine protection systems driven by studies on safety,

reliability and availability using formal methods

Page 9: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 9

A total number of 1232 dipole magnets are required A total number of 1232 dipole magnets are required to close the circleto close the circle

Page 10: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 10

LHC dipole magnet lowered into the tunnel LHC dipole magnet lowered into the tunnel First cryodipole lowered on 7 March 2005First cryodipole lowered on 7 March 2005 Descent of the last magnet, 26 April 2007Descent of the last magnet, 26 April 2007

Page 11: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 11

Interconnecting two magnets out of 1700Interconnecting two magnets out of 1700

Page 12: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 12

Current leads with High Temperature Current leads with High Temperature Superconductor Superconductor

12

Feedboxes (‘DFB’) : transition from copper cable to super-conductor

Water cooled Cu cables

Page 13: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 13

DFB with ~17 out of 1600 HTS current leads DFB with ~17 out of 1600 HTS current leads

Page 14: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 14

RF cavities, four per beam with some 10 MVoltRF cavities, four per beam with some 10 MVolt

Page 15: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 15

LHC: From first ideas to realisationLHC: From first ideas to realisation

1982 : First studies for the LHC project

1983 : Z0 detected at SPS proton antiproton collider

1985 : Nobel Price for S. van der Meer and C. Rubbia

1989 : Start of LEP operation (Z-factory)

1994 : Approval of the LHC by the CERN Council

1996 : Final decision to start the LHC construction

1996 : LEP operation at 100 GeV (W-factory)

2000 : End of LEP operation

2002 : LEP equipment removed

2003 : Start of the LHC installation

2005 : Start of hardware commissioning

2008 : Commissioning with beam planned

Page 16: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 16

Colliding very intense Colliding very intense proton beamsproton beams

Page 17: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 17

High luminosity by High luminosity by colliding trains of bunchescolliding trains of bunches

Number of „New Particles“

per unit of time:

The objective for the LHC as proton – proton collider is a luminosity of about 1034 [cm-1s-2]

• LEP (e+e-) : 3-4 1031 [cm-2s-1]

• Tevatron (p-pbar) : some 1032 [cm-2s-1]

• B-Factories : > 1034 [cm-2s-1]

~40 m in straight section (not to scale)

212 cmscmLT

N

IP

Page 18: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 18

Luminosity parametersLuminosity parameters

point ninteractio at dimensions beam

beamperbunchesofnumbern

frequency revolution f

bunch per protons of Number N

: with

4

nfNL

yx

b

yx

b

2

What happens with one particle experiencing the force of the em-fields or 1011 protons in the other beam during the collision ?

Page 19: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 19

Limitation: beam-beam interactionLimitation: beam-beam interaction

Quadrupole Lense

Beam - Beam Lense

Force

Force

Y

Y

Page 20: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 20

Electromagnetic force on a particle in the Electromagnetic force on a particle in the counterrotating beamcounterrotating beam

4

nfNL

yx

b

2

2r

1r

12

eNrF

:Force Lorentz calculate and

particle test of frame into ngtransformiby nCalculatio

beam. other on act beam one of fieldnetic Electromag

2

22

0

2

)exp(

)()(

Bunch intensity limited due to this strong non-linearity to about N = 1011

Optimising luminosity by increasing N

Page 21: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 21

Beam beam interaction determines parametersBeam beam interaction determines parameters

Number of protons N per bunch limited to about 1011

f = 11246 Hz

Beam size at IP σ = 16 m for = 0.5 m (beam size in arc σ = ~0.2 mm

with one bunch Nb=1

with Nb = 2808 bunches (every 25 ns one bunch)

L = 1034 [cm-2s-1]

1230

yx

b

2

scm10534

nfNL

.

=> 362 MJoule per beam

Page 22: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 22

Livingston type plot: Livingston type plot: Energy stored magnets and beamEnergy stored magnets and beam

based on graph from R.Assmann

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

1 10 100 1000 10000Momentum [GeV/c]

En

erg

y s

tore

d in

th

e b

ea

m [

MJ

]

LHC topenergy

LHC injection(12 SPS batches)

ISR

SNSLEP2

SPS fixed target HERA

TEVATRON

SPSppbar

SPS batch to LHC

Factor~200

RHIC proton

LHC energy in magnets

Page 23: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 23

What does this mean?What does this mean?

10 GJoule: the energy of an A380 at 700 km/hour

corresponds to the energy stored in the LHC magnet system:

Sufficient to heat up and melt 12 tons of Copper!!

362 MJoule: the energy stored in one LHC beam corresponds

approximately to…

• 90 kg of TNT

• 8 litres of gasoline

• 15 kg of chocolate

It’s how ease the energy is released that matters most !!

Page 24: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 24

Very high beam current: consequencesVery high beam current: consequences

Dumping the beam in a safe way Beam induced quenches (when 10-8-10-7 of beam hits magnet at 7 TeV)

Beam cleaning (Betatron and momentum cleaning) Radiation, in particular in experimental areas from beam collisions

(beam lifetime is dominated by this effect)

Beam instabilities due to impedance Synchrotron radiation at 7 TeV - power to cryogenic system Photo electrons - accelerated by the following bunches

Single particle dynamics: dynamic aperture and magnet field quality, in particular in the presence of dynamic effects in superconducing magnets during the ramp

Page 25: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 25

The LHC accelerator The LHC accelerator complexcomplex

Complexity due to the LHC main ring Complexity due to the LHC main ring AND due to the injector chainAND due to the injector chain

Page 26: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 26

LHC Layout

eight arcs (sectors)

eight long straight section (about 700 m long)

IR6: Beam dumping system

IR4: RF + Beam instrumentation

IR5:CMS

IR1: ATLAS

IR8: LHC-BIR2:ALICE

InjectionInjection

IR3: Momentum Beam Cleaning

(warm)

IR7: Betatron Beam Cleaning (warm)

Beam dump blocks

Page 27: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 27

The CERN accelerator complex: The CERN accelerator complex: injectors and transferinjectors and transfer

High intensity beam from the SPS into LHCat 450 GeV via TI2 and TI8

LHC accelerates from 450 GeV to 7 TeV

LEIR

CPS

SPS

Booster

LINACS

LHC

3

45

6

7

8

1

2TI8

TI2

Ions

protons

Beam 1

Beam 2

Beam size of protons decreases with energy: 2 = 1 / E

Beam size large at injection

Beam fills vacuum chamber at 450 GeV

Page 28: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 28

TI 8

LHC

SPS 6911 m

450 GeV

LSS6

IR2

TT40

LSS4

IR8TI 8 beam tests 23/24.10.04

6/7.11.04

TI 2 beam test 28/29.10.07

• combined length 5.6 km

• over 700 magnets

• ca. 2/3 of SPS

LHC transfer lines and injections - overview

TT40 beam tests

8.9.03

TI 2

Page 29: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 29

Transfer line TI8 (MIBT magnet)Transfer line TI8 (MIBT magnet)

Page 30: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 30

LHC accelerator LHC accelerator

LHC Main Systems

Superconducting magnetsCryogenicsVacuum systemPowering (industrial use of High Temperature Superconducting material)

Page 31: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 31

1232 main dipoles +

3700 multipole corrector magnets

392 main quadrupoles +

2500 corrector magnets

Regular arc:

Magnets

Page 32: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 32

Regular arc:

Cryogenics

Supply and recovery of helium with 26 km long cryogenic distribution line

Static bath of superfluid helium at 1.9 K in cooling loops of 110 m length

Connection via service module and jumper

Page 33: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 33

1232 DipolemagnetsLength about 15 mMagnetic Field 8.3 TTwo beam tubes with an opening of 56 mm

Dipole magnets for Dipole magnets for the LHCthe LHC

Page 34: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 34

The superconducting state only occurs in a limited domain of temperature, magnetic field and transport current density

Superconducting magnets produce high field with high current density

Lowering the temperature enables better usage of the superconductor, by broadening its working range

T [K]

B [T]

J [kA/mm2]

Operating temperature of superconductorsOperating temperature of superconductors

J [kA/mm2]

Page 35: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 35

Critical current density of technical superconductorsCritical current density of technical superconductors

+ 3 tesla

Ph.Lebrun

Page 36: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 36

Beam tubes

Supraconducting coil

Nonmagetic collars

Ferromagnetic iron

Steelcylinder for Helium

Insulationvacuum

Supports

Vacuumtank

Dipole magnet cross sectionDipole magnet cross section16 mBar cooling tube

Page 37: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 37

Specific heat of liquid helium and copperSpecific heat of liquid helium and copper

0,00001

0,0001

0,001

0,01

0,1

1

10

100

0 1 2 3 4 5Temperature [K]

Spe

cific

hea

t [J/

g.K

]

LHeCu

Discovery of He II phase transition (1927) by W.H. Keesom and M.Wolfke

Page 38: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 38

Equivalent thermal conductivity of He IIEquivalent thermal conductivity of He II

0

500

1000

1500

2000

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

T [K]

Y(T

) ±

5%

T

K T,q q Y T

dT

dX

q

Y(T)

q in W / cm

T in K

X in cm

2.4

3.4

2

Copper OFHC

Helium II

G. Bon Mardion et al.

Page 39: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 39

Principle of He II cooling of LHC magnetsPrinciple of He II cooling of LHC magnets

Page 40: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 40

4 stages1st stage cartridge

Air Liquide & IHI-Linde

Axial-centrifugal impeller

Cold compressors of LHC 1.8 K unitsCold compressors of LHC 1.8 K units

Page 41: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 41

Operation and machine Operation and machine protectionprotection

Page 42: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 42

0

2000

4000

6000

8000

10000

12000

-4000 -2000 0 2000 4000

time from start of injection (s)

dip

ole

cu

rre

nt (A

)

injection phase12 batches from the SPS (every 20 sec)

one batch 216 / 288 bunches

LHC magnetic cycle and beam operationLHC magnetic cycle and beam operation

L.Bottura

450 GeV

7 TeV

beam dump

energy

ramp

coast

coast (2360 MJ)

start of the ramp

Page 43: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 43

Beam lifetime with nominal intensity at 7 TeVBeam lifetime with nominal intensity at 7 TeVBeam lifetime

Beam power into equipment (1 beam)

Comments

100 h 1 kW Healthy operation

10 h 10 kW Operation acceptable, collimation must absorb large fraction of beam energy

(approximately beam losses = cryogenic cooling power at 1.9 K)

0.2 h 500 kW Operation only possibly for short time, collimators must be very efficient

1 min 6 MW Equipment or operation failure - operation not possible - beam must be dumped

<< 1 min > 6 MW Beam must be dumped VERY FAST

Failures will be a part of the regular operation and MUST be anticipated

Page 44: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 44

What happens in case the full LHC beam impact onto

material?

Since 2003/4 collaboration with GSI and TU Darmstadt, N.Tahir (GSI), D.H.H.Hoffmann and many others

Page 45: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 45

Beam losses into materialBeam losses into material

Proton losses into material lead to particle cascades The energy deposition increases the temperature For the maximum energy deposition as a function of material there is no straightforward expression Programs such as FLUKA are being used for the calculation of the energy deposition

The material could be damaged…..• losing their performance (mechanical strength)

• melting and vaporisation

Magnets could quench…..• beam lost - re-establish condition will take hours

Repair could take a long time

Page 46: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 46

Damage of material for impact of a pencil beamDamage of material for impact of a pencil beam

Maximum energy deposition in the proton cascade (one proton): Emax_C 2.0 106

J

kg

Specific heat of graphite is cC_spec 710.60001

kg

J

K

To heat 1 kg graphite by, say, by T 1500K , one needs: cC_spec T 1 kg 1.07 106 J

Number of protons to deposit this energy is: cC_spec T

Emax_C5.33 10

11

Maximum energy deposition in the proton cascade (one proton): Emax_Cu 1.5 105

J

kg

Specific heat of copper is cCu_spec 384.56001

kg

J

K

To heat 1 kg copper by, say, by T 500K , one needs: cCu_spec T 1 kg 1.92 105 J

Number of protons to deposit this energy is: cCu_spec T

Emax_Cu1.28 10

10 copper

graphite

Page 47: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 47

Full LHC beam deflected into copper target

Target length [cm]

vaporisation

melting

Copper target

2 m

Energy density [GeV/cm3] on target axis

2808 bunches

Page 48: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 48

SPS experiment: Beam damage at 450 GeV SPS experiment: Beam damage at 450 GeV

Controlled SPS experiment 81012 protons clear damage beam size σx/y = 1.1mm/0.6mm

above damage limit

21012 protons

below damage limit

25 cm

0.1 % of the full LHC beam energy

10 times the beam area

6 cm

81012 610124101221012

Page 49: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 49

STEP1: Calculation of energy deposition of a 7 TeV proton beam in material with a beam of =0.2 mm (FLUKA)

copper,one bunch

carbon, one bunch

copper, per proton

carbon, one bunch

at 16 cm

Page 50: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 50

STEP2: Hydrodynamic simulations with BIG-2 including the response of the target with LHC beam for copper

• After an impact of some bunches, pressure and temperature in the beam heated region increase drastically.

• A hydrodynamic simulation with a model including a multiphase semi-empirical equation-of-state describes the target behaviour during the diffferent phases of heating and expansion.

• State changes and pressure waves are taken into account by the numerical simulation.

0 0.2 0.4 0.6 0.8 1Target Transverse Coordinate (cm)

0

10

20

30

40

Pre

ssu

re (

GPa

)

t = 500 nst = 1000 nst = 1500 nst = 2000 nst = 2500 ns

At 16 cm in the target along the beam

0 0.2 0.4 0.6 0.8 1Target Transverse Coordinate (cm)

1000

10000

1e+05

Tem

pera

ture

(K

)

t = 500 nst = 1000 nst = 1500 nst = 2000 nst = 2500 ns

At 16 cm in the target along the beam

N.Tahir (GSI), D.H.H.Hoffmann et al.

Page 51: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 51

Target radial coordinate [cm]

radial

copper solid state

100 bunches – target density reduced to ~10%

Density change at 16 cm in target after impact of 100 bunches

N.Tahir (GSI), D.H.H.Hoffmann et al.

• After an impact of about 100 bunches, the beam heated region has expanded drastically and the density in the inner region decreases by about a factor of ~10.

• The bulk of the following beam will not be absorbed and continues to tunnel further and further into the target, between 20 and 40 m.

• Such effects have been observed for heavy ion beams.• The LHC might be an interesting tool to study HighEnergyDensityMatter.

Page 52: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 52

The only component that can stand a loss of the full beam is the beam dump block

all other components would be damaged

about 8 m

concrete shielding

beam absorber (graphite)

about 35 cm

Page 53: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 53

Schematic layout of beam dump system in IR6Schematic layout of beam dump system in IR6

Q5R

Q4R

Q4L

Q5L

Beam 2

Beam 1

Beam Dump Block

Septum magnet deflecting the extracted beam H-V kicker

for painting the beam

about 700 m

about 500 m

Fast kicker magnet

Page 54: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 54

L.Bruno: Thermo-Mechanical Analysis with ANSYS

Temperature of beam dump block at 80 cm insideTemperature of beam dump block at 80 cm inside

up to 800 0C

Page 55: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 55

Operational margin of a superconducting magnetOperational margin of a superconducting magnet

Temperature [K]

App

lied

field

[T]

Superconductingstate

Normal state

Bc

Tc

9 K

Applied Magnetic Field [T]

Bc critical field

1.9 K

quench with fast loss of

~5 · 109 protons

quench with fast loss of ~5 · 106 protons

8.3 T

0.54 T

QUENCH

Tc critical

temperature

This is about 1000 times more critical than for TEVATRON, HERA,

RHIC

Temperature [K]

Applied magnetic field [T]

Page 56: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 56

Beam Cleaning SystemBeam Cleaning System

Primary collimator

Secondary collimators Absorbers

Protectiondevices

Tertiarycollimators

Tripletmagnets

Beam

Primaryhalo particle Secondary halo

Tertiary halo

+ hadronic showers

hadronic showers

• Multi-stage beam halo cleaning (collimation) system to protect sensitive LHC magnets from beam induced quenches and damage

• Halo particles are first scattered by the primary collimator (closest to beam)

• Scattered particles (forming the secondary halo) are absorbed by the secondary collimators, or scattered to form the tertiary halo.

• More than 100 collimators jaws needed for the nominal LHC beam.

• Primary and secondary collimators made of Carbon to survive severe beam impact !

• Collimators must be precisely aligned (< 0.1 mm) to guarantee a high efficiency above 99.9% at nominal intensities.

It’s not easy to stop 7 TeV protons !!

Experiment

Page 57: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 57

Accidental kick by the beam dump kicker at 7 TeVAccidental kick by the beam dump kicker at 7 TeV part of beam touches collimators (about 20 bunches from 2808)part of beam touches collimators (about 20 bunches from 2808)

P.Sievers / A.Ferrari / V. Vlachoudis

Beryllium

Page 58: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 58

RF contacts for guiding image currents

Beam spot

Page 59: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 59

First collimator in the First collimator in the tunneltunnel

R.Assmann et al

Vacuum tank with two jaws installed

Designed for maximum robustness: Advanced Advanced Carbon Composite material Carbon Composite material for the jaws with water for the jaws with water cooling!cooling!

Page 60: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 60

+- 3 ~1.3 mm

56.0 mm

Beam in vacuum chamber with beam screen at 7 TeVBeam in vacuum chamber with beam screen at 7 TeV

• Interception of beam-induced heat loads at 5-20 K (supercritical helium)

• Shielding of the 1.9 K cryopumping surface from synchrotron radiation

• High-conductivity copper lining for low beam impedance

• Low-reflectivity sawtooth surface at equator to reduce photoemission and electron cloud

Page 61: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 61

About 3600 beam loss monitors to detect About 3600 beam loss monitors to detect particle losses and to trigger a beam dumpparticle losses and to trigger a beam dump

• Ionization chambers to detect beam losses

– Montitors in the arc

– Monitors close to all collimators

– Simulation and experiments to determine threshold for beam losses

• Student from TU Darmstadt involved for his Masters project

Page 62: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 62

Status summaryStatus summary

Installation and magnet interconnections finished Cryogenics

• Nearly finished and operational (e.g. cryoplants)

• Two sectors been at 1.9 K, third sector being cooled down

• Cooldown for other sectors to start soon

Powering system: commissioning on the way• Power converters commissioning on short circuits in tunnel

finished

• Magnet powering tests started in two sectors, main dipoles at 8.5 kA corresponding to 5 TeV

Other systems (RF, Beam injection and extraction, Beam instrumentation, Collimation, Interlocks, Controls)• Essentially on schedule for first beam in 2008

Injector complex and transfer lines ready

Page 63: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 63

LHC sector 78 - First cooldown

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

15/01/0718:00

21/01/0718:00

27/01/0718:00

02/02/0718:00

08/02/0718:00

14/02/0718:00

20/02/0718:00

26/02/0718:00

04/03/0718:00

10/03/0718:00

Time (UTC)

Tem

per

atu

re (

K)

Supply temperature Magnet temperature (average over sector)

Return temperature Thermal shields temp. (average over sector)

Active cooling in all thermal shields and

cryogenic tranfer lines. All magnets isolated.

Thermal shield

temp.

Supply

temperature

Return

temperature

Magnet

temp.

Re-start of active cooling for cryogenic

transfer lines

Re-start of active cooling for magnets

Active cooling in all thermal shields and

cryogenic tranfer lines. All magnets isolated.

LHC Sector 78 – First cooldown

From 300K to 80K precooling with LN2. 1200 tons of LN2 (64 trucks of 20 tons). Three weeks for first sector.

From 80K to 4.5K. Cooldown with refrigerator. Three weeks for the first sector. 4700 tons of material to be cooled.

From 4.5K to 1.9K. Cold compressors at 15 mbar. Four days for the first sector.

Page 64: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 64

Magnet temperature in one sectorMagnet temperature in one sector

Page 65: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 65Courtesy F.Bordry

2ppm

Current tracking between the three main circuits of Current tracking between the three main circuits of Sector 78Sector 78

Page 66: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 66

Ramping the dipole magnets to a current for 5 TeVRamping the dipole magnets to a current for 5 TeV

8000 A

4000 A

Dipole magnet current

12 hours

Page 67: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 67

Temperature after an induced quenchTemperature after an induced quench

10 minutes

Page 68: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 68

ConclusionsConclusions

Page 69: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 69

Always smooth progress? No ….. this is unrealisticAlways smooth progress? No ….. this is unrealistic

The LHC is a machine with unprecedented complexity The technology is pushed to its limits The LHC is a ONE-OFF machine The LHC was constructed during a period when CERN had to

substantially reduce the personel

Problems came up and were solved / are being solved, such as dipole magnets, cryogenics distribution line, collimators, inner triplet, RF fingers (PiMS), He level gauges, ….

In my view what makes such project a success: not absence of problems, but because problems are detected and adressed with competent and dedicated staff and collaborators that master all different technologies

Page 70: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 70

Typical (recent) examples

Page 71: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 71

Repair of the inner triplettRepair of the inner triplett

Page 72: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 72

RF bellows in the 1700 interconnectionsRF bellows in the 1700 interconnections

Page 73: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 73

Arc plug-in module at warm temperatureArc plug-in module at warm temperature

Page 74: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 74

Arc plug-in module at working temperatureArc plug-in module at working temperature

Page 75: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 75

Solution is on the way…Solution is on the way…

Problem: fingers bend into beampipe obstructing the aperture Due to wrong angle of RF fingers PLUS size of the gap between the

magnet apertures larger than nominal (still inside specification) Laboratory tests and finite element analysis confirm the two factors Only part of the interconnects is affected Complete survey of sector 78 using X-ray techniques Repair is not so difficult…once bad PiM identified

A technique was developed for quickly checking at warm the LHC beam aperture

Using air flow blowing a light ball equipped with a 40MHz transmitter through the beam vacuum pipe, use BPMs to detect it as it passes

Page 76: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 76

Recalling LHC challenges and outlookRecalling LHC challenges and outlook

Enormous amount of equipment Complexity of the LHC accelerator New challenges in accelerator physics with LHC beam

parameters pushed to the extreme

2005 2006 2007

1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

Fabrication of equipment

Installation

LHC Beam commissioning

LHC “hardware” commissioning

2008

1 2 3 4 5 6 7 8 9 10 11 12

Page 77: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 77

ConclusionsConclusions

The LHC is a global project with the world-wide high-energy physics community devoted to its progress and results

As a project, it is much more complex and diversified than the SPS or LEP or any other large accelerator project constructed to date Machine Advisory Committee, chaired by Prof. M. Tigner, March 2002

We recognize that the planned schedule is very aggressive, given the complexity and potential for damage involved in the initial phases of operation.

It will be important to understand the performance of the machine protection system, the collimation system and the orbit feedback system as well as cycle repeatability and adequate beta-beat control before proceeding to run with significant stored beam energy. Pressure to take shortcuts must be resisted.

Machine Advisory Committee, chaired by Prof. M. Tigner, June 2005

Page 78: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 78

Acknowledgement Acknowledgement

The LHC accelerator is being realised by CERN in collaboration The LHC accelerator is being realised by CERN in collaboration with institutes from many countries over a period of more than with institutes from many countries over a period of more than 20 years20 years

Main contribution come from the USA, Russia, India, Canada, Main contribution come from the USA, Russia, India, Canada, special contributions from France and Switzerland special contributions from France and Switzerland

Industry plays a major role in the construction of the LHCIndustry plays a major role in the construction of the LHC

TU Darmstadt and GSI among the contributors TU Darmstadt and GSI among the contributors

Thanks for the material from:

R.Assmann, R.Bailey, F.Bordry, L.Bottura, L.Bruno, L.Evans, B.Goddard, M.Gyr, Ph.Lebrun

Page 79: R.Schmidt - TU Darmstadt Januar 20081 Der LHC Beschleuniger am CERN: Kollisionen intensiver Teilchenstrahlen bei hoher Strahlenergie Der LHC Beschleuniger.

R.Schmidt - TU Darmstadt Januar 2008 79

Vielen Dank für die Einladung

Möglichkeiten für zukünftige Zusammenarbeit im Bereich von Strahlverlust, Betriebssicherheit, HighEnergyDensity States of Matter,…..

Beteiligung bei einem SPS Experiment, in dem der hochintensive 450 GeV Strahl auf Targets gelenkt wird?

Viele andere Bereiche……..